• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <gtest/gtest.h>
18 
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/prctl.h>
28 #include <sys/syscall.h>
29 #include <time.h>
30 #include <unistd.h>
31 #include <unwind.h>
32 
33 #include <atomic>
34 #include <vector>
35 
36 #include <android-base/scopeguard.h>
37 
38 #include "private/bionic_constants.h"
39 #include "private/bionic_macros.h"
40 #include "BionicDeathTest.h"
41 #include "ScopedSignalHandler.h"
42 #include "utils.h"
43 
TEST(pthread,pthread_key_create)44 TEST(pthread, pthread_key_create) {
45   pthread_key_t key;
46   ASSERT_EQ(0, pthread_key_create(&key, NULL));
47   ASSERT_EQ(0, pthread_key_delete(key));
48   // Can't delete a key that's already been deleted.
49   ASSERT_EQ(EINVAL, pthread_key_delete(key));
50 }
51 
TEST(pthread,pthread_keys_max)52 TEST(pthread, pthread_keys_max) {
53   // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
54   ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
55 }
56 
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)57 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
58   int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
59   ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
60 }
61 
TEST(pthread,pthread_key_many_distinct)62 TEST(pthread, pthread_key_many_distinct) {
63   // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
64   // pthread keys, but We should be able to allocate at least this many keys.
65   int nkeys = PTHREAD_KEYS_MAX / 2;
66   std::vector<pthread_key_t> keys;
67 
68   auto scope_guard = android::base::make_scope_guard([&keys] {
69     for (const auto& key : keys) {
70       EXPECT_EQ(0, pthread_key_delete(key));
71     }
72   });
73 
74   for (int i = 0; i < nkeys; ++i) {
75     pthread_key_t key;
76     // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
77     ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
78     keys.push_back(key);
79     ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
80   }
81 
82   for (int i = keys.size() - 1; i >= 0; --i) {
83     ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
84     pthread_key_t key = keys.back();
85     keys.pop_back();
86     ASSERT_EQ(0, pthread_key_delete(key));
87   }
88 }
89 
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)90 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
91   std::vector<pthread_key_t> keys;
92   int rv = 0;
93 
94   // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
95   // be more than we are allowed to allocate now.
96   for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
97     pthread_key_t key;
98     rv = pthread_key_create(&key, NULL);
99     if (rv == EAGAIN) {
100       break;
101     }
102     EXPECT_EQ(0, rv);
103     keys.push_back(key);
104   }
105 
106   // Don't leak keys.
107   for (const auto& key : keys) {
108     EXPECT_EQ(0, pthread_key_delete(key));
109   }
110   keys.clear();
111 
112   // We should have eventually reached the maximum number of keys and received
113   // EAGAIN.
114   ASSERT_EQ(EAGAIN, rv);
115 }
116 
TEST(pthread,pthread_key_delete)117 TEST(pthread, pthread_key_delete) {
118   void* expected = reinterpret_cast<void*>(1234);
119   pthread_key_t key;
120   ASSERT_EQ(0, pthread_key_create(&key, NULL));
121   ASSERT_EQ(0, pthread_setspecific(key, expected));
122   ASSERT_EQ(expected, pthread_getspecific(key));
123   ASSERT_EQ(0, pthread_key_delete(key));
124   // After deletion, pthread_getspecific returns NULL.
125   ASSERT_EQ(NULL, pthread_getspecific(key));
126   // And you can't use pthread_setspecific with the deleted key.
127   ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
128 }
129 
TEST(pthread,pthread_key_fork)130 TEST(pthread, pthread_key_fork) {
131   void* expected = reinterpret_cast<void*>(1234);
132   pthread_key_t key;
133   ASSERT_EQ(0, pthread_key_create(&key, NULL));
134   ASSERT_EQ(0, pthread_setspecific(key, expected));
135   ASSERT_EQ(expected, pthread_getspecific(key));
136 
137   pid_t pid = fork();
138   ASSERT_NE(-1, pid) << strerror(errno);
139 
140   if (pid == 0) {
141     // The surviving thread inherits all the forking thread's TLS values...
142     ASSERT_EQ(expected, pthread_getspecific(key));
143     _exit(99);
144   }
145 
146   AssertChildExited(pid, 99);
147 
148   ASSERT_EQ(expected, pthread_getspecific(key));
149   ASSERT_EQ(0, pthread_key_delete(key));
150 }
151 
DirtyKeyFn(void * key)152 static void* DirtyKeyFn(void* key) {
153   return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
154 }
155 
TEST(pthread,pthread_key_dirty)156 TEST(pthread, pthread_key_dirty) {
157   pthread_key_t key;
158   ASSERT_EQ(0, pthread_key_create(&key, NULL));
159 
160   size_t stack_size = 640 * 1024;
161   void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
162   ASSERT_NE(MAP_FAILED, stack);
163   memset(stack, 0xff, stack_size);
164 
165   pthread_attr_t attr;
166   ASSERT_EQ(0, pthread_attr_init(&attr));
167   ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
168 
169   pthread_t t;
170   ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
171 
172   void* result;
173   ASSERT_EQ(0, pthread_join(t, &result));
174   ASSERT_EQ(nullptr, result); // Not ~0!
175 
176   ASSERT_EQ(0, munmap(stack, stack_size));
177   ASSERT_EQ(0, pthread_key_delete(key));
178 }
179 
TEST(pthread,static_pthread_key_used_before_creation)180 TEST(pthread, static_pthread_key_used_before_creation) {
181 #if defined(__BIONIC__)
182   // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
183   // So here tests if the static/global default value 0 can be detected as invalid key.
184   static pthread_key_t key;
185   ASSERT_EQ(nullptr, pthread_getspecific(key));
186   ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
187   ASSERT_EQ(EINVAL, pthread_key_delete(key));
188 #else
189   GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
190 #endif
191 }
192 
IdFn(void * arg)193 static void* IdFn(void* arg) {
194   return arg;
195 }
196 
197 class SpinFunctionHelper {
198  public:
SpinFunctionHelper()199   SpinFunctionHelper() {
200     SpinFunctionHelper::spin_flag_ = true;
201   }
~SpinFunctionHelper()202   ~SpinFunctionHelper() {
203     UnSpin();
204   }
GetFunction()205   auto GetFunction() -> void* (*)(void*) {
206     return SpinFunctionHelper::SpinFn;
207   }
208 
UnSpin()209   void UnSpin() {
210     SpinFunctionHelper::spin_flag_ = false;
211   }
212 
213  private:
SpinFn(void *)214   static void* SpinFn(void*) {
215     while (spin_flag_) {}
216     return NULL;
217   }
218   static std::atomic<bool> spin_flag_;
219 };
220 
221 // It doesn't matter if spin_flag_ is used in several tests,
222 // because it is always set to false after each test. Each thread
223 // loops on spin_flag_ can find it becomes false at some time.
224 std::atomic<bool> SpinFunctionHelper::spin_flag_;
225 
JoinFn(void * arg)226 static void* JoinFn(void* arg) {
227   return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
228 }
229 
AssertDetached(pthread_t t,bool is_detached)230 static void AssertDetached(pthread_t t, bool is_detached) {
231   pthread_attr_t attr;
232   ASSERT_EQ(0, pthread_getattr_np(t, &attr));
233   int detach_state;
234   ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
235   pthread_attr_destroy(&attr);
236   ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
237 }
238 
MakeDeadThread(pthread_t & t)239 static void MakeDeadThread(pthread_t& t) {
240   ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
241   ASSERT_EQ(0, pthread_join(t, NULL));
242 }
243 
TEST(pthread,pthread_create)244 TEST(pthread, pthread_create) {
245   void* expected_result = reinterpret_cast<void*>(123);
246   // Can we create a thread?
247   pthread_t t;
248   ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
249   // If we join, do we get the expected value back?
250   void* result;
251   ASSERT_EQ(0, pthread_join(t, &result));
252   ASSERT_EQ(expected_result, result);
253 }
254 
TEST(pthread,pthread_create_EAGAIN)255 TEST(pthread, pthread_create_EAGAIN) {
256   pthread_attr_t attributes;
257   ASSERT_EQ(0, pthread_attr_init(&attributes));
258   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
259 
260   pthread_t t;
261   ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
262 }
263 
TEST(pthread,pthread_no_join_after_detach)264 TEST(pthread, pthread_no_join_after_detach) {
265   SpinFunctionHelper spin_helper;
266 
267   pthread_t t1;
268   ASSERT_EQ(0, pthread_create(&t1, NULL, spin_helper.GetFunction(), NULL));
269 
270   // After a pthread_detach...
271   ASSERT_EQ(0, pthread_detach(t1));
272   AssertDetached(t1, true);
273 
274   // ...pthread_join should fail.
275   ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
276 }
277 
TEST(pthread,pthread_no_op_detach_after_join)278 TEST(pthread, pthread_no_op_detach_after_join) {
279   SpinFunctionHelper spin_helper;
280 
281   pthread_t t1;
282   ASSERT_EQ(0, pthread_create(&t1, NULL, spin_helper.GetFunction(), NULL));
283 
284   // If thread 2 is already waiting to join thread 1...
285   pthread_t t2;
286   ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
287 
288   sleep(1); // (Give t2 a chance to call pthread_join.)
289 
290 #if defined(__BIONIC__)
291   ASSERT_EQ(EINVAL, pthread_detach(t1));
292 #else
293   ASSERT_EQ(0, pthread_detach(t1));
294 #endif
295   AssertDetached(t1, false);
296 
297   spin_helper.UnSpin();
298 
299   // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
300   void* join_result;
301   ASSERT_EQ(0, pthread_join(t2, &join_result));
302   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
303 }
304 
TEST(pthread,pthread_join_self)305 TEST(pthread, pthread_join_self) {
306   ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
307 }
308 
309 struct TestBug37410 {
310   pthread_t main_thread;
311   pthread_mutex_t mutex;
312 
mainTestBug37410313   static void main() {
314     TestBug37410 data;
315     data.main_thread = pthread_self();
316     ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
317     ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
318 
319     pthread_t t;
320     ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
321 
322     // Wait for the thread to be running...
323     ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
324     ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
325 
326     // ...and exit.
327     pthread_exit(NULL);
328   }
329 
330  private:
thread_fnTestBug37410331   static void* thread_fn(void* arg) {
332     TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
333 
334     // Let the main thread know we're running.
335     pthread_mutex_unlock(&data->mutex);
336 
337     // And wait for the main thread to exit.
338     pthread_join(data->main_thread, NULL);
339 
340     return NULL;
341   }
342 };
343 
344 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
345 // run this test (which exits normally) in its own process.
346 
347 class pthread_DeathTest : public BionicDeathTest {};
348 
TEST_F(pthread_DeathTest,pthread_bug_37410)349 TEST_F(pthread_DeathTest, pthread_bug_37410) {
350   // http://code.google.com/p/android/issues/detail?id=37410
351   ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
352 }
353 
SignalHandlerFn(void * arg)354 static void* SignalHandlerFn(void* arg) {
355   sigset_t wait_set;
356   sigfillset(&wait_set);
357   return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
358 }
359 
TEST(pthread,pthread_sigmask)360 TEST(pthread, pthread_sigmask) {
361   // Check that SIGUSR1 isn't blocked.
362   sigset_t original_set;
363   sigemptyset(&original_set);
364   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
365   ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
366 
367   // Block SIGUSR1.
368   sigset_t set;
369   sigemptyset(&set);
370   sigaddset(&set, SIGUSR1);
371   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
372 
373   // Check that SIGUSR1 is blocked.
374   sigset_t final_set;
375   sigemptyset(&final_set);
376   ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
377   ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
378   // ...and that sigprocmask agrees with pthread_sigmask.
379   sigemptyset(&final_set);
380   ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
381   ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
382 
383   // Spawn a thread that calls sigwait and tells us what it received.
384   pthread_t signal_thread;
385   int received_signal = -1;
386   ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
387 
388   // Send that thread SIGUSR1.
389   pthread_kill(signal_thread, SIGUSR1);
390 
391   // See what it got.
392   void* join_result;
393   ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
394   ASSERT_EQ(SIGUSR1, received_signal);
395   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
396 
397   // Restore the original signal mask.
398   ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
399 }
400 
test_pthread_setname_np__pthread_getname_np(pthread_t t)401 static void test_pthread_setname_np__pthread_getname_np(pthread_t t) {
402   ASSERT_EQ(0, pthread_setname_np(t, "short"));
403   char name[32];
404   ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
405   ASSERT_STREQ("short", name);
406 
407   // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
408   ASSERT_EQ(0, pthread_setname_np(t, "123456789012345"));
409   ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
410   ASSERT_STREQ("123456789012345", name);
411 
412   ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456"));
413 
414   // The passed-in buffer should be at least 16 bytes.
415   ASSERT_EQ(0, pthread_getname_np(t, name, 16));
416   ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15));
417 }
418 
TEST(pthread,pthread_setname_np__pthread_getname_np__self)419 TEST(pthread, pthread_setname_np__pthread_getname_np__self) {
420   test_pthread_setname_np__pthread_getname_np(pthread_self());
421 }
422 
TEST(pthread,pthread_setname_np__pthread_getname_np__other)423 TEST(pthread, pthread_setname_np__pthread_getname_np__other) {
424   SpinFunctionHelper spin_helper;
425 
426   pthread_t t;
427   ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
428   test_pthread_setname_np__pthread_getname_np(t);
429   spin_helper.UnSpin();
430   ASSERT_EQ(0, pthread_join(t, nullptr));
431 }
432 
433 // http://b/28051133: a kernel misfeature means that you can't change the
434 // name of another thread if you've set PR_SET_DUMPABLE to 0.
TEST(pthread,pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE)435 TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) {
436   ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno);
437 
438   SpinFunctionHelper spin_helper;
439 
440   pthread_t t;
441   ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
442   test_pthread_setname_np__pthread_getname_np(t);
443   spin_helper.UnSpin();
444   ASSERT_EQ(0, pthread_join(t, nullptr));
445 }
446 
TEST_F(pthread_DeathTest,pthread_setname_np__no_such_thread)447 TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) {
448   pthread_t dead_thread;
449   MakeDeadThread(dead_thread);
450 
451   EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"), "invalid pthread_t");
452 }
453 
TEST_F(pthread_DeathTest,pthread_setname_np__null_thread)454 TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) {
455   pthread_t null_thread = 0;
456   EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3"));
457 }
458 
TEST_F(pthread_DeathTest,pthread_getname_np__no_such_thread)459 TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) {
460   pthread_t dead_thread;
461   MakeDeadThread(dead_thread);
462 
463   char name[64];
464   EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)), "invalid pthread_t");
465 }
466 
TEST_F(pthread_DeathTest,pthread_getname_np__null_thread)467 TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) {
468   pthread_t null_thread = 0;
469 
470   char name[64];
471   EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name)));
472 }
473 
TEST(pthread,pthread_kill__0)474 TEST(pthread, pthread_kill__0) {
475   // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
476   ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
477 }
478 
TEST(pthread,pthread_kill__invalid_signal)479 TEST(pthread, pthread_kill__invalid_signal) {
480   ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
481 }
482 
pthread_kill__in_signal_handler_helper(int signal_number)483 static void pthread_kill__in_signal_handler_helper(int signal_number) {
484   static int count = 0;
485   ASSERT_EQ(SIGALRM, signal_number);
486   if (++count == 1) {
487     // Can we call pthread_kill from a signal handler?
488     ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
489   }
490 }
491 
TEST(pthread,pthread_kill__in_signal_handler)492 TEST(pthread, pthread_kill__in_signal_handler) {
493   ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
494   ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
495 }
496 
TEST_F(pthread_DeathTest,pthread_detach__no_such_thread)497 TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) {
498   pthread_t dead_thread;
499   MakeDeadThread(dead_thread);
500 
501   EXPECT_DEATH(pthread_detach(dead_thread), "invalid pthread_t");
502 }
503 
TEST_F(pthread_DeathTest,pthread_detach__null_thread)504 TEST_F(pthread_DeathTest, pthread_detach__null_thread) {
505   pthread_t null_thread = 0;
506   EXPECT_EQ(ESRCH, pthread_detach(null_thread));
507 }
508 
TEST(pthread,pthread_getcpuclockid__clock_gettime)509 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
510   SpinFunctionHelper spin_helper;
511 
512   pthread_t t;
513   ASSERT_EQ(0, pthread_create(&t, NULL, spin_helper.GetFunction(), NULL));
514 
515   clockid_t c;
516   ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
517   timespec ts;
518   ASSERT_EQ(0, clock_gettime(c, &ts));
519   spin_helper.UnSpin();
520   ASSERT_EQ(0, pthread_join(t, nullptr));
521 }
522 
TEST_F(pthread_DeathTest,pthread_getcpuclockid__no_such_thread)523 TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) {
524   pthread_t dead_thread;
525   MakeDeadThread(dead_thread);
526 
527   clockid_t c;
528   EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c), "invalid pthread_t");
529 }
530 
TEST_F(pthread_DeathTest,pthread_getcpuclockid__null_thread)531 TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) {
532   pthread_t null_thread = 0;
533   clockid_t c;
534   EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c));
535 }
536 
TEST_F(pthread_DeathTest,pthread_getschedparam__no_such_thread)537 TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) {
538   pthread_t dead_thread;
539   MakeDeadThread(dead_thread);
540 
541   int policy;
542   sched_param param;
543   EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, &param), "invalid pthread_t");
544 }
545 
TEST_F(pthread_DeathTest,pthread_getschedparam__null_thread)546 TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) {
547   pthread_t null_thread = 0;
548   int policy;
549   sched_param param;
550   EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, &param));
551 }
552 
TEST_F(pthread_DeathTest,pthread_setschedparam__no_such_thread)553 TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) {
554   pthread_t dead_thread;
555   MakeDeadThread(dead_thread);
556 
557   int policy = 0;
558   sched_param param;
559   EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, &param), "invalid pthread_t");
560 }
561 
TEST_F(pthread_DeathTest,pthread_setschedparam__null_thread)562 TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) {
563   pthread_t null_thread = 0;
564   int policy = 0;
565   sched_param param;
566   EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, &param));
567 }
568 
TEST_F(pthread_DeathTest,pthread_join__no_such_thread)569 TEST_F(pthread_DeathTest, pthread_join__no_such_thread) {
570   pthread_t dead_thread;
571   MakeDeadThread(dead_thread);
572 
573   EXPECT_DEATH(pthread_join(dead_thread, NULL), "invalid pthread_t");
574 }
575 
TEST_F(pthread_DeathTest,pthread_join__null_thread)576 TEST_F(pthread_DeathTest, pthread_join__null_thread) {
577   pthread_t null_thread = 0;
578   EXPECT_EQ(ESRCH, pthread_join(null_thread, NULL));
579 }
580 
TEST_F(pthread_DeathTest,pthread_kill__no_such_thread)581 TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) {
582   pthread_t dead_thread;
583   MakeDeadThread(dead_thread);
584 
585   EXPECT_DEATH(pthread_kill(dead_thread, 0), "invalid pthread_t");
586 }
587 
TEST_F(pthread_DeathTest,pthread_kill__null_thread)588 TEST_F(pthread_DeathTest, pthread_kill__null_thread) {
589   pthread_t null_thread = 0;
590   EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0));
591 }
592 
TEST(pthread,pthread_join__multijoin)593 TEST(pthread, pthread_join__multijoin) {
594   SpinFunctionHelper spin_helper;
595 
596   pthread_t t1;
597   ASSERT_EQ(0, pthread_create(&t1, NULL, spin_helper.GetFunction(), NULL));
598 
599   pthread_t t2;
600   ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
601 
602   sleep(1); // (Give t2 a chance to call pthread_join.)
603 
604   // Multiple joins to the same thread should fail.
605   ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
606 
607   spin_helper.UnSpin();
608 
609   // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
610   void* join_result;
611   ASSERT_EQ(0, pthread_join(t2, &join_result));
612   ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
613 }
614 
TEST(pthread,pthread_join__race)615 TEST(pthread, pthread_join__race) {
616   // http://b/11693195 --- pthread_join could return before the thread had actually exited.
617   // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
618   for (size_t i = 0; i < 1024; ++i) {
619     size_t stack_size = 640*1024;
620     void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
621 
622     pthread_attr_t a;
623     pthread_attr_init(&a);
624     pthread_attr_setstack(&a, stack, stack_size);
625 
626     pthread_t t;
627     ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
628     ASSERT_EQ(0, pthread_join(t, NULL));
629     ASSERT_EQ(0, munmap(stack, stack_size));
630   }
631 }
632 
GetActualGuardSizeFn(void * arg)633 static void* GetActualGuardSizeFn(void* arg) {
634   pthread_attr_t attributes;
635   pthread_getattr_np(pthread_self(), &attributes);
636   pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
637   return NULL;
638 }
639 
GetActualGuardSize(const pthread_attr_t & attributes)640 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
641   size_t result;
642   pthread_t t;
643   pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
644   pthread_join(t, NULL);
645   return result;
646 }
647 
GetActualStackSizeFn(void * arg)648 static void* GetActualStackSizeFn(void* arg) {
649   pthread_attr_t attributes;
650   pthread_getattr_np(pthread_self(), &attributes);
651   pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
652   return NULL;
653 }
654 
GetActualStackSize(const pthread_attr_t & attributes)655 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
656   size_t result;
657   pthread_t t;
658   pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
659   pthread_join(t, NULL);
660   return result;
661 }
662 
TEST(pthread,pthread_attr_setguardsize)663 TEST(pthread, pthread_attr_setguardsize) {
664   pthread_attr_t attributes;
665   ASSERT_EQ(0, pthread_attr_init(&attributes));
666 
667   // Get the default guard size.
668   size_t default_guard_size;
669   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
670 
671   // No such thing as too small: will be rounded up to one page by pthread_create.
672   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
673   size_t guard_size;
674   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
675   ASSERT_EQ(128U, guard_size);
676   ASSERT_EQ(4096U, GetActualGuardSize(attributes));
677 
678   // Large enough and a multiple of the page size.
679   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
680   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
681   ASSERT_EQ(32*1024U, guard_size);
682 
683   // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
684   ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
685   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
686   ASSERT_EQ(32*1024U + 1, guard_size);
687 }
688 
TEST(pthread,pthread_attr_setstacksize)689 TEST(pthread, pthread_attr_setstacksize) {
690   pthread_attr_t attributes;
691   ASSERT_EQ(0, pthread_attr_init(&attributes));
692 
693   // Get the default stack size.
694   size_t default_stack_size;
695   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
696 
697   // Too small.
698   ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
699   size_t stack_size;
700   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
701   ASSERT_EQ(default_stack_size, stack_size);
702   ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
703 
704   // Large enough and a multiple of the page size; may be rounded up by pthread_create.
705   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
706   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
707   ASSERT_EQ(32*1024U, stack_size);
708   ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
709 
710   // Large enough but not aligned; will be rounded up by pthread_create.
711   ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
712   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
713   ASSERT_EQ(32*1024U + 1, stack_size);
714 #if defined(__BIONIC__)
715   ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
716 #else // __BIONIC__
717   // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
718   ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
719 #endif // __BIONIC__
720 }
721 
TEST(pthread,pthread_rwlockattr_smoke)722 TEST(pthread, pthread_rwlockattr_smoke) {
723   pthread_rwlockattr_t attr;
724   ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
725 
726   int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
727   for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
728     ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
729     int pshared;
730     ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
731     ASSERT_EQ(pshared_value_array[i], pshared);
732   }
733 
734   int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
735                       PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
736   for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
737     ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
738     int kind;
739     ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
740     ASSERT_EQ(kind_array[i], kind);
741   }
742 
743   ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
744 }
745 
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)746 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
747   pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
748   pthread_rwlock_t lock2;
749   ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
750   ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
751 }
752 
TEST(pthread,pthread_rwlock_smoke)753 TEST(pthread, pthread_rwlock_smoke) {
754   pthread_rwlock_t l;
755   ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
756 
757   // Single read lock
758   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
759   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
760 
761   // Multiple read lock
762   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
763   ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
764   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
765   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
766 
767   // Write lock
768   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
769   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
770 
771   // Try writer lock
772   ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
773   ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
774   ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
775   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
776 
777   // Try reader lock
778   ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
779   ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
780   ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
781   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
782   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
783 
784   // Try writer lock after unlock
785   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
786   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
787 
788   // EDEADLK in "read after write"
789   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
790   ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
791   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
792 
793   // EDEADLK in "write after write"
794   ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
795   ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
796   ASSERT_EQ(0, pthread_rwlock_unlock(&l));
797 
798   ASSERT_EQ(0, pthread_rwlock_destroy(&l));
799 }
800 
801 struct RwlockWakeupHelperArg {
802   pthread_rwlock_t lock;
803   enum Progress {
804     LOCK_INITIALIZED,
805     LOCK_WAITING,
806     LOCK_RELEASED,
807     LOCK_ACCESSED,
808     LOCK_TIMEDOUT,
809   };
810   std::atomic<Progress> progress;
811   std::atomic<pid_t> tid;
812   std::function<int (pthread_rwlock_t*)> trylock_function;
813   std::function<int (pthread_rwlock_t*)> lock_function;
814   std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
815 };
816 
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)817 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
818   arg->tid = gettid();
819   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
820   arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
821 
822   ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
823   ASSERT_EQ(0, arg->lock_function(&arg->lock));
824   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
825   ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
826 
827   arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
828 }
829 
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)830 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
831   RwlockWakeupHelperArg wakeup_arg;
832   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
833   ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
834   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
835   wakeup_arg.tid = 0;
836   wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
837   wakeup_arg.lock_function = lock_function;
838 
839   pthread_t thread;
840   ASSERT_EQ(0, pthread_create(&thread, NULL,
841     reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
842   WaitUntilThreadSleep(wakeup_arg.tid);
843   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
844 
845   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
846   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
847 
848   ASSERT_EQ(0, pthread_join(thread, NULL));
849   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
850   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
851 }
852 
TEST(pthread,pthread_rwlock_reader_wakeup_writer)853 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
854   test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
855 }
856 
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)857 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
858   timespec ts;
859   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
860   ts.tv_sec += 1;
861   test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
862     return pthread_rwlock_timedwrlock(lock, &ts);
863   });
864 }
865 
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)866 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
867   RwlockWakeupHelperArg wakeup_arg;
868   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
869   ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
870   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
871   wakeup_arg.tid = 0;
872   wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
873   wakeup_arg.lock_function = lock_function;
874 
875   pthread_t thread;
876   ASSERT_EQ(0, pthread_create(&thread, NULL,
877     reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
878   WaitUntilThreadSleep(wakeup_arg.tid);
879   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
880 
881   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
882   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
883 
884   ASSERT_EQ(0, pthread_join(thread, NULL));
885   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
886   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
887 }
888 
TEST(pthread,pthread_rwlock_writer_wakeup_reader)889 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
890   test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
891 }
892 
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)893 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
894   timespec ts;
895   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
896   ts.tv_sec += 1;
897   test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
898     return pthread_rwlock_timedrdlock(lock, &ts);
899   });
900 }
901 
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)902 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
903   arg->tid = gettid();
904   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
905   arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
906 
907   ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
908 
909   timespec ts;
910   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
911   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
912   ts.tv_nsec = -1;
913   ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
914   ts.tv_nsec = NS_PER_S;
915   ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
916   ts.tv_nsec = NS_PER_S - 1;
917   ts.tv_sec = -1;
918   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
919   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
920   ts.tv_sec += 1;
921   ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
922   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
923   arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
924 }
925 
TEST(pthread,pthread_rwlock_timedrdlock_timeout)926 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
927   RwlockWakeupHelperArg wakeup_arg;
928   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
929   ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
930   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
931   wakeup_arg.tid = 0;
932   wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
933   wakeup_arg.timed_lock_function = pthread_rwlock_timedrdlock;
934 
935   pthread_t thread;
936   ASSERT_EQ(0, pthread_create(&thread, nullptr,
937       reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
938   WaitUntilThreadSleep(wakeup_arg.tid);
939   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
940 
941   ASSERT_EQ(0, pthread_join(thread, nullptr));
942   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
943   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
944   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
945 }
946 
TEST(pthread,pthread_rwlock_timedwrlock_timeout)947 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
948   RwlockWakeupHelperArg wakeup_arg;
949   ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
950   ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
951   wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
952   wakeup_arg.tid = 0;
953   wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
954   wakeup_arg.timed_lock_function = pthread_rwlock_timedwrlock;
955 
956   pthread_t thread;
957   ASSERT_EQ(0, pthread_create(&thread, nullptr,
958       reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
959   WaitUntilThreadSleep(wakeup_arg.tid);
960   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
961 
962   ASSERT_EQ(0, pthread_join(thread, nullptr));
963   ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
964   ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
965   ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
966 }
967 
968 class RwlockKindTestHelper {
969  private:
970   struct ThreadArg {
971     RwlockKindTestHelper* helper;
972     std::atomic<pid_t>& tid;
973 
ThreadArgRwlockKindTestHelper::ThreadArg974     ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
975       : helper(helper), tid(tid) { }
976   };
977 
978  public:
979   pthread_rwlock_t lock;
980 
981  public:
RwlockKindTestHelper(int kind_type)982   explicit RwlockKindTestHelper(int kind_type) {
983     InitRwlock(kind_type);
984   }
985 
~RwlockKindTestHelper()986   ~RwlockKindTestHelper() {
987     DestroyRwlock();
988   }
989 
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)990   void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
991     tid = 0;
992     ThreadArg* arg = new ThreadArg(this, tid);
993     ASSERT_EQ(0, pthread_create(&thread, NULL,
994                                 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
995   }
996 
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)997   void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
998     tid = 0;
999     ThreadArg* arg = new ThreadArg(this, tid);
1000     ASSERT_EQ(0, pthread_create(&thread, NULL,
1001                                 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
1002   }
1003 
1004  private:
InitRwlock(int kind_type)1005   void InitRwlock(int kind_type) {
1006     pthread_rwlockattr_t attr;
1007     ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
1008     ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
1009     ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
1010     ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
1011   }
1012 
DestroyRwlock()1013   void DestroyRwlock() {
1014     ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
1015   }
1016 
WriterThreadFn(ThreadArg * arg)1017   static void WriterThreadFn(ThreadArg* arg) {
1018     arg->tid = gettid();
1019 
1020     RwlockKindTestHelper* helper = arg->helper;
1021     ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
1022     ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1023     delete arg;
1024   }
1025 
ReaderThreadFn(ThreadArg * arg)1026   static void ReaderThreadFn(ThreadArg* arg) {
1027     arg->tid = gettid();
1028 
1029     RwlockKindTestHelper* helper = arg->helper;
1030     ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
1031     ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1032     delete arg;
1033   }
1034 };
1035 
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)1036 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
1037   RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
1038   ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1039 
1040   pthread_t writer_thread;
1041   std::atomic<pid_t> writer_tid;
1042   helper.CreateWriterThread(writer_thread, writer_tid);
1043   WaitUntilThreadSleep(writer_tid);
1044 
1045   pthread_t reader_thread;
1046   std::atomic<pid_t> reader_tid;
1047   helper.CreateReaderThread(reader_thread, reader_tid);
1048   ASSERT_EQ(0, pthread_join(reader_thread, NULL));
1049 
1050   ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1051   ASSERT_EQ(0, pthread_join(writer_thread, NULL));
1052 }
1053 
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)1054 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
1055   RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
1056   ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1057 
1058   pthread_t writer_thread;
1059   std::atomic<pid_t> writer_tid;
1060   helper.CreateWriterThread(writer_thread, writer_tid);
1061   WaitUntilThreadSleep(writer_tid);
1062 
1063   pthread_t reader_thread;
1064   std::atomic<pid_t> reader_tid;
1065   helper.CreateReaderThread(reader_thread, reader_tid);
1066   WaitUntilThreadSleep(reader_tid);
1067 
1068   ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1069   ASSERT_EQ(0, pthread_join(writer_thread, NULL));
1070   ASSERT_EQ(0, pthread_join(reader_thread, NULL));
1071 }
1072 
1073 static int g_once_fn_call_count = 0;
OnceFn()1074 static void OnceFn() {
1075   ++g_once_fn_call_count;
1076 }
1077 
TEST(pthread,pthread_once_smoke)1078 TEST(pthread, pthread_once_smoke) {
1079   pthread_once_t once_control = PTHREAD_ONCE_INIT;
1080   ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1081   ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1082   ASSERT_EQ(1, g_once_fn_call_count);
1083 }
1084 
1085 static std::string pthread_once_1934122_result = "";
1086 
Routine2()1087 static void Routine2() {
1088   pthread_once_1934122_result += "2";
1089 }
1090 
Routine1()1091 static void Routine1() {
1092   pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1093   pthread_once_1934122_result += "1";
1094   pthread_once(&once_control_2, &Routine2);
1095 }
1096 
TEST(pthread,pthread_once_1934122)1097 TEST(pthread, pthread_once_1934122) {
1098   // Very old versions of Android couldn't call pthread_once from a
1099   // pthread_once init routine. http://b/1934122.
1100   pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1101   ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1102   ASSERT_EQ("12", pthread_once_1934122_result);
1103 }
1104 
1105 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1106 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1107 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1108 static int g_atfork_parent_calls = 0;
AtForkParent1()1109 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1110 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1111 static int g_atfork_child_calls = 0;
AtForkChild1()1112 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1113 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1114 
TEST(pthread,pthread_atfork_smoke)1115 TEST(pthread, pthread_atfork_smoke) {
1116   ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1117   ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1118 
1119   pid_t pid = fork();
1120   ASSERT_NE(-1, pid) << strerror(errno);
1121 
1122   // Child and parent calls are made in the order they were registered.
1123   if (pid == 0) {
1124     ASSERT_EQ(12, g_atfork_child_calls);
1125     _exit(0);
1126   }
1127   ASSERT_EQ(12, g_atfork_parent_calls);
1128 
1129   // Prepare calls are made in the reverse order.
1130   ASSERT_EQ(21, g_atfork_prepare_calls);
1131   AssertChildExited(pid, 0);
1132 }
1133 
TEST(pthread,pthread_attr_getscope)1134 TEST(pthread, pthread_attr_getscope) {
1135   pthread_attr_t attr;
1136   ASSERT_EQ(0, pthread_attr_init(&attr));
1137 
1138   int scope;
1139   ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1140   ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1141 }
1142 
TEST(pthread,pthread_condattr_init)1143 TEST(pthread, pthread_condattr_init) {
1144   pthread_condattr_t attr;
1145   pthread_condattr_init(&attr);
1146 
1147   clockid_t clock;
1148   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1149   ASSERT_EQ(CLOCK_REALTIME, clock);
1150 
1151   int pshared;
1152   ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1153   ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1154 }
1155 
TEST(pthread,pthread_condattr_setclock)1156 TEST(pthread, pthread_condattr_setclock) {
1157   pthread_condattr_t attr;
1158   pthread_condattr_init(&attr);
1159 
1160   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1161   clockid_t clock;
1162   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1163   ASSERT_EQ(CLOCK_REALTIME, clock);
1164 
1165   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1166   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1167   ASSERT_EQ(CLOCK_MONOTONIC, clock);
1168 
1169   ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1170 }
1171 
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1172 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1173 #if defined(__BIONIC__)
1174   pthread_condattr_t attr;
1175   pthread_condattr_init(&attr);
1176 
1177   ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1178   ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1179 
1180   pthread_cond_t cond_var;
1181   ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1182 
1183   ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1184   ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1185 
1186   attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1187   clockid_t clock;
1188   ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1189   ASSERT_EQ(CLOCK_MONOTONIC, clock);
1190   int pshared;
1191   ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1192   ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1193 #else  // !defined(__BIONIC__)
1194   GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1195 #endif  // !defined(__BIONIC__)
1196 }
1197 
1198 class pthread_CondWakeupTest : public ::testing::Test {
1199  protected:
1200   pthread_mutex_t mutex;
1201   pthread_cond_t cond;
1202 
1203   enum Progress {
1204     INITIALIZED,
1205     WAITING,
1206     SIGNALED,
1207     FINISHED,
1208   };
1209   std::atomic<Progress> progress;
1210   pthread_t thread;
1211   std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1212 
1213  protected:
SetUp()1214   void SetUp() override {
1215     ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1216   }
1217 
InitCond(clockid_t clock=CLOCK_REALTIME)1218   void InitCond(clockid_t clock=CLOCK_REALTIME) {
1219     pthread_condattr_t attr;
1220     ASSERT_EQ(0, pthread_condattr_init(&attr));
1221     ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1222     ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1223     ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1224   }
1225 
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1226   void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1227     progress = INITIALIZED;
1228     this->wait_function = wait_function;
1229     ASSERT_EQ(0, pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1230     while (progress != WAITING) {
1231       usleep(5000);
1232     }
1233     usleep(5000);
1234   }
1235 
TearDown()1236   void TearDown() override {
1237     ASSERT_EQ(0, pthread_join(thread, nullptr));
1238     ASSERT_EQ(FINISHED, progress);
1239     ASSERT_EQ(0, pthread_cond_destroy(&cond));
1240     ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1241   }
1242 
1243  private:
WaitThreadFn(pthread_CondWakeupTest * test)1244   static void WaitThreadFn(pthread_CondWakeupTest* test) {
1245     ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1246     test->progress = WAITING;
1247     while (test->progress == WAITING) {
1248       ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1249     }
1250     ASSERT_EQ(SIGNALED, test->progress);
1251     test->progress = FINISHED;
1252     ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1253   }
1254 };
1255 
TEST_F(pthread_CondWakeupTest,signal_wait)1256 TEST_F(pthread_CondWakeupTest, signal_wait) {
1257   InitCond();
1258   StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1259     return pthread_cond_wait(cond, mutex);
1260   });
1261   progress = SIGNALED;
1262   ASSERT_EQ(0, pthread_cond_signal(&cond));
1263 }
1264 
TEST_F(pthread_CondWakeupTest,broadcast_wait)1265 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1266   InitCond();
1267   StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1268     return pthread_cond_wait(cond, mutex);
1269   });
1270   progress = SIGNALED;
1271   ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1272 }
1273 
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1274 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1275   InitCond(CLOCK_REALTIME);
1276   timespec ts;
1277   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1278   ts.tv_sec += 1;
1279   StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1280     return pthread_cond_timedwait(cond, mutex, &ts);
1281   });
1282   progress = SIGNALED;
1283   ASSERT_EQ(0, pthread_cond_signal(&cond));
1284 }
1285 
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1286 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1287   InitCond(CLOCK_MONOTONIC);
1288   timespec ts;
1289   ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1290   ts.tv_sec += 1;
1291   StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1292     return pthread_cond_timedwait(cond, mutex, &ts);
1293   });
1294   progress = SIGNALED;
1295   ASSERT_EQ(0, pthread_cond_signal(&cond));
1296 }
1297 
TEST(pthread,pthread_cond_timedwait_timeout)1298 TEST(pthread, pthread_cond_timedwait_timeout) {
1299   pthread_mutex_t mutex;
1300   ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1301   pthread_cond_t cond;
1302   ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1303   ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1304   timespec ts;
1305   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1306   ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1307   ts.tv_nsec = -1;
1308   ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1309   ts.tv_nsec = NS_PER_S;
1310   ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1311   ts.tv_nsec = NS_PER_S - 1;
1312   ts.tv_sec = -1;
1313   ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1314   ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1315 }
1316 
TEST(pthread,pthread_attr_getstack__main_thread)1317 TEST(pthread, pthread_attr_getstack__main_thread) {
1318   // This test is only meaningful for the main thread, so make sure we're running on it!
1319   ASSERT_EQ(getpid(), syscall(__NR_gettid));
1320 
1321   // Get the main thread's attributes.
1322   pthread_attr_t attributes;
1323   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1324 
1325   // Check that we correctly report that the main thread has no guard page.
1326   size_t guard_size;
1327   ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1328   ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1329 
1330   // Get the stack base and the stack size (both ways).
1331   void* stack_base;
1332   size_t stack_size;
1333   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1334   size_t stack_size2;
1335   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1336 
1337   // The two methods of asking for the stack size should agree.
1338   EXPECT_EQ(stack_size, stack_size2);
1339 
1340 #if defined(__BIONIC__)
1341   // What does /proc/self/maps' [stack] line say?
1342   void* maps_stack_hi = NULL;
1343   std::vector<map_record> maps;
1344   ASSERT_TRUE(Maps::parse_maps(&maps));
1345   for (const auto& map : maps) {
1346     if (map.pathname == "[stack]") {
1347       maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1348       break;
1349     }
1350   }
1351 
1352   // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1353   // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1354   // region isn't very interesting.
1355   EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1356 
1357   // The stack size should correspond to RLIMIT_STACK.
1358   rlimit rl;
1359   ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1360   uint64_t original_rlim_cur = rl.rlim_cur;
1361   if (rl.rlim_cur == RLIM_INFINITY) {
1362     rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1363   }
1364   EXPECT_EQ(rl.rlim_cur, stack_size);
1365 
1366   auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() {
1367     rl.rlim_cur = original_rlim_cur;
1368     ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1369   });
1370 
1371   //
1372   // What if RLIMIT_STACK is smaller than the stack's current extent?
1373   //
1374   rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1375   rl.rlim_max = RLIM_INFINITY;
1376   ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1377 
1378   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1379   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1380   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1381 
1382   EXPECT_EQ(stack_size, stack_size2);
1383   ASSERT_EQ(1024U, stack_size);
1384 
1385   //
1386   // What if RLIMIT_STACK isn't a whole number of pages?
1387   //
1388   rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1389   rl.rlim_max = RLIM_INFINITY;
1390   ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1391 
1392   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1393   ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1394   ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1395 
1396   EXPECT_EQ(stack_size, stack_size2);
1397   ASSERT_EQ(6666U, stack_size);
1398 #endif
1399 }
1400 
1401 struct GetStackSignalHandlerArg {
1402   volatile bool done;
1403   void* signal_stack_base;
1404   size_t signal_stack_size;
1405   void* main_stack_base;
1406   size_t main_stack_size;
1407 };
1408 
1409 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1410 
getstack_signal_handler(int sig)1411 static void getstack_signal_handler(int sig) {
1412   ASSERT_EQ(SIGUSR1, sig);
1413   // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1414   sleep(1);
1415   pthread_attr_t attr;
1416   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1417   void* stack_base;
1418   size_t stack_size;
1419   ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1420 
1421   // Verify if the stack used by the signal handler is the alternate stack just registered.
1422   ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr);
1423   ASSERT_LT(static_cast<void*>(&attr),
1424             static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) +
1425             getstack_signal_handler_arg.signal_stack_size);
1426 
1427   // Verify if the main thread's stack got in the signal handler is correct.
1428   ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base);
1429   ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size);
1430 
1431   getstack_signal_handler_arg.done = true;
1432 }
1433 
1434 // The previous code obtained the main thread's stack by reading the entry in
1435 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1436 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1437 // switches a process while the main thread is in an alternate stack, then the kernel will label
1438 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1439 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1440 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1441   // This test is only meaningful for the main thread, so make sure we're running on it!
1442   ASSERT_EQ(getpid(), syscall(__NR_gettid));
1443 
1444   const size_t sig_stack_size = 16 * 1024;
1445   void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1446                          -1, 0);
1447   ASSERT_NE(MAP_FAILED, sig_stack);
1448   stack_t ss;
1449   ss.ss_sp = sig_stack;
1450   ss.ss_size = sig_stack_size;
1451   ss.ss_flags = 0;
1452   stack_t oss;
1453   ASSERT_EQ(0, sigaltstack(&ss, &oss));
1454 
1455   pthread_attr_t attr;
1456   ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1457   void* main_stack_base;
1458   size_t main_stack_size;
1459   ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1460 
1461   ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1462   getstack_signal_handler_arg.done = false;
1463   getstack_signal_handler_arg.signal_stack_base = sig_stack;
1464   getstack_signal_handler_arg.signal_stack_size = sig_stack_size;
1465   getstack_signal_handler_arg.main_stack_base = main_stack_base;
1466   getstack_signal_handler_arg.main_stack_size = main_stack_size;
1467   kill(getpid(), SIGUSR1);
1468   ASSERT_EQ(true, getstack_signal_handler_arg.done);
1469 
1470   ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1471   ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1472 }
1473 
pthread_attr_getstack_18908062_helper(void *)1474 static void pthread_attr_getstack_18908062_helper(void*) {
1475   char local_variable;
1476   pthread_attr_t attributes;
1477   pthread_getattr_np(pthread_self(), &attributes);
1478   void* stack_base;
1479   size_t stack_size;
1480   pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1481 
1482   // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1483   ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1484   ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1485 }
1486 
1487 // Check whether something on stack is in the range of
1488 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1489 TEST(pthread, pthread_attr_getstack_18908062) {
1490   pthread_t t;
1491   ASSERT_EQ(0, pthread_create(&t, NULL,
1492             reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1493             NULL));
1494   pthread_join(t, NULL);
1495 }
1496 
1497 #if defined(__BIONIC__)
1498 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1499 
pthread_gettid_np_helper(void * arg)1500 static void* pthread_gettid_np_helper(void* arg) {
1501   *reinterpret_cast<pid_t*>(arg) = gettid();
1502 
1503   // Wait for our parent to call pthread_gettid_np on us before exiting.
1504   pthread_mutex_lock(&pthread_gettid_np_mutex);
1505   pthread_mutex_unlock(&pthread_gettid_np_mutex);
1506   return NULL;
1507 }
1508 #endif
1509 
TEST(pthread,pthread_gettid_np)1510 TEST(pthread, pthread_gettid_np) {
1511 #if defined(__BIONIC__)
1512   ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1513 
1514   // Ensure the other thread doesn't exit until after we've called
1515   // pthread_gettid_np on it.
1516   pthread_mutex_lock(&pthread_gettid_np_mutex);
1517 
1518   pid_t t_gettid_result;
1519   pthread_t t;
1520   pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1521 
1522   pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1523 
1524   // Release the other thread and wait for it to exit.
1525   pthread_mutex_unlock(&pthread_gettid_np_mutex);
1526   pthread_join(t, NULL);
1527 
1528   ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1529 #else
1530   GTEST_LOG_(INFO) << "This test does nothing.\n";
1531 #endif
1532 }
1533 
1534 static size_t cleanup_counter = 0;
1535 
AbortCleanupRoutine(void *)1536 static void AbortCleanupRoutine(void*) {
1537   abort();
1538 }
1539 
CountCleanupRoutine(void *)1540 static void CountCleanupRoutine(void*) {
1541   ++cleanup_counter;
1542 }
1543 
PthreadCleanupTester()1544 static void PthreadCleanupTester() {
1545   pthread_cleanup_push(CountCleanupRoutine, NULL);
1546   pthread_cleanup_push(CountCleanupRoutine, NULL);
1547   pthread_cleanup_push(AbortCleanupRoutine, NULL);
1548 
1549   pthread_cleanup_pop(0); // Pop the abort without executing it.
1550   pthread_cleanup_pop(1); // Pop one count while executing it.
1551   ASSERT_EQ(1U, cleanup_counter);
1552   // Exit while the other count is still on the cleanup stack.
1553   pthread_exit(NULL);
1554 
1555   // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1556   pthread_cleanup_pop(0);
1557 }
1558 
PthreadCleanupStartRoutine(void *)1559 static void* PthreadCleanupStartRoutine(void*) {
1560   PthreadCleanupTester();
1561   return NULL;
1562 }
1563 
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1564 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1565   pthread_t t;
1566   ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1567   pthread_join(t, NULL);
1568   ASSERT_EQ(2U, cleanup_counter);
1569 }
1570 
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1571 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1572   ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1573 }
1574 
TEST(pthread,pthread_mutexattr_gettype)1575 TEST(pthread, pthread_mutexattr_gettype) {
1576   pthread_mutexattr_t attr;
1577   ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1578 
1579   int attr_type;
1580 
1581   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1582   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1583   ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1584 
1585   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1586   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1587   ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1588 
1589   ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1590   ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1591   ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1592 
1593   ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1594 }
1595 
1596 struct PthreadMutex {
1597   pthread_mutex_t lock;
1598 
PthreadMutexPthreadMutex1599   explicit PthreadMutex(int mutex_type) {
1600     init(mutex_type);
1601   }
1602 
~PthreadMutexPthreadMutex1603   ~PthreadMutex() {
1604     destroy();
1605   }
1606 
1607  private:
initPthreadMutex1608   void init(int mutex_type) {
1609     pthread_mutexattr_t attr;
1610     ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1611     ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1612     ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1613     ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1614   }
1615 
destroyPthreadMutex1616   void destroy() {
1617     ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1618   }
1619 
1620   DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1621 };
1622 
TEST(pthread,pthread_mutex_lock_NORMAL)1623 TEST(pthread, pthread_mutex_lock_NORMAL) {
1624   PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1625 
1626   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1627   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1628   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1629   ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1630   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1631 }
1632 
TEST(pthread,pthread_mutex_lock_ERRORCHECK)1633 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1634   PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1635 
1636   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1637   ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1638   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1639   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1640   ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1641   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1642   ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1643 }
1644 
TEST(pthread,pthread_mutex_lock_RECURSIVE)1645 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1646   PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1647 
1648   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1649   ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1650   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1651   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1652   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1653   ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1654   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1655   ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1656   ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1657 }
1658 
TEST(pthread,pthread_mutex_init_same_as_static_initializers)1659 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1660   pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1661   PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1662   ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1663   pthread_mutex_destroy(&lock_normal);
1664 
1665   pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1666   PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1667   ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1668   pthread_mutex_destroy(&lock_errorcheck);
1669 
1670   pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1671   PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1672   ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1673   ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1674 }
1675 class MutexWakeupHelper {
1676  private:
1677   PthreadMutex m;
1678   enum Progress {
1679     LOCK_INITIALIZED,
1680     LOCK_WAITING,
1681     LOCK_RELEASED,
1682     LOCK_ACCESSED
1683   };
1684   std::atomic<Progress> progress;
1685   std::atomic<pid_t> tid;
1686 
thread_fn(MutexWakeupHelper * helper)1687   static void thread_fn(MutexWakeupHelper* helper) {
1688     helper->tid = gettid();
1689     ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1690     helper->progress = LOCK_WAITING;
1691 
1692     ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1693     ASSERT_EQ(LOCK_RELEASED, helper->progress);
1694     ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1695 
1696     helper->progress = LOCK_ACCESSED;
1697   }
1698 
1699  public:
MutexWakeupHelper(int mutex_type)1700   explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1701   }
1702 
test()1703   void test() {
1704     ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1705     progress = LOCK_INITIALIZED;
1706     tid = 0;
1707 
1708     pthread_t thread;
1709     ASSERT_EQ(0, pthread_create(&thread, NULL,
1710       reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1711 
1712     WaitUntilThreadSleep(tid);
1713     ASSERT_EQ(LOCK_WAITING, progress);
1714 
1715     progress = LOCK_RELEASED;
1716     ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1717 
1718     ASSERT_EQ(0, pthread_join(thread, NULL));
1719     ASSERT_EQ(LOCK_ACCESSED, progress);
1720   }
1721 };
1722 
TEST(pthread,pthread_mutex_NORMAL_wakeup)1723 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1724   MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1725   helper.test();
1726 }
1727 
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)1728 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1729   MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1730   helper.test();
1731 }
1732 
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)1733 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1734   MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1735   helper.test();
1736 }
1737 
TEST(pthread,pthread_mutex_owner_tid_limit)1738 TEST(pthread, pthread_mutex_owner_tid_limit) {
1739 #if defined(__BIONIC__) && !defined(__LP64__)
1740   FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1741   ASSERT_TRUE(fp != NULL);
1742   long pid_max;
1743   ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1744   fclose(fp);
1745   // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1746   ASSERT_LE(pid_max, 65536);
1747 #else
1748   GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1749 #endif
1750 }
1751 
TEST(pthread,pthread_mutex_timedlock)1752 TEST(pthread, pthread_mutex_timedlock) {
1753   pthread_mutex_t m;
1754   ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
1755 
1756   // If the mutex is already locked, pthread_mutex_timedlock should time out.
1757   ASSERT_EQ(0, pthread_mutex_lock(&m));
1758 
1759   timespec ts;
1760   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1761   ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1762   ts.tv_nsec = -1;
1763   ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1764   ts.tv_nsec = NS_PER_S;
1765   ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1766   ts.tv_nsec = NS_PER_S - 1;
1767   ts.tv_sec = -1;
1768   ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1769 
1770   // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1771   ASSERT_EQ(0, pthread_mutex_unlock(&m));
1772 
1773   ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1774   ts.tv_sec += 1;
1775   ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1776 
1777   ASSERT_EQ(0, pthread_mutex_unlock(&m));
1778   ASSERT_EQ(0, pthread_mutex_destroy(&m));
1779 }
1780 
1781 class StrictAlignmentAllocator {
1782  public:
allocate(size_t size,size_t alignment)1783   void* allocate(size_t size, size_t alignment) {
1784     char* p = new char[size + alignment * 2];
1785     allocated_array.push_back(p);
1786     while (!is_strict_aligned(p, alignment)) {
1787       ++p;
1788     }
1789     return p;
1790   }
1791 
~StrictAlignmentAllocator()1792   ~StrictAlignmentAllocator() {
1793     for (const auto& p : allocated_array) {
1794       delete[] p;
1795     }
1796   }
1797 
1798  private:
is_strict_aligned(char * p,size_t alignment)1799   bool is_strict_aligned(char* p, size_t alignment) {
1800     return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1801   }
1802 
1803   std::vector<char*> allocated_array;
1804 };
1805 
TEST(pthread,pthread_types_allow_four_bytes_alignment)1806 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1807 #if defined(__BIONIC__)
1808   // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1809   StrictAlignmentAllocator allocator;
1810   pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1811                              allocator.allocate(sizeof(pthread_mutex_t), 4));
1812   ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1813   ASSERT_EQ(0, pthread_mutex_lock(mutex));
1814   ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1815   ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1816 
1817   pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1818                            allocator.allocate(sizeof(pthread_cond_t), 4));
1819   ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1820   ASSERT_EQ(0, pthread_cond_signal(cond));
1821   ASSERT_EQ(0, pthread_cond_broadcast(cond));
1822   ASSERT_EQ(0, pthread_cond_destroy(cond));
1823 
1824   pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1825                                allocator.allocate(sizeof(pthread_rwlock_t), 4));
1826   ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1827   ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1828   ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1829   ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1830   ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1831   ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1832 
1833 #else
1834   GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1835 #endif
1836 }
1837 
TEST(pthread,pthread_mutex_lock_null_32)1838 TEST(pthread, pthread_mutex_lock_null_32) {
1839 #if defined(__BIONIC__) && !defined(__LP64__)
1840   // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
1841   // EINVAL in that case: http://b/19995172.
1842   //
1843   // We decorate the public defintion with _Nonnull so that people recompiling
1844   // their code with get a warning and might fix their bug, but need to pass
1845   // NULL here to test that we remain compatible.
1846   pthread_mutex_t* null_value = nullptr;
1847   ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value));
1848 #else
1849   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1850 #endif
1851 }
1852 
TEST(pthread,pthread_mutex_unlock_null_32)1853 TEST(pthread, pthread_mutex_unlock_null_32) {
1854 #if defined(__BIONIC__) && !defined(__LP64__)
1855   // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
1856   // EINVAL in that case: http://b/19995172.
1857   //
1858   // We decorate the public defintion with _Nonnull so that people recompiling
1859   // their code with get a warning and might fix their bug, but need to pass
1860   // NULL here to test that we remain compatible.
1861   pthread_mutex_t* null_value = nullptr;
1862   ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value));
1863 #else
1864   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1865 #endif
1866 }
1867 
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)1868 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
1869 #if defined(__BIONIC__) && defined(__LP64__)
1870   pthread_mutex_t* null_value = nullptr;
1871   ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
1872 #else
1873   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1874 #endif
1875 }
1876 
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)1877 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
1878 #if defined(__BIONIC__) && defined(__LP64__)
1879   pthread_mutex_t* null_value = nullptr;
1880   ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
1881 #else
1882   GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1883 #endif
1884 }
1885 
1886 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
1887 
1888 static volatile bool signal_handler_on_altstack_done;
1889 
1890 __attribute__((__noinline__))
signal_handler_backtrace()1891 static void signal_handler_backtrace() {
1892   // Check if we have enough stack space for unwinding.
1893   int count = 0;
1894   _Unwind_Backtrace(FrameCounter, &count);
1895   ASSERT_GT(count, 0);
1896 }
1897 
1898 __attribute__((__noinline__))
signal_handler_logging()1899 static void signal_handler_logging() {
1900   // Check if we have enough stack space for logging.
1901   std::string s(2048, '*');
1902   GTEST_LOG_(INFO) << s;
1903   signal_handler_on_altstack_done = true;
1904 }
1905 
1906 __attribute__((__noinline__))
signal_handler_snprintf()1907 static void signal_handler_snprintf() {
1908   // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra.
1909   char buf[PATH_MAX + 2048];
1910   ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0);
1911 }
1912 
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)1913 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
1914   ASSERT_EQ(SIGUSR1, signo);
1915   signal_handler_backtrace();
1916   signal_handler_logging();
1917   signal_handler_snprintf();
1918 }
1919 
TEST(pthread,big_enough_signal_stack)1920 TEST(pthread, big_enough_signal_stack) {
1921   signal_handler_on_altstack_done = false;
1922   ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
1923   kill(getpid(), SIGUSR1);
1924   ASSERT_TRUE(signal_handler_on_altstack_done);
1925 }
1926 
TEST(pthread,pthread_barrierattr_smoke)1927 TEST(pthread, pthread_barrierattr_smoke) {
1928   pthread_barrierattr_t attr;
1929   ASSERT_EQ(0, pthread_barrierattr_init(&attr));
1930   int pshared;
1931   ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1932   ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1933   ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1934   ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1935   ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1936   ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
1937 }
1938 
1939 struct BarrierTestHelperData {
1940   size_t thread_count;
1941   pthread_barrier_t barrier;
1942   std::atomic<int> finished_mask;
1943   std::atomic<int> serial_thread_count;
1944   size_t iteration_count;
1945   std::atomic<size_t> finished_iteration_count;
1946 
BarrierTestHelperDataBarrierTestHelperData1947   BarrierTestHelperData(size_t thread_count, size_t iteration_count)
1948       : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
1949         iteration_count(iteration_count), finished_iteration_count(0) {
1950   }
1951 };
1952 
1953 struct BarrierTestHelperArg {
1954   int id;
1955   BarrierTestHelperData* data;
1956 };
1957 
BarrierTestHelper(BarrierTestHelperArg * arg)1958 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
1959   for (size_t i = 0; i < arg->data->iteration_count; ++i) {
1960     int result = pthread_barrier_wait(&arg->data->barrier);
1961     if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
1962       arg->data->serial_thread_count++;
1963     } else {
1964       ASSERT_EQ(0, result);
1965     }
1966     int mask = arg->data->finished_mask.fetch_or(1 << arg->id);
1967     mask |= 1 << arg->id;
1968     if (mask == ((1 << arg->data->thread_count) - 1)) {
1969       ASSERT_EQ(1, arg->data->serial_thread_count);
1970       arg->data->finished_iteration_count++;
1971       arg->data->finished_mask = 0;
1972       arg->data->serial_thread_count = 0;
1973     }
1974   }
1975 }
1976 
TEST(pthread,pthread_barrier_smoke)1977 TEST(pthread, pthread_barrier_smoke) {
1978   const size_t BARRIER_ITERATION_COUNT = 10;
1979   const size_t BARRIER_THREAD_COUNT = 10;
1980   BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
1981   ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
1982   std::vector<pthread_t> threads(data.thread_count);
1983   std::vector<BarrierTestHelperArg> args(threads.size());
1984   for (size_t i = 0; i < threads.size(); ++i) {
1985     args[i].id = i;
1986     args[i].data = &data;
1987     ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1988                                 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
1989   }
1990   for (size_t i = 0; i < threads.size(); ++i) {
1991     ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1992   }
1993   ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
1994   ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
1995 }
1996 
1997 struct BarrierDestroyTestArg {
1998   std::atomic<int> tid;
1999   pthread_barrier_t* barrier;
2000 };
2001 
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)2002 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
2003   arg->tid = gettid();
2004   ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
2005 }
2006 
TEST(pthread,pthread_barrier_destroy)2007 TEST(pthread, pthread_barrier_destroy) {
2008   pthread_barrier_t barrier;
2009   ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
2010   pthread_t thread;
2011   BarrierDestroyTestArg arg;
2012   arg.tid = 0;
2013   arg.barrier = &barrier;
2014   ASSERT_EQ(0, pthread_create(&thread, nullptr,
2015                               reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
2016   WaitUntilThreadSleep(arg.tid);
2017   ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
2018   ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
2019   // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
2020   ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
2021   ASSERT_EQ(0, pthread_join(thread, nullptr));
2022 #if defined(__BIONIC__)
2023   ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
2024 #endif
2025 }
2026 
2027 struct BarrierOrderingTestHelperArg {
2028   pthread_barrier_t* barrier;
2029   size_t* array;
2030   size_t array_length;
2031   size_t id;
2032 };
2033 
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)2034 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
2035   const size_t ITERATION_COUNT = 10000;
2036   for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
2037     arg->array[arg->id] = i;
2038     int result = pthread_barrier_wait(arg->barrier);
2039     ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2040     for (size_t j = 0; j < arg->array_length; ++j) {
2041       ASSERT_EQ(i, arg->array[j]);
2042     }
2043     result = pthread_barrier_wait(arg->barrier);
2044     ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2045   }
2046 }
2047 
TEST(pthread,pthread_barrier_check_ordering)2048 TEST(pthread, pthread_barrier_check_ordering) {
2049   const size_t THREAD_COUNT = 4;
2050   pthread_barrier_t barrier;
2051   ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
2052   size_t array[THREAD_COUNT];
2053   std::vector<pthread_t> threads(THREAD_COUNT);
2054   std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
2055   for (size_t i = 0; i < THREAD_COUNT; ++i) {
2056     args[i].barrier = &barrier;
2057     args[i].array = array;
2058     args[i].array_length = THREAD_COUNT;
2059     args[i].id = i;
2060     ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2061                                 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
2062                                 &args[i]));
2063   }
2064   for (size_t i = 0; i < THREAD_COUNT; ++i) {
2065     ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2066   }
2067 }
2068 
TEST(pthread,pthread_spinlock_smoke)2069 TEST(pthread, pthread_spinlock_smoke) {
2070   pthread_spinlock_t lock;
2071   ASSERT_EQ(0, pthread_spin_init(&lock, 0));
2072   ASSERT_EQ(0, pthread_spin_trylock(&lock));
2073   ASSERT_EQ(0, pthread_spin_unlock(&lock));
2074   ASSERT_EQ(0, pthread_spin_lock(&lock));
2075   ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
2076   ASSERT_EQ(0, pthread_spin_unlock(&lock));
2077   ASSERT_EQ(0, pthread_spin_destroy(&lock));
2078 }
2079 
TEST(pthread,pthread_attr_setdetachstate)2080 TEST(pthread, pthread_attr_setdetachstate) {
2081   pthread_attr_t attr;
2082   ASSERT_EQ(0, pthread_attr_init(&attr));
2083 
2084   ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2085   ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
2086   ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123));
2087 }
2088 
TEST(pthread,pthread_create__mmap_failures)2089 TEST(pthread, pthread_create__mmap_failures) {
2090   pthread_attr_t attr;
2091   ASSERT_EQ(0, pthread_attr_init(&attr));
2092   ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2093 
2094   const auto kPageSize = sysconf(_SC_PAGE_SIZE);
2095 
2096   // Use up all the VMAs. By default this is 64Ki.
2097   std::vector<void*> pages;
2098   int prot = PROT_NONE;
2099   while (true) {
2100     void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0);
2101     if (page == MAP_FAILED) break;
2102     pages.push_back(page);
2103     prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE;
2104   }
2105 
2106   // Try creating threads, freeing up a page each time we fail.
2107   size_t EAGAIN_count = 0;
2108   size_t i = 0;
2109   for (; i < pages.size(); ++i) {
2110     pthread_t t;
2111     int status = pthread_create(&t, &attr, IdFn, nullptr);
2112     if (status != EAGAIN) break;
2113     ++EAGAIN_count;
2114     ASSERT_EQ(0, munmap(pages[i], kPageSize));
2115   }
2116 
2117   // Creating a thread uses at least six VMAs: the stack, the TLS, and a guard each side of both.
2118   // So we should have seen at least six failures.
2119   ASSERT_GE(EAGAIN_count, 6U);
2120 
2121   for (; i < pages.size(); ++i) {
2122     ASSERT_EQ(0, munmap(pages[i], kPageSize));
2123   }
2124 }
2125