• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
5 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #include "main.h"
12 #include <Eigen/QR>
13 #include <Eigen/SVD>
14 
15 template <typename MatrixType>
cod()16 void cod() {
17   typedef typename MatrixType::Index Index;
18 
19   Index rows = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
20   Index cols = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
21   Index cols2 = internal::random<Index>(2, EIGEN_TEST_MAX_SIZE);
22   Index rank = internal::random<Index>(1, (std::min)(rows, cols) - 1);
23 
24   typedef typename MatrixType::Scalar Scalar;
25   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime,
26                  MatrixType::RowsAtCompileTime>
27       MatrixQType;
28   MatrixType matrix;
29   createRandomPIMatrixOfRank(rank, rows, cols, matrix);
30   CompleteOrthogonalDecomposition<MatrixType> cod(matrix);
31   VERIFY(rank == cod.rank());
32   VERIFY(cols - cod.rank() == cod.dimensionOfKernel());
33   VERIFY(!cod.isInjective());
34   VERIFY(!cod.isInvertible());
35   VERIFY(!cod.isSurjective());
36 
37   MatrixQType q = cod.householderQ();
38   VERIFY_IS_UNITARY(q);
39 
40   MatrixType z = cod.matrixZ();
41   VERIFY_IS_UNITARY(z);
42 
43   MatrixType t;
44   t.setZero(rows, cols);
45   t.topLeftCorner(rank, rank) =
46       cod.matrixT().topLeftCorner(rank, rank).template triangularView<Upper>();
47 
48   MatrixType c = q * t * z * cod.colsPermutation().inverse();
49   VERIFY_IS_APPROX(matrix, c);
50 
51   MatrixType exact_solution = MatrixType::Random(cols, cols2);
52   MatrixType rhs = matrix * exact_solution;
53   MatrixType cod_solution = cod.solve(rhs);
54   VERIFY_IS_APPROX(rhs, matrix * cod_solution);
55 
56   // Verify that we get the same minimum-norm solution as the SVD.
57   JacobiSVD<MatrixType> svd(matrix, ComputeThinU | ComputeThinV);
58   MatrixType svd_solution = svd.solve(rhs);
59   VERIFY_IS_APPROX(cod_solution, svd_solution);
60 
61   MatrixType pinv = cod.pseudoInverse();
62   VERIFY_IS_APPROX(cod_solution, pinv * rhs);
63 }
64 
65 template <typename MatrixType, int Cols2>
cod_fixedsize()66 void cod_fixedsize() {
67   enum {
68     Rows = MatrixType::RowsAtCompileTime,
69     Cols = MatrixType::ColsAtCompileTime
70   };
71   typedef typename MatrixType::Scalar Scalar;
72   int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols)) - 1);
73   Matrix<Scalar, Rows, Cols> matrix;
74   createRandomPIMatrixOfRank(rank, Rows, Cols, matrix);
75   CompleteOrthogonalDecomposition<Matrix<Scalar, Rows, Cols> > cod(matrix);
76   VERIFY(rank == cod.rank());
77   VERIFY(Cols - cod.rank() == cod.dimensionOfKernel());
78   VERIFY(cod.isInjective() == (rank == Rows));
79   VERIFY(cod.isSurjective() == (rank == Cols));
80   VERIFY(cod.isInvertible() == (cod.isInjective() && cod.isSurjective()));
81 
82   Matrix<Scalar, Cols, Cols2> exact_solution;
83   exact_solution.setRandom(Cols, Cols2);
84   Matrix<Scalar, Rows, Cols2> rhs = matrix * exact_solution;
85   Matrix<Scalar, Cols, Cols2> cod_solution = cod.solve(rhs);
86   VERIFY_IS_APPROX(rhs, matrix * cod_solution);
87 
88   // Verify that we get the same minimum-norm solution as the SVD.
89   JacobiSVD<MatrixType> svd(matrix, ComputeFullU | ComputeFullV);
90   Matrix<Scalar, Cols, Cols2> svd_solution = svd.solve(rhs);
91   VERIFY_IS_APPROX(cod_solution, svd_solution);
92 }
93 
qr()94 template<typename MatrixType> void qr()
95 {
96   using std::sqrt;
97   typedef typename MatrixType::Index Index;
98 
99   Index rows = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE), cols2 = internal::random<Index>(2,EIGEN_TEST_MAX_SIZE);
100   Index rank = internal::random<Index>(1, (std::min)(rows, cols)-1);
101 
102   typedef typename MatrixType::Scalar Scalar;
103   typedef typename MatrixType::RealScalar RealScalar;
104   typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> MatrixQType;
105   MatrixType m1;
106   createRandomPIMatrixOfRank(rank,rows,cols,m1);
107   ColPivHouseholderQR<MatrixType> qr(m1);
108   VERIFY_IS_EQUAL(rank, qr.rank());
109   VERIFY_IS_EQUAL(cols - qr.rank(), qr.dimensionOfKernel());
110   VERIFY(!qr.isInjective());
111   VERIFY(!qr.isInvertible());
112   VERIFY(!qr.isSurjective());
113 
114   MatrixQType q = qr.householderQ();
115   VERIFY_IS_UNITARY(q);
116 
117   MatrixType r = qr.matrixQR().template triangularView<Upper>();
118   MatrixType c = q * r * qr.colsPermutation().inverse();
119   VERIFY_IS_APPROX(m1, c);
120 
121   // Verify that the absolute value of the diagonal elements in R are
122   // non-increasing until they reach the singularity threshold.
123   RealScalar threshold =
124       sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
125   for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
126     RealScalar x = numext::abs(r(i, i));
127     RealScalar y = numext::abs(r(i + 1, i + 1));
128     if (x < threshold && y < threshold) continue;
129     if (!test_isApproxOrLessThan(y, x)) {
130       for (Index j = 0; j < (std::min)(rows, cols); ++j) {
131         std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
132       }
133       std::cout << "Failure at i=" << i << ", rank=" << rank
134                 << ", threshold=" << threshold << std::endl;
135     }
136     VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
137   }
138 
139   MatrixType m2 = MatrixType::Random(cols,cols2);
140   MatrixType m3 = m1*m2;
141   m2 = MatrixType::Random(cols,cols2);
142   m2 = qr.solve(m3);
143   VERIFY_IS_APPROX(m3, m1*m2);
144 
145   {
146     Index size = rows;
147     do {
148       m1 = MatrixType::Random(size,size);
149       qr.compute(m1);
150     } while(!qr.isInvertible());
151     MatrixType m1_inv = qr.inverse();
152     m3 = m1 * MatrixType::Random(size,cols2);
153     m2 = qr.solve(m3);
154     VERIFY_IS_APPROX(m2, m1_inv*m3);
155   }
156 }
157 
qr_fixedsize()158 template<typename MatrixType, int Cols2> void qr_fixedsize()
159 {
160   using std::sqrt;
161   using std::abs;
162   enum { Rows = MatrixType::RowsAtCompileTime, Cols = MatrixType::ColsAtCompileTime };
163   typedef typename MatrixType::Scalar Scalar;
164   typedef typename MatrixType::RealScalar RealScalar;
165   int rank = internal::random<int>(1, (std::min)(int(Rows), int(Cols))-1);
166   Matrix<Scalar,Rows,Cols> m1;
167   createRandomPIMatrixOfRank(rank,Rows,Cols,m1);
168   ColPivHouseholderQR<Matrix<Scalar,Rows,Cols> > qr(m1);
169   VERIFY_IS_EQUAL(rank, qr.rank());
170   VERIFY_IS_EQUAL(Cols - qr.rank(), qr.dimensionOfKernel());
171   VERIFY_IS_EQUAL(qr.isInjective(), (rank == Rows));
172   VERIFY_IS_EQUAL(qr.isSurjective(), (rank == Cols));
173   VERIFY_IS_EQUAL(qr.isInvertible(), (qr.isInjective() && qr.isSurjective()));
174 
175   Matrix<Scalar,Rows,Cols> r = qr.matrixQR().template triangularView<Upper>();
176   Matrix<Scalar,Rows,Cols> c = qr.householderQ() * r * qr.colsPermutation().inverse();
177   VERIFY_IS_APPROX(m1, c);
178 
179   Matrix<Scalar,Cols,Cols2> m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
180   Matrix<Scalar,Rows,Cols2> m3 = m1*m2;
181   m2 = Matrix<Scalar,Cols,Cols2>::Random(Cols,Cols2);
182   m2 = qr.solve(m3);
183   VERIFY_IS_APPROX(m3, m1*m2);
184   // Verify that the absolute value of the diagonal elements in R are
185   // non-increasing until they reache the singularity threshold.
186   RealScalar threshold =
187       sqrt(RealScalar(Rows)) * (std::abs)(r(0, 0)) * NumTraits<Scalar>::epsilon();
188   for (Index i = 0; i < (std::min)(int(Rows), int(Cols)) - 1; ++i) {
189     RealScalar x = numext::abs(r(i, i));
190     RealScalar y = numext::abs(r(i + 1, i + 1));
191     if (x < threshold && y < threshold) continue;
192     if (!test_isApproxOrLessThan(y, x)) {
193       for (Index j = 0; j < (std::min)(int(Rows), int(Cols)); ++j) {
194         std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
195       }
196       std::cout << "Failure at i=" << i << ", rank=" << rank
197                 << ", threshold=" << threshold << std::endl;
198     }
199     VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
200   }
201 }
202 
203 // This test is meant to verify that pivots are chosen such that
204 // even for a graded matrix, the diagonal of R falls of roughly
205 // monotonically until it reaches the threshold for singularity.
206 // We use the so-called Kahan matrix, which is a famous counter-example
207 // for rank-revealing QR. See
208 // http://www.netlib.org/lapack/lawnspdf/lawn176.pdf
209 // page 3 for more detail.
qr_kahan_matrix()210 template<typename MatrixType> void qr_kahan_matrix()
211 {
212   using std::sqrt;
213   using std::abs;
214   typedef typename MatrixType::Index Index;
215   typedef typename MatrixType::Scalar Scalar;
216   typedef typename MatrixType::RealScalar RealScalar;
217 
218   Index rows = 300, cols = rows;
219 
220   MatrixType m1;
221   m1.setZero(rows,cols);
222   RealScalar s = std::pow(NumTraits<RealScalar>::epsilon(), 1.0 / rows);
223   RealScalar c = std::sqrt(1 - s*s);
224   RealScalar pow_s_i(1.0); // pow(s,i)
225   for (Index i = 0; i < rows; ++i) {
226     m1(i, i) = pow_s_i;
227     m1.row(i).tail(rows - i - 1) = -pow_s_i * c * MatrixType::Ones(1, rows - i - 1);
228     pow_s_i *= s;
229   }
230   m1 = (m1 + m1.transpose()).eval();
231   ColPivHouseholderQR<MatrixType> qr(m1);
232   MatrixType r = qr.matrixQR().template triangularView<Upper>();
233 
234   RealScalar threshold =
235       std::sqrt(RealScalar(rows)) * numext::abs(r(0, 0)) * NumTraits<Scalar>::epsilon();
236   for (Index i = 0; i < (std::min)(rows, cols) - 1; ++i) {
237     RealScalar x = numext::abs(r(i, i));
238     RealScalar y = numext::abs(r(i + 1, i + 1));
239     if (x < threshold && y < threshold) continue;
240     if (!test_isApproxOrLessThan(y, x)) {
241       for (Index j = 0; j < (std::min)(rows, cols); ++j) {
242         std::cout << "i = " << j << ", |r_ii| = " << numext::abs(r(j, j)) << std::endl;
243       }
244       std::cout << "Failure at i=" << i << ", rank=" << qr.rank()
245                 << ", threshold=" << threshold << std::endl;
246     }
247     VERIFY_IS_APPROX_OR_LESS_THAN(y, x);
248   }
249 }
250 
qr_invertible()251 template<typename MatrixType> void qr_invertible()
252 {
253   using std::log;
254   using std::abs;
255   typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
256   typedef typename MatrixType::Scalar Scalar;
257 
258   int size = internal::random<int>(10,50);
259 
260   MatrixType m1(size, size), m2(size, size), m3(size, size);
261   m1 = MatrixType::Random(size,size);
262 
263   if (internal::is_same<RealScalar,float>::value)
264   {
265     // let's build a matrix more stable to inverse
266     MatrixType a = MatrixType::Random(size,size*2);
267     m1 += a * a.adjoint();
268   }
269 
270   ColPivHouseholderQR<MatrixType> qr(m1);
271   m3 = MatrixType::Random(size,size);
272   m2 = qr.solve(m3);
273   //VERIFY_IS_APPROX(m3, m1*m2);
274 
275   // now construct a matrix with prescribed determinant
276   m1.setZero();
277   for(int i = 0; i < size; i++) m1(i,i) = internal::random<Scalar>();
278   RealScalar absdet = abs(m1.diagonal().prod());
279   m3 = qr.householderQ(); // get a unitary
280   m1 = m3 * m1 * m3;
281   qr.compute(m1);
282   VERIFY_IS_APPROX(absdet, qr.absDeterminant());
283   VERIFY_IS_APPROX(log(absdet), qr.logAbsDeterminant());
284 }
285 
qr_verify_assert()286 template<typename MatrixType> void qr_verify_assert()
287 {
288   MatrixType tmp;
289 
290   ColPivHouseholderQR<MatrixType> qr;
291   VERIFY_RAISES_ASSERT(qr.matrixQR())
292   VERIFY_RAISES_ASSERT(qr.solve(tmp))
293   VERIFY_RAISES_ASSERT(qr.householderQ())
294   VERIFY_RAISES_ASSERT(qr.dimensionOfKernel())
295   VERIFY_RAISES_ASSERT(qr.isInjective())
296   VERIFY_RAISES_ASSERT(qr.isSurjective())
297   VERIFY_RAISES_ASSERT(qr.isInvertible())
298   VERIFY_RAISES_ASSERT(qr.inverse())
299   VERIFY_RAISES_ASSERT(qr.absDeterminant())
300   VERIFY_RAISES_ASSERT(qr.logAbsDeterminant())
301 }
302 
test_qr_colpivoting()303 void test_qr_colpivoting()
304 {
305   for(int i = 0; i < g_repeat; i++) {
306     CALL_SUBTEST_1( qr<MatrixXf>() );
307     CALL_SUBTEST_2( qr<MatrixXd>() );
308     CALL_SUBTEST_3( qr<MatrixXcd>() );
309     CALL_SUBTEST_4(( qr_fixedsize<Matrix<float,3,5>, 4 >() ));
310     CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,6,2>, 3 >() ));
311     CALL_SUBTEST_5(( qr_fixedsize<Matrix<double,1,1>, 1 >() ));
312   }
313 
314   for(int i = 0; i < g_repeat; i++) {
315     CALL_SUBTEST_1( cod<MatrixXf>() );
316     CALL_SUBTEST_2( cod<MatrixXd>() );
317     CALL_SUBTEST_3( cod<MatrixXcd>() );
318     CALL_SUBTEST_4(( cod_fixedsize<Matrix<float,3,5>, 4 >() ));
319     CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,6,2>, 3 >() ));
320     CALL_SUBTEST_5(( cod_fixedsize<Matrix<double,1,1>, 1 >() ));
321   }
322 
323   for(int i = 0; i < g_repeat; i++) {
324     CALL_SUBTEST_1( qr_invertible<MatrixXf>() );
325     CALL_SUBTEST_2( qr_invertible<MatrixXd>() );
326     CALL_SUBTEST_6( qr_invertible<MatrixXcf>() );
327     CALL_SUBTEST_3( qr_invertible<MatrixXcd>() );
328   }
329 
330   CALL_SUBTEST_7(qr_verify_assert<Matrix3f>());
331   CALL_SUBTEST_8(qr_verify_assert<Matrix3d>());
332   CALL_SUBTEST_1(qr_verify_assert<MatrixXf>());
333   CALL_SUBTEST_2(qr_verify_assert<MatrixXd>());
334   CALL_SUBTEST_6(qr_verify_assert<MatrixXcf>());
335   CALL_SUBTEST_3(qr_verify_assert<MatrixXcd>());
336 
337   // Test problem size constructors
338   CALL_SUBTEST_9(ColPivHouseholderQR<MatrixXf>(10, 20));
339 
340   CALL_SUBTEST_1( qr_kahan_matrix<MatrixXf>() );
341   CALL_SUBTEST_2( qr_kahan_matrix<MatrixXd>() );
342 }
343