1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2011 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // Copyright (C) 2009 Keir Mierle <mierle@gmail.com> 6 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> 7 // Copyright (C) 2011 Timothy E. Holy <tim.holy@gmail.com > 8 // 9 // This Source Code Form is subject to the terms of the Mozilla 10 // Public License v. 2.0. If a copy of the MPL was not distributed 11 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 12 13 #ifndef EIGEN_LDLT_H 14 #define EIGEN_LDLT_H 15 16 namespace Eigen { 17 18 namespace internal { 19 template<typename MatrixType, int UpLo> struct LDLT_Traits; 20 21 // PositiveSemiDef means positive semi-definite and non-zero; same for NegativeSemiDef 22 enum SignMatrix { PositiveSemiDef, NegativeSemiDef, ZeroSign, Indefinite }; 23 } 24 25 /** \ingroup Cholesky_Module 26 * 27 * \class LDLT 28 * 29 * \brief Robust Cholesky decomposition of a matrix with pivoting 30 * 31 * \tparam _MatrixType the type of the matrix of which to compute the LDL^T Cholesky decomposition 32 * \tparam _UpLo the triangular part that will be used for the decompositon: Lower (default) or Upper. 33 * The other triangular part won't be read. 34 * 35 * Perform a robust Cholesky decomposition of a positive semidefinite or negative semidefinite 36 * matrix \f$ A \f$ such that \f$ A = P^TLDL^*P \f$, where P is a permutation matrix, L 37 * is lower triangular with a unit diagonal and D is a diagonal matrix. 38 * 39 * The decomposition uses pivoting to ensure stability, so that L will have 40 * zeros in the bottom right rank(A) - n submatrix. Avoiding the square root 41 * on D also stabilizes the computation. 42 * 43 * Remember that Cholesky decompositions are not rank-revealing. Also, do not use a Cholesky 44 * decomposition to determine whether a system of equations has a solution. 45 * 46 * This class supports the \link InplaceDecomposition inplace decomposition \endlink mechanism. 47 * 48 * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt(), class LLT 49 */ 50 template<typename _MatrixType, int _UpLo> class LDLT 51 { 52 public: 53 typedef _MatrixType MatrixType; 54 enum { 55 RowsAtCompileTime = MatrixType::RowsAtCompileTime, 56 ColsAtCompileTime = MatrixType::ColsAtCompileTime, 57 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, 58 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, 59 UpLo = _UpLo 60 }; 61 typedef typename MatrixType::Scalar Scalar; 62 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar; 63 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 64 typedef typename MatrixType::StorageIndex StorageIndex; 65 typedef Matrix<Scalar, RowsAtCompileTime, 1, 0, MaxRowsAtCompileTime, 1> TmpMatrixType; 66 67 typedef Transpositions<RowsAtCompileTime, MaxRowsAtCompileTime> TranspositionType; 68 typedef PermutationMatrix<RowsAtCompileTime, MaxRowsAtCompileTime> PermutationType; 69 70 typedef internal::LDLT_Traits<MatrixType,UpLo> Traits; 71 72 /** \brief Default Constructor. 73 * 74 * The default constructor is useful in cases in which the user intends to 75 * perform decompositions via LDLT::compute(const MatrixType&). 76 */ LDLT()77 LDLT() 78 : m_matrix(), 79 m_transpositions(), 80 m_sign(internal::ZeroSign), 81 m_isInitialized(false) 82 {} 83 84 /** \brief Default Constructor with memory preallocation 85 * 86 * Like the default constructor but with preallocation of the internal data 87 * according to the specified problem \a size. 88 * \sa LDLT() 89 */ LDLT(Index size)90 explicit LDLT(Index size) 91 : m_matrix(size, size), 92 m_transpositions(size), 93 m_temporary(size), 94 m_sign(internal::ZeroSign), 95 m_isInitialized(false) 96 {} 97 98 /** \brief Constructor with decomposition 99 * 100 * This calculates the decomposition for the input \a matrix. 101 * 102 * \sa LDLT(Index size) 103 */ 104 template<typename InputType> LDLT(const EigenBase<InputType> & matrix)105 explicit LDLT(const EigenBase<InputType>& matrix) 106 : m_matrix(matrix.rows(), matrix.cols()), 107 m_transpositions(matrix.rows()), 108 m_temporary(matrix.rows()), 109 m_sign(internal::ZeroSign), 110 m_isInitialized(false) 111 { 112 compute(matrix.derived()); 113 } 114 115 /** \brief Constructs a LDLT factorization from a given matrix 116 * 117 * This overloaded constructor is provided for \link InplaceDecomposition inplace decomposition \endlink when \c MatrixType is a Eigen::Ref. 118 * 119 * \sa LDLT(const EigenBase&) 120 */ 121 template<typename InputType> LDLT(EigenBase<InputType> & matrix)122 explicit LDLT(EigenBase<InputType>& matrix) 123 : m_matrix(matrix.derived()), 124 m_transpositions(matrix.rows()), 125 m_temporary(matrix.rows()), 126 m_sign(internal::ZeroSign), 127 m_isInitialized(false) 128 { 129 compute(matrix.derived()); 130 } 131 132 /** Clear any existing decomposition 133 * \sa rankUpdate(w,sigma) 134 */ setZero()135 void setZero() 136 { 137 m_isInitialized = false; 138 } 139 140 /** \returns a view of the upper triangular matrix U */ matrixU()141 inline typename Traits::MatrixU matrixU() const 142 { 143 eigen_assert(m_isInitialized && "LDLT is not initialized."); 144 return Traits::getU(m_matrix); 145 } 146 147 /** \returns a view of the lower triangular matrix L */ matrixL()148 inline typename Traits::MatrixL matrixL() const 149 { 150 eigen_assert(m_isInitialized && "LDLT is not initialized."); 151 return Traits::getL(m_matrix); 152 } 153 154 /** \returns the permutation matrix P as a transposition sequence. 155 */ transpositionsP()156 inline const TranspositionType& transpositionsP() const 157 { 158 eigen_assert(m_isInitialized && "LDLT is not initialized."); 159 return m_transpositions; 160 } 161 162 /** \returns the coefficients of the diagonal matrix D */ vectorD()163 inline Diagonal<const MatrixType> vectorD() const 164 { 165 eigen_assert(m_isInitialized && "LDLT is not initialized."); 166 return m_matrix.diagonal(); 167 } 168 169 /** \returns true if the matrix is positive (semidefinite) */ isPositive()170 inline bool isPositive() const 171 { 172 eigen_assert(m_isInitialized && "LDLT is not initialized."); 173 return m_sign == internal::PositiveSemiDef || m_sign == internal::ZeroSign; 174 } 175 176 /** \returns true if the matrix is negative (semidefinite) */ isNegative(void)177 inline bool isNegative(void) const 178 { 179 eigen_assert(m_isInitialized && "LDLT is not initialized."); 180 return m_sign == internal::NegativeSemiDef || m_sign == internal::ZeroSign; 181 } 182 183 /** \returns a solution x of \f$ A x = b \f$ using the current decomposition of A. 184 * 185 * This function also supports in-place solves using the syntax <tt>x = decompositionObject.solve(x)</tt> . 186 * 187 * \note_about_checking_solutions 188 * 189 * More precisely, this method solves \f$ A x = b \f$ using the decomposition \f$ A = P^T L D L^* P \f$ 190 * by solving the systems \f$ P^T y_1 = b \f$, \f$ L y_2 = y_1 \f$, \f$ D y_3 = y_2 \f$, 191 * \f$ L^* y_4 = y_3 \f$ and \f$ P x = y_4 \f$ in succession. If the matrix \f$ A \f$ is singular, then 192 * \f$ D \f$ will also be singular (all the other matrices are invertible). In that case, the 193 * least-square solution of \f$ D y_3 = y_2 \f$ is computed. This does not mean that this function 194 * computes the least-square solution of \f$ A x = b \f$ is \f$ A \f$ is singular. 195 * 196 * \sa MatrixBase::ldlt(), SelfAdjointView::ldlt() 197 */ 198 template<typename Rhs> 199 inline const Solve<LDLT, Rhs> solve(const MatrixBase<Rhs> & b)200 solve(const MatrixBase<Rhs>& b) const 201 { 202 eigen_assert(m_isInitialized && "LDLT is not initialized."); 203 eigen_assert(m_matrix.rows()==b.rows() 204 && "LDLT::solve(): invalid number of rows of the right hand side matrix b"); 205 return Solve<LDLT, Rhs>(*this, b.derived()); 206 } 207 208 template<typename Derived> 209 bool solveInPlace(MatrixBase<Derived> &bAndX) const; 210 211 template<typename InputType> 212 LDLT& compute(const EigenBase<InputType>& matrix); 213 214 /** \returns an estimate of the reciprocal condition number of the matrix of 215 * which \c *this is the LDLT decomposition. 216 */ rcond()217 RealScalar rcond() const 218 { 219 eigen_assert(m_isInitialized && "LDLT is not initialized."); 220 return internal::rcond_estimate_helper(m_l1_norm, *this); 221 } 222 223 template <typename Derived> 224 LDLT& rankUpdate(const MatrixBase<Derived>& w, const RealScalar& alpha=1); 225 226 /** \returns the internal LDLT decomposition matrix 227 * 228 * TODO: document the storage layout 229 */ matrixLDLT()230 inline const MatrixType& matrixLDLT() const 231 { 232 eigen_assert(m_isInitialized && "LDLT is not initialized."); 233 return m_matrix; 234 } 235 236 MatrixType reconstructedMatrix() const; 237 238 /** \returns the adjoint of \c *this, that is, a const reference to the decomposition itself as the underlying matrix is self-adjoint. 239 * 240 * This method is provided for compatibility with other matrix decompositions, thus enabling generic code such as: 241 * \code x = decomposition.adjoint().solve(b) \endcode 242 */ adjoint()243 const LDLT& adjoint() const { return *this; }; 244 rows()245 inline Index rows() const { return m_matrix.rows(); } cols()246 inline Index cols() const { return m_matrix.cols(); } 247 248 /** \brief Reports whether previous computation was successful. 249 * 250 * \returns \c Success if computation was succesful, 251 * \c NumericalIssue if the matrix.appears to be negative. 252 */ info()253 ComputationInfo info() const 254 { 255 eigen_assert(m_isInitialized && "LDLT is not initialized."); 256 return m_info; 257 } 258 259 #ifndef EIGEN_PARSED_BY_DOXYGEN 260 template<typename RhsType, typename DstType> 261 EIGEN_DEVICE_FUNC 262 void _solve_impl(const RhsType &rhs, DstType &dst) const; 263 #endif 264 265 protected: 266 check_template_parameters()267 static void check_template_parameters() 268 { 269 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar); 270 } 271 272 /** \internal 273 * Used to compute and store the Cholesky decomposition A = L D L^* = U^* D U. 274 * The strict upper part is used during the decomposition, the strict lower 275 * part correspond to the coefficients of L (its diagonal is equal to 1 and 276 * is not stored), and the diagonal entries correspond to D. 277 */ 278 MatrixType m_matrix; 279 RealScalar m_l1_norm; 280 TranspositionType m_transpositions; 281 TmpMatrixType m_temporary; 282 internal::SignMatrix m_sign; 283 bool m_isInitialized; 284 ComputationInfo m_info; 285 }; 286 287 namespace internal { 288 289 template<int UpLo> struct ldlt_inplace; 290 291 template<> struct ldlt_inplace<Lower> 292 { 293 template<typename MatrixType, typename TranspositionType, typename Workspace> 294 static bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) 295 { 296 using std::abs; 297 typedef typename MatrixType::Scalar Scalar; 298 typedef typename MatrixType::RealScalar RealScalar; 299 typedef typename TranspositionType::StorageIndex IndexType; 300 eigen_assert(mat.rows()==mat.cols()); 301 const Index size = mat.rows(); 302 bool found_zero_pivot = false; 303 bool ret = true; 304 305 if (size <= 1) 306 { 307 transpositions.setIdentity(); 308 if (numext::real(mat.coeff(0,0)) > static_cast<RealScalar>(0) ) sign = PositiveSemiDef; 309 else if (numext::real(mat.coeff(0,0)) < static_cast<RealScalar>(0)) sign = NegativeSemiDef; 310 else sign = ZeroSign; 311 return true; 312 } 313 314 for (Index k = 0; k < size; ++k) 315 { 316 // Find largest diagonal element 317 Index index_of_biggest_in_corner; 318 mat.diagonal().tail(size-k).cwiseAbs().maxCoeff(&index_of_biggest_in_corner); 319 index_of_biggest_in_corner += k; 320 321 transpositions.coeffRef(k) = IndexType(index_of_biggest_in_corner); 322 if(k != index_of_biggest_in_corner) 323 { 324 // apply the transposition while taking care to consider only 325 // the lower triangular part 326 Index s = size-index_of_biggest_in_corner-1; // trailing size after the biggest element 327 mat.row(k).head(k).swap(mat.row(index_of_biggest_in_corner).head(k)); 328 mat.col(k).tail(s).swap(mat.col(index_of_biggest_in_corner).tail(s)); 329 std::swap(mat.coeffRef(k,k),mat.coeffRef(index_of_biggest_in_corner,index_of_biggest_in_corner)); 330 for(Index i=k+1;i<index_of_biggest_in_corner;++i) 331 { 332 Scalar tmp = mat.coeffRef(i,k); 333 mat.coeffRef(i,k) = numext::conj(mat.coeffRef(index_of_biggest_in_corner,i)); 334 mat.coeffRef(index_of_biggest_in_corner,i) = numext::conj(tmp); 335 } 336 if(NumTraits<Scalar>::IsComplex) 337 mat.coeffRef(index_of_biggest_in_corner,k) = numext::conj(mat.coeff(index_of_biggest_in_corner,k)); 338 } 339 340 // partition the matrix: 341 // A00 | - | - 342 // lu = A10 | A11 | - 343 // A20 | A21 | A22 344 Index rs = size - k - 1; 345 Block<MatrixType,Dynamic,1> A21(mat,k+1,k,rs,1); 346 Block<MatrixType,1,Dynamic> A10(mat,k,0,1,k); 347 Block<MatrixType,Dynamic,Dynamic> A20(mat,k+1,0,rs,k); 348 349 if(k>0) 350 { 351 temp.head(k) = mat.diagonal().real().head(k).asDiagonal() * A10.adjoint(); 352 mat.coeffRef(k,k) -= (A10 * temp.head(k)).value(); 353 if(rs>0) 354 A21.noalias() -= A20 * temp.head(k); 355 } 356 357 // In some previous versions of Eigen (e.g., 3.2.1), the scaling was omitted if the pivot 358 // was smaller than the cutoff value. However, since LDLT is not rank-revealing 359 // we should only make sure that we do not introduce INF or NaN values. 360 // Remark that LAPACK also uses 0 as the cutoff value. 361 RealScalar realAkk = numext::real(mat.coeffRef(k,k)); 362 bool pivot_is_valid = (abs(realAkk) > RealScalar(0)); 363 364 if(k==0 && !pivot_is_valid) 365 { 366 // The entire diagonal is zero, there is nothing more to do 367 // except filling the transpositions, and checking whether the matrix is zero. 368 sign = ZeroSign; 369 for(Index j = 0; j<size; ++j) 370 { 371 transpositions.coeffRef(j) = IndexType(j); 372 ret = ret && (mat.col(j).tail(size-j-1).array()==Scalar(0)).all(); 373 } 374 return ret; 375 } 376 377 if((rs>0) && pivot_is_valid) 378 A21 /= realAkk; 379 380 if(found_zero_pivot && pivot_is_valid) ret = false; // factorization failed 381 else if(!pivot_is_valid) found_zero_pivot = true; 382 383 if (sign == PositiveSemiDef) { 384 if (realAkk < static_cast<RealScalar>(0)) sign = Indefinite; 385 } else if (sign == NegativeSemiDef) { 386 if (realAkk > static_cast<RealScalar>(0)) sign = Indefinite; 387 } else if (sign == ZeroSign) { 388 if (realAkk > static_cast<RealScalar>(0)) sign = PositiveSemiDef; 389 else if (realAkk < static_cast<RealScalar>(0)) sign = NegativeSemiDef; 390 } 391 } 392 393 return ret; 394 } 395 396 // Reference for the algorithm: Davis and Hager, "Multiple Rank 397 // Modifications of a Sparse Cholesky Factorization" (Algorithm 1) 398 // Trivial rearrangements of their computations (Timothy E. Holy) 399 // allow their algorithm to work for rank-1 updates even if the 400 // original matrix is not of full rank. 401 // Here only rank-1 updates are implemented, to reduce the 402 // requirement for intermediate storage and improve accuracy 403 template<typename MatrixType, typename WDerived> 404 static bool updateInPlace(MatrixType& mat, MatrixBase<WDerived>& w, const typename MatrixType::RealScalar& sigma=1) 405 { 406 using numext::isfinite; 407 typedef typename MatrixType::Scalar Scalar; 408 typedef typename MatrixType::RealScalar RealScalar; 409 410 const Index size = mat.rows(); 411 eigen_assert(mat.cols() == size && w.size()==size); 412 413 RealScalar alpha = 1; 414 415 // Apply the update 416 for (Index j = 0; j < size; j++) 417 { 418 // Check for termination due to an original decomposition of low-rank 419 if (!(isfinite)(alpha)) 420 break; 421 422 // Update the diagonal terms 423 RealScalar dj = numext::real(mat.coeff(j,j)); 424 Scalar wj = w.coeff(j); 425 RealScalar swj2 = sigma*numext::abs2(wj); 426 RealScalar gamma = dj*alpha + swj2; 427 428 mat.coeffRef(j,j) += swj2/alpha; 429 alpha += swj2/dj; 430 431 432 // Update the terms of L 433 Index rs = size-j-1; 434 w.tail(rs) -= wj * mat.col(j).tail(rs); 435 if(gamma != 0) 436 mat.col(j).tail(rs) += (sigma*numext::conj(wj)/gamma)*w.tail(rs); 437 } 438 return true; 439 } 440 441 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> 442 static bool update(MatrixType& mat, const TranspositionType& transpositions, Workspace& tmp, const WType& w, const typename MatrixType::RealScalar& sigma=1) 443 { 444 // Apply the permutation to the input w 445 tmp = transpositions * w; 446 447 return ldlt_inplace<Lower>::updateInPlace(mat,tmp,sigma); 448 } 449 }; 450 451 template<> struct ldlt_inplace<Upper> 452 { 453 template<typename MatrixType, typename TranspositionType, typename Workspace> 454 static EIGEN_STRONG_INLINE bool unblocked(MatrixType& mat, TranspositionType& transpositions, Workspace& temp, SignMatrix& sign) 455 { 456 Transpose<MatrixType> matt(mat); 457 return ldlt_inplace<Lower>::unblocked(matt, transpositions, temp, sign); 458 } 459 460 template<typename MatrixType, typename TranspositionType, typename Workspace, typename WType> 461 static EIGEN_STRONG_INLINE bool update(MatrixType& mat, TranspositionType& transpositions, Workspace& tmp, WType& w, const typename MatrixType::RealScalar& sigma=1) 462 { 463 Transpose<MatrixType> matt(mat); 464 return ldlt_inplace<Lower>::update(matt, transpositions, tmp, w.conjugate(), sigma); 465 } 466 }; 467 468 template<typename MatrixType> struct LDLT_Traits<MatrixType,Lower> 469 { 470 typedef const TriangularView<const MatrixType, UnitLower> MatrixL; 471 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitUpper> MatrixU; 472 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m); } 473 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m.adjoint()); } 474 }; 475 476 template<typename MatrixType> struct LDLT_Traits<MatrixType,Upper> 477 { 478 typedef const TriangularView<const typename MatrixType::AdjointReturnType, UnitLower> MatrixL; 479 typedef const TriangularView<const MatrixType, UnitUpper> MatrixU; 480 static inline MatrixL getL(const MatrixType& m) { return MatrixL(m.adjoint()); } 481 static inline MatrixU getU(const MatrixType& m) { return MatrixU(m); } 482 }; 483 484 } // end namespace internal 485 486 /** Compute / recompute the LDLT decomposition A = L D L^* = U^* D U of \a matrix 487 */ 488 template<typename MatrixType, int _UpLo> 489 template<typename InputType> 490 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::compute(const EigenBase<InputType>& a) 491 { 492 check_template_parameters(); 493 494 eigen_assert(a.rows()==a.cols()); 495 const Index size = a.rows(); 496 497 m_matrix = a.derived(); 498 499 // Compute matrix L1 norm = max abs column sum. 500 m_l1_norm = RealScalar(0); 501 // TODO move this code to SelfAdjointView 502 for (Index col = 0; col < size; ++col) { 503 RealScalar abs_col_sum; 504 if (_UpLo == Lower) 505 abs_col_sum = m_matrix.col(col).tail(size - col).template lpNorm<1>() + m_matrix.row(col).head(col).template lpNorm<1>(); 506 else 507 abs_col_sum = m_matrix.col(col).head(col).template lpNorm<1>() + m_matrix.row(col).tail(size - col).template lpNorm<1>(); 508 if (abs_col_sum > m_l1_norm) 509 m_l1_norm = abs_col_sum; 510 } 511 512 m_transpositions.resize(size); 513 m_isInitialized = false; 514 m_temporary.resize(size); 515 m_sign = internal::ZeroSign; 516 517 m_info = internal::ldlt_inplace<UpLo>::unblocked(m_matrix, m_transpositions, m_temporary, m_sign) ? Success : NumericalIssue; 518 519 m_isInitialized = true; 520 return *this; 521 } 522 523 /** Update the LDLT decomposition: given A = L D L^T, efficiently compute the decomposition of A + sigma w w^T. 524 * \param w a vector to be incorporated into the decomposition. 525 * \param sigma a scalar, +1 for updates and -1 for "downdates," which correspond to removing previously-added column vectors. Optional; default value is +1. 526 * \sa setZero() 527 */ 528 template<typename MatrixType, int _UpLo> 529 template<typename Derived> 530 LDLT<MatrixType,_UpLo>& LDLT<MatrixType,_UpLo>::rankUpdate(const MatrixBase<Derived>& w, const typename LDLT<MatrixType,_UpLo>::RealScalar& sigma) 531 { 532 typedef typename TranspositionType::StorageIndex IndexType; 533 const Index size = w.rows(); 534 if (m_isInitialized) 535 { 536 eigen_assert(m_matrix.rows()==size); 537 } 538 else 539 { 540 m_matrix.resize(size,size); 541 m_matrix.setZero(); 542 m_transpositions.resize(size); 543 for (Index i = 0; i < size; i++) 544 m_transpositions.coeffRef(i) = IndexType(i); 545 m_temporary.resize(size); 546 m_sign = sigma>=0 ? internal::PositiveSemiDef : internal::NegativeSemiDef; 547 m_isInitialized = true; 548 } 549 550 internal::ldlt_inplace<UpLo>::update(m_matrix, m_transpositions, m_temporary, w, sigma); 551 552 return *this; 553 } 554 555 #ifndef EIGEN_PARSED_BY_DOXYGEN 556 template<typename _MatrixType, int _UpLo> 557 template<typename RhsType, typename DstType> 558 void LDLT<_MatrixType,_UpLo>::_solve_impl(const RhsType &rhs, DstType &dst) const 559 { 560 eigen_assert(rhs.rows() == rows()); 561 // dst = P b 562 dst = m_transpositions * rhs; 563 564 // dst = L^-1 (P b) 565 matrixL().solveInPlace(dst); 566 567 // dst = D^-1 (L^-1 P b) 568 // more precisely, use pseudo-inverse of D (see bug 241) 569 using std::abs; 570 const typename Diagonal<const MatrixType>::RealReturnType vecD(vectorD()); 571 // In some previous versions, tolerance was set to the max of 1/highest and the maximal diagonal entry * epsilon 572 // as motivated by LAPACK's xGELSS: 573 // RealScalar tolerance = numext::maxi(vecD.array().abs().maxCoeff() * NumTraits<RealScalar>::epsilon(),RealScalar(1) / NumTraits<RealScalar>::highest()); 574 // However, LDLT is not rank revealing, and so adjusting the tolerance wrt to the highest 575 // diagonal element is not well justified and leads to numerical issues in some cases. 576 // Moreover, Lapack's xSYTRS routines use 0 for the tolerance. 577 RealScalar tolerance = RealScalar(1) / NumTraits<RealScalar>::highest(); 578 579 for (Index i = 0; i < vecD.size(); ++i) 580 { 581 if(abs(vecD(i)) > tolerance) 582 dst.row(i) /= vecD(i); 583 else 584 dst.row(i).setZero(); 585 } 586 587 // dst = L^-T (D^-1 L^-1 P b) 588 matrixU().solveInPlace(dst); 589 590 // dst = P^-1 (L^-T D^-1 L^-1 P b) = A^-1 b 591 dst = m_transpositions.transpose() * dst; 592 } 593 #endif 594 595 /** \internal use x = ldlt_object.solve(x); 596 * 597 * This is the \em in-place version of solve(). 598 * 599 * \param bAndX represents both the right-hand side matrix b and result x. 600 * 601 * \returns true always! If you need to check for existence of solutions, use another decomposition like LU, QR, or SVD. 602 * 603 * This version avoids a copy when the right hand side matrix b is not 604 * needed anymore. 605 * 606 * \sa LDLT::solve(), MatrixBase::ldlt() 607 */ 608 template<typename MatrixType,int _UpLo> 609 template<typename Derived> 610 bool LDLT<MatrixType,_UpLo>::solveInPlace(MatrixBase<Derived> &bAndX) const 611 { 612 eigen_assert(m_isInitialized && "LDLT is not initialized."); 613 eigen_assert(m_matrix.rows() == bAndX.rows()); 614 615 bAndX = this->solve(bAndX); 616 617 return true; 618 } 619 620 /** \returns the matrix represented by the decomposition, 621 * i.e., it returns the product: P^T L D L^* P. 622 * This function is provided for debug purpose. */ 623 template<typename MatrixType, int _UpLo> 624 MatrixType LDLT<MatrixType,_UpLo>::reconstructedMatrix() const 625 { 626 eigen_assert(m_isInitialized && "LDLT is not initialized."); 627 const Index size = m_matrix.rows(); 628 MatrixType res(size,size); 629 630 // P 631 res.setIdentity(); 632 res = transpositionsP() * res; 633 // L^* P 634 res = matrixU() * res; 635 // D(L^*P) 636 res = vectorD().real().asDiagonal() * res; 637 // L(DL^*P) 638 res = matrixL() * res; 639 // P^T (LDL^*P) 640 res = transpositionsP().transpose() * res; 641 642 return res; 643 } 644 645 /** \cholesky_module 646 * \returns the Cholesky decomposition with full pivoting without square root of \c *this 647 * \sa MatrixBase::ldlt() 648 */ 649 template<typename MatrixType, unsigned int UpLo> 650 inline const LDLT<typename SelfAdjointView<MatrixType, UpLo>::PlainObject, UpLo> 651 SelfAdjointView<MatrixType, UpLo>::ldlt() const 652 { 653 return LDLT<PlainObject,UpLo>(m_matrix); 654 } 655 656 /** \cholesky_module 657 * \returns the Cholesky decomposition with full pivoting without square root of \c *this 658 * \sa SelfAdjointView::ldlt() 659 */ 660 template<typename Derived> 661 inline const LDLT<typename MatrixBase<Derived>::PlainObject> 662 MatrixBase<Derived>::ldlt() const 663 { 664 return LDLT<PlainObject>(derived()); 665 } 666 667 } // end namespace Eigen 668 669 #endif // EIGEN_LDLT_H 670