• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (C) 2012 The Android Open Source Project
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //      http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 
17 #include "update_engine/payload_consumer/delta_performer.h"
18 
19 #include <endian.h>
20 #include <errno.h>
21 #include <linux/fs.h>
22 
23 #include <algorithm>
24 #include <cstring>
25 #include <memory>
26 #include <string>
27 #include <vector>
28 
29 #include <base/files/file_util.h>
30 #include <base/format_macros.h>
31 #include <base/strings/string_number_conversions.h>
32 #include <base/strings/string_util.h>
33 #include <base/strings/stringprintf.h>
34 #include <brillo/data_encoding.h>
35 #include <brillo/make_unique_ptr.h>
36 #include <bsdiff/bspatch.h>
37 #include <google/protobuf/repeated_field.h>
38 
39 #include "update_engine/common/constants.h"
40 #include "update_engine/common/hardware_interface.h"
41 #include "update_engine/common/prefs_interface.h"
42 #include "update_engine/common/subprocess.h"
43 #include "update_engine/common/terminator.h"
44 #include "update_engine/payload_consumer/bzip_extent_writer.h"
45 #include "update_engine/payload_consumer/download_action.h"
46 #include "update_engine/payload_consumer/extent_writer.h"
47 #if USE_MTD
48 #include "update_engine/payload_consumer/mtd_file_descriptor.h"
49 #endif
50 #include "update_engine/payload_consumer/payload_constants.h"
51 #include "update_engine/payload_consumer/payload_verifier.h"
52 #include "update_engine/payload_consumer/xz_extent_writer.h"
53 
54 using google::protobuf::RepeatedPtrField;
55 using std::min;
56 using std::string;
57 using std::vector;
58 
59 namespace chromeos_update_engine {
60 
61 const uint64_t DeltaPerformer::kDeltaVersionOffset = sizeof(kDeltaMagic);
62 const uint64_t DeltaPerformer::kDeltaVersionSize = 8;
63 const uint64_t DeltaPerformer::kDeltaManifestSizeOffset =
64     kDeltaVersionOffset + kDeltaVersionSize;
65 const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8;
66 const uint64_t DeltaPerformer::kDeltaMetadataSignatureSizeSize = 4;
67 const uint64_t DeltaPerformer::kMaxPayloadHeaderSize = 24;
68 const uint64_t DeltaPerformer::kSupportedMajorPayloadVersion = 2;
69 const uint32_t DeltaPerformer::kSupportedMinorPayloadVersion = 3;
70 
71 const unsigned DeltaPerformer::kProgressLogMaxChunks = 10;
72 const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30;
73 const unsigned DeltaPerformer::kProgressDownloadWeight = 50;
74 const unsigned DeltaPerformer::kProgressOperationsWeight = 50;
75 
76 namespace {
77 const int kUpdateStateOperationInvalid = -1;
78 const int kMaxResumedUpdateFailures = 10;
79 #if USE_MTD
80 const int kUbiVolumeAttachTimeout = 5 * 60;
81 #endif
82 
CreateFileDescriptor(const char * path)83 FileDescriptorPtr CreateFileDescriptor(const char* path) {
84   FileDescriptorPtr ret;
85 #if USE_MTD
86   if (strstr(path, "/dev/ubi") == path) {
87     if (!UbiFileDescriptor::IsUbi(path)) {
88       // The volume might not have been attached at boot time.
89       int volume_no;
90       if (utils::SplitPartitionName(path, nullptr, &volume_no)) {
91         utils::TryAttachingUbiVolume(volume_no, kUbiVolumeAttachTimeout);
92       }
93     }
94     if (UbiFileDescriptor::IsUbi(path)) {
95       LOG(INFO) << path << " is a UBI device.";
96       ret.reset(new UbiFileDescriptor);
97     }
98   } else if (MtdFileDescriptor::IsMtd(path)) {
99     LOG(INFO) << path << " is an MTD device.";
100     ret.reset(new MtdFileDescriptor);
101   } else {
102     LOG(INFO) << path << " is not an MTD nor a UBI device.";
103 #endif
104     ret.reset(new EintrSafeFileDescriptor);
105 #if USE_MTD
106   }
107 #endif
108   return ret;
109 }
110 
111 // Opens path for read/write. On success returns an open FileDescriptor
112 // and sets *err to 0. On failure, sets *err to errno and returns nullptr.
OpenFile(const char * path,int mode,int * err)113 FileDescriptorPtr OpenFile(const char* path, int mode, int* err) {
114   // Try to mark the block device read-only based on the mode. Ignore any
115   // failure since this won't work when passing regular files.
116   utils::SetBlockDeviceReadOnly(path, (mode & O_ACCMODE) == O_RDONLY);
117 
118   FileDescriptorPtr fd = CreateFileDescriptor(path);
119 #if USE_MTD
120   // On NAND devices, we can either read, or write, but not both. So here we
121   // use O_WRONLY.
122   if (UbiFileDescriptor::IsUbi(path) || MtdFileDescriptor::IsMtd(path)) {
123     mode = O_WRONLY;
124   }
125 #endif
126   if (!fd->Open(path, mode, 000)) {
127     *err = errno;
128     PLOG(ERROR) << "Unable to open file " << path;
129     return nullptr;
130   }
131   *err = 0;
132   return fd;
133 }
134 
135 // Discard the tail of the block device referenced by |fd|, from the offset
136 // |data_size| until the end of the block device. Returns whether the data was
137 // discarded.
DiscardPartitionTail(const FileDescriptorPtr & fd,uint64_t data_size)138 bool DiscardPartitionTail(const FileDescriptorPtr& fd, uint64_t data_size) {
139   uint64_t part_size = fd->BlockDevSize();
140   if (!part_size || part_size <= data_size)
141     return false;
142 
143   struct blkioctl_request {
144     int number;
145     const char* name;
146   };
147   const vector<blkioctl_request> blkioctl_requests = {
148       {BLKDISCARD, "BLKDISCARD"},
149       {BLKSECDISCARD, "BLKSECDISCARD"},
150 #ifdef BLKZEROOUT
151       {BLKZEROOUT, "BLKZEROOUT"},
152 #endif
153   };
154   for (const auto& req : blkioctl_requests) {
155     int error = 0;
156     if (fd->BlkIoctl(req.number, data_size, part_size - data_size, &error) &&
157         error == 0) {
158       return true;
159     }
160     LOG(WARNING) << "Error discarding the last "
161                  << (part_size - data_size) / 1024 << " KiB using ioctl("
162                  << req.name << ")";
163   }
164   return false;
165 }
166 
167 }  // namespace
168 
169 
170 // Computes the ratio of |part| and |total|, scaled to |norm|, using integer
171 // arithmetic.
IntRatio(uint64_t part,uint64_t total,uint64_t norm)172 static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) {
173   return part * norm / total;
174 }
175 
LogProgress(const char * message_prefix)176 void DeltaPerformer::LogProgress(const char* message_prefix) {
177   // Format operations total count and percentage.
178   string total_operations_str("?");
179   string completed_percentage_str("");
180   if (num_total_operations_) {
181     total_operations_str = std::to_string(num_total_operations_);
182     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
183     completed_percentage_str =
184         base::StringPrintf(" (%" PRIu64 "%%)",
185                            IntRatio(next_operation_num_, num_total_operations_,
186                                     100));
187   }
188 
189   // Format download total count and percentage.
190   size_t payload_size = payload_->size;
191   string payload_size_str("?");
192   string downloaded_percentage_str("");
193   if (payload_size) {
194     payload_size_str = std::to_string(payload_size);
195     // Upcasting to 64-bit to avoid overflow, back to size_t for formatting.
196     downloaded_percentage_str =
197         base::StringPrintf(" (%" PRIu64 "%%)",
198                            IntRatio(total_bytes_received_, payload_size, 100));
199   }
200 
201   LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_
202             << "/" << total_operations_str << " operations"
203             << completed_percentage_str << ", " << total_bytes_received_
204             << "/" << payload_size_str << " bytes downloaded"
205             << downloaded_percentage_str << ", overall progress "
206             << overall_progress_ << "%";
207 }
208 
UpdateOverallProgress(bool force_log,const char * message_prefix)209 void DeltaPerformer::UpdateOverallProgress(bool force_log,
210                                            const char* message_prefix) {
211   // Compute our download and overall progress.
212   unsigned new_overall_progress = 0;
213   static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100,
214                 "Progress weights don't add up");
215   // Only consider download progress if its total size is known; otherwise
216   // adjust the operations weight to compensate for the absence of download
217   // progress. Also, make sure to cap the download portion at
218   // kProgressDownloadWeight, in case we end up downloading more than we
219   // initially expected (this indicates a problem, but could generally happen).
220   // TODO(garnold) the correction of operations weight when we do not have the
221   // total payload size, as well as the conditional guard below, should both be
222   // eliminated once we ensure that the payload_size in the install plan is
223   // always given and is non-zero. This currently isn't the case during unit
224   // tests (see chromium-os:37969).
225   size_t payload_size = payload_->size;
226   unsigned actual_operations_weight = kProgressOperationsWeight;
227   if (payload_size)
228     new_overall_progress += min(
229         static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size,
230                                        kProgressDownloadWeight)),
231         kProgressDownloadWeight);
232   else
233     actual_operations_weight += kProgressDownloadWeight;
234 
235   // Only add completed operations if their total number is known; we definitely
236   // expect an update to have at least one operation, so the expectation is that
237   // this will eventually reach |actual_operations_weight|.
238   if (num_total_operations_)
239     new_overall_progress += IntRatio(next_operation_num_, num_total_operations_,
240                                      actual_operations_weight);
241 
242   // Progress ratio cannot recede, unless our assumptions about the total
243   // payload size, total number of operations, or the monotonicity of progress
244   // is breached.
245   if (new_overall_progress < overall_progress_) {
246     LOG(WARNING) << "progress counter receded from " << overall_progress_
247                  << "% down to " << new_overall_progress << "%; this is a bug";
248     force_log = true;
249   }
250   overall_progress_ = new_overall_progress;
251 
252   // Update chunk index, log as needed: if forced by called, or we completed a
253   // progress chunk, or a timeout has expired.
254   base::Time curr_time = base::Time::Now();
255   unsigned curr_progress_chunk =
256       overall_progress_ * kProgressLogMaxChunks / 100;
257   if (force_log || curr_progress_chunk > last_progress_chunk_ ||
258       curr_time > forced_progress_log_time_) {
259     forced_progress_log_time_ = curr_time + forced_progress_log_wait_;
260     LogProgress(message_prefix);
261   }
262   last_progress_chunk_ = curr_progress_chunk;
263 }
264 
265 
CopyDataToBuffer(const char ** bytes_p,size_t * count_p,size_t max)266 size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p,
267                                         size_t max) {
268   const size_t count = *count_p;
269   if (!count)
270     return 0;  // Special case shortcut.
271   size_t read_len = min(count, max - buffer_.size());
272   const char* bytes_start = *bytes_p;
273   const char* bytes_end = bytes_start + read_len;
274   buffer_.insert(buffer_.end(), bytes_start, bytes_end);
275   *bytes_p = bytes_end;
276   *count_p = count - read_len;
277   return read_len;
278 }
279 
280 
HandleOpResult(bool op_result,const char * op_type_name,ErrorCode * error)281 bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name,
282                                     ErrorCode* error) {
283   if (op_result)
284     return true;
285 
286   size_t partition_first_op_num =
287       current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0;
288   LOG(ERROR) << "Failed to perform " << op_type_name << " operation "
289              << next_operation_num_ << ", which is the operation "
290              << next_operation_num_ - partition_first_op_num
291              << " in partition \""
292              << partitions_[current_partition_].partition_name() << "\"";
293   if (*error == ErrorCode::kSuccess)
294     *error = ErrorCode::kDownloadOperationExecutionError;
295   return false;
296 }
297 
Close()298 int DeltaPerformer::Close() {
299   int err = -CloseCurrentPartition();
300   LOG_IF(ERROR, !payload_hash_calculator_.Finalize() ||
301                 !signed_hash_calculator_.Finalize())
302       << "Unable to finalize the hash.";
303   if (!buffer_.empty()) {
304     LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes";
305     if (err >= 0)
306       err = 1;
307   }
308   return -err;
309 }
310 
CloseCurrentPartition()311 int DeltaPerformer::CloseCurrentPartition() {
312   int err = 0;
313   if (source_fd_ && !source_fd_->Close()) {
314     err = errno;
315     PLOG(ERROR) << "Error closing source partition";
316     if (!err)
317       err = 1;
318   }
319   source_fd_.reset();
320   source_path_.clear();
321 
322   if (target_fd_ && !target_fd_->Close()) {
323     err = errno;
324     PLOG(ERROR) << "Error closing target partition";
325     if (!err)
326       err = 1;
327   }
328   target_fd_.reset();
329   target_path_.clear();
330   return -err;
331 }
332 
OpenCurrentPartition()333 bool DeltaPerformer::OpenCurrentPartition() {
334   if (current_partition_ >= partitions_.size())
335     return false;
336 
337   const PartitionUpdate& partition = partitions_[current_partition_];
338   size_t num_previous_partitions =
339       install_plan_->partitions.size() - partitions_.size();
340   const InstallPlan::Partition& install_part =
341       install_plan_->partitions[num_previous_partitions + current_partition_];
342   // Open source fds if we have a delta payload with minor version >= 2.
343   if (payload_->type == InstallPayloadType::kDelta &&
344       GetMinorVersion() != kInPlaceMinorPayloadVersion) {
345     source_path_ = install_part.source_path;
346     int err;
347     source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, &err);
348     if (!source_fd_) {
349       LOG(ERROR) << "Unable to open source partition "
350                  << partition.partition_name() << " on slot "
351                  << BootControlInterface::SlotName(install_plan_->source_slot)
352                  << ", file " << source_path_;
353       return false;
354     }
355   }
356 
357   target_path_ = install_part.target_path;
358   int err;
359   target_fd_ = OpenFile(target_path_.c_str(), O_RDWR, &err);
360   if (!target_fd_) {
361     LOG(ERROR) << "Unable to open target partition "
362                << partition.partition_name() << " on slot "
363                << BootControlInterface::SlotName(install_plan_->target_slot)
364                << ", file " << target_path_;
365     return false;
366   }
367 
368   LOG(INFO) << "Applying " << partition.operations().size()
369             << " operations to partition \"" << partition.partition_name()
370             << "\"";
371 
372   // Discard the end of the partition, but ignore failures.
373   DiscardPartitionTail(target_fd_, install_part.target_size);
374 
375   return true;
376 }
377 
378 namespace {
379 
LogPartitionInfoHash(const PartitionInfo & info,const string & tag)380 void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) {
381   string sha256 = brillo::data_encoding::Base64Encode(info.hash());
382   LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256
383             << " size: " << info.size();
384 }
385 
LogPartitionInfo(const vector<PartitionUpdate> & partitions)386 void LogPartitionInfo(const vector<PartitionUpdate>& partitions) {
387   for (const PartitionUpdate& partition : partitions) {
388     LogPartitionInfoHash(partition.old_partition_info(),
389                          "old " + partition.partition_name());
390     LogPartitionInfoHash(partition.new_partition_info(),
391                          "new " + partition.partition_name());
392   }
393 }
394 
395 }  // namespace
396 
GetMetadataSignatureSizeOffset(uint64_t * out_offset) const397 bool DeltaPerformer::GetMetadataSignatureSizeOffset(
398     uint64_t* out_offset) const {
399   if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
400     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
401     return true;
402   }
403   return false;
404 }
405 
GetManifestOffset(uint64_t * out_offset) const406 bool DeltaPerformer::GetManifestOffset(uint64_t* out_offset) const {
407   // Actual manifest begins right after the manifest size field or
408   // metadata signature size field if major version >= 2.
409   if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
410     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize;
411     return true;
412   }
413   if (major_payload_version_ == kBrilloMajorPayloadVersion) {
414     *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize +
415                   kDeltaMetadataSignatureSizeSize;
416     return true;
417   }
418   LOG(ERROR) << "Unknown major payload version: " << major_payload_version_;
419   return false;
420 }
421 
GetMetadataSize() const422 uint64_t DeltaPerformer::GetMetadataSize() const {
423   return metadata_size_;
424 }
425 
GetMajorVersion() const426 uint64_t DeltaPerformer::GetMajorVersion() const {
427   return major_payload_version_;
428 }
429 
GetMinorVersion() const430 uint32_t DeltaPerformer::GetMinorVersion() const {
431   if (manifest_.has_minor_version()) {
432     return manifest_.minor_version();
433   } else {
434     return payload_->type == InstallPayloadType::kDelta
435                ? kSupportedMinorPayloadVersion
436                : kFullPayloadMinorVersion;
437   }
438 }
439 
GetManifest(DeltaArchiveManifest * out_manifest_p) const440 bool DeltaPerformer::GetManifest(DeltaArchiveManifest* out_manifest_p) const {
441   if (!manifest_parsed_)
442     return false;
443   *out_manifest_p = manifest_;
444   return true;
445 }
446 
IsHeaderParsed() const447 bool DeltaPerformer::IsHeaderParsed() const {
448   return metadata_size_ != 0;
449 }
450 
ParsePayloadMetadata(const brillo::Blob & payload,ErrorCode * error)451 DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata(
452     const brillo::Blob& payload, ErrorCode* error) {
453   *error = ErrorCode::kSuccess;
454   uint64_t manifest_offset;
455 
456   if (!IsHeaderParsed()) {
457     // Ensure we have data to cover the major payload version.
458     if (payload.size() < kDeltaManifestSizeOffset)
459       return kMetadataParseInsufficientData;
460 
461     // Validate the magic string.
462     if (memcmp(payload.data(), kDeltaMagic, sizeof(kDeltaMagic)) != 0) {
463       LOG(ERROR) << "Bad payload format -- invalid delta magic.";
464       *error = ErrorCode::kDownloadInvalidMetadataMagicString;
465       return kMetadataParseError;
466     }
467 
468     // Extract the payload version from the metadata.
469     static_assert(sizeof(major_payload_version_) == kDeltaVersionSize,
470                   "Major payload version size mismatch");
471     memcpy(&major_payload_version_,
472            &payload[kDeltaVersionOffset],
473            kDeltaVersionSize);
474     // switch big endian to host
475     major_payload_version_ = be64toh(major_payload_version_);
476 
477     if (major_payload_version_ != supported_major_version_ &&
478         major_payload_version_ != kChromeOSMajorPayloadVersion) {
479       LOG(ERROR) << "Bad payload format -- unsupported payload version: "
480           << major_payload_version_;
481       *error = ErrorCode::kUnsupportedMajorPayloadVersion;
482       return kMetadataParseError;
483     }
484 
485     // Get the manifest offset now that we have payload version.
486     if (!GetManifestOffset(&manifest_offset)) {
487       *error = ErrorCode::kUnsupportedMajorPayloadVersion;
488       return kMetadataParseError;
489     }
490     // Check again with the manifest offset.
491     if (payload.size() < manifest_offset)
492       return kMetadataParseInsufficientData;
493 
494     // Next, parse the manifest size.
495     static_assert(sizeof(manifest_size_) == kDeltaManifestSizeSize,
496                   "manifest_size size mismatch");
497     memcpy(&manifest_size_,
498            &payload[kDeltaManifestSizeOffset],
499            kDeltaManifestSizeSize);
500     manifest_size_ = be64toh(manifest_size_);  // switch big endian to host
501 
502     if (GetMajorVersion() == kBrilloMajorPayloadVersion) {
503       // Parse the metadata signature size.
504       static_assert(sizeof(metadata_signature_size_) ==
505                     kDeltaMetadataSignatureSizeSize,
506                     "metadata_signature_size size mismatch");
507       uint64_t metadata_signature_size_offset;
508       if (!GetMetadataSignatureSizeOffset(&metadata_signature_size_offset)) {
509         *error = ErrorCode::kError;
510         return kMetadataParseError;
511       }
512       memcpy(&metadata_signature_size_,
513              &payload[metadata_signature_size_offset],
514              kDeltaMetadataSignatureSizeSize);
515       metadata_signature_size_ = be32toh(metadata_signature_size_);
516     }
517 
518     // If the metadata size is present in install plan, check for it immediately
519     // even before waiting for that many number of bytes to be downloaded in the
520     // payload. This will prevent any attack which relies on us downloading data
521     // beyond the expected metadata size.
522     metadata_size_ = manifest_offset + manifest_size_;
523     if (install_plan_->hash_checks_mandatory) {
524       if (payload_->metadata_size != metadata_size_) {
525         LOG(ERROR) << "Mandatory metadata size in Omaha response ("
526                    << payload_->metadata_size
527                    << ") is missing/incorrect, actual = " << metadata_size_;
528         *error = ErrorCode::kDownloadInvalidMetadataSize;
529         return kMetadataParseError;
530       }
531     }
532   }
533 
534   // Now that we have validated the metadata size, we should wait for the full
535   // metadata and its signature (if exist) to be read in before we can parse it.
536   if (payload.size() < metadata_size_ + metadata_signature_size_)
537     return kMetadataParseInsufficientData;
538 
539   // Log whether we validated the size or simply trusting what's in the payload
540   // here. This is logged here (after we received the full metadata data) so
541   // that we just log once (instead of logging n times) if it takes n
542   // DeltaPerformer::Write calls to download the full manifest.
543   if (payload_->metadata_size == metadata_size_) {
544     LOG(INFO) << "Manifest size in payload matches expected value from Omaha";
545   } else {
546     // For mandatory-cases, we'd have already returned a kMetadataParseError
547     // above. We'll be here only for non-mandatory cases. Just send a UMA stat.
548     LOG(WARNING) << "Ignoring missing/incorrect metadata size ("
549                  << payload_->metadata_size
550                  << ") in Omaha response as validation is not mandatory. "
551                  << "Trusting metadata size in payload = " << metadata_size_;
552   }
553 
554   // We have the full metadata in |payload|. Verify its integrity
555   // and authenticity based on the information we have in Omaha response.
556   *error = ValidateMetadataSignature(payload);
557   if (*error != ErrorCode::kSuccess) {
558     if (install_plan_->hash_checks_mandatory) {
559       // The autoupdate_CatchBadSignatures test checks for this string
560       // in log-files. Keep in sync.
561       LOG(ERROR) << "Mandatory metadata signature validation failed";
562       return kMetadataParseError;
563     }
564 
565     // For non-mandatory cases, just send a UMA stat.
566     LOG(WARNING) << "Ignoring metadata signature validation failures";
567     *error = ErrorCode::kSuccess;
568   }
569 
570   if (!GetManifestOffset(&manifest_offset)) {
571     *error = ErrorCode::kUnsupportedMajorPayloadVersion;
572     return kMetadataParseError;
573   }
574   // The payload metadata is deemed valid, it's safe to parse the protobuf.
575   if (!manifest_.ParseFromArray(&payload[manifest_offset], manifest_size_)) {
576     LOG(ERROR) << "Unable to parse manifest in update file.";
577     *error = ErrorCode::kDownloadManifestParseError;
578     return kMetadataParseError;
579   }
580 
581   manifest_parsed_ = true;
582   return kMetadataParseSuccess;
583 }
584 
585 // Wrapper around write. Returns true if all requested bytes
586 // were written, or false on any error, regardless of progress
587 // and stores an action exit code in |error|.
Write(const void * bytes,size_t count,ErrorCode * error)588 bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode *error) {
589   *error = ErrorCode::kSuccess;
590 
591   const char* c_bytes = reinterpret_cast<const char*>(bytes);
592 
593   // Update the total byte downloaded count and the progress logs.
594   total_bytes_received_ += count;
595   UpdateOverallProgress(false, "Completed ");
596 
597   while (!manifest_valid_) {
598     // Read data up to the needed limit; this is either maximium payload header
599     // size, or the full metadata size (once it becomes known).
600     const bool do_read_header = !IsHeaderParsed();
601     CopyDataToBuffer(&c_bytes, &count,
602                      (do_read_header ? kMaxPayloadHeaderSize :
603                       metadata_size_ + metadata_signature_size_));
604 
605     MetadataParseResult result = ParsePayloadMetadata(buffer_, error);
606     if (result == kMetadataParseError)
607       return false;
608     if (result == kMetadataParseInsufficientData) {
609       // If we just processed the header, make an attempt on the manifest.
610       if (do_read_header && IsHeaderParsed())
611         continue;
612 
613       return true;
614     }
615 
616     // Checks the integrity of the payload manifest.
617     if ((*error = ValidateManifest()) != ErrorCode::kSuccess)
618       return false;
619     manifest_valid_ = true;
620 
621     // Clear the download buffer.
622     DiscardBuffer(false, metadata_size_);
623 
624     // This populates |partitions_| and the |install_plan.partitions| with the
625     // list of partitions from the manifest.
626     if (!ParseManifestPartitions(error))
627       return false;
628 
629     // |install_plan.partitions| was filled in, nothing need to be done here if
630     // the payload was already applied, returns false to terminate http fetcher,
631     // but keep |error| as ErrorCode::kSuccess.
632     if (payload_->already_applied)
633       return false;
634 
635     num_total_operations_ = 0;
636     for (const auto& partition : partitions_) {
637       num_total_operations_ += partition.operations_size();
638       acc_num_operations_.push_back(num_total_operations_);
639     }
640 
641     LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize,
642                                       metadata_size_))
643         << "Unable to save the manifest metadata size.";
644     LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize,
645                                       metadata_signature_size_))
646         << "Unable to save the manifest signature size.";
647 
648     if (!PrimeUpdateState()) {
649       *error = ErrorCode::kDownloadStateInitializationError;
650       LOG(ERROR) << "Unable to prime the update state.";
651       return false;
652     }
653 
654     if (!OpenCurrentPartition()) {
655       *error = ErrorCode::kInstallDeviceOpenError;
656       return false;
657     }
658 
659     if (next_operation_num_ > 0)
660       UpdateOverallProgress(true, "Resuming after ");
661     LOG(INFO) << "Starting to apply update payload operations";
662   }
663 
664   while (next_operation_num_ < num_total_operations_) {
665     // Check if we should cancel the current attempt for any reason.
666     // In this case, *error will have already been populated with the reason
667     // why we're canceling.
668     if (download_delegate_ && download_delegate_->ShouldCancel(error))
669       return false;
670 
671     // We know there are more operations to perform because we didn't reach the
672     // |num_total_operations_| limit yet.
673     while (next_operation_num_ >= acc_num_operations_[current_partition_]) {
674       CloseCurrentPartition();
675       current_partition_++;
676       if (!OpenCurrentPartition()) {
677         *error = ErrorCode::kInstallDeviceOpenError;
678         return false;
679       }
680     }
681     const size_t partition_operation_num = next_operation_num_ - (
682         current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0);
683 
684     const InstallOperation& op =
685         partitions_[current_partition_].operations(partition_operation_num);
686 
687     CopyDataToBuffer(&c_bytes, &count, op.data_length());
688 
689     // Check whether we received all of the next operation's data payload.
690     if (!CanPerformInstallOperation(op))
691       return true;
692 
693     // Validate the operation only if the metadata signature is present.
694     // Otherwise, keep the old behavior. This serves as a knob to disable
695     // the validation logic in case we find some regression after rollout.
696     // NOTE: If hash checks are mandatory and if metadata_signature is empty,
697     // we would have already failed in ParsePayloadMetadata method and thus not
698     // even be here. So no need to handle that case again here.
699     if (!payload_->metadata_signature.empty()) {
700       // Note: Validate must be called only if CanPerformInstallOperation is
701       // called. Otherwise, we might be failing operations before even if there
702       // isn't sufficient data to compute the proper hash.
703       *error = ValidateOperationHash(op);
704       if (*error != ErrorCode::kSuccess) {
705         if (install_plan_->hash_checks_mandatory) {
706           LOG(ERROR) << "Mandatory operation hash check failed";
707           return false;
708         }
709 
710         // For non-mandatory cases, just send a UMA stat.
711         LOG(WARNING) << "Ignoring operation validation errors";
712         *error = ErrorCode::kSuccess;
713       }
714     }
715 
716     // Makes sure we unblock exit when this operation completes.
717     ScopedTerminatorExitUnblocker exit_unblocker =
718         ScopedTerminatorExitUnblocker();  // Avoids a compiler unused var bug.
719 
720     bool op_result;
721     switch (op.type()) {
722       case InstallOperation::REPLACE:
723       case InstallOperation::REPLACE_BZ:
724       case InstallOperation::REPLACE_XZ:
725         op_result = PerformReplaceOperation(op);
726         break;
727       case InstallOperation::ZERO:
728       case InstallOperation::DISCARD:
729         op_result = PerformZeroOrDiscardOperation(op);
730         break;
731       case InstallOperation::MOVE:
732         op_result = PerformMoveOperation(op);
733         break;
734       case InstallOperation::BSDIFF:
735         op_result = PerformBsdiffOperation(op);
736         break;
737       case InstallOperation::SOURCE_COPY:
738         op_result = PerformSourceCopyOperation(op, error);
739         break;
740       case InstallOperation::SOURCE_BSDIFF:
741         op_result = PerformSourceBsdiffOperation(op, error);
742         break;
743       case InstallOperation::IMGDIFF:
744         // TODO(deymo): Replace with PUFFIN operation.
745         op_result = false;
746         break;
747       default:
748         op_result = false;
749     }
750     if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error))
751       return false;
752 
753     next_operation_num_++;
754     UpdateOverallProgress(false, "Completed ");
755     CheckpointUpdateProgress();
756   }
757 
758   // In major version 2, we don't add dummy operation to the payload.
759   // If we already extracted the signature we should skip this step.
760   if (major_payload_version_ == kBrilloMajorPayloadVersion &&
761       manifest_.has_signatures_offset() && manifest_.has_signatures_size() &&
762       signatures_message_data_.empty()) {
763     if (manifest_.signatures_offset() != buffer_offset_) {
764       LOG(ERROR) << "Payload signatures offset points to blob offset "
765                  << manifest_.signatures_offset()
766                  << " but signatures are expected at offset "
767                  << buffer_offset_;
768       *error = ErrorCode::kDownloadPayloadVerificationError;
769       return false;
770     }
771     CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size());
772     // Needs more data to cover entire signature.
773     if (buffer_.size() < manifest_.signatures_size())
774       return true;
775     if (!ExtractSignatureMessage()) {
776       LOG(ERROR) << "Extract payload signature failed.";
777       *error = ErrorCode::kDownloadPayloadVerificationError;
778       return false;
779     }
780     DiscardBuffer(true, 0);
781     // Since we extracted the SignatureMessage we need to advance the
782     // checkpoint, otherwise we would reload the signature and try to extract
783     // it again.
784     CheckpointUpdateProgress();
785   }
786 
787   return true;
788 }
789 
IsManifestValid()790 bool DeltaPerformer::IsManifestValid() {
791   return manifest_valid_;
792 }
793 
ParseManifestPartitions(ErrorCode * error)794 bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) {
795   if (major_payload_version_ == kBrilloMajorPayloadVersion) {
796     partitions_.clear();
797     for (const PartitionUpdate& partition : manifest_.partitions()) {
798       partitions_.push_back(partition);
799     }
800     manifest_.clear_partitions();
801   } else if (major_payload_version_ == kChromeOSMajorPayloadVersion) {
802     LOG(INFO) << "Converting update information from old format.";
803     PartitionUpdate root_part;
804     root_part.set_partition_name(kLegacyPartitionNameRoot);
805 #ifdef __ANDROID__
806     LOG(WARNING) << "Legacy payload major version provided to an Android "
807                     "build. Assuming no post-install. Please use major version "
808                     "2 or newer.";
809     root_part.set_run_postinstall(false);
810 #else
811     root_part.set_run_postinstall(true);
812 #endif  // __ANDROID__
813     if (manifest_.has_old_rootfs_info()) {
814       *root_part.mutable_old_partition_info() = manifest_.old_rootfs_info();
815       manifest_.clear_old_rootfs_info();
816     }
817     if (manifest_.has_new_rootfs_info()) {
818       *root_part.mutable_new_partition_info() = manifest_.new_rootfs_info();
819       manifest_.clear_new_rootfs_info();
820     }
821     *root_part.mutable_operations() = manifest_.install_operations();
822     manifest_.clear_install_operations();
823     partitions_.push_back(std::move(root_part));
824 
825     PartitionUpdate kern_part;
826     kern_part.set_partition_name(kLegacyPartitionNameKernel);
827     kern_part.set_run_postinstall(false);
828     if (manifest_.has_old_kernel_info()) {
829       *kern_part.mutable_old_partition_info() = manifest_.old_kernel_info();
830       manifest_.clear_old_kernel_info();
831     }
832     if (manifest_.has_new_kernel_info()) {
833       *kern_part.mutable_new_partition_info() = manifest_.new_kernel_info();
834       manifest_.clear_new_kernel_info();
835     }
836     *kern_part.mutable_operations() = manifest_.kernel_install_operations();
837     manifest_.clear_kernel_install_operations();
838     partitions_.push_back(std::move(kern_part));
839   }
840 
841   // Fill in the InstallPlan::partitions based on the partitions from the
842   // payload.
843   for (const auto& partition : partitions_) {
844     InstallPlan::Partition install_part;
845     install_part.name = partition.partition_name();
846     install_part.run_postinstall =
847         partition.has_run_postinstall() && partition.run_postinstall();
848     if (install_part.run_postinstall) {
849       install_part.postinstall_path =
850           (partition.has_postinstall_path() ? partition.postinstall_path()
851                                             : kPostinstallDefaultScript);
852       install_part.filesystem_type = partition.filesystem_type();
853       install_part.postinstall_optional = partition.postinstall_optional();
854     }
855 
856     if (partition.has_old_partition_info()) {
857       const PartitionInfo& info = partition.old_partition_info();
858       install_part.source_size = info.size();
859       install_part.source_hash.assign(info.hash().begin(), info.hash().end());
860     }
861 
862     if (!partition.has_new_partition_info()) {
863       LOG(ERROR) << "Unable to get new partition hash info on partition "
864                  << install_part.name << ".";
865       *error = ErrorCode::kDownloadNewPartitionInfoError;
866       return false;
867     }
868     const PartitionInfo& info = partition.new_partition_info();
869     install_part.target_size = info.size();
870     install_part.target_hash.assign(info.hash().begin(), info.hash().end());
871 
872     install_plan_->partitions.push_back(install_part);
873   }
874 
875   if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) {
876     LOG(ERROR) << "Unable to determine all the partition devices.";
877     *error = ErrorCode::kInstallDeviceOpenError;
878     return false;
879   }
880   LogPartitionInfo(partitions_);
881   return true;
882 }
883 
CanPerformInstallOperation(const chromeos_update_engine::InstallOperation & operation)884 bool DeltaPerformer::CanPerformInstallOperation(
885     const chromeos_update_engine::InstallOperation& operation) {
886   // If we don't have a data blob we can apply it right away.
887   if (!operation.has_data_offset() && !operation.has_data_length())
888     return true;
889 
890   // See if we have the entire data blob in the buffer
891   if (operation.data_offset() < buffer_offset_) {
892     LOG(ERROR) << "we threw away data it seems?";
893     return false;
894   }
895 
896   return (operation.data_offset() + operation.data_length() <=
897           buffer_offset_ + buffer_.size());
898 }
899 
PerformReplaceOperation(const InstallOperation & operation)900 bool DeltaPerformer::PerformReplaceOperation(
901     const InstallOperation& operation) {
902   CHECK(operation.type() == InstallOperation::REPLACE ||
903         operation.type() == InstallOperation::REPLACE_BZ ||
904         operation.type() == InstallOperation::REPLACE_XZ);
905 
906   // Since we delete data off the beginning of the buffer as we use it,
907   // the data we need should be exactly at the beginning of the buffer.
908   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
909   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
910 
911   // Extract the signature message if it's in this operation.
912   if (ExtractSignatureMessageFromOperation(operation)) {
913     // If this is dummy replace operation, we ignore it after extracting the
914     // signature.
915     DiscardBuffer(true, 0);
916     return true;
917   }
918 
919   // Setup the ExtentWriter stack based on the operation type.
920   std::unique_ptr<ExtentWriter> writer =
921     brillo::make_unique_ptr(new ZeroPadExtentWriter(
922       brillo::make_unique_ptr(new DirectExtentWriter())));
923 
924   if (operation.type() == InstallOperation::REPLACE_BZ) {
925     writer.reset(new BzipExtentWriter(std::move(writer)));
926   } else if (operation.type() == InstallOperation::REPLACE_XZ) {
927     writer.reset(new XzExtentWriter(std::move(writer)));
928   }
929 
930   // Create a vector of extents to pass to the ExtentWriter.
931   vector<Extent> extents;
932   for (int i = 0; i < operation.dst_extents_size(); i++) {
933     extents.push_back(operation.dst_extents(i));
934   }
935 
936   TEST_AND_RETURN_FALSE(writer->Init(target_fd_, extents, block_size_));
937   TEST_AND_RETURN_FALSE(writer->Write(buffer_.data(), operation.data_length()));
938   TEST_AND_RETURN_FALSE(writer->End());
939 
940   // Update buffer
941   DiscardBuffer(true, buffer_.size());
942   return true;
943 }
944 
PerformZeroOrDiscardOperation(const InstallOperation & operation)945 bool DeltaPerformer::PerformZeroOrDiscardOperation(
946     const InstallOperation& operation) {
947   CHECK(operation.type() == InstallOperation::DISCARD ||
948         operation.type() == InstallOperation::ZERO);
949 
950   // These operations have no blob.
951   TEST_AND_RETURN_FALSE(!operation.has_data_offset());
952   TEST_AND_RETURN_FALSE(!operation.has_data_length());
953 
954 #ifdef BLKZEROOUT
955   bool attempt_ioctl = true;
956   int request =
957       (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD);
958 #else  // !defined(BLKZEROOUT)
959   bool attempt_ioctl = false;
960   int request = 0;
961 #endif  // !defined(BLKZEROOUT)
962 
963   brillo::Blob zeros;
964   for (const Extent& extent : operation.dst_extents()) {
965     const uint64_t start = extent.start_block() * block_size_;
966     const uint64_t length = extent.num_blocks() * block_size_;
967     if (attempt_ioctl) {
968       int result = 0;
969       if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0)
970         continue;
971       attempt_ioctl = false;
972       zeros.resize(16 * block_size_);
973     }
974     // In case of failure, we fall back to writing 0 to the selected region.
975     for (uint64_t offset = 0; offset < length; offset += zeros.size()) {
976       uint64_t chunk_length = min(length - offset,
977                                   static_cast<uint64_t>(zeros.size()));
978       TEST_AND_RETURN_FALSE(
979           utils::PWriteAll(target_fd_, zeros.data(), chunk_length, start + offset));
980     }
981   }
982   return true;
983 }
984 
PerformMoveOperation(const InstallOperation & operation)985 bool DeltaPerformer::PerformMoveOperation(const InstallOperation& operation) {
986   // Calculate buffer size. Note, this function doesn't do a sliding
987   // window to copy in case the source and destination blocks overlap.
988   // If we wanted to do a sliding window, we could program the server
989   // to generate deltas that effectively did a sliding window.
990 
991   uint64_t blocks_to_read = 0;
992   for (int i = 0; i < operation.src_extents_size(); i++)
993     blocks_to_read += operation.src_extents(i).num_blocks();
994 
995   uint64_t blocks_to_write = 0;
996   for (int i = 0; i < operation.dst_extents_size(); i++)
997     blocks_to_write += operation.dst_extents(i).num_blocks();
998 
999   DCHECK_EQ(blocks_to_write, blocks_to_read);
1000   brillo::Blob buf(blocks_to_write * block_size_);
1001 
1002   // Read in bytes.
1003   ssize_t bytes_read = 0;
1004   for (int i = 0; i < operation.src_extents_size(); i++) {
1005     ssize_t bytes_read_this_iteration = 0;
1006     const Extent& extent = operation.src_extents(i);
1007     const size_t bytes = extent.num_blocks() * block_size_;
1008     TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
1009     TEST_AND_RETURN_FALSE(utils::PReadAll(target_fd_,
1010                                           &buf[bytes_read],
1011                                           bytes,
1012                                           extent.start_block() * block_size_,
1013                                           &bytes_read_this_iteration));
1014     TEST_AND_RETURN_FALSE(
1015         bytes_read_this_iteration == static_cast<ssize_t>(bytes));
1016     bytes_read += bytes_read_this_iteration;
1017   }
1018 
1019   // Write bytes out.
1020   ssize_t bytes_written = 0;
1021   for (int i = 0; i < operation.dst_extents_size(); i++) {
1022     const Extent& extent = operation.dst_extents(i);
1023     const size_t bytes = extent.num_blocks() * block_size_;
1024     TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole);
1025     TEST_AND_RETURN_FALSE(utils::PWriteAll(target_fd_,
1026                                            &buf[bytes_written],
1027                                            bytes,
1028                                            extent.start_block() * block_size_));
1029     bytes_written += bytes;
1030   }
1031   DCHECK_EQ(bytes_written, bytes_read);
1032   DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size()));
1033   return true;
1034 }
1035 
1036 namespace {
1037 
1038 // Takes |extents| and fills an empty vector |blocks| with a block index for
1039 // each block in |extents|. For example, [(3, 2), (8, 1)] would give [3, 4, 8].
ExtentsToBlocks(const RepeatedPtrField<Extent> & extents,vector<uint64_t> * blocks)1040 void ExtentsToBlocks(const RepeatedPtrField<Extent>& extents,
1041                      vector<uint64_t>* blocks) {
1042   for (const Extent& ext : extents) {
1043     for (uint64_t j = 0; j < ext.num_blocks(); j++)
1044       blocks->push_back(ext.start_block() + j);
1045   }
1046 }
1047 
1048 // Takes |extents| and returns the number of blocks in those extents.
GetBlockCount(const RepeatedPtrField<Extent> & extents)1049 uint64_t GetBlockCount(const RepeatedPtrField<Extent>& extents) {
1050   uint64_t sum = 0;
1051   for (const Extent& ext : extents) {
1052     sum += ext.num_blocks();
1053   }
1054   return sum;
1055 }
1056 
1057 // Compare |calculated_hash| with source hash in |operation|, return false and
1058 // dump hash and set |error| if don't match.
ValidateSourceHash(const brillo::Blob & calculated_hash,const InstallOperation & operation,ErrorCode * error)1059 bool ValidateSourceHash(const brillo::Blob& calculated_hash,
1060                         const InstallOperation& operation,
1061                         ErrorCode* error) {
1062   brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(),
1063                                     operation.src_sha256_hash().end());
1064   if (calculated_hash != expected_source_hash) {
1065     LOG(ERROR) << "The hash of the source data on disk for this operation "
1066                << "doesn't match the expected value. This could mean that the "
1067                << "delta update payload was targeted for another version, or "
1068                << "that the source partition was modified after it was "
1069                << "installed, for example, by mounting a filesystem.";
1070     LOG(ERROR) << "Expected:   sha256|hex = "
1071                << base::HexEncode(expected_source_hash.data(),
1072                                   expected_source_hash.size());
1073     LOG(ERROR) << "Calculated: sha256|hex = "
1074                << base::HexEncode(calculated_hash.data(),
1075                                   calculated_hash.size());
1076 
1077     vector<string> source_extents;
1078     for (const Extent& ext : operation.src_extents()) {
1079       source_extents.push_back(
1080           base::StringPrintf("%" PRIu64 ":%" PRIu64,
1081                              static_cast<uint64_t>(ext.start_block()),
1082                              static_cast<uint64_t>(ext.num_blocks())));
1083     }
1084     LOG(ERROR) << "Operation source (offset:size) in blocks: "
1085                << base::JoinString(source_extents, ",");
1086 
1087     *error = ErrorCode::kDownloadStateInitializationError;
1088     return false;
1089   }
1090   return true;
1091 }
1092 
1093 }  // namespace
1094 
PerformSourceCopyOperation(const InstallOperation & operation,ErrorCode * error)1095 bool DeltaPerformer::PerformSourceCopyOperation(
1096     const InstallOperation& operation, ErrorCode* error) {
1097   if (operation.has_src_length())
1098     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
1099   if (operation.has_dst_length())
1100     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
1101 
1102   uint64_t blocks_to_read = GetBlockCount(operation.src_extents());
1103   uint64_t blocks_to_write = GetBlockCount(operation.dst_extents());
1104   TEST_AND_RETURN_FALSE(blocks_to_write ==  blocks_to_read);
1105 
1106   // Create vectors of all the individual src/dst blocks.
1107   vector<uint64_t> src_blocks;
1108   vector<uint64_t> dst_blocks;
1109   ExtentsToBlocks(operation.src_extents(), &src_blocks);
1110   ExtentsToBlocks(operation.dst_extents(), &dst_blocks);
1111   DCHECK_EQ(src_blocks.size(), blocks_to_read);
1112   DCHECK_EQ(src_blocks.size(), dst_blocks.size());
1113 
1114   brillo::Blob buf(block_size_);
1115   ssize_t bytes_read = 0;
1116   HashCalculator source_hasher;
1117   // Read/write one block at a time.
1118   for (uint64_t i = 0; i < blocks_to_read; i++) {
1119     ssize_t bytes_read_this_iteration = 0;
1120     uint64_t src_block = src_blocks[i];
1121     uint64_t dst_block = dst_blocks[i];
1122 
1123     // Read in bytes.
1124     TEST_AND_RETURN_FALSE(
1125         utils::PReadAll(source_fd_,
1126                         buf.data(),
1127                         block_size_,
1128                         src_block * block_size_,
1129                         &bytes_read_this_iteration));
1130 
1131     // Write bytes out.
1132     TEST_AND_RETURN_FALSE(
1133         utils::PWriteAll(target_fd_,
1134                          buf.data(),
1135                          block_size_,
1136                          dst_block * block_size_));
1137 
1138     bytes_read += bytes_read_this_iteration;
1139     TEST_AND_RETURN_FALSE(bytes_read_this_iteration ==
1140                           static_cast<ssize_t>(block_size_));
1141 
1142     if (operation.has_src_sha256_hash())
1143       TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), buf.size()));
1144   }
1145 
1146   if (operation.has_src_sha256_hash()) {
1147     TEST_AND_RETURN_FALSE(source_hasher.Finalize());
1148     TEST_AND_RETURN_FALSE(
1149         ValidateSourceHash(source_hasher.raw_hash(), operation, error));
1150   }
1151 
1152   DCHECK_EQ(bytes_read, static_cast<ssize_t>(blocks_to_read * block_size_));
1153   return true;
1154 }
1155 
ExtentsToBsdiffPositionsString(const RepeatedPtrField<Extent> & extents,uint64_t block_size,uint64_t full_length,string * positions_string)1156 bool DeltaPerformer::ExtentsToBsdiffPositionsString(
1157     const RepeatedPtrField<Extent>& extents,
1158     uint64_t block_size,
1159     uint64_t full_length,
1160     string* positions_string) {
1161   string ret;
1162   uint64_t length = 0;
1163   for (const Extent& extent : extents) {
1164     int64_t start = extent.start_block() * block_size;
1165     uint64_t this_length =
1166         min(full_length - length,
1167             static_cast<uint64_t>(extent.num_blocks()) * block_size);
1168     ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length);
1169     length += this_length;
1170   }
1171   TEST_AND_RETURN_FALSE(length == full_length);
1172   if (!ret.empty())
1173     ret.resize(ret.size() - 1);  // Strip trailing comma off
1174   *positions_string = ret;
1175   return true;
1176 }
1177 
PerformBsdiffOperation(const InstallOperation & operation)1178 bool DeltaPerformer::PerformBsdiffOperation(const InstallOperation& operation) {
1179   // Since we delete data off the beginning of the buffer as we use it,
1180   // the data we need should be exactly at the beginning of the buffer.
1181   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
1182   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
1183 
1184   string input_positions;
1185   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
1186                                                        block_size_,
1187                                                        operation.src_length(),
1188                                                        &input_positions));
1189   string output_positions;
1190   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
1191                                                        block_size_,
1192                                                        operation.dst_length(),
1193                                                        &output_positions));
1194 
1195   TEST_AND_RETURN_FALSE(bsdiff::bspatch(target_path_.c_str(),
1196                                         target_path_.c_str(),
1197                                         buffer_.data(),
1198                                         buffer_.size(),
1199                                         input_positions.c_str(),
1200                                         output_positions.c_str()) == 0);
1201   DiscardBuffer(true, buffer_.size());
1202 
1203   if (operation.dst_length() % block_size_) {
1204     // Zero out rest of final block.
1205     // TODO(adlr): build this into bspatch; it's more efficient that way.
1206     const Extent& last_extent =
1207         operation.dst_extents(operation.dst_extents_size() - 1);
1208     const uint64_t end_byte =
1209         (last_extent.start_block() + last_extent.num_blocks()) * block_size_;
1210     const uint64_t begin_byte =
1211         end_byte - (block_size_ - operation.dst_length() % block_size_);
1212     brillo::Blob zeros(end_byte - begin_byte);
1213     TEST_AND_RETURN_FALSE(
1214         utils::PWriteAll(target_fd_, zeros.data(), end_byte - begin_byte, begin_byte));
1215   }
1216   return true;
1217 }
1218 
PerformSourceBsdiffOperation(const InstallOperation & operation,ErrorCode * error)1219 bool DeltaPerformer::PerformSourceBsdiffOperation(
1220     const InstallOperation& operation, ErrorCode* error) {
1221   // Since we delete data off the beginning of the buffer as we use it,
1222   // the data we need should be exactly at the beginning of the buffer.
1223   TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset());
1224   TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length());
1225   if (operation.has_src_length())
1226     TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0);
1227   if (operation.has_dst_length())
1228     TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0);
1229 
1230   if (operation.has_src_sha256_hash()) {
1231     HashCalculator source_hasher;
1232     const uint64_t kMaxBlocksToRead = 512;  // 2MB if block size is 4KB
1233     brillo::Blob buf(kMaxBlocksToRead * block_size_);
1234     for (const Extent& extent : operation.src_extents()) {
1235       for (uint64_t i = 0; i < extent.num_blocks(); i += kMaxBlocksToRead) {
1236         uint64_t blocks_to_read = min(
1237             kMaxBlocksToRead, static_cast<uint64_t>(extent.num_blocks()) - i);
1238         ssize_t bytes_to_read = blocks_to_read * block_size_;
1239         ssize_t bytes_read_this_iteration = 0;
1240         TEST_AND_RETURN_FALSE(
1241             utils::PReadAll(source_fd_, buf.data(), bytes_to_read,
1242                             (extent.start_block() + i) * block_size_,
1243                             &bytes_read_this_iteration));
1244         TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read);
1245         TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), bytes_to_read));
1246       }
1247     }
1248     TEST_AND_RETURN_FALSE(source_hasher.Finalize());
1249     TEST_AND_RETURN_FALSE(
1250         ValidateSourceHash(source_hasher.raw_hash(), operation, error));
1251   }
1252 
1253   string input_positions;
1254   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(),
1255                                                        block_size_,
1256                                                        operation.src_length(),
1257                                                        &input_positions));
1258   string output_positions;
1259   TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(),
1260                                                        block_size_,
1261                                                        operation.dst_length(),
1262                                                        &output_positions));
1263 
1264   TEST_AND_RETURN_FALSE(bsdiff::bspatch(source_path_.c_str(),
1265                                         target_path_.c_str(),
1266                                         buffer_.data(),
1267                                         buffer_.size(),
1268                                         input_positions.c_str(),
1269                                         output_positions.c_str()) == 0);
1270   DiscardBuffer(true, buffer_.size());
1271   return true;
1272 }
1273 
ExtractSignatureMessageFromOperation(const InstallOperation & operation)1274 bool DeltaPerformer::ExtractSignatureMessageFromOperation(
1275     const InstallOperation& operation) {
1276   if (operation.type() != InstallOperation::REPLACE ||
1277       !manifest_.has_signatures_offset() ||
1278       manifest_.signatures_offset() != operation.data_offset()) {
1279     return false;
1280   }
1281   TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() &&
1282                         manifest_.signatures_size() == operation.data_length());
1283   TEST_AND_RETURN_FALSE(ExtractSignatureMessage());
1284   return true;
1285 }
1286 
ExtractSignatureMessage()1287 bool DeltaPerformer::ExtractSignatureMessage() {
1288   TEST_AND_RETURN_FALSE(signatures_message_data_.empty());
1289   TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset());
1290   TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size());
1291   signatures_message_data_.assign(
1292       buffer_.begin(),
1293       buffer_.begin() + manifest_.signatures_size());
1294 
1295   // Save the signature blob because if the update is interrupted after the
1296   // download phase we don't go through this path anymore. Some alternatives to
1297   // consider:
1298   //
1299   // 1. On resume, re-download the signature blob from the server and re-verify
1300   // it.
1301   //
1302   // 2. Verify the signature as soon as it's received and don't checkpoint the
1303   // blob and the signed sha-256 context.
1304   LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob,
1305                                      string(signatures_message_data_.begin(),
1306                                             signatures_message_data_.end())))
1307       << "Unable to store the signature blob.";
1308 
1309   LOG(INFO) << "Extracted signature data of size "
1310             << manifest_.signatures_size() << " at "
1311             << manifest_.signatures_offset();
1312   return true;
1313 }
1314 
GetPublicKeyFromResponse(base::FilePath * out_tmp_key)1315 bool DeltaPerformer::GetPublicKeyFromResponse(base::FilePath *out_tmp_key) {
1316   if (hardware_->IsOfficialBuild() ||
1317       utils::FileExists(public_key_path_.c_str()) ||
1318       install_plan_->public_key_rsa.empty())
1319     return false;
1320 
1321   if (!utils::DecodeAndStoreBase64String(install_plan_->public_key_rsa,
1322                                          out_tmp_key))
1323     return false;
1324 
1325   return true;
1326 }
1327 
ValidateMetadataSignature(const brillo::Blob & payload)1328 ErrorCode DeltaPerformer::ValidateMetadataSignature(
1329     const brillo::Blob& payload) {
1330   if (payload.size() < metadata_size_ + metadata_signature_size_)
1331     return ErrorCode::kDownloadMetadataSignatureError;
1332 
1333   brillo::Blob metadata_signature_blob, metadata_signature_protobuf_blob;
1334   if (!payload_->metadata_signature.empty()) {
1335     // Convert base64-encoded signature to raw bytes.
1336     if (!brillo::data_encoding::Base64Decode(payload_->metadata_signature,
1337                                              &metadata_signature_blob)) {
1338       LOG(ERROR) << "Unable to decode base64 metadata signature: "
1339                  << payload_->metadata_signature;
1340       return ErrorCode::kDownloadMetadataSignatureError;
1341     }
1342   } else if (major_payload_version_ == kBrilloMajorPayloadVersion) {
1343     metadata_signature_protobuf_blob.assign(
1344         payload.begin() + metadata_size_,
1345         payload.begin() + metadata_size_ + metadata_signature_size_);
1346   }
1347 
1348   if (metadata_signature_blob.empty() &&
1349       metadata_signature_protobuf_blob.empty()) {
1350     if (install_plan_->hash_checks_mandatory) {
1351       LOG(ERROR) << "Missing mandatory metadata signature in both Omaha "
1352                  << "response and payload.";
1353       return ErrorCode::kDownloadMetadataSignatureMissingError;
1354     }
1355 
1356     LOG(WARNING) << "Cannot validate metadata as the signature is empty";
1357     return ErrorCode::kSuccess;
1358   }
1359 
1360   // See if we should use the public RSA key in the Omaha response.
1361   base::FilePath path_to_public_key(public_key_path_);
1362   base::FilePath tmp_key;
1363   if (GetPublicKeyFromResponse(&tmp_key))
1364     path_to_public_key = tmp_key;
1365   ScopedPathUnlinker tmp_key_remover(tmp_key.value());
1366   if (tmp_key.empty())
1367     tmp_key_remover.set_should_remove(false);
1368 
1369   LOG(INFO) << "Verifying metadata hash signature using public key: "
1370             << path_to_public_key.value();
1371 
1372   brillo::Blob calculated_metadata_hash;
1373   if (!HashCalculator::RawHashOfBytes(
1374           payload.data(), metadata_size_, &calculated_metadata_hash)) {
1375     LOG(ERROR) << "Unable to compute actual hash of manifest";
1376     return ErrorCode::kDownloadMetadataSignatureVerificationError;
1377   }
1378 
1379   PayloadVerifier::PadRSA2048SHA256Hash(&calculated_metadata_hash);
1380   if (calculated_metadata_hash.empty()) {
1381     LOG(ERROR) << "Computed actual hash of metadata is empty.";
1382     return ErrorCode::kDownloadMetadataSignatureVerificationError;
1383   }
1384 
1385   if (!metadata_signature_blob.empty()) {
1386     brillo::Blob expected_metadata_hash;
1387     if (!PayloadVerifier::GetRawHashFromSignature(metadata_signature_blob,
1388                                                   path_to_public_key.value(),
1389                                                   &expected_metadata_hash)) {
1390       LOG(ERROR) << "Unable to compute expected hash from metadata signature";
1391       return ErrorCode::kDownloadMetadataSignatureError;
1392     }
1393     if (calculated_metadata_hash != expected_metadata_hash) {
1394       LOG(ERROR) << "Manifest hash verification failed. Expected hash = ";
1395       utils::HexDumpVector(expected_metadata_hash);
1396       LOG(ERROR) << "Calculated hash = ";
1397       utils::HexDumpVector(calculated_metadata_hash);
1398       return ErrorCode::kDownloadMetadataSignatureMismatch;
1399     }
1400   } else {
1401     if (!PayloadVerifier::VerifySignature(metadata_signature_protobuf_blob,
1402                                           path_to_public_key.value(),
1403                                           calculated_metadata_hash)) {
1404       LOG(ERROR) << "Manifest hash verification failed.";
1405       return ErrorCode::kDownloadMetadataSignatureMismatch;
1406     }
1407   }
1408 
1409   // The autoupdate_CatchBadSignatures test checks for this string in
1410   // log-files. Keep in sync.
1411   LOG(INFO) << "Metadata hash signature matches value in Omaha response.";
1412   return ErrorCode::kSuccess;
1413 }
1414 
ValidateManifest()1415 ErrorCode DeltaPerformer::ValidateManifest() {
1416   // Perform assorted checks to sanity check the manifest, make sure it
1417   // matches data from other sources, and that it is a supported version.
1418 
1419   bool has_old_fields =
1420       (manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info());
1421   for (const PartitionUpdate& partition : manifest_.partitions()) {
1422     has_old_fields = has_old_fields || partition.has_old_partition_info();
1423   }
1424 
1425   // The presence of an old partition hash is the sole indicator for a delta
1426   // update.
1427   InstallPayloadType actual_payload_type =
1428       has_old_fields ? InstallPayloadType::kDelta : InstallPayloadType::kFull;
1429 
1430   if (payload_->type == InstallPayloadType::kUnknown) {
1431     LOG(INFO) << "Detected a '"
1432               << InstallPayloadTypeToString(actual_payload_type)
1433               << "' payload.";
1434     payload_->type = actual_payload_type;
1435   } else if (payload_->type != actual_payload_type) {
1436     LOG(ERROR) << "InstallPlan expected a '"
1437                << InstallPayloadTypeToString(payload_->type)
1438                << "' payload but the downloaded manifest contains a '"
1439                << InstallPayloadTypeToString(actual_payload_type)
1440                << "' payload.";
1441     return ErrorCode::kPayloadMismatchedType;
1442   }
1443 
1444   // Check that the minor version is compatible.
1445   if (actual_payload_type == InstallPayloadType::kFull) {
1446     if (manifest_.minor_version() != kFullPayloadMinorVersion) {
1447       LOG(ERROR) << "Manifest contains minor version "
1448                  << manifest_.minor_version()
1449                  << ", but all full payloads should have version "
1450                  << kFullPayloadMinorVersion << ".";
1451       return ErrorCode::kUnsupportedMinorPayloadVersion;
1452     }
1453   } else {
1454     if (manifest_.minor_version() != supported_minor_version_) {
1455       LOG(ERROR) << "Manifest contains minor version "
1456                  << manifest_.minor_version()
1457                  << " not the supported "
1458                  << supported_minor_version_;
1459       return ErrorCode::kUnsupportedMinorPayloadVersion;
1460     }
1461   }
1462 
1463   if (major_payload_version_ != kChromeOSMajorPayloadVersion) {
1464     if (manifest_.has_old_rootfs_info() ||
1465         manifest_.has_new_rootfs_info() ||
1466         manifest_.has_old_kernel_info() ||
1467         manifest_.has_new_kernel_info() ||
1468         manifest_.install_operations_size() != 0 ||
1469         manifest_.kernel_install_operations_size() != 0) {
1470       LOG(ERROR) << "Manifest contains deprecated field only supported in "
1471                  << "major payload version 1, but the payload major version is "
1472                  << major_payload_version_;
1473       return ErrorCode::kPayloadMismatchedType;
1474     }
1475   }
1476 
1477   if (manifest_.max_timestamp() < hardware_->GetBuildTimestamp()) {
1478     LOG(ERROR) << "The current OS build timestamp ("
1479                << hardware_->GetBuildTimestamp()
1480                << ") is newer than the maximum timestamp in the manifest ("
1481                << manifest_.max_timestamp() << ")";
1482     return ErrorCode::kPayloadTimestampError;
1483   }
1484 
1485   // TODO(garnold) we should be adding more and more manifest checks, such as
1486   // partition boundaries etc (see chromium-os:37661).
1487 
1488   return ErrorCode::kSuccess;
1489 }
1490 
ValidateOperationHash(const InstallOperation & operation)1491 ErrorCode DeltaPerformer::ValidateOperationHash(
1492     const InstallOperation& operation) {
1493   if (!operation.data_sha256_hash().size()) {
1494     if (!operation.data_length()) {
1495       // Operations that do not have any data blob won't have any operation hash
1496       // either. So, these operations are always considered validated since the
1497       // metadata that contains all the non-data-blob portions of the operation
1498       // has already been validated. This is true for both HTTP and HTTPS cases.
1499       return ErrorCode::kSuccess;
1500     }
1501 
1502     // No hash is present for an operation that has data blobs. This shouldn't
1503     // happen normally for any client that has this code, because the
1504     // corresponding update should have been produced with the operation
1505     // hashes. So if it happens it means either we've turned operation hash
1506     // generation off in DeltaDiffGenerator or it's a regression of some sort.
1507     // One caveat though: The last operation is a dummy signature operation
1508     // that doesn't have a hash at the time the manifest is created. So we
1509     // should not complaint about that operation. This operation can be
1510     // recognized by the fact that it's offset is mentioned in the manifest.
1511     if (manifest_.signatures_offset() &&
1512         manifest_.signatures_offset() == operation.data_offset()) {
1513       LOG(INFO) << "Skipping hash verification for signature operation "
1514                 << next_operation_num_ + 1;
1515     } else {
1516       if (install_plan_->hash_checks_mandatory) {
1517         LOG(ERROR) << "Missing mandatory operation hash for operation "
1518                    << next_operation_num_ + 1;
1519         return ErrorCode::kDownloadOperationHashMissingError;
1520       }
1521 
1522       LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1
1523                    << " as there's no operation hash in manifest";
1524     }
1525     return ErrorCode::kSuccess;
1526   }
1527 
1528   brillo::Blob expected_op_hash;
1529   expected_op_hash.assign(operation.data_sha256_hash().data(),
1530                           (operation.data_sha256_hash().data() +
1531                            operation.data_sha256_hash().size()));
1532 
1533   brillo::Blob calculated_op_hash;
1534   if (!HashCalculator::RawHashOfBytes(
1535           buffer_.data(), operation.data_length(), &calculated_op_hash)) {
1536     LOG(ERROR) << "Unable to compute actual hash of operation "
1537                << next_operation_num_;
1538     return ErrorCode::kDownloadOperationHashVerificationError;
1539   }
1540 
1541   if (calculated_op_hash != expected_op_hash) {
1542     LOG(ERROR) << "Hash verification failed for operation "
1543                << next_operation_num_ << ". Expected hash = ";
1544     utils::HexDumpVector(expected_op_hash);
1545     LOG(ERROR) << "Calculated hash over " << operation.data_length()
1546                << " bytes at offset: " << operation.data_offset() << " = ";
1547     utils::HexDumpVector(calculated_op_hash);
1548     return ErrorCode::kDownloadOperationHashMismatch;
1549   }
1550 
1551   return ErrorCode::kSuccess;
1552 }
1553 
1554 #define TEST_AND_RETURN_VAL(_retval, _condition)                \
1555   do {                                                          \
1556     if (!(_condition)) {                                        \
1557       LOG(ERROR) << "VerifyPayload failure: " << #_condition;   \
1558       return _retval;                                           \
1559     }                                                           \
1560   } while (0);
1561 
VerifyPayload(const brillo::Blob & update_check_response_hash,const uint64_t update_check_response_size)1562 ErrorCode DeltaPerformer::VerifyPayload(
1563     const brillo::Blob& update_check_response_hash,
1564     const uint64_t update_check_response_size) {
1565 
1566   // See if we should use the public RSA key in the Omaha response.
1567   base::FilePath path_to_public_key(public_key_path_);
1568   base::FilePath tmp_key;
1569   if (GetPublicKeyFromResponse(&tmp_key))
1570     path_to_public_key = tmp_key;
1571   ScopedPathUnlinker tmp_key_remover(tmp_key.value());
1572   if (tmp_key.empty())
1573     tmp_key_remover.set_should_remove(false);
1574 
1575   LOG(INFO) << "Verifying payload using public key: "
1576             << path_to_public_key.value();
1577 
1578   // Verifies the download size.
1579   TEST_AND_RETURN_VAL(ErrorCode::kPayloadSizeMismatchError,
1580                       update_check_response_size ==
1581                       metadata_size_ + metadata_signature_size_ +
1582                       buffer_offset_);
1583 
1584   // Verifies the payload hash.
1585   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError,
1586                       !payload_hash_calculator_.raw_hash().empty());
1587   TEST_AND_RETURN_VAL(
1588       ErrorCode::kPayloadHashMismatchError,
1589       payload_hash_calculator_.raw_hash() == update_check_response_hash);
1590 
1591   // Verifies the signed payload hash.
1592   if (!utils::FileExists(path_to_public_key.value().c_str())) {
1593     LOG(WARNING) << "Not verifying signed delta payload -- missing public key.";
1594     return ErrorCode::kSuccess;
1595   }
1596   TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError,
1597                       !signatures_message_data_.empty());
1598   brillo::Blob hash_data = signed_hash_calculator_.raw_hash();
1599   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
1600                       PayloadVerifier::PadRSA2048SHA256Hash(&hash_data));
1601   TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError,
1602                       !hash_data.empty());
1603 
1604   if (!PayloadVerifier::VerifySignature(
1605       signatures_message_data_, path_to_public_key.value(), hash_data)) {
1606     // The autoupdate_CatchBadSignatures test checks for this string
1607     // in log-files. Keep in sync.
1608     LOG(ERROR) << "Public key verification failed, thus update failed.";
1609     return ErrorCode::kDownloadPayloadPubKeyVerificationError;
1610   }
1611 
1612   LOG(INFO) << "Payload hash matches value in payload.";
1613 
1614   // At this point, we are guaranteed to have downloaded a full payload, i.e
1615   // the one whose size matches the size mentioned in Omaha response. If any
1616   // errors happen after this, it's likely a problem with the payload itself or
1617   // the state of the system and not a problem with the URL or network.  So,
1618   // indicate that to the download delegate so that AU can backoff
1619   // appropriately.
1620   if (download_delegate_)
1621     download_delegate_->DownloadComplete();
1622 
1623   return ErrorCode::kSuccess;
1624 }
1625 
DiscardBuffer(bool do_advance_offset,size_t signed_hash_buffer_size)1626 void DeltaPerformer::DiscardBuffer(bool do_advance_offset,
1627                                    size_t signed_hash_buffer_size) {
1628   // Update the buffer offset.
1629   if (do_advance_offset)
1630     buffer_offset_ += buffer_.size();
1631 
1632   // Hash the content.
1633   payload_hash_calculator_.Update(buffer_.data(), buffer_.size());
1634   signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size);
1635 
1636   // Swap content with an empty vector to ensure that all memory is released.
1637   brillo::Blob().swap(buffer_);
1638 }
1639 
CanResumeUpdate(PrefsInterface * prefs,const string & update_check_response_hash)1640 bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs,
1641                                      const string& update_check_response_hash) {
1642   int64_t next_operation = kUpdateStateOperationInvalid;
1643   if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) &&
1644         next_operation != kUpdateStateOperationInvalid &&
1645         next_operation > 0))
1646     return false;
1647 
1648   string interrupted_hash;
1649   if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) &&
1650         !interrupted_hash.empty() &&
1651         interrupted_hash == update_check_response_hash))
1652     return false;
1653 
1654   int64_t resumed_update_failures;
1655   // Note that storing this value is optional, but if it is there it should not
1656   // be more than the limit.
1657   if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) &&
1658       resumed_update_failures > kMaxResumedUpdateFailures)
1659     return false;
1660 
1661   // Sanity check the rest.
1662   int64_t next_data_offset = -1;
1663   if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) &&
1664         next_data_offset >= 0))
1665     return false;
1666 
1667   string sha256_context;
1668   if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) &&
1669         !sha256_context.empty()))
1670     return false;
1671 
1672   int64_t manifest_metadata_size = 0;
1673   if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) &&
1674         manifest_metadata_size > 0))
1675     return false;
1676 
1677   int64_t manifest_signature_size = 0;
1678   if (!(prefs->GetInt64(kPrefsManifestSignatureSize,
1679                         &manifest_signature_size) &&
1680         manifest_signature_size >= 0))
1681     return false;
1682 
1683   return true;
1684 }
1685 
ResetUpdateProgress(PrefsInterface * prefs,bool quick)1686 bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) {
1687   TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation,
1688                                         kUpdateStateOperationInvalid));
1689   if (!quick) {
1690     prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1);
1691     prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0);
1692     prefs->SetString(kPrefsUpdateStateSHA256Context, "");
1693     prefs->SetString(kPrefsUpdateStateSignedSHA256Context, "");
1694     prefs->SetString(kPrefsUpdateStateSignatureBlob, "");
1695     prefs->SetInt64(kPrefsManifestMetadataSize, -1);
1696     prefs->SetInt64(kPrefsManifestSignatureSize, -1);
1697     prefs->SetInt64(kPrefsResumedUpdateFailures, 0);
1698   }
1699   return true;
1700 }
1701 
CheckpointUpdateProgress()1702 bool DeltaPerformer::CheckpointUpdateProgress() {
1703   Terminator::set_exit_blocked(true);
1704   if (last_updated_buffer_offset_ != buffer_offset_) {
1705     // Resets the progress in case we die in the middle of the state update.
1706     ResetUpdateProgress(prefs_, true);
1707     TEST_AND_RETURN_FALSE(
1708         prefs_->SetString(kPrefsUpdateStateSHA256Context,
1709                           payload_hash_calculator_.GetContext()));
1710     TEST_AND_RETURN_FALSE(
1711         prefs_->SetString(kPrefsUpdateStateSignedSHA256Context,
1712                           signed_hash_calculator_.GetContext()));
1713     TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset,
1714                                            buffer_offset_));
1715     last_updated_buffer_offset_ = buffer_offset_;
1716 
1717     if (next_operation_num_ < num_total_operations_) {
1718       size_t partition_index = current_partition_;
1719       while (next_operation_num_ >= acc_num_operations_[partition_index])
1720         partition_index++;
1721       const size_t partition_operation_num = next_operation_num_ - (
1722           partition_index ? acc_num_operations_[partition_index - 1] : 0);
1723       const InstallOperation& op =
1724           partitions_[partition_index].operations(partition_operation_num);
1725       TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
1726                                              op.data_length()));
1727     } else {
1728       TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength,
1729                                              0));
1730     }
1731   }
1732   TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation,
1733                                          next_operation_num_));
1734   return true;
1735 }
1736 
PrimeUpdateState()1737 bool DeltaPerformer::PrimeUpdateState() {
1738   CHECK(manifest_valid_);
1739   block_size_ = manifest_.block_size();
1740 
1741   int64_t next_operation = kUpdateStateOperationInvalid;
1742   if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) ||
1743       next_operation == kUpdateStateOperationInvalid ||
1744       next_operation <= 0) {
1745     // Initiating a new update, no more state needs to be initialized.
1746     return true;
1747   }
1748   next_operation_num_ = next_operation;
1749 
1750   // Resuming an update -- load the rest of the update state.
1751   int64_t next_data_offset = -1;
1752   TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset,
1753                                          &next_data_offset) &&
1754                         next_data_offset >= 0);
1755   buffer_offset_ = next_data_offset;
1756 
1757   // The signed hash context and the signature blob may be empty if the
1758   // interrupted update didn't reach the signature.
1759   string signed_hash_context;
1760   if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context,
1761                         &signed_hash_context)) {
1762     TEST_AND_RETURN_FALSE(
1763         signed_hash_calculator_.SetContext(signed_hash_context));
1764   }
1765 
1766   string signature_blob;
1767   if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) {
1768     signatures_message_data_.assign(signature_blob.begin(),
1769                                     signature_blob.end());
1770   }
1771 
1772   string hash_context;
1773   TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context,
1774                                           &hash_context) &&
1775                         payload_hash_calculator_.SetContext(hash_context));
1776 
1777   int64_t manifest_metadata_size = 0;
1778   TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize,
1779                                          &manifest_metadata_size) &&
1780                         manifest_metadata_size > 0);
1781   metadata_size_ = manifest_metadata_size;
1782 
1783   int64_t manifest_signature_size = 0;
1784   TEST_AND_RETURN_FALSE(
1785       prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) &&
1786       manifest_signature_size >= 0);
1787   metadata_signature_size_ = manifest_signature_size;
1788 
1789   // Advance the download progress to reflect what doesn't need to be
1790   // re-downloaded.
1791   total_bytes_received_ += buffer_offset_;
1792 
1793   // Speculatively count the resume as a failure.
1794   int64_t resumed_update_failures;
1795   if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) {
1796     resumed_update_failures++;
1797   } else {
1798     resumed_update_failures = 1;
1799   }
1800   prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures);
1801   return true;
1802 }
1803 
1804 }  // namespace chromeos_update_engine
1805