• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // This code implements SPAKE2, a variant of EKE:
6 //  http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
7 
8 #include <crypto/p224_spake.h>
9 
10 #include <algorithm>
11 
12 #include <base/logging.h>
13 #include <crypto/p224.h>
14 #include <crypto/random.h>
15 #include <crypto/secure_util.h>
16 
17 namespace {
18 
19 // The following two points (M and N in the protocol) are verifiable random
20 // points on the curve and can be generated with the following code:
21 
22 // #include <stdint.h>
23 // #include <stdio.h>
24 // #include <string.h>
25 //
26 // #include <openssl/ec.h>
27 // #include <openssl/obj_mac.h>
28 // #include <openssl/sha.h>
29 //
30 // static const char kSeed1[] = "P224 point generation seed (M)";
31 // static const char kSeed2[] = "P224 point generation seed (N)";
32 //
33 // void find_seed(const char* seed) {
34 //   SHA256_CTX sha256;
35 //   uint8_t digest[SHA256_DIGEST_LENGTH];
36 //
37 //   SHA256_Init(&sha256);
38 //   SHA256_Update(&sha256, seed, strlen(seed));
39 //   SHA256_Final(digest, &sha256);
40 //
41 //   BIGNUM x, y;
42 //   EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
43 //   EC_POINT* p = EC_POINT_new(p224);
44 //
45 //   for (unsigned i = 0;; i++) {
46 //     BN_init(&x);
47 //     BN_bin2bn(digest, 28, &x);
48 //
49 //     if (EC_POINT_set_compressed_coordinates_GFp(
50 //             p224, p, &x, digest[28] & 1, NULL)) {
51 //       BN_init(&y);
52 //       EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
53 //       char* x_str = BN_bn2hex(&x);
54 //       char* y_str = BN_bn2hex(&y);
55 //       printf("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
56 //       OPENSSL_free(x_str);
57 //       OPENSSL_free(y_str);
58 //       BN_free(&x);
59 //       BN_free(&y);
60 //       break;
61 //     }
62 //
63 //     SHA256_Init(&sha256);
64 //     SHA256_Update(&sha256, digest, sizeof(digest));
65 //     SHA256_Final(digest, &sha256);
66 //
67 //     BN_free(&x);
68 //   }
69 //
70 //   EC_POINT_free(p);
71 //   EC_GROUP_free(p224);
72 // }
73 //
74 // int main() {
75 //   find_seed(kSeed1);
76 //   find_seed(kSeed2);
77 //   return 0;
78 // }
79 
80 const crypto::p224::Point kM = {
81   {174237515, 77186811, 235213682, 33849492,
82    33188520, 48266885, 177021753, 81038478},
83   {104523827, 245682244, 266509668, 236196369,
84    28372046, 145351378, 198520366, 113345994},
85   {1, 0, 0, 0, 0, 0, 0, 0},
86 };
87 
88 const crypto::p224::Point kN = {
89   {136176322, 263523628, 251628795, 229292285,
90    5034302, 185981975, 171998428, 11653062},
91   {197567436, 51226044, 60372156, 175772188,
92    42075930, 8083165, 160827401, 65097570},
93   {1, 0, 0, 0, 0, 0, 0, 0},
94 };
95 
96 }  // anonymous namespace
97 
98 namespace crypto {
99 
P224EncryptedKeyExchange(PeerType peer_type,const base::StringPiece & password)100 P224EncryptedKeyExchange::P224EncryptedKeyExchange(
101     PeerType peer_type, const base::StringPiece& password)
102     : state_(kStateInitial),
103       is_server_(peer_type == kPeerTypeServer) {
104   memset(&x_, 0, sizeof(x_));
105   memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
106 
107   // x_ is a random scalar.
108   RandBytes(x_, sizeof(x_));
109 
110   // Calculate |password| hash to get SPAKE password value.
111   SHA256HashString(std::string(password.data(), password.length()),
112                    pw_, sizeof(pw_));
113 
114   Init();
115 }
116 
Init()117 void P224EncryptedKeyExchange::Init() {
118   // X = g**x_
119   p224::Point X;
120   p224::ScalarBaseMult(x_, &X);
121 
122   // The client masks the Diffie-Hellman value, X, by adding M**pw and the
123   // server uses N**pw.
124   p224::Point MNpw;
125   p224::ScalarMult(is_server_ ? kN : kM, pw_, &MNpw);
126 
127   // X* = X + (N|M)**pw
128   p224::Point Xstar;
129   p224::Add(X, MNpw, &Xstar);
130 
131   next_message_ = Xstar.ToString();
132 }
133 
GetNextMessage()134 const std::string& P224EncryptedKeyExchange::GetNextMessage() {
135   if (state_ == kStateInitial) {
136     state_ = kStateRecvDH;
137     return next_message_;
138   } else if (state_ == kStateSendHash) {
139     state_ = kStateRecvHash;
140     return next_message_;
141   }
142 
143   LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
144                 " bad state " << state_;
145   next_message_ = "";
146   return next_message_;
147 }
148 
ProcessMessage(const base::StringPiece & message)149 P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
150     const base::StringPiece& message) {
151   if (state_ == kStateRecvHash) {
152     // This is the final state of the protocol: we are reading the peer's
153     // authentication hash and checking that it matches the one that we expect.
154     if (message.size() != sizeof(expected_authenticator_)) {
155       error_ = "peer's hash had an incorrect size";
156       return kResultFailed;
157     }
158     if (!SecureMemEqual(message.data(), expected_authenticator_,
159                         message.size())) {
160       error_ = "peer's hash had incorrect value";
161       return kResultFailed;
162     }
163     state_ = kStateDone;
164     return kResultSuccess;
165   }
166 
167   if (state_ != kStateRecvDH) {
168     LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
169                   " bad state " << state_;
170     error_ = "internal error";
171     return kResultFailed;
172   }
173 
174   // Y* is the other party's masked, Diffie-Hellman value.
175   p224::Point Ystar;
176   if (!Ystar.SetFromString(message)) {
177     error_ = "failed to parse peer's masked Diffie-Hellman value";
178     return kResultFailed;
179   }
180 
181   // We calculate the mask value: (N|M)**pw
182   p224::Point MNpw, minus_MNpw, Y, k;
183   p224::ScalarMult(is_server_ ? kM : kN, pw_, &MNpw);
184   p224::Negate(MNpw, &minus_MNpw);
185 
186   // Y = Y* - (N|M)**pw
187   p224::Add(Ystar, minus_MNpw, &Y);
188 
189   // K = Y**x_
190   p224::ScalarMult(Y, x_, &k);
191 
192   // If everything worked out, then K is the same for both parties.
193   key_ = k.ToString();
194 
195   std::string client_masked_dh, server_masked_dh;
196   if (is_server_) {
197     client_masked_dh = message.as_string();
198     server_masked_dh = next_message_;
199   } else {
200     client_masked_dh = next_message_;
201     server_masked_dh = message.as_string();
202   }
203 
204   // Now we calculate the hashes that each side will use to prove to the other
205   // that they derived the correct value for K.
206   uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
207   CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
208                 client_hash);
209   CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
210                 server_hash);
211 
212   const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
213   const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
214 
215   next_message_ =
216       std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
217   memcpy(expected_authenticator_, their_hash, kSHA256Length);
218   state_ = kStateSendHash;
219   return kResultPending;
220 }
221 
CalculateHash(PeerType peer_type,const std::string & client_masked_dh,const std::string & server_masked_dh,const std::string & k,uint8_t * out_digest)222 void P224EncryptedKeyExchange::CalculateHash(
223     PeerType peer_type,
224     const std::string& client_masked_dh,
225     const std::string& server_masked_dh,
226     const std::string& k,
227     uint8_t* out_digest) {
228   std::string hash_contents;
229 
230   if (peer_type == kPeerTypeServer) {
231     hash_contents = "server";
232   } else {
233     hash_contents = "client";
234   }
235 
236   hash_contents += client_masked_dh;
237   hash_contents += server_masked_dh;
238   hash_contents +=
239       std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
240   hash_contents += k;
241 
242   SHA256HashString(hash_contents, out_digest, kSHA256Length);
243 }
244 
error() const245 const std::string& P224EncryptedKeyExchange::error() const {
246   return error_;
247 }
248 
GetKey() const249 const std::string& P224EncryptedKeyExchange::GetKey() const {
250   DCHECK_EQ(state_, kStateDone);
251   return GetUnverifiedKey();
252 }
253 
GetUnverifiedKey() const254 const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
255   // Key is already final when state is kStateSendHash. Subsequent states are
256   // used only for verification of the key. Some users may combine verification
257   // with sending verifiable data instead of |expected_authenticator_|.
258   DCHECK_GE(state_, kStateSendHash);
259   return key_;
260 }
261 
SetXForTesting(const std::string & x)262 void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
263   memset(&x_, 0, sizeof(x_));
264   memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
265   Init();
266 }
267 
268 }  // namespace crypto
269