1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <gtest/gtest.h>
18
19 #include <errno.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <malloc.h>
23 #include <pthread.h>
24 #include <signal.h>
25 #include <stdio.h>
26 #include <sys/mman.h>
27 #include <sys/prctl.h>
28 #include <sys/syscall.h>
29 #include <time.h>
30 #include <unistd.h>
31 #include <unwind.h>
32
33 #include <atomic>
34 #include <vector>
35
36 #include <android-base/scopeguard.h>
37
38 #include "private/bionic_constants.h"
39 #include "private/bionic_macros.h"
40 #include "BionicDeathTest.h"
41 #include "ScopedSignalHandler.h"
42 #include "utils.h"
43
TEST(pthread,pthread_key_create)44 TEST(pthread, pthread_key_create) {
45 pthread_key_t key;
46 ASSERT_EQ(0, pthread_key_create(&key, NULL));
47 ASSERT_EQ(0, pthread_key_delete(key));
48 // Can't delete a key that's already been deleted.
49 ASSERT_EQ(EINVAL, pthread_key_delete(key));
50 }
51
TEST(pthread,pthread_keys_max)52 TEST(pthread, pthread_keys_max) {
53 // POSIX says PTHREAD_KEYS_MAX should be at least _POSIX_THREAD_KEYS_MAX.
54 ASSERT_GE(PTHREAD_KEYS_MAX, _POSIX_THREAD_KEYS_MAX);
55 }
56
TEST(pthread,sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX)57 TEST(pthread, sysconf_SC_THREAD_KEYS_MAX_eq_PTHREAD_KEYS_MAX) {
58 int sysconf_max = sysconf(_SC_THREAD_KEYS_MAX);
59 ASSERT_EQ(sysconf_max, PTHREAD_KEYS_MAX);
60 }
61
TEST(pthread,pthread_key_many_distinct)62 TEST(pthread, pthread_key_many_distinct) {
63 // As gtest uses pthread keys, we can't allocate exactly PTHREAD_KEYS_MAX
64 // pthread keys, but We should be able to allocate at least this many keys.
65 int nkeys = PTHREAD_KEYS_MAX / 2;
66 std::vector<pthread_key_t> keys;
67
68 auto scope_guard = android::base::make_scope_guard([&keys] {
69 for (const auto& key : keys) {
70 EXPECT_EQ(0, pthread_key_delete(key));
71 }
72 });
73
74 for (int i = 0; i < nkeys; ++i) {
75 pthread_key_t key;
76 // If this fails, it's likely that LIBC_PTHREAD_KEY_RESERVED_COUNT is wrong.
77 ASSERT_EQ(0, pthread_key_create(&key, NULL)) << i << " of " << nkeys;
78 keys.push_back(key);
79 ASSERT_EQ(0, pthread_setspecific(key, reinterpret_cast<void*>(i)));
80 }
81
82 for (int i = keys.size() - 1; i >= 0; --i) {
83 ASSERT_EQ(reinterpret_cast<void*>(i), pthread_getspecific(keys.back()));
84 pthread_key_t key = keys.back();
85 keys.pop_back();
86 ASSERT_EQ(0, pthread_key_delete(key));
87 }
88 }
89
TEST(pthread,pthread_key_not_exceed_PTHREAD_KEYS_MAX)90 TEST(pthread, pthread_key_not_exceed_PTHREAD_KEYS_MAX) {
91 std::vector<pthread_key_t> keys;
92 int rv = 0;
93
94 // Pthread keys are used by gtest, so PTHREAD_KEYS_MAX should
95 // be more than we are allowed to allocate now.
96 for (int i = 0; i < PTHREAD_KEYS_MAX; i++) {
97 pthread_key_t key;
98 rv = pthread_key_create(&key, NULL);
99 if (rv == EAGAIN) {
100 break;
101 }
102 EXPECT_EQ(0, rv);
103 keys.push_back(key);
104 }
105
106 // Don't leak keys.
107 for (const auto& key : keys) {
108 EXPECT_EQ(0, pthread_key_delete(key));
109 }
110 keys.clear();
111
112 // We should have eventually reached the maximum number of keys and received
113 // EAGAIN.
114 ASSERT_EQ(EAGAIN, rv);
115 }
116
TEST(pthread,pthread_key_delete)117 TEST(pthread, pthread_key_delete) {
118 void* expected = reinterpret_cast<void*>(1234);
119 pthread_key_t key;
120 ASSERT_EQ(0, pthread_key_create(&key, NULL));
121 ASSERT_EQ(0, pthread_setspecific(key, expected));
122 ASSERT_EQ(expected, pthread_getspecific(key));
123 ASSERT_EQ(0, pthread_key_delete(key));
124 // After deletion, pthread_getspecific returns NULL.
125 ASSERT_EQ(NULL, pthread_getspecific(key));
126 // And you can't use pthread_setspecific with the deleted key.
127 ASSERT_EQ(EINVAL, pthread_setspecific(key, expected));
128 }
129
TEST(pthread,pthread_key_fork)130 TEST(pthread, pthread_key_fork) {
131 void* expected = reinterpret_cast<void*>(1234);
132 pthread_key_t key;
133 ASSERT_EQ(0, pthread_key_create(&key, NULL));
134 ASSERT_EQ(0, pthread_setspecific(key, expected));
135 ASSERT_EQ(expected, pthread_getspecific(key));
136
137 pid_t pid = fork();
138 ASSERT_NE(-1, pid) << strerror(errno);
139
140 if (pid == 0) {
141 // The surviving thread inherits all the forking thread's TLS values...
142 ASSERT_EQ(expected, pthread_getspecific(key));
143 _exit(99);
144 }
145
146 AssertChildExited(pid, 99);
147
148 ASSERT_EQ(expected, pthread_getspecific(key));
149 ASSERT_EQ(0, pthread_key_delete(key));
150 }
151
DirtyKeyFn(void * key)152 static void* DirtyKeyFn(void* key) {
153 return pthread_getspecific(*reinterpret_cast<pthread_key_t*>(key));
154 }
155
TEST(pthread,pthread_key_dirty)156 TEST(pthread, pthread_key_dirty) {
157 pthread_key_t key;
158 ASSERT_EQ(0, pthread_key_create(&key, NULL));
159
160 size_t stack_size = 640 * 1024;
161 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
162 ASSERT_NE(MAP_FAILED, stack);
163 memset(stack, 0xff, stack_size);
164
165 pthread_attr_t attr;
166 ASSERT_EQ(0, pthread_attr_init(&attr));
167 ASSERT_EQ(0, pthread_attr_setstack(&attr, stack, stack_size));
168
169 pthread_t t;
170 ASSERT_EQ(0, pthread_create(&t, &attr, DirtyKeyFn, &key));
171
172 void* result;
173 ASSERT_EQ(0, pthread_join(t, &result));
174 ASSERT_EQ(nullptr, result); // Not ~0!
175
176 ASSERT_EQ(0, munmap(stack, stack_size));
177 ASSERT_EQ(0, pthread_key_delete(key));
178 }
179
TEST(pthread,static_pthread_key_used_before_creation)180 TEST(pthread, static_pthread_key_used_before_creation) {
181 #if defined(__BIONIC__)
182 // See http://b/19625804. The bug is about a static/global pthread key being used before creation.
183 // So here tests if the static/global default value 0 can be detected as invalid key.
184 static pthread_key_t key;
185 ASSERT_EQ(nullptr, pthread_getspecific(key));
186 ASSERT_EQ(EINVAL, pthread_setspecific(key, nullptr));
187 ASSERT_EQ(EINVAL, pthread_key_delete(key));
188 #else
189 GTEST_LOG_(INFO) << "This test tests bionic pthread key implementation detail.\n";
190 #endif
191 }
192
IdFn(void * arg)193 static void* IdFn(void* arg) {
194 return arg;
195 }
196
197 class SpinFunctionHelper {
198 public:
SpinFunctionHelper()199 SpinFunctionHelper() {
200 SpinFunctionHelper::spin_flag_ = true;
201 }
~SpinFunctionHelper()202 ~SpinFunctionHelper() {
203 UnSpin();
204 }
GetFunction()205 auto GetFunction() -> void* (*)(void*) {
206 return SpinFunctionHelper::SpinFn;
207 }
208
UnSpin()209 void UnSpin() {
210 SpinFunctionHelper::spin_flag_ = false;
211 }
212
213 private:
SpinFn(void *)214 static void* SpinFn(void*) {
215 while (spin_flag_) {}
216 return NULL;
217 }
218 static std::atomic<bool> spin_flag_;
219 };
220
221 // It doesn't matter if spin_flag_ is used in several tests,
222 // because it is always set to false after each test. Each thread
223 // loops on spin_flag_ can find it becomes false at some time.
224 std::atomic<bool> SpinFunctionHelper::spin_flag_;
225
JoinFn(void * arg)226 static void* JoinFn(void* arg) {
227 return reinterpret_cast<void*>(pthread_join(reinterpret_cast<pthread_t>(arg), NULL));
228 }
229
AssertDetached(pthread_t t,bool is_detached)230 static void AssertDetached(pthread_t t, bool is_detached) {
231 pthread_attr_t attr;
232 ASSERT_EQ(0, pthread_getattr_np(t, &attr));
233 int detach_state;
234 ASSERT_EQ(0, pthread_attr_getdetachstate(&attr, &detach_state));
235 pthread_attr_destroy(&attr);
236 ASSERT_EQ(is_detached, (detach_state == PTHREAD_CREATE_DETACHED));
237 }
238
MakeDeadThread(pthread_t & t)239 static void MakeDeadThread(pthread_t& t) {
240 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, NULL));
241 ASSERT_EQ(0, pthread_join(t, NULL));
242 }
243
TEST(pthread,pthread_create)244 TEST(pthread, pthread_create) {
245 void* expected_result = reinterpret_cast<void*>(123);
246 // Can we create a thread?
247 pthread_t t;
248 ASSERT_EQ(0, pthread_create(&t, NULL, IdFn, expected_result));
249 // If we join, do we get the expected value back?
250 void* result;
251 ASSERT_EQ(0, pthread_join(t, &result));
252 ASSERT_EQ(expected_result, result);
253 }
254
TEST(pthread,pthread_create_EAGAIN)255 TEST(pthread, pthread_create_EAGAIN) {
256 pthread_attr_t attributes;
257 ASSERT_EQ(0, pthread_attr_init(&attributes));
258 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, static_cast<size_t>(-1) & ~(getpagesize() - 1)));
259
260 pthread_t t;
261 ASSERT_EQ(EAGAIN, pthread_create(&t, &attributes, IdFn, NULL));
262 }
263
TEST(pthread,pthread_no_join_after_detach)264 TEST(pthread, pthread_no_join_after_detach) {
265 SpinFunctionHelper spin_helper;
266
267 pthread_t t1;
268 ASSERT_EQ(0, pthread_create(&t1, NULL, spin_helper.GetFunction(), NULL));
269
270 // After a pthread_detach...
271 ASSERT_EQ(0, pthread_detach(t1));
272 AssertDetached(t1, true);
273
274 // ...pthread_join should fail.
275 ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
276 }
277
TEST(pthread,pthread_no_op_detach_after_join)278 TEST(pthread, pthread_no_op_detach_after_join) {
279 SpinFunctionHelper spin_helper;
280
281 pthread_t t1;
282 ASSERT_EQ(0, pthread_create(&t1, NULL, spin_helper.GetFunction(), NULL));
283
284 // If thread 2 is already waiting to join thread 1...
285 pthread_t t2;
286 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
287
288 sleep(1); // (Give t2 a chance to call pthread_join.)
289
290 #if defined(__BIONIC__)
291 ASSERT_EQ(EINVAL, pthread_detach(t1));
292 #else
293 ASSERT_EQ(0, pthread_detach(t1));
294 #endif
295 AssertDetached(t1, false);
296
297 spin_helper.UnSpin();
298
299 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
300 void* join_result;
301 ASSERT_EQ(0, pthread_join(t2, &join_result));
302 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
303 }
304
TEST(pthread,pthread_join_self)305 TEST(pthread, pthread_join_self) {
306 ASSERT_EQ(EDEADLK, pthread_join(pthread_self(), NULL));
307 }
308
309 struct TestBug37410 {
310 pthread_t main_thread;
311 pthread_mutex_t mutex;
312
mainTestBug37410313 static void main() {
314 TestBug37410 data;
315 data.main_thread = pthread_self();
316 ASSERT_EQ(0, pthread_mutex_init(&data.mutex, NULL));
317 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
318
319 pthread_t t;
320 ASSERT_EQ(0, pthread_create(&t, NULL, TestBug37410::thread_fn, reinterpret_cast<void*>(&data)));
321
322 // Wait for the thread to be running...
323 ASSERT_EQ(0, pthread_mutex_lock(&data.mutex));
324 ASSERT_EQ(0, pthread_mutex_unlock(&data.mutex));
325
326 // ...and exit.
327 pthread_exit(NULL);
328 }
329
330 private:
thread_fnTestBug37410331 static void* thread_fn(void* arg) {
332 TestBug37410* data = reinterpret_cast<TestBug37410*>(arg);
333
334 // Let the main thread know we're running.
335 pthread_mutex_unlock(&data->mutex);
336
337 // And wait for the main thread to exit.
338 pthread_join(data->main_thread, NULL);
339
340 return NULL;
341 }
342 };
343
344 // Even though this isn't really a death test, we have to say "DeathTest" here so gtest knows to
345 // run this test (which exits normally) in its own process.
346
347 class pthread_DeathTest : public BionicDeathTest {};
348
TEST_F(pthread_DeathTest,pthread_bug_37410)349 TEST_F(pthread_DeathTest, pthread_bug_37410) {
350 // http://code.google.com/p/android/issues/detail?id=37410
351 ASSERT_EXIT(TestBug37410::main(), ::testing::ExitedWithCode(0), "");
352 }
353
SignalHandlerFn(void * arg)354 static void* SignalHandlerFn(void* arg) {
355 sigset_t wait_set;
356 sigfillset(&wait_set);
357 return reinterpret_cast<void*>(sigwait(&wait_set, reinterpret_cast<int*>(arg)));
358 }
359
TEST(pthread,pthread_sigmask)360 TEST(pthread, pthread_sigmask) {
361 // Check that SIGUSR1 isn't blocked.
362 sigset_t original_set;
363 sigemptyset(&original_set);
364 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &original_set));
365 ASSERT_FALSE(sigismember(&original_set, SIGUSR1));
366
367 // Block SIGUSR1.
368 sigset_t set;
369 sigemptyset(&set);
370 sigaddset(&set, SIGUSR1);
371 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, &set, NULL));
372
373 // Check that SIGUSR1 is blocked.
374 sigset_t final_set;
375 sigemptyset(&final_set);
376 ASSERT_EQ(0, pthread_sigmask(SIG_BLOCK, NULL, &final_set));
377 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
378 // ...and that sigprocmask agrees with pthread_sigmask.
379 sigemptyset(&final_set);
380 ASSERT_EQ(0, sigprocmask(SIG_BLOCK, NULL, &final_set));
381 ASSERT_TRUE(sigismember(&final_set, SIGUSR1));
382
383 // Spawn a thread that calls sigwait and tells us what it received.
384 pthread_t signal_thread;
385 int received_signal = -1;
386 ASSERT_EQ(0, pthread_create(&signal_thread, NULL, SignalHandlerFn, &received_signal));
387
388 // Send that thread SIGUSR1.
389 pthread_kill(signal_thread, SIGUSR1);
390
391 // See what it got.
392 void* join_result;
393 ASSERT_EQ(0, pthread_join(signal_thread, &join_result));
394 ASSERT_EQ(SIGUSR1, received_signal);
395 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
396
397 // Restore the original signal mask.
398 ASSERT_EQ(0, pthread_sigmask(SIG_SETMASK, &original_set, NULL));
399 }
400
test_pthread_setname_np__pthread_getname_np(pthread_t t)401 static void test_pthread_setname_np__pthread_getname_np(pthread_t t) {
402 ASSERT_EQ(0, pthread_setname_np(t, "short"));
403 char name[32];
404 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
405 ASSERT_STREQ("short", name);
406
407 // The limit is 15 characters --- the kernel's buffer is 16, but includes a NUL.
408 ASSERT_EQ(0, pthread_setname_np(t, "123456789012345"));
409 ASSERT_EQ(0, pthread_getname_np(t, name, sizeof(name)));
410 ASSERT_STREQ("123456789012345", name);
411
412 ASSERT_EQ(ERANGE, pthread_setname_np(t, "1234567890123456"));
413
414 // The passed-in buffer should be at least 16 bytes.
415 ASSERT_EQ(0, pthread_getname_np(t, name, 16));
416 ASSERT_EQ(ERANGE, pthread_getname_np(t, name, 15));
417 }
418
TEST(pthread,pthread_setname_np__pthread_getname_np__self)419 TEST(pthread, pthread_setname_np__pthread_getname_np__self) {
420 test_pthread_setname_np__pthread_getname_np(pthread_self());
421 }
422
TEST(pthread,pthread_setname_np__pthread_getname_np__other)423 TEST(pthread, pthread_setname_np__pthread_getname_np__other) {
424 SpinFunctionHelper spin_helper;
425
426 pthread_t t;
427 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
428 test_pthread_setname_np__pthread_getname_np(t);
429 spin_helper.UnSpin();
430 ASSERT_EQ(0, pthread_join(t, nullptr));
431 }
432
433 // http://b/28051133: a kernel misfeature means that you can't change the
434 // name of another thread if you've set PR_SET_DUMPABLE to 0.
TEST(pthread,pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE)435 TEST(pthread, pthread_setname_np__pthread_getname_np__other_PR_SET_DUMPABLE) {
436 ASSERT_EQ(0, prctl(PR_SET_DUMPABLE, 0)) << strerror(errno);
437
438 SpinFunctionHelper spin_helper;
439
440 pthread_t t;
441 ASSERT_EQ(0, pthread_create(&t, nullptr, spin_helper.GetFunction(), nullptr));
442 test_pthread_setname_np__pthread_getname_np(t);
443 spin_helper.UnSpin();
444 ASSERT_EQ(0, pthread_join(t, nullptr));
445 }
446
TEST_F(pthread_DeathTest,pthread_setname_np__no_such_thread)447 TEST_F(pthread_DeathTest, pthread_setname_np__no_such_thread) {
448 pthread_t dead_thread;
449 MakeDeadThread(dead_thread);
450
451 EXPECT_DEATH(pthread_setname_np(dead_thread, "short 3"), "invalid pthread_t");
452 }
453
TEST_F(pthread_DeathTest,pthread_setname_np__null_thread)454 TEST_F(pthread_DeathTest, pthread_setname_np__null_thread) {
455 pthread_t null_thread = 0;
456 EXPECT_EQ(ENOENT, pthread_setname_np(null_thread, "short 3"));
457 }
458
TEST_F(pthread_DeathTest,pthread_getname_np__no_such_thread)459 TEST_F(pthread_DeathTest, pthread_getname_np__no_such_thread) {
460 pthread_t dead_thread;
461 MakeDeadThread(dead_thread);
462
463 char name[64];
464 EXPECT_DEATH(pthread_getname_np(dead_thread, name, sizeof(name)), "invalid pthread_t");
465 }
466
TEST_F(pthread_DeathTest,pthread_getname_np__null_thread)467 TEST_F(pthread_DeathTest, pthread_getname_np__null_thread) {
468 pthread_t null_thread = 0;
469
470 char name[64];
471 EXPECT_EQ(ENOENT, pthread_getname_np(null_thread, name, sizeof(name)));
472 }
473
TEST(pthread,pthread_kill__0)474 TEST(pthread, pthread_kill__0) {
475 // Signal 0 just tests that the thread exists, so it's safe to call on ourselves.
476 ASSERT_EQ(0, pthread_kill(pthread_self(), 0));
477 }
478
TEST(pthread,pthread_kill__invalid_signal)479 TEST(pthread, pthread_kill__invalid_signal) {
480 ASSERT_EQ(EINVAL, pthread_kill(pthread_self(), -1));
481 }
482
pthread_kill__in_signal_handler_helper(int signal_number)483 static void pthread_kill__in_signal_handler_helper(int signal_number) {
484 static int count = 0;
485 ASSERT_EQ(SIGALRM, signal_number);
486 if (++count == 1) {
487 // Can we call pthread_kill from a signal handler?
488 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
489 }
490 }
491
TEST(pthread,pthread_kill__in_signal_handler)492 TEST(pthread, pthread_kill__in_signal_handler) {
493 ScopedSignalHandler ssh(SIGALRM, pthread_kill__in_signal_handler_helper);
494 ASSERT_EQ(0, pthread_kill(pthread_self(), SIGALRM));
495 }
496
TEST_F(pthread_DeathTest,pthread_detach__no_such_thread)497 TEST_F(pthread_DeathTest, pthread_detach__no_such_thread) {
498 pthread_t dead_thread;
499 MakeDeadThread(dead_thread);
500
501 EXPECT_DEATH(pthread_detach(dead_thread), "invalid pthread_t");
502 }
503
TEST_F(pthread_DeathTest,pthread_detach__null_thread)504 TEST_F(pthread_DeathTest, pthread_detach__null_thread) {
505 pthread_t null_thread = 0;
506 EXPECT_EQ(ESRCH, pthread_detach(null_thread));
507 }
508
TEST(pthread,pthread_getcpuclockid__clock_gettime)509 TEST(pthread, pthread_getcpuclockid__clock_gettime) {
510 SpinFunctionHelper spin_helper;
511
512 pthread_t t;
513 ASSERT_EQ(0, pthread_create(&t, NULL, spin_helper.GetFunction(), NULL));
514
515 clockid_t c;
516 ASSERT_EQ(0, pthread_getcpuclockid(t, &c));
517 timespec ts;
518 ASSERT_EQ(0, clock_gettime(c, &ts));
519 spin_helper.UnSpin();
520 ASSERT_EQ(0, pthread_join(t, nullptr));
521 }
522
TEST_F(pthread_DeathTest,pthread_getcpuclockid__no_such_thread)523 TEST_F(pthread_DeathTest, pthread_getcpuclockid__no_such_thread) {
524 pthread_t dead_thread;
525 MakeDeadThread(dead_thread);
526
527 clockid_t c;
528 EXPECT_DEATH(pthread_getcpuclockid(dead_thread, &c), "invalid pthread_t");
529 }
530
TEST_F(pthread_DeathTest,pthread_getcpuclockid__null_thread)531 TEST_F(pthread_DeathTest, pthread_getcpuclockid__null_thread) {
532 pthread_t null_thread = 0;
533 clockid_t c;
534 EXPECT_EQ(ESRCH, pthread_getcpuclockid(null_thread, &c));
535 }
536
TEST_F(pthread_DeathTest,pthread_getschedparam__no_such_thread)537 TEST_F(pthread_DeathTest, pthread_getschedparam__no_such_thread) {
538 pthread_t dead_thread;
539 MakeDeadThread(dead_thread);
540
541 int policy;
542 sched_param param;
543 EXPECT_DEATH(pthread_getschedparam(dead_thread, &policy, ¶m), "invalid pthread_t");
544 }
545
TEST_F(pthread_DeathTest,pthread_getschedparam__null_thread)546 TEST_F(pthread_DeathTest, pthread_getschedparam__null_thread) {
547 pthread_t null_thread = 0;
548 int policy;
549 sched_param param;
550 EXPECT_EQ(ESRCH, pthread_getschedparam(null_thread, &policy, ¶m));
551 }
552
TEST_F(pthread_DeathTest,pthread_setschedparam__no_such_thread)553 TEST_F(pthread_DeathTest, pthread_setschedparam__no_such_thread) {
554 pthread_t dead_thread;
555 MakeDeadThread(dead_thread);
556
557 int policy = 0;
558 sched_param param;
559 EXPECT_DEATH(pthread_setschedparam(dead_thread, policy, ¶m), "invalid pthread_t");
560 }
561
TEST_F(pthread_DeathTest,pthread_setschedparam__null_thread)562 TEST_F(pthread_DeathTest, pthread_setschedparam__null_thread) {
563 pthread_t null_thread = 0;
564 int policy = 0;
565 sched_param param;
566 EXPECT_EQ(ESRCH, pthread_setschedparam(null_thread, policy, ¶m));
567 }
568
TEST_F(pthread_DeathTest,pthread_join__no_such_thread)569 TEST_F(pthread_DeathTest, pthread_join__no_such_thread) {
570 pthread_t dead_thread;
571 MakeDeadThread(dead_thread);
572
573 EXPECT_DEATH(pthread_join(dead_thread, NULL), "invalid pthread_t");
574 }
575
TEST_F(pthread_DeathTest,pthread_join__null_thread)576 TEST_F(pthread_DeathTest, pthread_join__null_thread) {
577 pthread_t null_thread = 0;
578 EXPECT_EQ(ESRCH, pthread_join(null_thread, NULL));
579 }
580
TEST_F(pthread_DeathTest,pthread_kill__no_such_thread)581 TEST_F(pthread_DeathTest, pthread_kill__no_such_thread) {
582 pthread_t dead_thread;
583 MakeDeadThread(dead_thread);
584
585 EXPECT_DEATH(pthread_kill(dead_thread, 0), "invalid pthread_t");
586 }
587
TEST_F(pthread_DeathTest,pthread_kill__null_thread)588 TEST_F(pthread_DeathTest, pthread_kill__null_thread) {
589 pthread_t null_thread = 0;
590 EXPECT_EQ(ESRCH, pthread_kill(null_thread, 0));
591 }
592
TEST(pthread,pthread_join__multijoin)593 TEST(pthread, pthread_join__multijoin) {
594 SpinFunctionHelper spin_helper;
595
596 pthread_t t1;
597 ASSERT_EQ(0, pthread_create(&t1, NULL, spin_helper.GetFunction(), NULL));
598
599 pthread_t t2;
600 ASSERT_EQ(0, pthread_create(&t2, NULL, JoinFn, reinterpret_cast<void*>(t1)));
601
602 sleep(1); // (Give t2 a chance to call pthread_join.)
603
604 // Multiple joins to the same thread should fail.
605 ASSERT_EQ(EINVAL, pthread_join(t1, NULL));
606
607 spin_helper.UnSpin();
608
609 // ...but t2's join on t1 still goes ahead (which we can tell because our join on t2 finishes).
610 void* join_result;
611 ASSERT_EQ(0, pthread_join(t2, &join_result));
612 ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(join_result));
613 }
614
TEST(pthread,pthread_join__race)615 TEST(pthread, pthread_join__race) {
616 // http://b/11693195 --- pthread_join could return before the thread had actually exited.
617 // If the joiner unmapped the thread's stack, that could lead to SIGSEGV in the thread.
618 for (size_t i = 0; i < 1024; ++i) {
619 size_t stack_size = 640*1024;
620 void* stack = mmap(NULL, stack_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, -1, 0);
621
622 pthread_attr_t a;
623 pthread_attr_init(&a);
624 pthread_attr_setstack(&a, stack, stack_size);
625
626 pthread_t t;
627 ASSERT_EQ(0, pthread_create(&t, &a, IdFn, NULL));
628 ASSERT_EQ(0, pthread_join(t, NULL));
629 ASSERT_EQ(0, munmap(stack, stack_size));
630 }
631 }
632
GetActualGuardSizeFn(void * arg)633 static void* GetActualGuardSizeFn(void* arg) {
634 pthread_attr_t attributes;
635 pthread_getattr_np(pthread_self(), &attributes);
636 pthread_attr_getguardsize(&attributes, reinterpret_cast<size_t*>(arg));
637 return NULL;
638 }
639
GetActualGuardSize(const pthread_attr_t & attributes)640 static size_t GetActualGuardSize(const pthread_attr_t& attributes) {
641 size_t result;
642 pthread_t t;
643 pthread_create(&t, &attributes, GetActualGuardSizeFn, &result);
644 pthread_join(t, NULL);
645 return result;
646 }
647
GetActualStackSizeFn(void * arg)648 static void* GetActualStackSizeFn(void* arg) {
649 pthread_attr_t attributes;
650 pthread_getattr_np(pthread_self(), &attributes);
651 pthread_attr_getstacksize(&attributes, reinterpret_cast<size_t*>(arg));
652 return NULL;
653 }
654
GetActualStackSize(const pthread_attr_t & attributes)655 static size_t GetActualStackSize(const pthread_attr_t& attributes) {
656 size_t result;
657 pthread_t t;
658 pthread_create(&t, &attributes, GetActualStackSizeFn, &result);
659 pthread_join(t, NULL);
660 return result;
661 }
662
TEST(pthread,pthread_attr_setguardsize)663 TEST(pthread, pthread_attr_setguardsize) {
664 pthread_attr_t attributes;
665 ASSERT_EQ(0, pthread_attr_init(&attributes));
666
667 // Get the default guard size.
668 size_t default_guard_size;
669 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &default_guard_size));
670
671 // No such thing as too small: will be rounded up to one page by pthread_create.
672 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 128));
673 size_t guard_size;
674 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
675 ASSERT_EQ(128U, guard_size);
676 ASSERT_EQ(4096U, GetActualGuardSize(attributes));
677
678 // Large enough and a multiple of the page size.
679 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024));
680 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
681 ASSERT_EQ(32*1024U, guard_size);
682
683 // Large enough but not a multiple of the page size; will be rounded up by pthread_create.
684 ASSERT_EQ(0, pthread_attr_setguardsize(&attributes, 32*1024 + 1));
685 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
686 ASSERT_EQ(32*1024U + 1, guard_size);
687 }
688
TEST(pthread,pthread_attr_setstacksize)689 TEST(pthread, pthread_attr_setstacksize) {
690 pthread_attr_t attributes;
691 ASSERT_EQ(0, pthread_attr_init(&attributes));
692
693 // Get the default stack size.
694 size_t default_stack_size;
695 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &default_stack_size));
696
697 // Too small.
698 ASSERT_EQ(EINVAL, pthread_attr_setstacksize(&attributes, 128));
699 size_t stack_size;
700 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
701 ASSERT_EQ(default_stack_size, stack_size);
702 ASSERT_GE(GetActualStackSize(attributes), default_stack_size);
703
704 // Large enough and a multiple of the page size; may be rounded up by pthread_create.
705 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024));
706 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
707 ASSERT_EQ(32*1024U, stack_size);
708 ASSERT_GE(GetActualStackSize(attributes), 32*1024U);
709
710 // Large enough but not aligned; will be rounded up by pthread_create.
711 ASSERT_EQ(0, pthread_attr_setstacksize(&attributes, 32*1024 + 1));
712 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size));
713 ASSERT_EQ(32*1024U + 1, stack_size);
714 #if defined(__BIONIC__)
715 ASSERT_GT(GetActualStackSize(attributes), 32*1024U + 1);
716 #else // __BIONIC__
717 // glibc rounds down, in violation of POSIX. They document this in their BUGS section.
718 ASSERT_EQ(GetActualStackSize(attributes), 32*1024U);
719 #endif // __BIONIC__
720 }
721
TEST(pthread,pthread_rwlockattr_smoke)722 TEST(pthread, pthread_rwlockattr_smoke) {
723 pthread_rwlockattr_t attr;
724 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
725
726 int pshared_value_array[] = {PTHREAD_PROCESS_PRIVATE, PTHREAD_PROCESS_SHARED};
727 for (size_t i = 0; i < sizeof(pshared_value_array) / sizeof(pshared_value_array[0]); ++i) {
728 ASSERT_EQ(0, pthread_rwlockattr_setpshared(&attr, pshared_value_array[i]));
729 int pshared;
730 ASSERT_EQ(0, pthread_rwlockattr_getpshared(&attr, &pshared));
731 ASSERT_EQ(pshared_value_array[i], pshared);
732 }
733
734 int kind_array[] = {PTHREAD_RWLOCK_PREFER_READER_NP,
735 PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP};
736 for (size_t i = 0; i < sizeof(kind_array) / sizeof(kind_array[0]); ++i) {
737 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_array[i]));
738 int kind;
739 ASSERT_EQ(0, pthread_rwlockattr_getkind_np(&attr, &kind));
740 ASSERT_EQ(kind_array[i], kind);
741 }
742
743 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
744 }
745
TEST(pthread,pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER)746 TEST(pthread, pthread_rwlock_init_same_as_PTHREAD_RWLOCK_INITIALIZER) {
747 pthread_rwlock_t lock1 = PTHREAD_RWLOCK_INITIALIZER;
748 pthread_rwlock_t lock2;
749 ASSERT_EQ(0, pthread_rwlock_init(&lock2, NULL));
750 ASSERT_EQ(0, memcmp(&lock1, &lock2, sizeof(lock1)));
751 }
752
TEST(pthread,pthread_rwlock_smoke)753 TEST(pthread, pthread_rwlock_smoke) {
754 pthread_rwlock_t l;
755 ASSERT_EQ(0, pthread_rwlock_init(&l, NULL));
756
757 // Single read lock
758 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
759 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
760
761 // Multiple read lock
762 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
763 ASSERT_EQ(0, pthread_rwlock_rdlock(&l));
764 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
765 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
766
767 // Write lock
768 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
769 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
770
771 // Try writer lock
772 ASSERT_EQ(0, pthread_rwlock_trywrlock(&l));
773 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
774 ASSERT_EQ(EBUSY, pthread_rwlock_tryrdlock(&l));
775 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
776
777 // Try reader lock
778 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
779 ASSERT_EQ(0, pthread_rwlock_tryrdlock(&l));
780 ASSERT_EQ(EBUSY, pthread_rwlock_trywrlock(&l));
781 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
782 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
783
784 // Try writer lock after unlock
785 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
786 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
787
788 // EDEADLK in "read after write"
789 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
790 ASSERT_EQ(EDEADLK, pthread_rwlock_rdlock(&l));
791 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
792
793 // EDEADLK in "write after write"
794 ASSERT_EQ(0, pthread_rwlock_wrlock(&l));
795 ASSERT_EQ(EDEADLK, pthread_rwlock_wrlock(&l));
796 ASSERT_EQ(0, pthread_rwlock_unlock(&l));
797
798 ASSERT_EQ(0, pthread_rwlock_destroy(&l));
799 }
800
801 struct RwlockWakeupHelperArg {
802 pthread_rwlock_t lock;
803 enum Progress {
804 LOCK_INITIALIZED,
805 LOCK_WAITING,
806 LOCK_RELEASED,
807 LOCK_ACCESSED,
808 LOCK_TIMEDOUT,
809 };
810 std::atomic<Progress> progress;
811 std::atomic<pid_t> tid;
812 std::function<int (pthread_rwlock_t*)> trylock_function;
813 std::function<int (pthread_rwlock_t*)> lock_function;
814 std::function<int (pthread_rwlock_t*, const timespec*)> timed_lock_function;
815 };
816
pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg * arg)817 static void pthread_rwlock_wakeup_helper(RwlockWakeupHelperArg* arg) {
818 arg->tid = gettid();
819 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
820 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
821
822 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
823 ASSERT_EQ(0, arg->lock_function(&arg->lock));
824 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_RELEASED, arg->progress);
825 ASSERT_EQ(0, pthread_rwlock_unlock(&arg->lock));
826
827 arg->progress = RwlockWakeupHelperArg::LOCK_ACCESSED;
828 }
829
test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t *)> lock_function)830 static void test_pthread_rwlock_reader_wakeup_writer(std::function<int (pthread_rwlock_t*)> lock_function) {
831 RwlockWakeupHelperArg wakeup_arg;
832 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
833 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
834 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
835 wakeup_arg.tid = 0;
836 wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
837 wakeup_arg.lock_function = lock_function;
838
839 pthread_t thread;
840 ASSERT_EQ(0, pthread_create(&thread, NULL,
841 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
842 WaitUntilThreadSleep(wakeup_arg.tid);
843 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
844
845 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
846 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
847
848 ASSERT_EQ(0, pthread_join(thread, NULL));
849 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
850 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
851 }
852
TEST(pthread,pthread_rwlock_reader_wakeup_writer)853 TEST(pthread, pthread_rwlock_reader_wakeup_writer) {
854 test_pthread_rwlock_reader_wakeup_writer(pthread_rwlock_wrlock);
855 }
856
TEST(pthread,pthread_rwlock_reader_wakeup_writer_timedwait)857 TEST(pthread, pthread_rwlock_reader_wakeup_writer_timedwait) {
858 timespec ts;
859 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
860 ts.tv_sec += 1;
861 test_pthread_rwlock_reader_wakeup_writer([&](pthread_rwlock_t* lock) {
862 return pthread_rwlock_timedwrlock(lock, &ts);
863 });
864 }
865
test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t *)> lock_function)866 static void test_pthread_rwlock_writer_wakeup_reader(std::function<int (pthread_rwlock_t*)> lock_function) {
867 RwlockWakeupHelperArg wakeup_arg;
868 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, NULL));
869 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
870 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
871 wakeup_arg.tid = 0;
872 wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
873 wakeup_arg.lock_function = lock_function;
874
875 pthread_t thread;
876 ASSERT_EQ(0, pthread_create(&thread, NULL,
877 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_helper), &wakeup_arg));
878 WaitUntilThreadSleep(wakeup_arg.tid);
879 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
880
881 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_RELEASED;
882 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
883
884 ASSERT_EQ(0, pthread_join(thread, NULL));
885 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_ACCESSED, wakeup_arg.progress);
886 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
887 }
888
TEST(pthread,pthread_rwlock_writer_wakeup_reader)889 TEST(pthread, pthread_rwlock_writer_wakeup_reader) {
890 test_pthread_rwlock_writer_wakeup_reader(pthread_rwlock_rdlock);
891 }
892
TEST(pthread,pthread_rwlock_writer_wakeup_reader_timedwait)893 TEST(pthread, pthread_rwlock_writer_wakeup_reader_timedwait) {
894 timespec ts;
895 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
896 ts.tv_sec += 1;
897 test_pthread_rwlock_writer_wakeup_reader([&](pthread_rwlock_t* lock) {
898 return pthread_rwlock_timedrdlock(lock, &ts);
899 });
900 }
901
pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg * arg)902 static void pthread_rwlock_wakeup_timeout_helper(RwlockWakeupHelperArg* arg) {
903 arg->tid = gettid();
904 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_INITIALIZED, arg->progress);
905 arg->progress = RwlockWakeupHelperArg::LOCK_WAITING;
906
907 ASSERT_EQ(EBUSY, arg->trylock_function(&arg->lock));
908
909 timespec ts;
910 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
911 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
912 ts.tv_nsec = -1;
913 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
914 ts.tv_nsec = NS_PER_S;
915 ASSERT_EQ(EINVAL, arg->timed_lock_function(&arg->lock, &ts));
916 ts.tv_nsec = NS_PER_S - 1;
917 ts.tv_sec = -1;
918 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
919 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
920 ts.tv_sec += 1;
921 ASSERT_EQ(ETIMEDOUT, arg->timed_lock_function(&arg->lock, &ts));
922 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, arg->progress);
923 arg->progress = RwlockWakeupHelperArg::LOCK_TIMEDOUT;
924 }
925
TEST(pthread,pthread_rwlock_timedrdlock_timeout)926 TEST(pthread, pthread_rwlock_timedrdlock_timeout) {
927 RwlockWakeupHelperArg wakeup_arg;
928 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
929 ASSERT_EQ(0, pthread_rwlock_wrlock(&wakeup_arg.lock));
930 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
931 wakeup_arg.tid = 0;
932 wakeup_arg.trylock_function = pthread_rwlock_tryrdlock;
933 wakeup_arg.timed_lock_function = pthread_rwlock_timedrdlock;
934
935 pthread_t thread;
936 ASSERT_EQ(0, pthread_create(&thread, nullptr,
937 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
938 WaitUntilThreadSleep(wakeup_arg.tid);
939 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
940
941 ASSERT_EQ(0, pthread_join(thread, nullptr));
942 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
943 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
944 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
945 }
946
TEST(pthread,pthread_rwlock_timedwrlock_timeout)947 TEST(pthread, pthread_rwlock_timedwrlock_timeout) {
948 RwlockWakeupHelperArg wakeup_arg;
949 ASSERT_EQ(0, pthread_rwlock_init(&wakeup_arg.lock, nullptr));
950 ASSERT_EQ(0, pthread_rwlock_rdlock(&wakeup_arg.lock));
951 wakeup_arg.progress = RwlockWakeupHelperArg::LOCK_INITIALIZED;
952 wakeup_arg.tid = 0;
953 wakeup_arg.trylock_function = pthread_rwlock_trywrlock;
954 wakeup_arg.timed_lock_function = pthread_rwlock_timedwrlock;
955
956 pthread_t thread;
957 ASSERT_EQ(0, pthread_create(&thread, nullptr,
958 reinterpret_cast<void* (*)(void*)>(pthread_rwlock_wakeup_timeout_helper), &wakeup_arg));
959 WaitUntilThreadSleep(wakeup_arg.tid);
960 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_WAITING, wakeup_arg.progress);
961
962 ASSERT_EQ(0, pthread_join(thread, nullptr));
963 ASSERT_EQ(RwlockWakeupHelperArg::LOCK_TIMEDOUT, wakeup_arg.progress);
964 ASSERT_EQ(0, pthread_rwlock_unlock(&wakeup_arg.lock));
965 ASSERT_EQ(0, pthread_rwlock_destroy(&wakeup_arg.lock));
966 }
967
968 class RwlockKindTestHelper {
969 private:
970 struct ThreadArg {
971 RwlockKindTestHelper* helper;
972 std::atomic<pid_t>& tid;
973
ThreadArgRwlockKindTestHelper::ThreadArg974 ThreadArg(RwlockKindTestHelper* helper, std::atomic<pid_t>& tid)
975 : helper(helper), tid(tid) { }
976 };
977
978 public:
979 pthread_rwlock_t lock;
980
981 public:
RwlockKindTestHelper(int kind_type)982 explicit RwlockKindTestHelper(int kind_type) {
983 InitRwlock(kind_type);
984 }
985
~RwlockKindTestHelper()986 ~RwlockKindTestHelper() {
987 DestroyRwlock();
988 }
989
CreateWriterThread(pthread_t & thread,std::atomic<pid_t> & tid)990 void CreateWriterThread(pthread_t& thread, std::atomic<pid_t>& tid) {
991 tid = 0;
992 ThreadArg* arg = new ThreadArg(this, tid);
993 ASSERT_EQ(0, pthread_create(&thread, NULL,
994 reinterpret_cast<void* (*)(void*)>(WriterThreadFn), arg));
995 }
996
CreateReaderThread(pthread_t & thread,std::atomic<pid_t> & tid)997 void CreateReaderThread(pthread_t& thread, std::atomic<pid_t>& tid) {
998 tid = 0;
999 ThreadArg* arg = new ThreadArg(this, tid);
1000 ASSERT_EQ(0, pthread_create(&thread, NULL,
1001 reinterpret_cast<void* (*)(void*)>(ReaderThreadFn), arg));
1002 }
1003
1004 private:
InitRwlock(int kind_type)1005 void InitRwlock(int kind_type) {
1006 pthread_rwlockattr_t attr;
1007 ASSERT_EQ(0, pthread_rwlockattr_init(&attr));
1008 ASSERT_EQ(0, pthread_rwlockattr_setkind_np(&attr, kind_type));
1009 ASSERT_EQ(0, pthread_rwlock_init(&lock, &attr));
1010 ASSERT_EQ(0, pthread_rwlockattr_destroy(&attr));
1011 }
1012
DestroyRwlock()1013 void DestroyRwlock() {
1014 ASSERT_EQ(0, pthread_rwlock_destroy(&lock));
1015 }
1016
WriterThreadFn(ThreadArg * arg)1017 static void WriterThreadFn(ThreadArg* arg) {
1018 arg->tid = gettid();
1019
1020 RwlockKindTestHelper* helper = arg->helper;
1021 ASSERT_EQ(0, pthread_rwlock_wrlock(&helper->lock));
1022 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1023 delete arg;
1024 }
1025
ReaderThreadFn(ThreadArg * arg)1026 static void ReaderThreadFn(ThreadArg* arg) {
1027 arg->tid = gettid();
1028
1029 RwlockKindTestHelper* helper = arg->helper;
1030 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper->lock));
1031 ASSERT_EQ(0, pthread_rwlock_unlock(&helper->lock));
1032 delete arg;
1033 }
1034 };
1035
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP)1036 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_READER_NP) {
1037 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_READER_NP);
1038 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1039
1040 pthread_t writer_thread;
1041 std::atomic<pid_t> writer_tid;
1042 helper.CreateWriterThread(writer_thread, writer_tid);
1043 WaitUntilThreadSleep(writer_tid);
1044
1045 pthread_t reader_thread;
1046 std::atomic<pid_t> reader_tid;
1047 helper.CreateReaderThread(reader_thread, reader_tid);
1048 ASSERT_EQ(0, pthread_join(reader_thread, NULL));
1049
1050 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1051 ASSERT_EQ(0, pthread_join(writer_thread, NULL));
1052 }
1053
TEST(pthread,pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP)1054 TEST(pthread, pthread_rwlock_kind_PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP) {
1055 RwlockKindTestHelper helper(PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP);
1056 ASSERT_EQ(0, pthread_rwlock_rdlock(&helper.lock));
1057
1058 pthread_t writer_thread;
1059 std::atomic<pid_t> writer_tid;
1060 helper.CreateWriterThread(writer_thread, writer_tid);
1061 WaitUntilThreadSleep(writer_tid);
1062
1063 pthread_t reader_thread;
1064 std::atomic<pid_t> reader_tid;
1065 helper.CreateReaderThread(reader_thread, reader_tid);
1066 WaitUntilThreadSleep(reader_tid);
1067
1068 ASSERT_EQ(0, pthread_rwlock_unlock(&helper.lock));
1069 ASSERT_EQ(0, pthread_join(writer_thread, NULL));
1070 ASSERT_EQ(0, pthread_join(reader_thread, NULL));
1071 }
1072
1073 static int g_once_fn_call_count = 0;
OnceFn()1074 static void OnceFn() {
1075 ++g_once_fn_call_count;
1076 }
1077
TEST(pthread,pthread_once_smoke)1078 TEST(pthread, pthread_once_smoke) {
1079 pthread_once_t once_control = PTHREAD_ONCE_INIT;
1080 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1081 ASSERT_EQ(0, pthread_once(&once_control, OnceFn));
1082 ASSERT_EQ(1, g_once_fn_call_count);
1083 }
1084
1085 static std::string pthread_once_1934122_result = "";
1086
Routine2()1087 static void Routine2() {
1088 pthread_once_1934122_result += "2";
1089 }
1090
Routine1()1091 static void Routine1() {
1092 pthread_once_t once_control_2 = PTHREAD_ONCE_INIT;
1093 pthread_once_1934122_result += "1";
1094 pthread_once(&once_control_2, &Routine2);
1095 }
1096
TEST(pthread,pthread_once_1934122)1097 TEST(pthread, pthread_once_1934122) {
1098 // Very old versions of Android couldn't call pthread_once from a
1099 // pthread_once init routine. http://b/1934122.
1100 pthread_once_t once_control_1 = PTHREAD_ONCE_INIT;
1101 ASSERT_EQ(0, pthread_once(&once_control_1, &Routine1));
1102 ASSERT_EQ("12", pthread_once_1934122_result);
1103 }
1104
1105 static int g_atfork_prepare_calls = 0;
AtForkPrepare1()1106 static void AtForkPrepare1() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 1; }
AtForkPrepare2()1107 static void AtForkPrepare2() { g_atfork_prepare_calls = (g_atfork_prepare_calls * 10) + 2; }
1108 static int g_atfork_parent_calls = 0;
AtForkParent1()1109 static void AtForkParent1() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 1; }
AtForkParent2()1110 static void AtForkParent2() { g_atfork_parent_calls = (g_atfork_parent_calls * 10) + 2; }
1111 static int g_atfork_child_calls = 0;
AtForkChild1()1112 static void AtForkChild1() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 1; }
AtForkChild2()1113 static void AtForkChild2() { g_atfork_child_calls = (g_atfork_child_calls * 10) + 2; }
1114
TEST(pthread,pthread_atfork_smoke)1115 TEST(pthread, pthread_atfork_smoke) {
1116 ASSERT_EQ(0, pthread_atfork(AtForkPrepare1, AtForkParent1, AtForkChild1));
1117 ASSERT_EQ(0, pthread_atfork(AtForkPrepare2, AtForkParent2, AtForkChild2));
1118
1119 pid_t pid = fork();
1120 ASSERT_NE(-1, pid) << strerror(errno);
1121
1122 // Child and parent calls are made in the order they were registered.
1123 if (pid == 0) {
1124 ASSERT_EQ(12, g_atfork_child_calls);
1125 _exit(0);
1126 }
1127 ASSERT_EQ(12, g_atfork_parent_calls);
1128
1129 // Prepare calls are made in the reverse order.
1130 ASSERT_EQ(21, g_atfork_prepare_calls);
1131 AssertChildExited(pid, 0);
1132 }
1133
TEST(pthread,pthread_attr_getscope)1134 TEST(pthread, pthread_attr_getscope) {
1135 pthread_attr_t attr;
1136 ASSERT_EQ(0, pthread_attr_init(&attr));
1137
1138 int scope;
1139 ASSERT_EQ(0, pthread_attr_getscope(&attr, &scope));
1140 ASSERT_EQ(PTHREAD_SCOPE_SYSTEM, scope);
1141 }
1142
TEST(pthread,pthread_condattr_init)1143 TEST(pthread, pthread_condattr_init) {
1144 pthread_condattr_t attr;
1145 pthread_condattr_init(&attr);
1146
1147 clockid_t clock;
1148 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1149 ASSERT_EQ(CLOCK_REALTIME, clock);
1150
1151 int pshared;
1152 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1153 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1154 }
1155
TEST(pthread,pthread_condattr_setclock)1156 TEST(pthread, pthread_condattr_setclock) {
1157 pthread_condattr_t attr;
1158 pthread_condattr_init(&attr);
1159
1160 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_REALTIME));
1161 clockid_t clock;
1162 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1163 ASSERT_EQ(CLOCK_REALTIME, clock);
1164
1165 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1166 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1167 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1168
1169 ASSERT_EQ(EINVAL, pthread_condattr_setclock(&attr, CLOCK_PROCESS_CPUTIME_ID));
1170 }
1171
TEST(pthread,pthread_cond_broadcast__preserves_condattr_flags)1172 TEST(pthread, pthread_cond_broadcast__preserves_condattr_flags) {
1173 #if defined(__BIONIC__)
1174 pthread_condattr_t attr;
1175 pthread_condattr_init(&attr);
1176
1177 ASSERT_EQ(0, pthread_condattr_setclock(&attr, CLOCK_MONOTONIC));
1178 ASSERT_EQ(0, pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1179
1180 pthread_cond_t cond_var;
1181 ASSERT_EQ(0, pthread_cond_init(&cond_var, &attr));
1182
1183 ASSERT_EQ(0, pthread_cond_signal(&cond_var));
1184 ASSERT_EQ(0, pthread_cond_broadcast(&cond_var));
1185
1186 attr = static_cast<pthread_condattr_t>(*reinterpret_cast<uint32_t*>(cond_var.__private));
1187 clockid_t clock;
1188 ASSERT_EQ(0, pthread_condattr_getclock(&attr, &clock));
1189 ASSERT_EQ(CLOCK_MONOTONIC, clock);
1190 int pshared;
1191 ASSERT_EQ(0, pthread_condattr_getpshared(&attr, &pshared));
1192 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1193 #else // !defined(__BIONIC__)
1194 GTEST_LOG_(INFO) << "This tests a bionic implementation detail.\n";
1195 #endif // !defined(__BIONIC__)
1196 }
1197
1198 class pthread_CondWakeupTest : public ::testing::Test {
1199 protected:
1200 pthread_mutex_t mutex;
1201 pthread_cond_t cond;
1202
1203 enum Progress {
1204 INITIALIZED,
1205 WAITING,
1206 SIGNALED,
1207 FINISHED,
1208 };
1209 std::atomic<Progress> progress;
1210 pthread_t thread;
1211 std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function;
1212
1213 protected:
SetUp()1214 void SetUp() override {
1215 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1216 }
1217
InitCond(clockid_t clock=CLOCK_REALTIME)1218 void InitCond(clockid_t clock=CLOCK_REALTIME) {
1219 pthread_condattr_t attr;
1220 ASSERT_EQ(0, pthread_condattr_init(&attr));
1221 ASSERT_EQ(0, pthread_condattr_setclock(&attr, clock));
1222 ASSERT_EQ(0, pthread_cond_init(&cond, &attr));
1223 ASSERT_EQ(0, pthread_condattr_destroy(&attr));
1224 }
1225
StartWaitingThread(std::function<int (pthread_cond_t * cond,pthread_mutex_t * mutex)> wait_function)1226 void StartWaitingThread(std::function<int (pthread_cond_t* cond, pthread_mutex_t* mutex)> wait_function) {
1227 progress = INITIALIZED;
1228 this->wait_function = wait_function;
1229 ASSERT_EQ(0, pthread_create(&thread, NULL, reinterpret_cast<void* (*)(void*)>(WaitThreadFn), this));
1230 while (progress != WAITING) {
1231 usleep(5000);
1232 }
1233 usleep(5000);
1234 }
1235
TearDown()1236 void TearDown() override {
1237 ASSERT_EQ(0, pthread_join(thread, nullptr));
1238 ASSERT_EQ(FINISHED, progress);
1239 ASSERT_EQ(0, pthread_cond_destroy(&cond));
1240 ASSERT_EQ(0, pthread_mutex_destroy(&mutex));
1241 }
1242
1243 private:
WaitThreadFn(pthread_CondWakeupTest * test)1244 static void WaitThreadFn(pthread_CondWakeupTest* test) {
1245 ASSERT_EQ(0, pthread_mutex_lock(&test->mutex));
1246 test->progress = WAITING;
1247 while (test->progress == WAITING) {
1248 ASSERT_EQ(0, test->wait_function(&test->cond, &test->mutex));
1249 }
1250 ASSERT_EQ(SIGNALED, test->progress);
1251 test->progress = FINISHED;
1252 ASSERT_EQ(0, pthread_mutex_unlock(&test->mutex));
1253 }
1254 };
1255
TEST_F(pthread_CondWakeupTest,signal_wait)1256 TEST_F(pthread_CondWakeupTest, signal_wait) {
1257 InitCond();
1258 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1259 return pthread_cond_wait(cond, mutex);
1260 });
1261 progress = SIGNALED;
1262 ASSERT_EQ(0, pthread_cond_signal(&cond));
1263 }
1264
TEST_F(pthread_CondWakeupTest,broadcast_wait)1265 TEST_F(pthread_CondWakeupTest, broadcast_wait) {
1266 InitCond();
1267 StartWaitingThread([](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1268 return pthread_cond_wait(cond, mutex);
1269 });
1270 progress = SIGNALED;
1271 ASSERT_EQ(0, pthread_cond_broadcast(&cond));
1272 }
1273
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_REALTIME)1274 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_REALTIME) {
1275 InitCond(CLOCK_REALTIME);
1276 timespec ts;
1277 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1278 ts.tv_sec += 1;
1279 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1280 return pthread_cond_timedwait(cond, mutex, &ts);
1281 });
1282 progress = SIGNALED;
1283 ASSERT_EQ(0, pthread_cond_signal(&cond));
1284 }
1285
TEST_F(pthread_CondWakeupTest,signal_timedwait_CLOCK_MONOTONIC)1286 TEST_F(pthread_CondWakeupTest, signal_timedwait_CLOCK_MONOTONIC) {
1287 InitCond(CLOCK_MONOTONIC);
1288 timespec ts;
1289 ASSERT_EQ(0, clock_gettime(CLOCK_MONOTONIC, &ts));
1290 ts.tv_sec += 1;
1291 StartWaitingThread([&](pthread_cond_t* cond, pthread_mutex_t* mutex) {
1292 return pthread_cond_timedwait(cond, mutex, &ts);
1293 });
1294 progress = SIGNALED;
1295 ASSERT_EQ(0, pthread_cond_signal(&cond));
1296 }
1297
TEST(pthread,pthread_cond_timedwait_timeout)1298 TEST(pthread, pthread_cond_timedwait_timeout) {
1299 pthread_mutex_t mutex;
1300 ASSERT_EQ(0, pthread_mutex_init(&mutex, nullptr));
1301 pthread_cond_t cond;
1302 ASSERT_EQ(0, pthread_cond_init(&cond, nullptr));
1303 ASSERT_EQ(0, pthread_mutex_lock(&mutex));
1304 timespec ts;
1305 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1306 ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1307 ts.tv_nsec = -1;
1308 ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1309 ts.tv_nsec = NS_PER_S;
1310 ASSERT_EQ(EINVAL, pthread_cond_timedwait(&cond, &mutex, &ts));
1311 ts.tv_nsec = NS_PER_S - 1;
1312 ts.tv_sec = -1;
1313 ASSERT_EQ(ETIMEDOUT, pthread_cond_timedwait(&cond, &mutex, &ts));
1314 ASSERT_EQ(0, pthread_mutex_unlock(&mutex));
1315 }
1316
TEST(pthread,pthread_attr_getstack__main_thread)1317 TEST(pthread, pthread_attr_getstack__main_thread) {
1318 // This test is only meaningful for the main thread, so make sure we're running on it!
1319 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1320
1321 // Get the main thread's attributes.
1322 pthread_attr_t attributes;
1323 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1324
1325 // Check that we correctly report that the main thread has no guard page.
1326 size_t guard_size;
1327 ASSERT_EQ(0, pthread_attr_getguardsize(&attributes, &guard_size));
1328 ASSERT_EQ(0U, guard_size); // The main thread has no guard page.
1329
1330 // Get the stack base and the stack size (both ways).
1331 void* stack_base;
1332 size_t stack_size;
1333 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1334 size_t stack_size2;
1335 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1336
1337 // The two methods of asking for the stack size should agree.
1338 EXPECT_EQ(stack_size, stack_size2);
1339
1340 #if defined(__BIONIC__)
1341 // What does /proc/self/maps' [stack] line say?
1342 void* maps_stack_hi = NULL;
1343 std::vector<map_record> maps;
1344 ASSERT_TRUE(Maps::parse_maps(&maps));
1345 for (const auto& map : maps) {
1346 if (map.pathname == "[stack]") {
1347 maps_stack_hi = reinterpret_cast<void*>(map.addr_end);
1348 break;
1349 }
1350 }
1351
1352 // The high address of the /proc/self/maps [stack] region should equal stack_base + stack_size.
1353 // Remember that the stack grows down (and is mapped in on demand), so the low address of the
1354 // region isn't very interesting.
1355 EXPECT_EQ(maps_stack_hi, reinterpret_cast<uint8_t*>(stack_base) + stack_size);
1356
1357 // The stack size should correspond to RLIMIT_STACK.
1358 rlimit rl;
1359 ASSERT_EQ(0, getrlimit(RLIMIT_STACK, &rl));
1360 uint64_t original_rlim_cur = rl.rlim_cur;
1361 if (rl.rlim_cur == RLIM_INFINITY) {
1362 rl.rlim_cur = 8 * 1024 * 1024; // Bionic reports unlimited stacks as 8MiB.
1363 }
1364 EXPECT_EQ(rl.rlim_cur, stack_size);
1365
1366 auto guard = android::base::make_scope_guard([&rl, original_rlim_cur]() {
1367 rl.rlim_cur = original_rlim_cur;
1368 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1369 });
1370
1371 //
1372 // What if RLIMIT_STACK is smaller than the stack's current extent?
1373 //
1374 rl.rlim_cur = rl.rlim_max = 1024; // 1KiB. We know the stack must be at least a page already.
1375 rl.rlim_max = RLIM_INFINITY;
1376 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1377
1378 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1379 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1380 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1381
1382 EXPECT_EQ(stack_size, stack_size2);
1383 ASSERT_EQ(1024U, stack_size);
1384
1385 //
1386 // What if RLIMIT_STACK isn't a whole number of pages?
1387 //
1388 rl.rlim_cur = rl.rlim_max = 6666; // Not a whole number of pages.
1389 rl.rlim_max = RLIM_INFINITY;
1390 ASSERT_EQ(0, setrlimit(RLIMIT_STACK, &rl));
1391
1392 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attributes));
1393 ASSERT_EQ(0, pthread_attr_getstack(&attributes, &stack_base, &stack_size));
1394 ASSERT_EQ(0, pthread_attr_getstacksize(&attributes, &stack_size2));
1395
1396 EXPECT_EQ(stack_size, stack_size2);
1397 ASSERT_EQ(6666U, stack_size);
1398 #endif
1399 }
1400
1401 struct GetStackSignalHandlerArg {
1402 volatile bool done;
1403 void* signal_stack_base;
1404 size_t signal_stack_size;
1405 void* main_stack_base;
1406 size_t main_stack_size;
1407 };
1408
1409 static GetStackSignalHandlerArg getstack_signal_handler_arg;
1410
getstack_signal_handler(int sig)1411 static void getstack_signal_handler(int sig) {
1412 ASSERT_EQ(SIGUSR1, sig);
1413 // Use sleep() to make current thread be switched out by the kernel to provoke the error.
1414 sleep(1);
1415 pthread_attr_t attr;
1416 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1417 void* stack_base;
1418 size_t stack_size;
1419 ASSERT_EQ(0, pthread_attr_getstack(&attr, &stack_base, &stack_size));
1420
1421 // Verify if the stack used by the signal handler is the alternate stack just registered.
1422 ASSERT_LE(getstack_signal_handler_arg.signal_stack_base, &attr);
1423 ASSERT_LT(static_cast<void*>(&attr),
1424 static_cast<char*>(getstack_signal_handler_arg.signal_stack_base) +
1425 getstack_signal_handler_arg.signal_stack_size);
1426
1427 // Verify if the main thread's stack got in the signal handler is correct.
1428 ASSERT_EQ(getstack_signal_handler_arg.main_stack_base, stack_base);
1429 ASSERT_LE(getstack_signal_handler_arg.main_stack_size, stack_size);
1430
1431 getstack_signal_handler_arg.done = true;
1432 }
1433
1434 // The previous code obtained the main thread's stack by reading the entry in
1435 // /proc/self/task/<pid>/maps that was labeled [stack]. Unfortunately, on x86/x86_64, the kernel
1436 // relies on sp0 in task state segment(tss) to label the stack map with [stack]. If the kernel
1437 // switches a process while the main thread is in an alternate stack, then the kernel will label
1438 // the wrong map with [stack]. This test verifies that when the above situation happens, the main
1439 // thread's stack is found correctly.
TEST(pthread,pthread_attr_getstack_in_signal_handler)1440 TEST(pthread, pthread_attr_getstack_in_signal_handler) {
1441 // This test is only meaningful for the main thread, so make sure we're running on it!
1442 ASSERT_EQ(getpid(), syscall(__NR_gettid));
1443
1444 const size_t sig_stack_size = 16 * 1024;
1445 void* sig_stack = mmap(NULL, sig_stack_size, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS,
1446 -1, 0);
1447 ASSERT_NE(MAP_FAILED, sig_stack);
1448 stack_t ss;
1449 ss.ss_sp = sig_stack;
1450 ss.ss_size = sig_stack_size;
1451 ss.ss_flags = 0;
1452 stack_t oss;
1453 ASSERT_EQ(0, sigaltstack(&ss, &oss));
1454
1455 pthread_attr_t attr;
1456 ASSERT_EQ(0, pthread_getattr_np(pthread_self(), &attr));
1457 void* main_stack_base;
1458 size_t main_stack_size;
1459 ASSERT_EQ(0, pthread_attr_getstack(&attr, &main_stack_base, &main_stack_size));
1460
1461 ScopedSignalHandler handler(SIGUSR1, getstack_signal_handler, SA_ONSTACK);
1462 getstack_signal_handler_arg.done = false;
1463 getstack_signal_handler_arg.signal_stack_base = sig_stack;
1464 getstack_signal_handler_arg.signal_stack_size = sig_stack_size;
1465 getstack_signal_handler_arg.main_stack_base = main_stack_base;
1466 getstack_signal_handler_arg.main_stack_size = main_stack_size;
1467 kill(getpid(), SIGUSR1);
1468 ASSERT_EQ(true, getstack_signal_handler_arg.done);
1469
1470 ASSERT_EQ(0, sigaltstack(&oss, nullptr));
1471 ASSERT_EQ(0, munmap(sig_stack, sig_stack_size));
1472 }
1473
pthread_attr_getstack_18908062_helper(void *)1474 static void pthread_attr_getstack_18908062_helper(void*) {
1475 char local_variable;
1476 pthread_attr_t attributes;
1477 pthread_getattr_np(pthread_self(), &attributes);
1478 void* stack_base;
1479 size_t stack_size;
1480 pthread_attr_getstack(&attributes, &stack_base, &stack_size);
1481
1482 // Test whether &local_variable is in [stack_base, stack_base + stack_size).
1483 ASSERT_LE(reinterpret_cast<char*>(stack_base), &local_variable);
1484 ASSERT_LT(&local_variable, reinterpret_cast<char*>(stack_base) + stack_size);
1485 }
1486
1487 // Check whether something on stack is in the range of
1488 // [stack_base, stack_base + stack_size). see b/18908062.
TEST(pthread,pthread_attr_getstack_18908062)1489 TEST(pthread, pthread_attr_getstack_18908062) {
1490 pthread_t t;
1491 ASSERT_EQ(0, pthread_create(&t, NULL,
1492 reinterpret_cast<void* (*)(void*)>(pthread_attr_getstack_18908062_helper),
1493 NULL));
1494 pthread_join(t, NULL);
1495 }
1496
1497 #if defined(__BIONIC__)
1498 static pthread_mutex_t pthread_gettid_np_mutex = PTHREAD_MUTEX_INITIALIZER;
1499
pthread_gettid_np_helper(void * arg)1500 static void* pthread_gettid_np_helper(void* arg) {
1501 *reinterpret_cast<pid_t*>(arg) = gettid();
1502
1503 // Wait for our parent to call pthread_gettid_np on us before exiting.
1504 pthread_mutex_lock(&pthread_gettid_np_mutex);
1505 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1506 return NULL;
1507 }
1508 #endif
1509
TEST(pthread,pthread_gettid_np)1510 TEST(pthread, pthread_gettid_np) {
1511 #if defined(__BIONIC__)
1512 ASSERT_EQ(gettid(), pthread_gettid_np(pthread_self()));
1513
1514 // Ensure the other thread doesn't exit until after we've called
1515 // pthread_gettid_np on it.
1516 pthread_mutex_lock(&pthread_gettid_np_mutex);
1517
1518 pid_t t_gettid_result;
1519 pthread_t t;
1520 pthread_create(&t, NULL, pthread_gettid_np_helper, &t_gettid_result);
1521
1522 pid_t t_pthread_gettid_np_result = pthread_gettid_np(t);
1523
1524 // Release the other thread and wait for it to exit.
1525 pthread_mutex_unlock(&pthread_gettid_np_mutex);
1526 pthread_join(t, NULL);
1527
1528 ASSERT_EQ(t_gettid_result, t_pthread_gettid_np_result);
1529 #else
1530 GTEST_LOG_(INFO) << "This test does nothing.\n";
1531 #endif
1532 }
1533
1534 static size_t cleanup_counter = 0;
1535
AbortCleanupRoutine(void *)1536 static void AbortCleanupRoutine(void*) {
1537 abort();
1538 }
1539
CountCleanupRoutine(void *)1540 static void CountCleanupRoutine(void*) {
1541 ++cleanup_counter;
1542 }
1543
PthreadCleanupTester()1544 static void PthreadCleanupTester() {
1545 pthread_cleanup_push(CountCleanupRoutine, NULL);
1546 pthread_cleanup_push(CountCleanupRoutine, NULL);
1547 pthread_cleanup_push(AbortCleanupRoutine, NULL);
1548
1549 pthread_cleanup_pop(0); // Pop the abort without executing it.
1550 pthread_cleanup_pop(1); // Pop one count while executing it.
1551 ASSERT_EQ(1U, cleanup_counter);
1552 // Exit while the other count is still on the cleanup stack.
1553 pthread_exit(NULL);
1554
1555 // Calls to pthread_cleanup_pop/pthread_cleanup_push must always be balanced.
1556 pthread_cleanup_pop(0);
1557 }
1558
PthreadCleanupStartRoutine(void *)1559 static void* PthreadCleanupStartRoutine(void*) {
1560 PthreadCleanupTester();
1561 return NULL;
1562 }
1563
TEST(pthread,pthread_cleanup_push__pthread_cleanup_pop)1564 TEST(pthread, pthread_cleanup_push__pthread_cleanup_pop) {
1565 pthread_t t;
1566 ASSERT_EQ(0, pthread_create(&t, NULL, PthreadCleanupStartRoutine, NULL));
1567 pthread_join(t, NULL);
1568 ASSERT_EQ(2U, cleanup_counter);
1569 }
1570
TEST(pthread,PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL)1571 TEST(pthread, PTHREAD_MUTEX_DEFAULT_is_PTHREAD_MUTEX_NORMAL) {
1572 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, PTHREAD_MUTEX_DEFAULT);
1573 }
1574
TEST(pthread,pthread_mutexattr_gettype)1575 TEST(pthread, pthread_mutexattr_gettype) {
1576 pthread_mutexattr_t attr;
1577 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1578
1579 int attr_type;
1580
1581 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL));
1582 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1583 ASSERT_EQ(PTHREAD_MUTEX_NORMAL, attr_type);
1584
1585 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK));
1586 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1587 ASSERT_EQ(PTHREAD_MUTEX_ERRORCHECK, attr_type);
1588
1589 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE));
1590 ASSERT_EQ(0, pthread_mutexattr_gettype(&attr, &attr_type));
1591 ASSERT_EQ(PTHREAD_MUTEX_RECURSIVE, attr_type);
1592
1593 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1594 }
1595
1596 struct PthreadMutex {
1597 pthread_mutex_t lock;
1598
PthreadMutexPthreadMutex1599 explicit PthreadMutex(int mutex_type) {
1600 init(mutex_type);
1601 }
1602
~PthreadMutexPthreadMutex1603 ~PthreadMutex() {
1604 destroy();
1605 }
1606
1607 private:
initPthreadMutex1608 void init(int mutex_type) {
1609 pthread_mutexattr_t attr;
1610 ASSERT_EQ(0, pthread_mutexattr_init(&attr));
1611 ASSERT_EQ(0, pthread_mutexattr_settype(&attr, mutex_type));
1612 ASSERT_EQ(0, pthread_mutex_init(&lock, &attr));
1613 ASSERT_EQ(0, pthread_mutexattr_destroy(&attr));
1614 }
1615
destroyPthreadMutex1616 void destroy() {
1617 ASSERT_EQ(0, pthread_mutex_destroy(&lock));
1618 }
1619
1620 DISALLOW_COPY_AND_ASSIGN(PthreadMutex);
1621 };
1622
TEST(pthread,pthread_mutex_lock_NORMAL)1623 TEST(pthread, pthread_mutex_lock_NORMAL) {
1624 PthreadMutex m(PTHREAD_MUTEX_NORMAL);
1625
1626 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1627 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1628 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1629 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1630 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1631 }
1632
TEST(pthread,pthread_mutex_lock_ERRORCHECK)1633 TEST(pthread, pthread_mutex_lock_ERRORCHECK) {
1634 PthreadMutex m(PTHREAD_MUTEX_ERRORCHECK);
1635
1636 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1637 ASSERT_EQ(EDEADLK, pthread_mutex_lock(&m.lock));
1638 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1639 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1640 ASSERT_EQ(EBUSY, pthread_mutex_trylock(&m.lock));
1641 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1642 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1643 }
1644
TEST(pthread,pthread_mutex_lock_RECURSIVE)1645 TEST(pthread, pthread_mutex_lock_RECURSIVE) {
1646 PthreadMutex m(PTHREAD_MUTEX_RECURSIVE);
1647
1648 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1649 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1650 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1651 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1652 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1653 ASSERT_EQ(0, pthread_mutex_trylock(&m.lock));
1654 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1655 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1656 ASSERT_EQ(EPERM, pthread_mutex_unlock(&m.lock));
1657 }
1658
TEST(pthread,pthread_mutex_init_same_as_static_initializers)1659 TEST(pthread, pthread_mutex_init_same_as_static_initializers) {
1660 pthread_mutex_t lock_normal = PTHREAD_MUTEX_INITIALIZER;
1661 PthreadMutex m1(PTHREAD_MUTEX_NORMAL);
1662 ASSERT_EQ(0, memcmp(&lock_normal, &m1.lock, sizeof(pthread_mutex_t)));
1663 pthread_mutex_destroy(&lock_normal);
1664
1665 pthread_mutex_t lock_errorcheck = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
1666 PthreadMutex m2(PTHREAD_MUTEX_ERRORCHECK);
1667 ASSERT_EQ(0, memcmp(&lock_errorcheck, &m2.lock, sizeof(pthread_mutex_t)));
1668 pthread_mutex_destroy(&lock_errorcheck);
1669
1670 pthread_mutex_t lock_recursive = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
1671 PthreadMutex m3(PTHREAD_MUTEX_RECURSIVE);
1672 ASSERT_EQ(0, memcmp(&lock_recursive, &m3.lock, sizeof(pthread_mutex_t)));
1673 ASSERT_EQ(0, pthread_mutex_destroy(&lock_recursive));
1674 }
1675 class MutexWakeupHelper {
1676 private:
1677 PthreadMutex m;
1678 enum Progress {
1679 LOCK_INITIALIZED,
1680 LOCK_WAITING,
1681 LOCK_RELEASED,
1682 LOCK_ACCESSED
1683 };
1684 std::atomic<Progress> progress;
1685 std::atomic<pid_t> tid;
1686
thread_fn(MutexWakeupHelper * helper)1687 static void thread_fn(MutexWakeupHelper* helper) {
1688 helper->tid = gettid();
1689 ASSERT_EQ(LOCK_INITIALIZED, helper->progress);
1690 helper->progress = LOCK_WAITING;
1691
1692 ASSERT_EQ(0, pthread_mutex_lock(&helper->m.lock));
1693 ASSERT_EQ(LOCK_RELEASED, helper->progress);
1694 ASSERT_EQ(0, pthread_mutex_unlock(&helper->m.lock));
1695
1696 helper->progress = LOCK_ACCESSED;
1697 }
1698
1699 public:
MutexWakeupHelper(int mutex_type)1700 explicit MutexWakeupHelper(int mutex_type) : m(mutex_type) {
1701 }
1702
test()1703 void test() {
1704 ASSERT_EQ(0, pthread_mutex_lock(&m.lock));
1705 progress = LOCK_INITIALIZED;
1706 tid = 0;
1707
1708 pthread_t thread;
1709 ASSERT_EQ(0, pthread_create(&thread, NULL,
1710 reinterpret_cast<void* (*)(void*)>(MutexWakeupHelper::thread_fn), this));
1711
1712 WaitUntilThreadSleep(tid);
1713 ASSERT_EQ(LOCK_WAITING, progress);
1714
1715 progress = LOCK_RELEASED;
1716 ASSERT_EQ(0, pthread_mutex_unlock(&m.lock));
1717
1718 ASSERT_EQ(0, pthread_join(thread, NULL));
1719 ASSERT_EQ(LOCK_ACCESSED, progress);
1720 }
1721 };
1722
TEST(pthread,pthread_mutex_NORMAL_wakeup)1723 TEST(pthread, pthread_mutex_NORMAL_wakeup) {
1724 MutexWakeupHelper helper(PTHREAD_MUTEX_NORMAL);
1725 helper.test();
1726 }
1727
TEST(pthread,pthread_mutex_ERRORCHECK_wakeup)1728 TEST(pthread, pthread_mutex_ERRORCHECK_wakeup) {
1729 MutexWakeupHelper helper(PTHREAD_MUTEX_ERRORCHECK);
1730 helper.test();
1731 }
1732
TEST(pthread,pthread_mutex_RECURSIVE_wakeup)1733 TEST(pthread, pthread_mutex_RECURSIVE_wakeup) {
1734 MutexWakeupHelper helper(PTHREAD_MUTEX_RECURSIVE);
1735 helper.test();
1736 }
1737
TEST(pthread,pthread_mutex_owner_tid_limit)1738 TEST(pthread, pthread_mutex_owner_tid_limit) {
1739 #if defined(__BIONIC__) && !defined(__LP64__)
1740 FILE* fp = fopen("/proc/sys/kernel/pid_max", "r");
1741 ASSERT_TRUE(fp != NULL);
1742 long pid_max;
1743 ASSERT_EQ(1, fscanf(fp, "%ld", &pid_max));
1744 fclose(fp);
1745 // Bionic's pthread_mutex implementation on 32-bit devices uses 16 bits to represent owner tid.
1746 ASSERT_LE(pid_max, 65536);
1747 #else
1748 GTEST_LOG_(INFO) << "This test does nothing as 32-bit tid is supported by pthread_mutex.\n";
1749 #endif
1750 }
1751
TEST(pthread,pthread_mutex_timedlock)1752 TEST(pthread, pthread_mutex_timedlock) {
1753 pthread_mutex_t m;
1754 ASSERT_EQ(0, pthread_mutex_init(&m, nullptr));
1755
1756 // If the mutex is already locked, pthread_mutex_timedlock should time out.
1757 ASSERT_EQ(0, pthread_mutex_lock(&m));
1758
1759 timespec ts;
1760 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1761 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1762 ts.tv_nsec = -1;
1763 ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1764 ts.tv_nsec = NS_PER_S;
1765 ASSERT_EQ(EINVAL, pthread_mutex_timedlock(&m, &ts));
1766 ts.tv_nsec = NS_PER_S - 1;
1767 ts.tv_sec = -1;
1768 ASSERT_EQ(ETIMEDOUT, pthread_mutex_timedlock(&m, &ts));
1769
1770 // If the mutex is unlocked, pthread_mutex_timedlock should succeed.
1771 ASSERT_EQ(0, pthread_mutex_unlock(&m));
1772
1773 ASSERT_EQ(0, clock_gettime(CLOCK_REALTIME, &ts));
1774 ts.tv_sec += 1;
1775 ASSERT_EQ(0, pthread_mutex_timedlock(&m, &ts));
1776
1777 ASSERT_EQ(0, pthread_mutex_unlock(&m));
1778 ASSERT_EQ(0, pthread_mutex_destroy(&m));
1779 }
1780
1781 class StrictAlignmentAllocator {
1782 public:
allocate(size_t size,size_t alignment)1783 void* allocate(size_t size, size_t alignment) {
1784 char* p = new char[size + alignment * 2];
1785 allocated_array.push_back(p);
1786 while (!is_strict_aligned(p, alignment)) {
1787 ++p;
1788 }
1789 return p;
1790 }
1791
~StrictAlignmentAllocator()1792 ~StrictAlignmentAllocator() {
1793 for (const auto& p : allocated_array) {
1794 delete[] p;
1795 }
1796 }
1797
1798 private:
is_strict_aligned(char * p,size_t alignment)1799 bool is_strict_aligned(char* p, size_t alignment) {
1800 return (reinterpret_cast<uintptr_t>(p) % (alignment * 2)) == alignment;
1801 }
1802
1803 std::vector<char*> allocated_array;
1804 };
1805
TEST(pthread,pthread_types_allow_four_bytes_alignment)1806 TEST(pthread, pthread_types_allow_four_bytes_alignment) {
1807 #if defined(__BIONIC__)
1808 // For binary compatibility with old version, we need to allow 4-byte aligned data for pthread types.
1809 StrictAlignmentAllocator allocator;
1810 pthread_mutex_t* mutex = reinterpret_cast<pthread_mutex_t*>(
1811 allocator.allocate(sizeof(pthread_mutex_t), 4));
1812 ASSERT_EQ(0, pthread_mutex_init(mutex, NULL));
1813 ASSERT_EQ(0, pthread_mutex_lock(mutex));
1814 ASSERT_EQ(0, pthread_mutex_unlock(mutex));
1815 ASSERT_EQ(0, pthread_mutex_destroy(mutex));
1816
1817 pthread_cond_t* cond = reinterpret_cast<pthread_cond_t*>(
1818 allocator.allocate(sizeof(pthread_cond_t), 4));
1819 ASSERT_EQ(0, pthread_cond_init(cond, NULL));
1820 ASSERT_EQ(0, pthread_cond_signal(cond));
1821 ASSERT_EQ(0, pthread_cond_broadcast(cond));
1822 ASSERT_EQ(0, pthread_cond_destroy(cond));
1823
1824 pthread_rwlock_t* rwlock = reinterpret_cast<pthread_rwlock_t*>(
1825 allocator.allocate(sizeof(pthread_rwlock_t), 4));
1826 ASSERT_EQ(0, pthread_rwlock_init(rwlock, NULL));
1827 ASSERT_EQ(0, pthread_rwlock_rdlock(rwlock));
1828 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1829 ASSERT_EQ(0, pthread_rwlock_wrlock(rwlock));
1830 ASSERT_EQ(0, pthread_rwlock_unlock(rwlock));
1831 ASSERT_EQ(0, pthread_rwlock_destroy(rwlock));
1832
1833 #else
1834 GTEST_LOG_(INFO) << "This test tests bionic implementation details.";
1835 #endif
1836 }
1837
TEST(pthread,pthread_mutex_lock_null_32)1838 TEST(pthread, pthread_mutex_lock_null_32) {
1839 #if defined(__BIONIC__) && !defined(__LP64__)
1840 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
1841 // EINVAL in that case: http://b/19995172.
1842 //
1843 // We decorate the public defintion with _Nonnull so that people recompiling
1844 // their code with get a warning and might fix their bug, but need to pass
1845 // NULL here to test that we remain compatible.
1846 pthread_mutex_t* null_value = nullptr;
1847 ASSERT_EQ(EINVAL, pthread_mutex_lock(null_value));
1848 #else
1849 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1850 #endif
1851 }
1852
TEST(pthread,pthread_mutex_unlock_null_32)1853 TEST(pthread, pthread_mutex_unlock_null_32) {
1854 #if defined(__BIONIC__) && !defined(__LP64__)
1855 // For LP32, the pthread lock/unlock functions allow a NULL mutex and return
1856 // EINVAL in that case: http://b/19995172.
1857 //
1858 // We decorate the public defintion with _Nonnull so that people recompiling
1859 // their code with get a warning and might fix their bug, but need to pass
1860 // NULL here to test that we remain compatible.
1861 pthread_mutex_t* null_value = nullptr;
1862 ASSERT_EQ(EINVAL, pthread_mutex_unlock(null_value));
1863 #else
1864 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 32 bit devices.";
1865 #endif
1866 }
1867
TEST_F(pthread_DeathTest,pthread_mutex_lock_null_64)1868 TEST_F(pthread_DeathTest, pthread_mutex_lock_null_64) {
1869 #if defined(__BIONIC__) && defined(__LP64__)
1870 pthread_mutex_t* null_value = nullptr;
1871 ASSERT_EXIT(pthread_mutex_lock(null_value), testing::KilledBySignal(SIGSEGV), "");
1872 #else
1873 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1874 #endif
1875 }
1876
TEST_F(pthread_DeathTest,pthread_mutex_unlock_null_64)1877 TEST_F(pthread_DeathTest, pthread_mutex_unlock_null_64) {
1878 #if defined(__BIONIC__) && defined(__LP64__)
1879 pthread_mutex_t* null_value = nullptr;
1880 ASSERT_EXIT(pthread_mutex_unlock(null_value), testing::KilledBySignal(SIGSEGV), "");
1881 #else
1882 GTEST_LOG_(INFO) << "This test tests bionic implementation details on 64 bit devices.";
1883 #endif
1884 }
1885
1886 extern _Unwind_Reason_Code FrameCounter(_Unwind_Context* ctx, void* arg);
1887
1888 static volatile bool signal_handler_on_altstack_done;
1889
1890 __attribute__((__noinline__))
signal_handler_backtrace()1891 static void signal_handler_backtrace() {
1892 // Check if we have enough stack space for unwinding.
1893 int count = 0;
1894 _Unwind_Backtrace(FrameCounter, &count);
1895 ASSERT_GT(count, 0);
1896 }
1897
1898 __attribute__((__noinline__))
signal_handler_logging()1899 static void signal_handler_logging() {
1900 // Check if we have enough stack space for logging.
1901 std::string s(2048, '*');
1902 GTEST_LOG_(INFO) << s;
1903 signal_handler_on_altstack_done = true;
1904 }
1905
1906 __attribute__((__noinline__))
signal_handler_snprintf()1907 static void signal_handler_snprintf() {
1908 // Check if we have enough stack space for snprintf to a PATH_MAX buffer, plus some extra.
1909 char buf[PATH_MAX + 2048];
1910 ASSERT_GT(snprintf(buf, sizeof(buf), "/proc/%d/status", getpid()), 0);
1911 }
1912
SignalHandlerOnAltStack(int signo,siginfo_t *,void *)1913 static void SignalHandlerOnAltStack(int signo, siginfo_t*, void*) {
1914 ASSERT_EQ(SIGUSR1, signo);
1915 signal_handler_backtrace();
1916 signal_handler_logging();
1917 signal_handler_snprintf();
1918 }
1919
TEST(pthread,big_enough_signal_stack)1920 TEST(pthread, big_enough_signal_stack) {
1921 signal_handler_on_altstack_done = false;
1922 ScopedSignalHandler handler(SIGUSR1, SignalHandlerOnAltStack, SA_SIGINFO | SA_ONSTACK);
1923 kill(getpid(), SIGUSR1);
1924 ASSERT_TRUE(signal_handler_on_altstack_done);
1925 }
1926
TEST(pthread,pthread_barrierattr_smoke)1927 TEST(pthread, pthread_barrierattr_smoke) {
1928 pthread_barrierattr_t attr;
1929 ASSERT_EQ(0, pthread_barrierattr_init(&attr));
1930 int pshared;
1931 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1932 ASSERT_EQ(PTHREAD_PROCESS_PRIVATE, pshared);
1933 ASSERT_EQ(0, pthread_barrierattr_setpshared(&attr, PTHREAD_PROCESS_SHARED));
1934 ASSERT_EQ(0, pthread_barrierattr_getpshared(&attr, &pshared));
1935 ASSERT_EQ(PTHREAD_PROCESS_SHARED, pshared);
1936 ASSERT_EQ(0, pthread_barrierattr_destroy(&attr));
1937 }
1938
1939 struct BarrierTestHelperData {
1940 size_t thread_count;
1941 pthread_barrier_t barrier;
1942 std::atomic<int> finished_mask;
1943 std::atomic<int> serial_thread_count;
1944 size_t iteration_count;
1945 std::atomic<size_t> finished_iteration_count;
1946
BarrierTestHelperDataBarrierTestHelperData1947 BarrierTestHelperData(size_t thread_count, size_t iteration_count)
1948 : thread_count(thread_count), finished_mask(0), serial_thread_count(0),
1949 iteration_count(iteration_count), finished_iteration_count(0) {
1950 }
1951 };
1952
1953 struct BarrierTestHelperArg {
1954 int id;
1955 BarrierTestHelperData* data;
1956 };
1957
BarrierTestHelper(BarrierTestHelperArg * arg)1958 static void BarrierTestHelper(BarrierTestHelperArg* arg) {
1959 for (size_t i = 0; i < arg->data->iteration_count; ++i) {
1960 int result = pthread_barrier_wait(&arg->data->barrier);
1961 if (result == PTHREAD_BARRIER_SERIAL_THREAD) {
1962 arg->data->serial_thread_count++;
1963 } else {
1964 ASSERT_EQ(0, result);
1965 }
1966 int mask = arg->data->finished_mask.fetch_or(1 << arg->id);
1967 mask |= 1 << arg->id;
1968 if (mask == ((1 << arg->data->thread_count) - 1)) {
1969 ASSERT_EQ(1, arg->data->serial_thread_count);
1970 arg->data->finished_iteration_count++;
1971 arg->data->finished_mask = 0;
1972 arg->data->serial_thread_count = 0;
1973 }
1974 }
1975 }
1976
TEST(pthread,pthread_barrier_smoke)1977 TEST(pthread, pthread_barrier_smoke) {
1978 const size_t BARRIER_ITERATION_COUNT = 10;
1979 const size_t BARRIER_THREAD_COUNT = 10;
1980 BarrierTestHelperData data(BARRIER_THREAD_COUNT, BARRIER_ITERATION_COUNT);
1981 ASSERT_EQ(0, pthread_barrier_init(&data.barrier, nullptr, data.thread_count));
1982 std::vector<pthread_t> threads(data.thread_count);
1983 std::vector<BarrierTestHelperArg> args(threads.size());
1984 for (size_t i = 0; i < threads.size(); ++i) {
1985 args[i].id = i;
1986 args[i].data = &data;
1987 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
1988 reinterpret_cast<void* (*)(void*)>(BarrierTestHelper), &args[i]));
1989 }
1990 for (size_t i = 0; i < threads.size(); ++i) {
1991 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
1992 }
1993 ASSERT_EQ(data.iteration_count, data.finished_iteration_count);
1994 ASSERT_EQ(0, pthread_barrier_destroy(&data.barrier));
1995 }
1996
1997 struct BarrierDestroyTestArg {
1998 std::atomic<int> tid;
1999 pthread_barrier_t* barrier;
2000 };
2001
BarrierDestroyTestHelper(BarrierDestroyTestArg * arg)2002 static void BarrierDestroyTestHelper(BarrierDestroyTestArg* arg) {
2003 arg->tid = gettid();
2004 ASSERT_EQ(0, pthread_barrier_wait(arg->barrier));
2005 }
2006
TEST(pthread,pthread_barrier_destroy)2007 TEST(pthread, pthread_barrier_destroy) {
2008 pthread_barrier_t barrier;
2009 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, 2));
2010 pthread_t thread;
2011 BarrierDestroyTestArg arg;
2012 arg.tid = 0;
2013 arg.barrier = &barrier;
2014 ASSERT_EQ(0, pthread_create(&thread, nullptr,
2015 reinterpret_cast<void* (*)(void*)>(BarrierDestroyTestHelper), &arg));
2016 WaitUntilThreadSleep(arg.tid);
2017 ASSERT_EQ(EBUSY, pthread_barrier_destroy(&barrier));
2018 ASSERT_EQ(PTHREAD_BARRIER_SERIAL_THREAD, pthread_barrier_wait(&barrier));
2019 // Verify if the barrier can be destroyed directly after pthread_barrier_wait().
2020 ASSERT_EQ(0, pthread_barrier_destroy(&barrier));
2021 ASSERT_EQ(0, pthread_join(thread, nullptr));
2022 #if defined(__BIONIC__)
2023 ASSERT_EQ(EINVAL, pthread_barrier_destroy(&barrier));
2024 #endif
2025 }
2026
2027 struct BarrierOrderingTestHelperArg {
2028 pthread_barrier_t* barrier;
2029 size_t* array;
2030 size_t array_length;
2031 size_t id;
2032 };
2033
BarrierOrderingTestHelper(BarrierOrderingTestHelperArg * arg)2034 void BarrierOrderingTestHelper(BarrierOrderingTestHelperArg* arg) {
2035 const size_t ITERATION_COUNT = 10000;
2036 for (size_t i = 1; i <= ITERATION_COUNT; ++i) {
2037 arg->array[arg->id] = i;
2038 int result = pthread_barrier_wait(arg->barrier);
2039 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2040 for (size_t j = 0; j < arg->array_length; ++j) {
2041 ASSERT_EQ(i, arg->array[j]);
2042 }
2043 result = pthread_barrier_wait(arg->barrier);
2044 ASSERT_TRUE(result == 0 || result == PTHREAD_BARRIER_SERIAL_THREAD);
2045 }
2046 }
2047
TEST(pthread,pthread_barrier_check_ordering)2048 TEST(pthread, pthread_barrier_check_ordering) {
2049 const size_t THREAD_COUNT = 4;
2050 pthread_barrier_t barrier;
2051 ASSERT_EQ(0, pthread_barrier_init(&barrier, nullptr, THREAD_COUNT));
2052 size_t array[THREAD_COUNT];
2053 std::vector<pthread_t> threads(THREAD_COUNT);
2054 std::vector<BarrierOrderingTestHelperArg> args(THREAD_COUNT);
2055 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2056 args[i].barrier = &barrier;
2057 args[i].array = array;
2058 args[i].array_length = THREAD_COUNT;
2059 args[i].id = i;
2060 ASSERT_EQ(0, pthread_create(&threads[i], nullptr,
2061 reinterpret_cast<void* (*)(void*)>(BarrierOrderingTestHelper),
2062 &args[i]));
2063 }
2064 for (size_t i = 0; i < THREAD_COUNT; ++i) {
2065 ASSERT_EQ(0, pthread_join(threads[i], nullptr));
2066 }
2067 }
2068
TEST(pthread,pthread_spinlock_smoke)2069 TEST(pthread, pthread_spinlock_smoke) {
2070 pthread_spinlock_t lock;
2071 ASSERT_EQ(0, pthread_spin_init(&lock, 0));
2072 ASSERT_EQ(0, pthread_spin_trylock(&lock));
2073 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2074 ASSERT_EQ(0, pthread_spin_lock(&lock));
2075 ASSERT_EQ(EBUSY, pthread_spin_trylock(&lock));
2076 ASSERT_EQ(0, pthread_spin_unlock(&lock));
2077 ASSERT_EQ(0, pthread_spin_destroy(&lock));
2078 }
2079
TEST(pthread,pthread_attr_setdetachstate)2080 TEST(pthread, pthread_attr_setdetachstate) {
2081 pthread_attr_t attr;
2082 ASSERT_EQ(0, pthread_attr_init(&attr));
2083
2084 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2085 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE));
2086 ASSERT_EQ(EINVAL, pthread_attr_setdetachstate(&attr, 123));
2087 }
2088
TEST(pthread,pthread_create__mmap_failures)2089 TEST(pthread, pthread_create__mmap_failures) {
2090 pthread_attr_t attr;
2091 ASSERT_EQ(0, pthread_attr_init(&attr));
2092 ASSERT_EQ(0, pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED));
2093
2094 const auto kPageSize = sysconf(_SC_PAGE_SIZE);
2095
2096 // Use up all the VMAs. By default this is 64Ki.
2097 std::vector<void*> pages;
2098 int prot = PROT_NONE;
2099 while (true) {
2100 void* page = mmap(nullptr, kPageSize, prot, MAP_ANON|MAP_PRIVATE, -1, 0);
2101 if (page == MAP_FAILED) break;
2102 pages.push_back(page);
2103 prot = (prot == PROT_NONE) ? PROT_READ : PROT_NONE;
2104 }
2105
2106 // Try creating threads, freeing up a page each time we fail.
2107 size_t EAGAIN_count = 0;
2108 size_t i = 0;
2109 for (; i < pages.size(); ++i) {
2110 pthread_t t;
2111 int status = pthread_create(&t, &attr, IdFn, nullptr);
2112 if (status != EAGAIN) break;
2113 ++EAGAIN_count;
2114 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2115 }
2116
2117 // Creating a thread uses at least six VMAs: the stack, the TLS, and a guard each side of both.
2118 // So we should have seen at least six failures.
2119 ASSERT_GE(EAGAIN_count, 6U);
2120
2121 for (; i < pages.size(); ++i) {
2122 ASSERT_EQ(0, munmap(pages[i], kPageSize));
2123 }
2124 }
2125