• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.] */
56 
57 #include <openssl/sha.h>
58 
59 #include <string.h>
60 
61 #include <openssl/mem.h>
62 
63 #include "../../internal.h"
64 
65 
66 /* IMPLEMENTATION NOTES.
67  *
68  * The 32-bit hash algorithms share a common byte-order neutral collector and
69  * padding function implementations that operate on unaligned data,
70  * ../md32_common.h. This SHA-512 implementation does not. Reasons
71  * [in reverse order] are:
72  *
73  * - It's the only 64-bit hash algorithm for the moment of this writing,
74  *   there is no need for common collector/padding implementation [yet];
75  * - By supporting only a transform function that operates on *aligned* data
76  *   the collector/padding function is simpler and easier to optimize. */
77 
78 #if !defined(OPENSSL_NO_ASM) &&                         \
79     (defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
80      defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64))
81 #define SHA512_ASM
82 #endif
83 
84 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || \
85     defined(__ARM_FEATURE_UNALIGNED)
86 #define SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
87 #endif
88 
SHA384_Init(SHA512_CTX * sha)89 int SHA384_Init(SHA512_CTX *sha) {
90   sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
91   sha->h[1] = UINT64_C(0x629a292a367cd507);
92   sha->h[2] = UINT64_C(0x9159015a3070dd17);
93   sha->h[3] = UINT64_C(0x152fecd8f70e5939);
94   sha->h[4] = UINT64_C(0x67332667ffc00b31);
95   sha->h[5] = UINT64_C(0x8eb44a8768581511);
96   sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
97   sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
98 
99   sha->Nl = 0;
100   sha->Nh = 0;
101   sha->num = 0;
102   sha->md_len = SHA384_DIGEST_LENGTH;
103   return 1;
104 }
105 
106 
SHA512_Init(SHA512_CTX * sha)107 int SHA512_Init(SHA512_CTX *sha) {
108   sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
109   sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
110   sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
111   sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
112   sha->h[4] = UINT64_C(0x510e527fade682d1);
113   sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
114   sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
115   sha->h[7] = UINT64_C(0x5be0cd19137e2179);
116 
117   sha->Nl = 0;
118   sha->Nh = 0;
119   sha->num = 0;
120   sha->md_len = SHA512_DIGEST_LENGTH;
121   return 1;
122 }
123 
SHA384(const uint8_t * data,size_t len,uint8_t * out)124 uint8_t *SHA384(const uint8_t *data, size_t len, uint8_t *out) {
125   SHA512_CTX ctx;
126   SHA384_Init(&ctx);
127   SHA384_Update(&ctx, data, len);
128   SHA384_Final(out, &ctx);
129   OPENSSL_cleanse(&ctx, sizeof(ctx));
130   return out;
131 }
132 
SHA512(const uint8_t * data,size_t len,uint8_t * out)133 uint8_t *SHA512(const uint8_t *data, size_t len, uint8_t *out) {
134   SHA512_CTX ctx;
135   SHA512_Init(&ctx);
136   SHA512_Update(&ctx, data, len);
137   SHA512_Final(out, &ctx);
138   OPENSSL_cleanse(&ctx, sizeof(ctx));
139   return out;
140 }
141 
142 #if !defined(SHA512_ASM)
143 static
144 #endif
145 void sha512_block_data_order(uint64_t *state, const uint64_t *W, size_t num);
146 
147 
SHA384_Final(uint8_t * md,SHA512_CTX * sha)148 int SHA384_Final(uint8_t *md, SHA512_CTX *sha) {
149   return SHA512_Final(md, sha);
150 }
151 
SHA384_Update(SHA512_CTX * sha,const void * data,size_t len)152 int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
153   return SHA512_Update(sha, data, len);
154 }
155 
SHA512_Transform(SHA512_CTX * c,const uint8_t * block)156 void SHA512_Transform(SHA512_CTX *c, const uint8_t *block) {
157 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
158   if ((size_t)block % sizeof(c->u.d[0]) != 0) {
159     OPENSSL_memcpy(c->u.p, block, sizeof(c->u.p));
160     block = c->u.p;
161   }
162 #endif
163   sha512_block_data_order(c->h, (uint64_t *)block, 1);
164 }
165 
SHA512_Update(SHA512_CTX * c,const void * in_data,size_t len)166 int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
167   uint64_t l;
168   uint8_t *p = c->u.p;
169   const uint8_t *data = (const uint8_t *)in_data;
170 
171   if (len == 0) {
172     return 1;
173   }
174 
175   l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
176   if (l < c->Nl) {
177     c->Nh++;
178   }
179   if (sizeof(len) >= 8) {
180     c->Nh += (((uint64_t)len) >> 61);
181   }
182   c->Nl = l;
183 
184   if (c->num != 0) {
185     size_t n = sizeof(c->u) - c->num;
186 
187     if (len < n) {
188       OPENSSL_memcpy(p + c->num, data, len);
189       c->num += (unsigned int)len;
190       return 1;
191     } else {
192       OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
193       len -= n;
194       data += n;
195       sha512_block_data_order(c->h, (uint64_t *)p, 1);
196     }
197   }
198 
199   if (len >= sizeof(c->u)) {
200 #ifndef SHA512_BLOCK_CAN_MANAGE_UNALIGNED_DATA
201     if ((size_t)data % sizeof(c->u.d[0]) != 0) {
202       while (len >= sizeof(c->u)) {
203         OPENSSL_memcpy(p, data, sizeof(c->u));
204         sha512_block_data_order(c->h, (uint64_t *)p, 1);
205         len -= sizeof(c->u);
206         data += sizeof(c->u);
207       }
208     } else
209 #endif
210     {
211       sha512_block_data_order(c->h, (uint64_t *)data, len / sizeof(c->u));
212       data += len;
213       len %= sizeof(c->u);
214       data -= len;
215     }
216   }
217 
218   if (len != 0) {
219     OPENSSL_memcpy(p, data, len);
220     c->num = (int)len;
221   }
222 
223   return 1;
224 }
225 
SHA512_Final(uint8_t * md,SHA512_CTX * sha)226 int SHA512_Final(uint8_t *md, SHA512_CTX *sha) {
227   uint8_t *p = (uint8_t *)sha->u.p;
228   size_t n = sha->num;
229 
230   p[n] = 0x80; /* There always is a room for one */
231   n++;
232   if (n > (sizeof(sha->u) - 16)) {
233     OPENSSL_memset(p + n, 0, sizeof(sha->u) - n);
234     n = 0;
235     sha512_block_data_order(sha->h, (uint64_t *)p, 1);
236   }
237 
238   OPENSSL_memset(p + n, 0, sizeof(sha->u) - 16 - n);
239   p[sizeof(sha->u) - 1] = (uint8_t)(sha->Nl);
240   p[sizeof(sha->u) - 2] = (uint8_t)(sha->Nl >> 8);
241   p[sizeof(sha->u) - 3] = (uint8_t)(sha->Nl >> 16);
242   p[sizeof(sha->u) - 4] = (uint8_t)(sha->Nl >> 24);
243   p[sizeof(sha->u) - 5] = (uint8_t)(sha->Nl >> 32);
244   p[sizeof(sha->u) - 6] = (uint8_t)(sha->Nl >> 40);
245   p[sizeof(sha->u) - 7] = (uint8_t)(sha->Nl >> 48);
246   p[sizeof(sha->u) - 8] = (uint8_t)(sha->Nl >> 56);
247   p[sizeof(sha->u) - 9] = (uint8_t)(sha->Nh);
248   p[sizeof(sha->u) - 10] = (uint8_t)(sha->Nh >> 8);
249   p[sizeof(sha->u) - 11] = (uint8_t)(sha->Nh >> 16);
250   p[sizeof(sha->u) - 12] = (uint8_t)(sha->Nh >> 24);
251   p[sizeof(sha->u) - 13] = (uint8_t)(sha->Nh >> 32);
252   p[sizeof(sha->u) - 14] = (uint8_t)(sha->Nh >> 40);
253   p[sizeof(sha->u) - 15] = (uint8_t)(sha->Nh >> 48);
254   p[sizeof(sha->u) - 16] = (uint8_t)(sha->Nh >> 56);
255 
256   sha512_block_data_order(sha->h, (uint64_t *)p, 1);
257 
258   if (md == NULL) {
259     /* TODO(davidben): This NULL check is absent in other low-level hash 'final'
260      * functions and is one of the few places one can fail. */
261     return 0;
262   }
263 
264   switch (sha->md_len) {
265     /* Let compiler decide if it's appropriate to unroll... */
266     case SHA384_DIGEST_LENGTH:
267       for (n = 0; n < SHA384_DIGEST_LENGTH / 8; n++) {
268         uint64_t t = sha->h[n];
269 
270         *(md++) = (uint8_t)(t >> 56);
271         *(md++) = (uint8_t)(t >> 48);
272         *(md++) = (uint8_t)(t >> 40);
273         *(md++) = (uint8_t)(t >> 32);
274         *(md++) = (uint8_t)(t >> 24);
275         *(md++) = (uint8_t)(t >> 16);
276         *(md++) = (uint8_t)(t >> 8);
277         *(md++) = (uint8_t)(t);
278       }
279       break;
280     case SHA512_DIGEST_LENGTH:
281       for (n = 0; n < SHA512_DIGEST_LENGTH / 8; n++) {
282         uint64_t t = sha->h[n];
283 
284         *(md++) = (uint8_t)(t >> 56);
285         *(md++) = (uint8_t)(t >> 48);
286         *(md++) = (uint8_t)(t >> 40);
287         *(md++) = (uint8_t)(t >> 32);
288         *(md++) = (uint8_t)(t >> 24);
289         *(md++) = (uint8_t)(t >> 16);
290         *(md++) = (uint8_t)(t >> 8);
291         *(md++) = (uint8_t)(t);
292       }
293       break;
294     /* ... as well as make sure md_len is not abused. */
295     default:
296       /* TODO(davidben): This bad |md_len| case is one of the few places a
297        * low-level hash 'final' function can fail. This should never happen. */
298       return 0;
299   }
300 
301   return 1;
302 }
303 
304 #ifndef SHA512_ASM
305 static const uint64_t K512[80] = {
306     UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
307     UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
308     UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
309     UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
310     UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
311     UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
312     UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
313     UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
314     UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
315     UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
316     UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
317     UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
318     UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
319     UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
320     UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
321     UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
322     UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
323     UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
324     UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
325     UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
326     UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
327     UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
328     UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
329     UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
330     UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
331     UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
332     UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
333     UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
334     UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
335     UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
336     UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
337     UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
338     UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
339     UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
340     UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
341     UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
342     UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
343     UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
344     UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
345     UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
346 };
347 
348 #if defined(__GNUC__) && __GNUC__ >= 2 && !defined(OPENSSL_NO_ASM)
349 #if defined(__x86_64) || defined(__x86_64__)
350 #define ROTR(a, n)                                              \
351   ({                                                            \
352     uint64_t ret;                                               \
353     __asm__("rorq %1, %0" : "=r"(ret) : "J"(n), "0"(a) : "cc"); \
354     ret;                                                        \
355   })
356 #define PULL64(x)                                \
357   ({                                             \
358     uint64_t ret = *((const uint64_t *)(&(x)));  \
359     __asm__("bswapq %0" : "=r"(ret) : "0"(ret)); \
360     ret;                                         \
361   })
362 #elif(defined(__i386) || defined(__i386__))
363 #define PULL64(x)                                                             \
364   ({                                                                          \
365     const unsigned int *p = (const unsigned int *)(&(x));                     \
366     unsigned int hi = p[0], lo = p[1];                                        \
367     __asm__("bswapl %0; bswapl %1;" : "=r"(lo), "=r"(hi) : "0"(lo), "1"(hi)); \
368     ((uint64_t)hi) << 32 | lo;                                                \
369   })
370 #elif(defined(_ARCH_PPC) && defined(__64BIT__)) || defined(_ARCH_PPC64)
371 #define ROTR(a, n)                                             \
372   ({                                                           \
373     uint64_t ret;                                              \
374     __asm__("rotrdi %0, %1, %2" : "=r"(ret) : "r"(a), "K"(n)); \
375     ret;                                                       \
376   })
377 #elif defined(__aarch64__)
378 #define ROTR(a, n)                                          \
379   ({                                                        \
380     uint64_t ret;                                           \
381     __asm__("ror %0, %1, %2" : "=r"(ret) : "r"(a), "I"(n)); \
382     ret;                                                    \
383   })
384 #if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) && \
385     __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
386 #define PULL64(x)                                                         \
387   ({                                                                      \
388     uint64_t ret;                                                         \
389     __asm__("rev %0, %1" : "=r"(ret) : "r"(*((const uint64_t *)(&(x))))); \
390     ret;                                                                  \
391   })
392 #endif
393 #endif
394 #elif defined(_MSC_VER)
395 #if defined(_WIN64) /* applies to both IA-64 and AMD64 */
396 #pragma intrinsic(_rotr64)
397 #define ROTR(a, n) _rotr64((a), n)
398 #endif
399 #if defined(_M_IX86) && !defined(OPENSSL_NO_ASM)
__pull64be(const void * x)400 static uint64_t __fastcall __pull64be(const void *x) {
401   _asm mov edx, [ecx + 0]
402   _asm mov eax, [ecx + 4]
403   _asm bswap edx
404   _asm bswap eax
405 }
406 #define PULL64(x) __pull64be(&(x))
407 #if _MSC_VER <= 1200
408 #pragma inline_depth(0)
409 #endif
410 #endif
411 #endif
412 
413 #ifndef PULL64
414 #define B(x, j) \
415   (((uint64_t)(*(((const uint8_t *)(&x)) + j))) << ((7 - j) * 8))
416 #define PULL64(x)                                                        \
417   (B(x, 0) | B(x, 1) | B(x, 2) | B(x, 3) | B(x, 4) | B(x, 5) | B(x, 6) | \
418    B(x, 7))
419 #endif
420 
421 #ifndef ROTR
422 #define ROTR(x, s) (((x) >> s) | (x) << (64 - s))
423 #endif
424 
425 #define Sigma0(x) (ROTR((x), 28) ^ ROTR((x), 34) ^ ROTR((x), 39))
426 #define Sigma1(x) (ROTR((x), 14) ^ ROTR((x), 18) ^ ROTR((x), 41))
427 #define sigma0(x) (ROTR((x), 1) ^ ROTR((x), 8) ^ ((x) >> 7))
428 #define sigma1(x) (ROTR((x), 19) ^ ROTR((x), 61) ^ ((x) >> 6))
429 
430 #define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
431 #define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
432 
433 
434 #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
435 /*
436  * This code should give better results on 32-bit CPU with less than
437  * ~24 registers, both size and performance wise...
438  */
sha512_block_data_order(uint64_t * state,const uint64_t * W,size_t num)439 static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
440                                     size_t num) {
441   uint64_t A, E, T;
442   uint64_t X[9 + 80], *F;
443   int i;
444 
445   while (num--) {
446     F = X + 80;
447     A = state[0];
448     F[1] = state[1];
449     F[2] = state[2];
450     F[3] = state[3];
451     E = state[4];
452     F[5] = state[5];
453     F[6] = state[6];
454     F[7] = state[7];
455 
456     for (i = 0; i < 16; i++, F--) {
457       T = PULL64(W[i]);
458       F[0] = A;
459       F[4] = E;
460       F[8] = T;
461       T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
462       E = F[3] + T;
463       A = T + Sigma0(A) + Maj(A, F[1], F[2]);
464     }
465 
466     for (; i < 80; i++, F--) {
467       T = sigma0(F[8 + 16 - 1]);
468       T += sigma1(F[8 + 16 - 14]);
469       T += F[8 + 16] + F[8 + 16 - 9];
470 
471       F[0] = A;
472       F[4] = E;
473       F[8] = T;
474       T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
475       E = F[3] + T;
476       A = T + Sigma0(A) + Maj(A, F[1], F[2]);
477     }
478 
479     state[0] += A;
480     state[1] += F[1];
481     state[2] += F[2];
482     state[3] += F[3];
483     state[4] += E;
484     state[5] += F[5];
485     state[6] += F[6];
486     state[7] += F[7];
487 
488     W += 16;
489   }
490 }
491 
492 #else
493 
494 #define ROUND_00_15(i, a, b, c, d, e, f, g, h)   \
495   do {                                           \
496     T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
497     h = Sigma0(a) + Maj(a, b, c);                \
498     d += T1;                                     \
499     h += T1;                                     \
500   } while (0)
501 
502 #define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X)   \
503   do {                                                 \
504     s0 = X[(j + 1) & 0x0f];                            \
505     s0 = sigma0(s0);                                   \
506     s1 = X[(j + 14) & 0x0f];                           \
507     s1 = sigma1(s1);                                   \
508     T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
509     ROUND_00_15(i + j, a, b, c, d, e, f, g, h);        \
510   } while (0)
511 
sha512_block_data_order(uint64_t * state,const uint64_t * W,size_t num)512 static void sha512_block_data_order(uint64_t *state, const uint64_t *W,
513                                     size_t num) {
514   uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
515   uint64_t X[16];
516   int i;
517 
518   while (num--) {
519 
520     a = state[0];
521     b = state[1];
522     c = state[2];
523     d = state[3];
524     e = state[4];
525     f = state[5];
526     g = state[6];
527     h = state[7];
528 
529     T1 = X[0] = PULL64(W[0]);
530     ROUND_00_15(0, a, b, c, d, e, f, g, h);
531     T1 = X[1] = PULL64(W[1]);
532     ROUND_00_15(1, h, a, b, c, d, e, f, g);
533     T1 = X[2] = PULL64(W[2]);
534     ROUND_00_15(2, g, h, a, b, c, d, e, f);
535     T1 = X[3] = PULL64(W[3]);
536     ROUND_00_15(3, f, g, h, a, b, c, d, e);
537     T1 = X[4] = PULL64(W[4]);
538     ROUND_00_15(4, e, f, g, h, a, b, c, d);
539     T1 = X[5] = PULL64(W[5]);
540     ROUND_00_15(5, d, e, f, g, h, a, b, c);
541     T1 = X[6] = PULL64(W[6]);
542     ROUND_00_15(6, c, d, e, f, g, h, a, b);
543     T1 = X[7] = PULL64(W[7]);
544     ROUND_00_15(7, b, c, d, e, f, g, h, a);
545     T1 = X[8] = PULL64(W[8]);
546     ROUND_00_15(8, a, b, c, d, e, f, g, h);
547     T1 = X[9] = PULL64(W[9]);
548     ROUND_00_15(9, h, a, b, c, d, e, f, g);
549     T1 = X[10] = PULL64(W[10]);
550     ROUND_00_15(10, g, h, a, b, c, d, e, f);
551     T1 = X[11] = PULL64(W[11]);
552     ROUND_00_15(11, f, g, h, a, b, c, d, e);
553     T1 = X[12] = PULL64(W[12]);
554     ROUND_00_15(12, e, f, g, h, a, b, c, d);
555     T1 = X[13] = PULL64(W[13]);
556     ROUND_00_15(13, d, e, f, g, h, a, b, c);
557     T1 = X[14] = PULL64(W[14]);
558     ROUND_00_15(14, c, d, e, f, g, h, a, b);
559     T1 = X[15] = PULL64(W[15]);
560     ROUND_00_15(15, b, c, d, e, f, g, h, a);
561 
562     for (i = 16; i < 80; i += 16) {
563       ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
564       ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
565       ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
566       ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
567       ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
568       ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
569       ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
570       ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
571       ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
572       ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
573       ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
574       ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
575       ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
576       ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
577       ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
578       ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
579     }
580 
581     state[0] += a;
582     state[1] += b;
583     state[2] += c;
584     state[3] += d;
585     state[4] += e;
586     state[5] += f;
587     state[6] += g;
588     state[7] += h;
589 
590     W += 16;
591   }
592 }
593 
594 #endif
595 
596 #endif /* !SHA512_ASM */
597 
598 #undef ROTR
599 #undef PULL64
600 #undef B
601 #undef Sigma0
602 #undef Sigma1
603 #undef sigma0
604 #undef sigma1
605 #undef Ch
606 #undef Maj
607 #undef ROUND_00_15
608 #undef ROUND_16_80
609 #undef HOST_c2l
610 #undef HOST_l2c
611