1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // Copyright (C) 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> 6 // 7 // This Source Code Form is subject to the terms of the Mozilla 8 // Public License v. 2.0. If a copy of the MPL was not distributed 9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 10 11 #ifndef EIGEN_TRIDIAGONALIZATION_H 12 #define EIGEN_TRIDIAGONALIZATION_H 13 14 namespace Eigen { 15 16 namespace internal { 17 18 template<typename MatrixType> struct TridiagonalizationMatrixTReturnType; 19 template<typename MatrixType> 20 struct traits<TridiagonalizationMatrixTReturnType<MatrixType> > 21 : public traits<typename MatrixType::PlainObject> 22 { 23 typedef typename MatrixType::PlainObject ReturnType; // FIXME shall it be a BandMatrix? 24 enum { Flags = 0 }; 25 }; 26 27 template<typename MatrixType, typename CoeffVectorType> 28 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs); 29 } 30 31 /** \eigenvalues_module \ingroup Eigenvalues_Module 32 * 33 * 34 * \class Tridiagonalization 35 * 36 * \brief Tridiagonal decomposition of a selfadjoint matrix 37 * 38 * \tparam _MatrixType the type of the matrix of which we are computing the 39 * tridiagonal decomposition; this is expected to be an instantiation of the 40 * Matrix class template. 41 * 42 * This class performs a tridiagonal decomposition of a selfadjoint matrix \f$ A \f$ such that: 43 * \f$ A = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real symmetric tridiagonal matrix. 44 * 45 * A tridiagonal matrix is a matrix which has nonzero elements only on the 46 * main diagonal and the first diagonal below and above it. The Hessenberg 47 * decomposition of a selfadjoint matrix is in fact a tridiagonal 48 * decomposition. This class is used in SelfAdjointEigenSolver to compute the 49 * eigenvalues and eigenvectors of a selfadjoint matrix. 50 * 51 * Call the function compute() to compute the tridiagonal decomposition of a 52 * given matrix. Alternatively, you can use the Tridiagonalization(const MatrixType&) 53 * constructor which computes the tridiagonal Schur decomposition at 54 * construction time. Once the decomposition is computed, you can use the 55 * matrixQ() and matrixT() functions to retrieve the matrices Q and T in the 56 * decomposition. 57 * 58 * The documentation of Tridiagonalization(const MatrixType&) contains an 59 * example of the typical use of this class. 60 * 61 * \sa class HessenbergDecomposition, class SelfAdjointEigenSolver 62 */ 63 template<typename _MatrixType> class Tridiagonalization 64 { 65 public: 66 67 /** \brief Synonym for the template parameter \p _MatrixType. */ 68 typedef _MatrixType MatrixType; 69 70 typedef typename MatrixType::Scalar Scalar; 71 typedef typename NumTraits<Scalar>::Real RealScalar; 72 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3 73 74 enum { 75 Size = MatrixType::RowsAtCompileTime, 76 SizeMinusOne = Size == Dynamic ? Dynamic : (Size > 1 ? Size - 1 : 1), 77 Options = MatrixType::Options, 78 MaxSize = MatrixType::MaxRowsAtCompileTime, 79 MaxSizeMinusOne = MaxSize == Dynamic ? Dynamic : (MaxSize > 1 ? MaxSize - 1 : 1) 80 }; 81 82 typedef Matrix<Scalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> CoeffVectorType; 83 typedef typename internal::plain_col_type<MatrixType, RealScalar>::type DiagonalType; 84 typedef Matrix<RealScalar, SizeMinusOne, 1, Options & ~RowMajor, MaxSizeMinusOne, 1> SubDiagonalType; 85 typedef typename internal::remove_all<typename MatrixType::RealReturnType>::type MatrixTypeRealView; 86 typedef internal::TridiagonalizationMatrixTReturnType<MatrixTypeRealView> MatrixTReturnType; 87 88 typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, 89 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type, 90 const Diagonal<const MatrixType> 91 >::type DiagonalReturnType; 92 93 typedef typename internal::conditional<NumTraits<Scalar>::IsComplex, 94 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType, -1>::RealReturnType>::type, 95 const Diagonal<const MatrixType, -1> 96 >::type SubDiagonalReturnType; 97 98 /** \brief Return type of matrixQ() */ 99 typedef HouseholderSequence<MatrixType,typename internal::remove_all<typename CoeffVectorType::ConjugateReturnType>::type> HouseholderSequenceType; 100 101 /** \brief Default constructor. 102 * 103 * \param [in] size Positive integer, size of the matrix whose tridiagonal 104 * decomposition will be computed. 105 * 106 * The default constructor is useful in cases in which the user intends to 107 * perform decompositions via compute(). The \p size parameter is only 108 * used as a hint. It is not an error to give a wrong \p size, but it may 109 * impair performance. 110 * 111 * \sa compute() for an example. 112 */ 113 explicit Tridiagonalization(Index size = Size==Dynamic ? 2 : Size) 114 : m_matrix(size,size), 115 m_hCoeffs(size > 1 ? size-1 : 1), 116 m_isInitialized(false) 117 {} 118 119 /** \brief Constructor; computes tridiagonal decomposition of given matrix. 120 * 121 * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition 122 * is to be computed. 123 * 124 * This constructor calls compute() to compute the tridiagonal decomposition. 125 * 126 * Example: \include Tridiagonalization_Tridiagonalization_MatrixType.cpp 127 * Output: \verbinclude Tridiagonalization_Tridiagonalization_MatrixType.out 128 */ 129 template<typename InputType> 130 explicit Tridiagonalization(const EigenBase<InputType>& matrix) 131 : m_matrix(matrix.derived()), 132 m_hCoeffs(matrix.cols() > 1 ? matrix.cols()-1 : 1), 133 m_isInitialized(false) 134 { 135 internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); 136 m_isInitialized = true; 137 } 138 139 /** \brief Computes tridiagonal decomposition of given matrix. 140 * 141 * \param[in] matrix Selfadjoint matrix whose tridiagonal decomposition 142 * is to be computed. 143 * \returns Reference to \c *this 144 * 145 * The tridiagonal decomposition is computed by bringing the columns of 146 * the matrix successively in the required form using Householder 147 * reflections. The cost is \f$ 4n^3/3 \f$ flops, where \f$ n \f$ denotes 148 * the size of the given matrix. 149 * 150 * This method reuses of the allocated data in the Tridiagonalization 151 * object, if the size of the matrix does not change. 152 * 153 * Example: \include Tridiagonalization_compute.cpp 154 * Output: \verbinclude Tridiagonalization_compute.out 155 */ 156 template<typename InputType> 157 Tridiagonalization& compute(const EigenBase<InputType>& matrix) 158 { 159 m_matrix = matrix.derived(); 160 m_hCoeffs.resize(matrix.rows()-1, 1); 161 internal::tridiagonalization_inplace(m_matrix, m_hCoeffs); 162 m_isInitialized = true; 163 return *this; 164 } 165 166 /** \brief Returns the Householder coefficients. 167 * 168 * \returns a const reference to the vector of Householder coefficients 169 * 170 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 171 * the member function compute(const MatrixType&) has been called before 172 * to compute the tridiagonal decomposition of a matrix. 173 * 174 * The Householder coefficients allow the reconstruction of the matrix 175 * \f$ Q \f$ in the tridiagonal decomposition from the packed data. 176 * 177 * Example: \include Tridiagonalization_householderCoefficients.cpp 178 * Output: \verbinclude Tridiagonalization_householderCoefficients.out 179 * 180 * \sa packedMatrix(), \ref Householder_Module "Householder module" 181 */ 182 inline CoeffVectorType householderCoefficients() const 183 { 184 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 185 return m_hCoeffs; 186 } 187 188 /** \brief Returns the internal representation of the decomposition 189 * 190 * \returns a const reference to a matrix with the internal representation 191 * of the decomposition. 192 * 193 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 194 * the member function compute(const MatrixType&) has been called before 195 * to compute the tridiagonal decomposition of a matrix. 196 * 197 * The returned matrix contains the following information: 198 * - the strict upper triangular part is equal to the input matrix A. 199 * - the diagonal and lower sub-diagonal represent the real tridiagonal 200 * symmetric matrix T. 201 * - the rest of the lower part contains the Householder vectors that, 202 * combined with Householder coefficients returned by 203 * householderCoefficients(), allows to reconstruct the matrix Q as 204 * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. 205 * Here, the matrices \f$ H_i \f$ are the Householder transformations 206 * \f$ H_i = (I - h_i v_i v_i^T) \f$ 207 * where \f$ h_i \f$ is the \f$ i \f$th Householder coefficient and 208 * \f$ v_i \f$ is the Householder vector defined by 209 * \f$ v_i = [ 0, \ldots, 0, 1, M(i+2,i), \ldots, M(N-1,i) ]^T \f$ 210 * with M the matrix returned by this function. 211 * 212 * See LAPACK for further details on this packed storage. 213 * 214 * Example: \include Tridiagonalization_packedMatrix.cpp 215 * Output: \verbinclude Tridiagonalization_packedMatrix.out 216 * 217 * \sa householderCoefficients() 218 */ 219 inline const MatrixType& packedMatrix() const 220 { 221 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 222 return m_matrix; 223 } 224 225 /** \brief Returns the unitary matrix Q in the decomposition 226 * 227 * \returns object representing the matrix Q 228 * 229 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 230 * the member function compute(const MatrixType&) has been called before 231 * to compute the tridiagonal decomposition of a matrix. 232 * 233 * This function returns a light-weight object of template class 234 * HouseholderSequence. You can either apply it directly to a matrix or 235 * you can convert it to a matrix of type #MatrixType. 236 * 237 * \sa Tridiagonalization(const MatrixType&) for an example, 238 * matrixT(), class HouseholderSequence 239 */ 240 HouseholderSequenceType matrixQ() const 241 { 242 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 243 return HouseholderSequenceType(m_matrix, m_hCoeffs.conjugate()) 244 .setLength(m_matrix.rows() - 1) 245 .setShift(1); 246 } 247 248 /** \brief Returns an expression of the tridiagonal matrix T in the decomposition 249 * 250 * \returns expression object representing the matrix T 251 * 252 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 253 * the member function compute(const MatrixType&) has been called before 254 * to compute the tridiagonal decomposition of a matrix. 255 * 256 * Currently, this function can be used to extract the matrix T from internal 257 * data and copy it to a dense matrix object. In most cases, it may be 258 * sufficient to directly use the packed matrix or the vector expressions 259 * returned by diagonal() and subDiagonal() instead of creating a new 260 * dense copy matrix with this function. 261 * 262 * \sa Tridiagonalization(const MatrixType&) for an example, 263 * matrixQ(), packedMatrix(), diagonal(), subDiagonal() 264 */ 265 MatrixTReturnType matrixT() const 266 { 267 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 268 return MatrixTReturnType(m_matrix.real()); 269 } 270 271 /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition. 272 * 273 * \returns expression representing the diagonal of T 274 * 275 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 276 * the member function compute(const MatrixType&) has been called before 277 * to compute the tridiagonal decomposition of a matrix. 278 * 279 * Example: \include Tridiagonalization_diagonal.cpp 280 * Output: \verbinclude Tridiagonalization_diagonal.out 281 * 282 * \sa matrixT(), subDiagonal() 283 */ 284 DiagonalReturnType diagonal() const; 285 286 /** \brief Returns the subdiagonal of the tridiagonal matrix T in the decomposition. 287 * 288 * \returns expression representing the subdiagonal of T 289 * 290 * \pre Either the constructor Tridiagonalization(const MatrixType&) or 291 * the member function compute(const MatrixType&) has been called before 292 * to compute the tridiagonal decomposition of a matrix. 293 * 294 * \sa diagonal() for an example, matrixT() 295 */ 296 SubDiagonalReturnType subDiagonal() const; 297 298 protected: 299 300 MatrixType m_matrix; 301 CoeffVectorType m_hCoeffs; 302 bool m_isInitialized; 303 }; 304 305 template<typename MatrixType> 306 typename Tridiagonalization<MatrixType>::DiagonalReturnType 307 Tridiagonalization<MatrixType>::diagonal() const 308 { 309 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 310 return m_matrix.diagonal().real(); 311 } 312 313 template<typename MatrixType> 314 typename Tridiagonalization<MatrixType>::SubDiagonalReturnType 315 Tridiagonalization<MatrixType>::subDiagonal() const 316 { 317 eigen_assert(m_isInitialized && "Tridiagonalization is not initialized."); 318 return m_matrix.template diagonal<-1>().real(); 319 } 320 321 namespace internal { 322 323 /** \internal 324 * Performs a tridiagonal decomposition of the selfadjoint matrix \a matA in-place. 325 * 326 * \param[in,out] matA On input the selfadjoint matrix. Only the \b lower triangular part is referenced. 327 * On output, the strict upper part is left unchanged, and the lower triangular part 328 * represents the T and Q matrices in packed format has detailed below. 329 * \param[out] hCoeffs returned Householder coefficients (see below) 330 * 331 * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal 332 * and lower sub-diagonal of the matrix \a matA. 333 * The unitary matrix Q is represented in a compact way as a product of 334 * Householder reflectors \f$ H_i \f$ such that: 335 * \f$ Q = H_{N-1} \ldots H_1 H_0 \f$. 336 * The Householder reflectors are defined as 337 * \f$ H_i = (I - h_i v_i v_i^T) \f$ 338 * where \f$ h_i = hCoeffs[i]\f$ is the \f$ i \f$th Householder coefficient and 339 * \f$ v_i \f$ is the Householder vector defined by 340 * \f$ v_i = [ 0, \ldots, 0, 1, matA(i+2,i), \ldots, matA(N-1,i) ]^T \f$. 341 * 342 * Implemented from Golub's "Matrix Computations", algorithm 8.3.1. 343 * 344 * \sa Tridiagonalization::packedMatrix() 345 */ 346 template<typename MatrixType, typename CoeffVectorType> 347 void tridiagonalization_inplace(MatrixType& matA, CoeffVectorType& hCoeffs) 348 { 349 using numext::conj; 350 typedef typename MatrixType::Scalar Scalar; 351 typedef typename MatrixType::RealScalar RealScalar; 352 Index n = matA.rows(); 353 eigen_assert(n==matA.cols()); 354 eigen_assert(n==hCoeffs.size()+1 || n==1); 355 356 for (Index i = 0; i<n-1; ++i) 357 { 358 Index remainingSize = n-i-1; 359 RealScalar beta; 360 Scalar h; 361 matA.col(i).tail(remainingSize).makeHouseholderInPlace(h, beta); 362 363 // Apply similarity transformation to remaining columns, 364 // i.e., A = H A H' where H = I - h v v' and v = matA.col(i).tail(n-i-1) 365 matA.col(i).coeffRef(i+1) = 1; 366 367 hCoeffs.tail(n-i-1).noalias() = (matA.bottomRightCorner(remainingSize,remainingSize).template selfadjointView<Lower>() 368 * (conj(h) * matA.col(i).tail(remainingSize))); 369 370 hCoeffs.tail(n-i-1) += (conj(h)*RealScalar(-0.5)*(hCoeffs.tail(remainingSize).dot(matA.col(i).tail(remainingSize)))) * matA.col(i).tail(n-i-1); 371 372 matA.bottomRightCorner(remainingSize, remainingSize).template selfadjointView<Lower>() 373 .rankUpdate(matA.col(i).tail(remainingSize), hCoeffs.tail(remainingSize), Scalar(-1)); 374 375 matA.col(i).coeffRef(i+1) = beta; 376 hCoeffs.coeffRef(i) = h; 377 } 378 } 379 380 // forward declaration, implementation at the end of this file 381 template<typename MatrixType, 382 int Size=MatrixType::ColsAtCompileTime, 383 bool IsComplex=NumTraits<typename MatrixType::Scalar>::IsComplex> 384 struct tridiagonalization_inplace_selector; 385 386 /** \brief Performs a full tridiagonalization in place 387 * 388 * \param[in,out] mat On input, the selfadjoint matrix whose tridiagonal 389 * decomposition is to be computed. Only the lower triangular part referenced. 390 * The rest is left unchanged. On output, the orthogonal matrix Q 391 * in the decomposition if \p extractQ is true. 392 * \param[out] diag The diagonal of the tridiagonal matrix T in the 393 * decomposition. 394 * \param[out] subdiag The subdiagonal of the tridiagonal matrix T in 395 * the decomposition. 396 * \param[in] extractQ If true, the orthogonal matrix Q in the 397 * decomposition is computed and stored in \p mat. 398 * 399 * Computes the tridiagonal decomposition of the selfadjoint matrix \p mat in place 400 * such that \f$ mat = Q T Q^* \f$ where \f$ Q \f$ is unitary and \f$ T \f$ a real 401 * symmetric tridiagonal matrix. 402 * 403 * The tridiagonal matrix T is passed to the output parameters \p diag and \p subdiag. If 404 * \p extractQ is true, then the orthogonal matrix Q is passed to \p mat. Otherwise the lower 405 * part of the matrix \p mat is destroyed. 406 * 407 * The vectors \p diag and \p subdiag are not resized. The function 408 * assumes that they are already of the correct size. The length of the 409 * vector \p diag should equal the number of rows in \p mat, and the 410 * length of the vector \p subdiag should be one left. 411 * 412 * This implementation contains an optimized path for 3-by-3 matrices 413 * which is especially useful for plane fitting. 414 * 415 * \note Currently, it requires two temporary vectors to hold the intermediate 416 * Householder coefficients, and to reconstruct the matrix Q from the Householder 417 * reflectors. 418 * 419 * Example (this uses the same matrix as the example in 420 * Tridiagonalization::Tridiagonalization(const MatrixType&)): 421 * \include Tridiagonalization_decomposeInPlace.cpp 422 * Output: \verbinclude Tridiagonalization_decomposeInPlace.out 423 * 424 * \sa class Tridiagonalization 425 */ 426 template<typename MatrixType, typename DiagonalType, typename SubDiagonalType> 427 void tridiagonalization_inplace(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) 428 { 429 eigen_assert(mat.cols()==mat.rows() && diag.size()==mat.rows() && subdiag.size()==mat.rows()-1); 430 tridiagonalization_inplace_selector<MatrixType>::run(mat, diag, subdiag, extractQ); 431 } 432 433 /** \internal 434 * General full tridiagonalization 435 */ 436 template<typename MatrixType, int Size, bool IsComplex> 437 struct tridiagonalization_inplace_selector 438 { 439 typedef typename Tridiagonalization<MatrixType>::CoeffVectorType CoeffVectorType; 440 typedef typename Tridiagonalization<MatrixType>::HouseholderSequenceType HouseholderSequenceType; 441 template<typename DiagonalType, typename SubDiagonalType> 442 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) 443 { 444 CoeffVectorType hCoeffs(mat.cols()-1); 445 tridiagonalization_inplace(mat,hCoeffs); 446 diag = mat.diagonal().real(); 447 subdiag = mat.template diagonal<-1>().real(); 448 if(extractQ) 449 mat = HouseholderSequenceType(mat, hCoeffs.conjugate()) 450 .setLength(mat.rows() - 1) 451 .setShift(1); 452 } 453 }; 454 455 /** \internal 456 * Specialization for 3x3 real matrices. 457 * Especially useful for plane fitting. 458 */ 459 template<typename MatrixType> 460 struct tridiagonalization_inplace_selector<MatrixType,3,false> 461 { 462 typedef typename MatrixType::Scalar Scalar; 463 typedef typename MatrixType::RealScalar RealScalar; 464 465 template<typename DiagonalType, typename SubDiagonalType> 466 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType& subdiag, bool extractQ) 467 { 468 using std::sqrt; 469 const RealScalar tol = (std::numeric_limits<RealScalar>::min)(); 470 diag[0] = mat(0,0); 471 RealScalar v1norm2 = numext::abs2(mat(2,0)); 472 if(v1norm2 <= tol) 473 { 474 diag[1] = mat(1,1); 475 diag[2] = mat(2,2); 476 subdiag[0] = mat(1,0); 477 subdiag[1] = mat(2,1); 478 if (extractQ) 479 mat.setIdentity(); 480 } 481 else 482 { 483 RealScalar beta = sqrt(numext::abs2(mat(1,0)) + v1norm2); 484 RealScalar invBeta = RealScalar(1)/beta; 485 Scalar m01 = mat(1,0) * invBeta; 486 Scalar m02 = mat(2,0) * invBeta; 487 Scalar q = RealScalar(2)*m01*mat(2,1) + m02*(mat(2,2) - mat(1,1)); 488 diag[1] = mat(1,1) + m02*q; 489 diag[2] = mat(2,2) - m02*q; 490 subdiag[0] = beta; 491 subdiag[1] = mat(2,1) - m01 * q; 492 if (extractQ) 493 { 494 mat << 1, 0, 0, 495 0, m01, m02, 496 0, m02, -m01; 497 } 498 } 499 } 500 }; 501 502 /** \internal 503 * Trivial specialization for 1x1 matrices 504 */ 505 template<typename MatrixType, bool IsComplex> 506 struct tridiagonalization_inplace_selector<MatrixType,1,IsComplex> 507 { 508 typedef typename MatrixType::Scalar Scalar; 509 510 template<typename DiagonalType, typename SubDiagonalType> 511 static void run(MatrixType& mat, DiagonalType& diag, SubDiagonalType&, bool extractQ) 512 { 513 diag(0,0) = numext::real(mat(0,0)); 514 if(extractQ) 515 mat(0,0) = Scalar(1); 516 } 517 }; 518 519 /** \internal 520 * \eigenvalues_module \ingroup Eigenvalues_Module 521 * 522 * \brief Expression type for return value of Tridiagonalization::matrixT() 523 * 524 * \tparam MatrixType type of underlying dense matrix 525 */ 526 template<typename MatrixType> struct TridiagonalizationMatrixTReturnType 527 : public ReturnByValue<TridiagonalizationMatrixTReturnType<MatrixType> > 528 { 529 public: 530 /** \brief Constructor. 531 * 532 * \param[in] mat The underlying dense matrix 533 */ 534 TridiagonalizationMatrixTReturnType(const MatrixType& mat) : m_matrix(mat) { } 535 536 template <typename ResultType> 537 inline void evalTo(ResultType& result) const 538 { 539 result.setZero(); 540 result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate(); 541 result.diagonal() = m_matrix.diagonal(); 542 result.template diagonal<-1>() = m_matrix.template diagonal<-1>(); 543 } 544 545 Index rows() const { return m_matrix.rows(); } 546 Index cols() const { return m_matrix.cols(); } 547 548 protected: 549 typename MatrixType::Nested m_matrix; 550 }; 551 552 } // end namespace internal 553 554 } // end namespace Eigen 555 556 #endif // EIGEN_TRIDIAGONALIZATION_H 557