1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31
32 /**********************************************************************
33 * Correlation Matrix Computations for LS estimate.
34 **********************************************************************/
35
36 #include "main_FIX.h"
37
38 /* Calculates correlation vector X'*t */
silk_corrVector_FIX(const opus_int16 * x,const opus_int16 * t,const opus_int L,const opus_int order,opus_int32 * Xt,const opus_int rshifts,int arch)39 void silk_corrVector_FIX(
40 const opus_int16 *x, /* I x vector [L + order - 1] used to form data matrix X */
41 const opus_int16 *t, /* I Target vector [L] */
42 const opus_int L, /* I Length of vectors */
43 const opus_int order, /* I Max lag for correlation */
44 opus_int32 *Xt, /* O Pointer to X'*t correlation vector [order] */
45 const opus_int rshifts, /* I Right shifts of correlations */
46 int arch /* I Run-time architecture */
47 )
48 {
49 opus_int lag, i;
50 const opus_int16 *ptr1, *ptr2;
51 opus_int32 inner_prod;
52
53 ptr1 = &x[ order - 1 ]; /* Points to first sample of column 0 of X: X[:,0] */
54 ptr2 = t;
55 /* Calculate X'*t */
56 if( rshifts > 0 ) {
57 /* Right shifting used */
58 for( lag = 0; lag < order; lag++ ) {
59 inner_prod = 0;
60 for( i = 0; i < L; i++ ) {
61 inner_prod += silk_RSHIFT32( silk_SMULBB( ptr1[ i ], ptr2[i] ), rshifts );
62 }
63 Xt[ lag ] = inner_prod; /* X[:,lag]'*t */
64 ptr1--; /* Go to next column of X */
65 }
66 } else {
67 silk_assert( rshifts == 0 );
68 for( lag = 0; lag < order; lag++ ) {
69 Xt[ lag ] = silk_inner_prod_aligned( ptr1, ptr2, L, arch ); /* X[:,lag]'*t */
70 ptr1--; /* Go to next column of X */
71 }
72 }
73 }
74
75 /* Calculates correlation matrix X'*X */
silk_corrMatrix_FIX(const opus_int16 * x,const opus_int L,const opus_int order,const opus_int head_room,opus_int32 * XX,opus_int * rshifts,int arch)76 void silk_corrMatrix_FIX(
77 const opus_int16 *x, /* I x vector [L + order - 1] used to form data matrix X */
78 const opus_int L, /* I Length of vectors */
79 const opus_int order, /* I Max lag for correlation */
80 const opus_int head_room, /* I Desired headroom */
81 opus_int32 *XX, /* O Pointer to X'*X correlation matrix [ order x order ] */
82 opus_int *rshifts, /* I/O Right shifts of correlations */
83 int arch /* I Run-time architecture */
84 )
85 {
86 opus_int i, j, lag, rshifts_local, head_room_rshifts;
87 opus_int32 energy;
88 const opus_int16 *ptr1, *ptr2;
89
90 /* Calculate energy to find shift used to fit in 32 bits */
91 silk_sum_sqr_shift( &energy, &rshifts_local, x, L + order - 1 );
92 /* Add shifts to get the desired head room */
93 head_room_rshifts = silk_max( head_room - silk_CLZ32( energy ), 0 );
94
95 energy = silk_RSHIFT32( energy, head_room_rshifts );
96 rshifts_local += head_room_rshifts;
97
98 /* Calculate energy of first column (0) of X: X[:,0]'*X[:,0] */
99 /* Remove contribution of first order - 1 samples */
100 for( i = 0; i < order - 1; i++ ) {
101 energy -= silk_RSHIFT32( silk_SMULBB( x[ i ], x[ i ] ), rshifts_local );
102 }
103 if( rshifts_local < *rshifts ) {
104 /* Adjust energy */
105 energy = silk_RSHIFT32( energy, *rshifts - rshifts_local );
106 rshifts_local = *rshifts;
107 }
108
109 /* Calculate energy of remaining columns of X: X[:,j]'*X[:,j] */
110 /* Fill out the diagonal of the correlation matrix */
111 matrix_ptr( XX, 0, 0, order ) = energy;
112 ptr1 = &x[ order - 1 ]; /* First sample of column 0 of X */
113 for( j = 1; j < order; j++ ) {
114 energy = silk_SUB32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ L - j ], ptr1[ L - j ] ), rshifts_local ) );
115 energy = silk_ADD32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ -j ], ptr1[ -j ] ), rshifts_local ) );
116 matrix_ptr( XX, j, j, order ) = energy;
117 }
118
119 ptr2 = &x[ order - 2 ]; /* First sample of column 1 of X */
120 /* Calculate the remaining elements of the correlation matrix */
121 if( rshifts_local > 0 ) {
122 /* Right shifting used */
123 for( lag = 1; lag < order; lag++ ) {
124 /* Inner product of column 0 and column lag: X[:,0]'*X[:,lag] */
125 energy = 0;
126 for( i = 0; i < L; i++ ) {
127 energy += silk_RSHIFT32( silk_SMULBB( ptr1[ i ], ptr2[i] ), rshifts_local );
128 }
129 /* Calculate remaining off diagonal: X[:,j]'*X[:,j + lag] */
130 matrix_ptr( XX, lag, 0, order ) = energy;
131 matrix_ptr( XX, 0, lag, order ) = energy;
132 for( j = 1; j < ( order - lag ); j++ ) {
133 energy = silk_SUB32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ L - j ], ptr2[ L - j ] ), rshifts_local ) );
134 energy = silk_ADD32( energy, silk_RSHIFT32( silk_SMULBB( ptr1[ -j ], ptr2[ -j ] ), rshifts_local ) );
135 matrix_ptr( XX, lag + j, j, order ) = energy;
136 matrix_ptr( XX, j, lag + j, order ) = energy;
137 }
138 ptr2--; /* Update pointer to first sample of next column (lag) in X */
139 }
140 } else {
141 for( lag = 1; lag < order; lag++ ) {
142 /* Inner product of column 0 and column lag: X[:,0]'*X[:,lag] */
143 energy = silk_inner_prod_aligned( ptr1, ptr2, L, arch );
144 matrix_ptr( XX, lag, 0, order ) = energy;
145 matrix_ptr( XX, 0, lag, order ) = energy;
146 /* Calculate remaining off diagonal: X[:,j]'*X[:,j + lag] */
147 for( j = 1; j < ( order - lag ); j++ ) {
148 energy = silk_SUB32( energy, silk_SMULBB( ptr1[ L - j ], ptr2[ L - j ] ) );
149 energy = silk_SMLABB( energy, ptr1[ -j ], ptr2[ -j ] );
150 matrix_ptr( XX, lag + j, j, order ) = energy;
151 matrix_ptr( XX, j, lag + j, order ) = energy;
152 }
153 ptr2--;/* Update pointer to first sample of next column (lag) in X */
154 }
155 }
156 *rshifts = rshifts_local;
157 }
158
159