• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2014, Intel Corporation.
2  *
3  * Permission to use, copy, modify, and/or distribute this software for any
4  * purpose with or without fee is hereby granted, provided that the above
5  * copyright notice and this permission notice appear in all copies.
6  *
7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14 
15 /* Developers and authors:
16  * Shay Gueron (1, 2), and Vlad Krasnov (1)
17  * (1) Intel Corporation, Israel Development Center
18  * (2) University of Haifa
19  * Reference:
20  * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with
21  *                          256 Bit Primes" */
22 
23 #include <openssl/ec.h>
24 
25 #include <assert.h>
26 #include <stdint.h>
27 #include <string.h>
28 
29 #include <openssl/bn.h>
30 #include <openssl/crypto.h>
31 #include <openssl/err.h>
32 
33 #include "../bn/internal.h"
34 #include "../delocate.h"
35 #include "../../internal.h"
36 #include "internal.h"
37 #include "p256-x86_64.h"
38 
39 
40 #if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
41     !defined(OPENSSL_SMALL)
42 
43 typedef P256_POINT_AFFINE PRECOMP256_ROW[64];
44 
45 /* One converted into the Montgomery domain */
46 static const BN_ULONG ONE[P256_LIMBS] = {
47     TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000),
48     TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe),
49 };
50 
51 /* Precomputed tables for the default generator */
52 #include "p256-x86_64-table.h"
53 
54 /* Recode window to a signed digit, see util-64.c for details */
booth_recode_w5(unsigned in)55 static unsigned booth_recode_w5(unsigned in) {
56   unsigned s, d;
57 
58   s = ~((in >> 5) - 1);
59   d = (1 << 6) - in - 1;
60   d = (d & s) | (in & ~s);
61   d = (d >> 1) + (d & 1);
62 
63   return (d << 1) + (s & 1);
64 }
65 
booth_recode_w7(unsigned in)66 static unsigned booth_recode_w7(unsigned in) {
67   unsigned s, d;
68 
69   s = ~((in >> 7) - 1);
70   d = (1 << 8) - in - 1;
71   d = (d & s) | (in & ~s);
72   d = (d >> 1) + (d & 1);
73 
74   return (d << 1) + (s & 1);
75 }
76 
77 /* copy_conditional copies |src| to |dst| if |move| is one and leaves it as-is
78  * if |move| is zero.
79  *
80  * WARNING: this breaks the usual convention of constant-time functions
81  * returning masks. */
copy_conditional(BN_ULONG dst[P256_LIMBS],const BN_ULONG src[P256_LIMBS],BN_ULONG move)82 static void copy_conditional(BN_ULONG dst[P256_LIMBS],
83                              const BN_ULONG src[P256_LIMBS], BN_ULONG move) {
84   BN_ULONG mask1 = ((BN_ULONG)0) - move;
85   BN_ULONG mask2 = ~mask1;
86 
87   dst[0] = (src[0] & mask1) ^ (dst[0] & mask2);
88   dst[1] = (src[1] & mask1) ^ (dst[1] & mask2);
89   dst[2] = (src[2] & mask1) ^ (dst[2] & mask2);
90   dst[3] = (src[3] & mask1) ^ (dst[3] & mask2);
91   if (P256_LIMBS == 8) {
92     dst[4] = (src[4] & mask1) ^ (dst[4] & mask2);
93     dst[5] = (src[5] & mask1) ^ (dst[5] & mask2);
94     dst[6] = (src[6] & mask1) ^ (dst[6] & mask2);
95     dst[7] = (src[7] & mask1) ^ (dst[7] & mask2);
96   }
97 }
98 
99 /* is_not_zero returns one iff in != 0 and zero otherwise.
100  *
101  * WARNING: this breaks the usual convention of constant-time functions
102  * returning masks.
103  *
104  * (define-fun is_not_zero ((in (_ BitVec 64))) (_ BitVec 64)
105  *   (bvlshr (bvor in (bvsub #x0000000000000000 in)) #x000000000000003f)
106  * )
107  *
108  * (declare-fun x () (_ BitVec 64))
109  *
110  * (assert (and (= x #x0000000000000000) (= (is_not_zero x) #x0000000000000001)))
111  * (check-sat)
112  *
113  * (assert (and (not (= x #x0000000000000000)) (= (is_not_zero x) #x0000000000000000)))
114  * (check-sat)
115  * */
is_not_zero(BN_ULONG in)116 static BN_ULONG is_not_zero(BN_ULONG in) {
117   in |= (0 - in);
118   in >>= BN_BITS2 - 1;
119   return in;
120 }
121 
122 /* ecp_nistz256_mod_inverse_mont sets |r| to (|in| * 2^-256)^-1 * 2^256 mod p.
123  * That is, |r| is the modular inverse of |in| for input and output in the
124  * Montgomery domain. */
ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS],const BN_ULONG in[P256_LIMBS])125 static void ecp_nistz256_mod_inverse_mont(BN_ULONG r[P256_LIMBS],
126                                           const BN_ULONG in[P256_LIMBS]) {
127   /* The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff ffffffff
128      ffffffff
129      We use FLT and used poly-2 as exponent */
130   BN_ULONG p2[P256_LIMBS];
131   BN_ULONG p4[P256_LIMBS];
132   BN_ULONG p8[P256_LIMBS];
133   BN_ULONG p16[P256_LIMBS];
134   BN_ULONG p32[P256_LIMBS];
135   BN_ULONG res[P256_LIMBS];
136   int i;
137 
138   ecp_nistz256_sqr_mont(res, in);
139   ecp_nistz256_mul_mont(p2, res, in); /* 3*p */
140 
141   ecp_nistz256_sqr_mont(res, p2);
142   ecp_nistz256_sqr_mont(res, res);
143   ecp_nistz256_mul_mont(p4, res, p2); /* f*p */
144 
145   ecp_nistz256_sqr_mont(res, p4);
146   ecp_nistz256_sqr_mont(res, res);
147   ecp_nistz256_sqr_mont(res, res);
148   ecp_nistz256_sqr_mont(res, res);
149   ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */
150 
151   ecp_nistz256_sqr_mont(res, p8);
152   for (i = 0; i < 7; i++) {
153     ecp_nistz256_sqr_mont(res, res);
154   }
155   ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */
156 
157   ecp_nistz256_sqr_mont(res, p16);
158   for (i = 0; i < 15; i++) {
159     ecp_nistz256_sqr_mont(res, res);
160   }
161   ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */
162 
163   ecp_nistz256_sqr_mont(res, p32);
164   for (i = 0; i < 31; i++) {
165     ecp_nistz256_sqr_mont(res, res);
166   }
167   ecp_nistz256_mul_mont(res, res, in);
168 
169   for (i = 0; i < 32 * 4; i++) {
170     ecp_nistz256_sqr_mont(res, res);
171   }
172   ecp_nistz256_mul_mont(res, res, p32);
173 
174   for (i = 0; i < 32; i++) {
175     ecp_nistz256_sqr_mont(res, res);
176   }
177   ecp_nistz256_mul_mont(res, res, p32);
178 
179   for (i = 0; i < 16; i++) {
180     ecp_nistz256_sqr_mont(res, res);
181   }
182   ecp_nistz256_mul_mont(res, res, p16);
183 
184   for (i = 0; i < 8; i++) {
185     ecp_nistz256_sqr_mont(res, res);
186   }
187   ecp_nistz256_mul_mont(res, res, p8);
188 
189   ecp_nistz256_sqr_mont(res, res);
190   ecp_nistz256_sqr_mont(res, res);
191   ecp_nistz256_sqr_mont(res, res);
192   ecp_nistz256_sqr_mont(res, res);
193   ecp_nistz256_mul_mont(res, res, p4);
194 
195   ecp_nistz256_sqr_mont(res, res);
196   ecp_nistz256_sqr_mont(res, res);
197   ecp_nistz256_mul_mont(res, res, p2);
198 
199   ecp_nistz256_sqr_mont(res, res);
200   ecp_nistz256_sqr_mont(res, res);
201   ecp_nistz256_mul_mont(r, res, in);
202 }
203 
204 /* ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and
205  * returns one if it fits. Otherwise it returns zero. */
ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],const BIGNUM * in)206 static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS],
207                                              const BIGNUM *in) {
208   if (in->top > P256_LIMBS) {
209     return 0;
210   }
211 
212   OPENSSL_memset(out, 0, sizeof(BN_ULONG) * P256_LIMBS);
213   OPENSSL_memcpy(out, in->d, sizeof(BN_ULONG) * in->top);
214   return 1;
215 }
216 
217 /* r = p * p_scalar */
ecp_nistz256_windowed_mul(const EC_GROUP * group,P256_POINT * r,const EC_POINT * p,const BIGNUM * p_scalar,BN_CTX * ctx)218 static int ecp_nistz256_windowed_mul(const EC_GROUP *group, P256_POINT *r,
219                                      const EC_POINT *p, const BIGNUM *p_scalar,
220                                      BN_CTX *ctx) {
221   assert(p != NULL);
222   assert(p_scalar != NULL);
223 
224   static const unsigned kWindowSize = 5;
225   static const unsigned kMask = (1 << (5 /* kWindowSize */ + 1)) - 1;
226 
227   /* A |P256_POINT| is (3 * 32) = 96 bytes, and the 64-byte alignment should
228    * add no more than 63 bytes of overhead. Thus, |table| should require
229    * ~1599 ((96 * 16) + 63) bytes of stack space. */
230   alignas(64) P256_POINT table[16];
231   uint8_t p_str[33];
232 
233 
234   int ret = 0;
235   BN_CTX *new_ctx = NULL;
236   int ctx_started = 0;
237 
238   if (BN_num_bits(p_scalar) > 256 || BN_is_negative(p_scalar)) {
239     if (ctx == NULL) {
240       new_ctx = BN_CTX_new();
241       if (new_ctx == NULL) {
242         OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
243         goto err;
244       }
245       ctx = new_ctx;
246     }
247     BN_CTX_start(ctx);
248     ctx_started = 1;
249     BIGNUM *mod = BN_CTX_get(ctx);
250     if (mod == NULL) {
251       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
252       goto err;
253     }
254     if (!BN_nnmod(mod, p_scalar, &group->order, ctx)) {
255       OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
256       goto err;
257     }
258     p_scalar = mod;
259   }
260 
261   int j;
262   for (j = 0; j < p_scalar->top * BN_BYTES; j += BN_BYTES) {
263     BN_ULONG d = p_scalar->d[j / BN_BYTES];
264 
265     p_str[j + 0] = d & 0xff;
266     p_str[j + 1] = (d >> 8) & 0xff;
267     p_str[j + 2] = (d >> 16) & 0xff;
268     p_str[j + 3] = (d >>= 24) & 0xff;
269     if (BN_BYTES == 8) {
270       d >>= 8;
271       p_str[j + 4] = d & 0xff;
272       p_str[j + 5] = (d >> 8) & 0xff;
273       p_str[j + 6] = (d >> 16) & 0xff;
274       p_str[j + 7] = (d >> 24) & 0xff;
275     }
276   }
277 
278   for (; j < 33; j++) {
279     p_str[j] = 0;
280   }
281 
282   /* table[0] is implicitly (0,0,0) (the point at infinity), therefore it is
283    * not stored. All other values are actually stored with an offset of -1 in
284    * table. */
285   P256_POINT *row = table;
286 
287   if (!ecp_nistz256_bignum_to_field_elem(row[1 - 1].X, &p->X) ||
288       !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Y, &p->Y) ||
289       !ecp_nistz256_bignum_to_field_elem(row[1 - 1].Z, &p->Z)) {
290     OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
291     goto err;
292   }
293 
294   ecp_nistz256_point_double(&row[2 - 1], &row[1 - 1]);
295   ecp_nistz256_point_add(&row[3 - 1], &row[2 - 1], &row[1 - 1]);
296   ecp_nistz256_point_double(&row[4 - 1], &row[2 - 1]);
297   ecp_nistz256_point_double(&row[6 - 1], &row[3 - 1]);
298   ecp_nistz256_point_double(&row[8 - 1], &row[4 - 1]);
299   ecp_nistz256_point_double(&row[12 - 1], &row[6 - 1]);
300   ecp_nistz256_point_add(&row[5 - 1], &row[4 - 1], &row[1 - 1]);
301   ecp_nistz256_point_add(&row[7 - 1], &row[6 - 1], &row[1 - 1]);
302   ecp_nistz256_point_add(&row[9 - 1], &row[8 - 1], &row[1 - 1]);
303   ecp_nistz256_point_add(&row[13 - 1], &row[12 - 1], &row[1 - 1]);
304   ecp_nistz256_point_double(&row[14 - 1], &row[7 - 1]);
305   ecp_nistz256_point_double(&row[10 - 1], &row[5 - 1]);
306   ecp_nistz256_point_add(&row[15 - 1], &row[14 - 1], &row[1 - 1]);
307   ecp_nistz256_point_add(&row[11 - 1], &row[10 - 1], &row[1 - 1]);
308   ecp_nistz256_point_double(&row[16 - 1], &row[8 - 1]);
309 
310   BN_ULONG tmp[P256_LIMBS];
311   alignas(32) P256_POINT h;
312   unsigned index = 255;
313   unsigned wvalue = p_str[(index - 1) / 8];
314   wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
315 
316   ecp_nistz256_select_w5(r, table, booth_recode_w5(wvalue) >> 1);
317 
318   while (index >= 5) {
319     if (index != 255) {
320       unsigned off = (index - 1) / 8;
321 
322       wvalue = p_str[off] | p_str[off + 1] << 8;
323       wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
324 
325       wvalue = booth_recode_w5(wvalue);
326 
327       ecp_nistz256_select_w5(&h, table, wvalue >> 1);
328 
329       ecp_nistz256_neg(tmp, h.Y);
330       copy_conditional(h.Y, tmp, (wvalue & 1));
331 
332       ecp_nistz256_point_add(r, r, &h);
333     }
334 
335     index -= kWindowSize;
336 
337     ecp_nistz256_point_double(r, r);
338     ecp_nistz256_point_double(r, r);
339     ecp_nistz256_point_double(r, r);
340     ecp_nistz256_point_double(r, r);
341     ecp_nistz256_point_double(r, r);
342   }
343 
344   /* Final window */
345   wvalue = p_str[0];
346   wvalue = (wvalue << 1) & kMask;
347 
348   wvalue = booth_recode_w5(wvalue);
349 
350   ecp_nistz256_select_w5(&h, table, wvalue >> 1);
351 
352   ecp_nistz256_neg(tmp, h.Y);
353   copy_conditional(h.Y, tmp, wvalue & 1);
354 
355   ecp_nistz256_point_add(r, r, &h);
356 
357   ret = 1;
358 
359 err:
360   if (ctx_started) {
361     BN_CTX_end(ctx);
362   }
363   BN_CTX_free(new_ctx);
364   return ret;
365 }
366 
ecp_nistz256_points_mul(const EC_GROUP * group,EC_POINT * r,const BIGNUM * g_scalar,const EC_POINT * p_,const BIGNUM * p_scalar,BN_CTX * ctx)367 static int ecp_nistz256_points_mul(
368     const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
369     const EC_POINT *p_, const BIGNUM *p_scalar, BN_CTX *ctx) {
370   assert((p_ != NULL) == (p_scalar != NULL));
371 
372   static const unsigned kWindowSize = 7;
373   static const unsigned kMask = (1 << (7 /* kWindowSize */ + 1)) - 1;
374 
375   alignas(32) union {
376     P256_POINT p;
377     P256_POINT_AFFINE a;
378   } t, p;
379 
380   int ret = 0;
381   BN_CTX *new_ctx = NULL;
382   int ctx_started = 0;
383 
384   if (g_scalar != NULL) {
385     if (BN_num_bits(g_scalar) > 256 || BN_is_negative(g_scalar)) {
386       if (ctx == NULL) {
387         new_ctx = BN_CTX_new();
388         if (new_ctx == NULL) {
389           goto err;
390         }
391         ctx = new_ctx;
392       }
393       BN_CTX_start(ctx);
394       ctx_started = 1;
395       BIGNUM *tmp_scalar = BN_CTX_get(ctx);
396       if (tmp_scalar == NULL) {
397         goto err;
398       }
399 
400       if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
401         OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
402         goto err;
403       }
404       g_scalar = tmp_scalar;
405     }
406 
407     uint8_t p_str[33] = {0};
408     int i;
409     for (i = 0; i < g_scalar->top * BN_BYTES; i += BN_BYTES) {
410       BN_ULONG d = g_scalar->d[i / BN_BYTES];
411 
412       p_str[i + 0] = d & 0xff;
413       p_str[i + 1] = (d >> 8) & 0xff;
414       p_str[i + 2] = (d >> 16) & 0xff;
415       p_str[i + 3] = (d >>= 24) & 0xff;
416       if (BN_BYTES == 8) {
417         d >>= 8;
418         p_str[i + 4] = d & 0xff;
419         p_str[i + 5] = (d >> 8) & 0xff;
420         p_str[i + 6] = (d >> 16) & 0xff;
421         p_str[i + 7] = (d >> 24) & 0xff;
422       }
423     }
424 
425     for (; i < (int) sizeof(p_str); i++) {
426       p_str[i] = 0;
427     }
428 
429     /* First window */
430     unsigned wvalue = (p_str[0] << 1) & kMask;
431     unsigned index = kWindowSize;
432 
433     wvalue = booth_recode_w7(wvalue);
434 
435     const PRECOMP256_ROW *const precomputed_table =
436         (const PRECOMP256_ROW *)ecp_nistz256_precomputed;
437     ecp_nistz256_select_w7(&p.a, precomputed_table[0], wvalue >> 1);
438 
439     ecp_nistz256_neg(p.p.Z, p.p.Y);
440     copy_conditional(p.p.Y, p.p.Z, wvalue & 1);
441 
442     /* Convert |p| from affine to Jacobian coordinates. We set Z to zero if |p|
443      * is infinity and |ONE| otherwise. |p| was computed from the table, so it
444      * is infinity iff |wvalue >> 1| is zero.  */
445     OPENSSL_memset(p.p.Z, 0, sizeof(p.p.Z));
446     copy_conditional(p.p.Z, ONE, is_not_zero(wvalue >> 1));
447 
448     for (i = 1; i < 37; i++) {
449       unsigned off = (index - 1) / 8;
450       wvalue = p_str[off] | p_str[off + 1] << 8;
451       wvalue = (wvalue >> ((index - 1) % 8)) & kMask;
452       index += kWindowSize;
453 
454       wvalue = booth_recode_w7(wvalue);
455 
456       ecp_nistz256_select_w7(&t.a, precomputed_table[i], wvalue >> 1);
457 
458       ecp_nistz256_neg(t.p.Z, t.a.Y);
459       copy_conditional(t.a.Y, t.p.Z, wvalue & 1);
460 
461       ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a);
462     }
463   }
464 
465   const int p_is_infinity = g_scalar == NULL;
466   if (p_scalar != NULL) {
467     P256_POINT *out = &t.p;
468     if (p_is_infinity) {
469       out = &p.p;
470     }
471 
472     if (!ecp_nistz256_windowed_mul(group, out, p_, p_scalar, ctx)) {
473       goto err;
474     }
475 
476     if (!p_is_infinity) {
477       ecp_nistz256_point_add(&p.p, &p.p, out);
478     }
479   }
480 
481   /* Not constant-time, but we're only operating on the public output. */
482   if (!bn_set_words(&r->X, p.p.X, P256_LIMBS) ||
483       !bn_set_words(&r->Y, p.p.Y, P256_LIMBS) ||
484       !bn_set_words(&r->Z, p.p.Z, P256_LIMBS)) {
485     return 0;
486   }
487 
488   ret = 1;
489 
490 err:
491   if (ctx_started) {
492     BN_CTX_end(ctx);
493   }
494   BN_CTX_free(new_ctx);
495   return ret;
496 }
497 
ecp_nistz256_get_affine(const EC_GROUP * group,const EC_POINT * point,BIGNUM * x,BIGNUM * y,BN_CTX * ctx)498 static int ecp_nistz256_get_affine(const EC_GROUP *group, const EC_POINT *point,
499                                    BIGNUM *x, BIGNUM *y, BN_CTX *ctx) {
500   BN_ULONG z_inv2[P256_LIMBS];
501   BN_ULONG z_inv3[P256_LIMBS];
502   BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS];
503 
504   if (EC_POINT_is_at_infinity(group, point)) {
505     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
506     return 0;
507   }
508 
509   if (!ecp_nistz256_bignum_to_field_elem(point_x, &point->X) ||
510       !ecp_nistz256_bignum_to_field_elem(point_y, &point->Y) ||
511       !ecp_nistz256_bignum_to_field_elem(point_z, &point->Z)) {
512     OPENSSL_PUT_ERROR(EC, EC_R_COORDINATES_OUT_OF_RANGE);
513     return 0;
514   }
515 
516   ecp_nistz256_mod_inverse_mont(z_inv3, point_z);
517   ecp_nistz256_sqr_mont(z_inv2, z_inv3);
518 
519   /* Instead of using |ecp_nistz256_from_mont| to convert the |x| coordinate
520    * and then calling |ecp_nistz256_from_mont| again to convert the |y|
521    * coordinate below, convert the common factor |z_inv2| once now, saving one
522    * reduction. */
523   ecp_nistz256_from_mont(z_inv2, z_inv2);
524 
525   if (x != NULL) {
526     BN_ULONG x_aff[P256_LIMBS];
527     ecp_nistz256_mul_mont(x_aff, z_inv2, point_x);
528     if (!bn_set_words(x, x_aff, P256_LIMBS)) {
529       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
530       return 0;
531     }
532   }
533 
534   if (y != NULL) {
535     BN_ULONG y_aff[P256_LIMBS];
536     ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2);
537     ecp_nistz256_mul_mont(y_aff, z_inv3, point_y);
538     if (!bn_set_words(y, y_aff, P256_LIMBS)) {
539       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
540       return 0;
541     }
542   }
543 
544   return 1;
545 }
546 
DEFINE_METHOD_FUNCTION(EC_METHOD,EC_GFp_nistz256_method)547 DEFINE_METHOD_FUNCTION(EC_METHOD, EC_GFp_nistz256_method) {
548   out->group_init = ec_GFp_mont_group_init;
549   out->group_finish = ec_GFp_mont_group_finish;
550   out->group_copy = ec_GFp_mont_group_copy;
551   out->group_set_curve = ec_GFp_mont_group_set_curve;
552   out->point_get_affine_coordinates = ecp_nistz256_get_affine;
553   out->mul = ecp_nistz256_points_mul;
554   out->field_mul = ec_GFp_mont_field_mul;
555   out->field_sqr = ec_GFp_mont_field_sqr;
556   out->field_encode = ec_GFp_mont_field_encode;
557   out->field_decode = ec_GFp_mont_field_decode;
558 };
559 
560 #endif /* !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
561           !defined(OPENSSL_SMALL) */
562