1 // This file is part of Eigen, a lightweight C++ template library 2 // for linear algebra. 3 // 4 // Copyright (C) 2008-2015 Gael Guennebaud <gael.guennebaud@inria.fr> 5 // 6 // This Source Code Form is subject to the terms of the Mozilla 7 // Public License v. 2.0. If a copy of the MPL was not distributed 8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. 9 10 #ifndef EIGEN_SPARSEVECTOR_H 11 #define EIGEN_SPARSEVECTOR_H 12 13 namespace Eigen { 14 15 /** \ingroup SparseCore_Module 16 * \class SparseVector 17 * 18 * \brief a sparse vector class 19 * 20 * \tparam _Scalar the scalar type, i.e. the type of the coefficients 21 * 22 * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. 23 * 24 * This class can be extended with the help of the plugin mechanism described on the page 25 * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN. 26 */ 27 28 namespace internal { 29 template<typename _Scalar, int _Options, typename _StorageIndex> 30 struct traits<SparseVector<_Scalar, _Options, _StorageIndex> > 31 { 32 typedef _Scalar Scalar; 33 typedef _StorageIndex StorageIndex; 34 typedef Sparse StorageKind; 35 typedef MatrixXpr XprKind; 36 enum { 37 IsColVector = (_Options & RowMajorBit) ? 0 : 1, 38 39 RowsAtCompileTime = IsColVector ? Dynamic : 1, 40 ColsAtCompileTime = IsColVector ? 1 : Dynamic, 41 MaxRowsAtCompileTime = RowsAtCompileTime, 42 MaxColsAtCompileTime = ColsAtCompileTime, 43 Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit, 44 SupportedAccessPatterns = InnerRandomAccessPattern 45 }; 46 }; 47 48 // Sparse-Vector-Assignment kinds: 49 enum { 50 SVA_RuntimeSwitch, 51 SVA_Inner, 52 SVA_Outer 53 }; 54 55 template< typename Dest, typename Src, 56 int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch 57 : Src::InnerSizeAtCompileTime==1 ? SVA_Outer 58 : SVA_Inner> 59 struct sparse_vector_assign_selector; 60 61 } 62 63 template<typename _Scalar, int _Options, typename _StorageIndex> 64 class SparseVector 65 : public SparseCompressedBase<SparseVector<_Scalar, _Options, _StorageIndex> > 66 { 67 typedef SparseCompressedBase<SparseVector> Base; 68 using Base::convert_index; 69 public: 70 EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) 71 EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) 72 EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) 73 74 typedef internal::CompressedStorage<Scalar,StorageIndex> Storage; 75 enum { IsColVector = internal::traits<SparseVector>::IsColVector }; 76 77 enum { 78 Options = _Options 79 }; 80 81 EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; } 82 EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; } 83 EIGEN_STRONG_INLINE Index innerSize() const { return m_size; } 84 EIGEN_STRONG_INLINE Index outerSize() const { return 1; } 85 86 EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); } 87 EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); } 88 89 EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } 90 EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } 91 92 inline const StorageIndex* outerIndexPtr() const { return 0; } 93 inline StorageIndex* outerIndexPtr() { return 0; } 94 inline const StorageIndex* innerNonZeroPtr() const { return 0; } 95 inline StorageIndex* innerNonZeroPtr() { return 0; } 96 97 /** \internal */ 98 inline Storage& data() { return m_data; } 99 /** \internal */ 100 inline const Storage& data() const { return m_data; } 101 102 inline Scalar coeff(Index row, Index col) const 103 { 104 eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); 105 return coeff(IsColVector ? row : col); 106 } 107 inline Scalar coeff(Index i) const 108 { 109 eigen_assert(i>=0 && i<m_size); 110 return m_data.at(StorageIndex(i)); 111 } 112 113 inline Scalar& coeffRef(Index row, Index col) 114 { 115 eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); 116 return coeffRef(IsColVector ? row : col); 117 } 118 119 /** \returns a reference to the coefficient value at given index \a i 120 * This operation involes a log(rho*size) binary search. If the coefficient does not 121 * exist yet, then a sorted insertion into a sequential buffer is performed. 122 * 123 * This insertion might be very costly if the number of nonzeros above \a i is large. 124 */ 125 inline Scalar& coeffRef(Index i) 126 { 127 eigen_assert(i>=0 && i<m_size); 128 129 return m_data.atWithInsertion(StorageIndex(i)); 130 } 131 132 public: 133 134 typedef typename Base::InnerIterator InnerIterator; 135 typedef typename Base::ReverseInnerIterator ReverseInnerIterator; 136 137 inline void setZero() { m_data.clear(); } 138 139 /** \returns the number of non zero coefficients */ 140 inline Index nonZeros() const { return m_data.size(); } 141 142 inline void startVec(Index outer) 143 { 144 EIGEN_UNUSED_VARIABLE(outer); 145 eigen_assert(outer==0); 146 } 147 148 inline Scalar& insertBackByOuterInner(Index outer, Index inner) 149 { 150 EIGEN_UNUSED_VARIABLE(outer); 151 eigen_assert(outer==0); 152 return insertBack(inner); 153 } 154 inline Scalar& insertBack(Index i) 155 { 156 m_data.append(0, i); 157 return m_data.value(m_data.size()-1); 158 } 159 160 Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) 161 { 162 EIGEN_UNUSED_VARIABLE(outer); 163 eigen_assert(outer==0); 164 return insertBackUnordered(inner); 165 } 166 inline Scalar& insertBackUnordered(Index i) 167 { 168 m_data.append(0, i); 169 return m_data.value(m_data.size()-1); 170 } 171 172 inline Scalar& insert(Index row, Index col) 173 { 174 eigen_assert(IsColVector ? (col==0 && row>=0 && row<m_size) : (row==0 && col>=0 && col<m_size)); 175 176 Index inner = IsColVector ? row : col; 177 Index outer = IsColVector ? col : row; 178 EIGEN_ONLY_USED_FOR_DEBUG(outer); 179 eigen_assert(outer==0); 180 return insert(inner); 181 } 182 Scalar& insert(Index i) 183 { 184 eigen_assert(i>=0 && i<m_size); 185 186 Index startId = 0; 187 Index p = Index(m_data.size()) - 1; 188 // TODO smart realloc 189 m_data.resize(p+2,1); 190 191 while ( (p >= startId) && (m_data.index(p) > i) ) 192 { 193 m_data.index(p+1) = m_data.index(p); 194 m_data.value(p+1) = m_data.value(p); 195 --p; 196 } 197 m_data.index(p+1) = convert_index(i); 198 m_data.value(p+1) = 0; 199 return m_data.value(p+1); 200 } 201 202 /** 203 */ 204 inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); } 205 206 207 inline void finalize() {} 208 209 /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */ 210 void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits<RealScalar>::dummy_precision()) 211 { 212 m_data.prune(reference,epsilon); 213 } 214 215 /** Resizes the sparse vector to \a rows x \a cols 216 * 217 * This method is provided for compatibility with matrices. 218 * For a column vector, \a cols must be equal to 1. 219 * For a row vector, \a rows must be equal to 1. 220 * 221 * \sa resize(Index) 222 */ 223 void resize(Index rows, Index cols) 224 { 225 eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1"); 226 resize(IsColVector ? rows : cols); 227 } 228 229 /** Resizes the sparse vector to \a newSize 230 * This method deletes all entries, thus leaving an empty sparse vector 231 * 232 * \sa conservativeResize(), setZero() */ 233 void resize(Index newSize) 234 { 235 m_size = newSize; 236 m_data.clear(); 237 } 238 239 /** Resizes the sparse vector to \a newSize, while leaving old values untouched. 240 * 241 * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved. 242 * Call .data().squeeze() to free extra memory. 243 * 244 * \sa reserve(), setZero() 245 */ 246 void conservativeResize(Index newSize) 247 { 248 if (newSize < m_size) 249 { 250 Index i = 0; 251 while (i<m_data.size() && m_data.index(i)<newSize) ++i; 252 m_data.resize(i); 253 } 254 m_size = newSize; 255 } 256 257 void resizeNonZeros(Index size) { m_data.resize(size); } 258 259 inline SparseVector() : m_size(0) { check_template_parameters(); resize(0); } 260 261 explicit inline SparseVector(Index size) : m_size(0) { check_template_parameters(); resize(size); } 262 263 inline SparseVector(Index rows, Index cols) : m_size(0) { check_template_parameters(); resize(rows,cols); } 264 265 template<typename OtherDerived> 266 inline SparseVector(const SparseMatrixBase<OtherDerived>& other) 267 : m_size(0) 268 { 269 #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN 270 EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN 271 #endif 272 check_template_parameters(); 273 *this = other.derived(); 274 } 275 276 inline SparseVector(const SparseVector& other) 277 : Base(other), m_size(0) 278 { 279 check_template_parameters(); 280 *this = other.derived(); 281 } 282 283 /** Swaps the values of \c *this and \a other. 284 * Overloaded for performance: this version performs a \em shallow swap by swaping pointers and attributes only. 285 * \sa SparseMatrixBase::swap() 286 */ 287 inline void swap(SparseVector& other) 288 { 289 std::swap(m_size, other.m_size); 290 m_data.swap(other.m_data); 291 } 292 293 template<int OtherOptions> 294 inline void swap(SparseMatrix<Scalar,OtherOptions,StorageIndex>& other) 295 { 296 eigen_assert(other.outerSize()==1); 297 std::swap(m_size, other.m_innerSize); 298 m_data.swap(other.m_data); 299 } 300 301 inline SparseVector& operator=(const SparseVector& other) 302 { 303 if (other.isRValue()) 304 { 305 swap(other.const_cast_derived()); 306 } 307 else 308 { 309 resize(other.size()); 310 m_data = other.m_data; 311 } 312 return *this; 313 } 314 315 template<typename OtherDerived> 316 inline SparseVector& operator=(const SparseMatrixBase<OtherDerived>& other) 317 { 318 SparseVector tmp(other.size()); 319 internal::sparse_vector_assign_selector<SparseVector,OtherDerived>::run(tmp,other.derived()); 320 this->swap(tmp); 321 return *this; 322 } 323 324 #ifndef EIGEN_PARSED_BY_DOXYGEN 325 template<typename Lhs, typename Rhs> 326 inline SparseVector& operator=(const SparseSparseProduct<Lhs,Rhs>& product) 327 { 328 return Base::operator=(product); 329 } 330 #endif 331 332 friend std::ostream & operator << (std::ostream & s, const SparseVector& m) 333 { 334 for (Index i=0; i<m.nonZeros(); ++i) 335 s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") "; 336 s << std::endl; 337 return s; 338 } 339 340 /** Destructor */ 341 inline ~SparseVector() {} 342 343 /** Overloaded for performance */ 344 Scalar sum() const; 345 346 public: 347 348 /** \internal \deprecated use setZero() and reserve() */ 349 EIGEN_DEPRECATED void startFill(Index reserve) 350 { 351 setZero(); 352 m_data.reserve(reserve); 353 } 354 355 /** \internal \deprecated use insertBack(Index,Index) */ 356 EIGEN_DEPRECATED Scalar& fill(Index r, Index c) 357 { 358 eigen_assert(r==0 || c==0); 359 return fill(IsColVector ? r : c); 360 } 361 362 /** \internal \deprecated use insertBack(Index) */ 363 EIGEN_DEPRECATED Scalar& fill(Index i) 364 { 365 m_data.append(0, i); 366 return m_data.value(m_data.size()-1); 367 } 368 369 /** \internal \deprecated use insert(Index,Index) */ 370 EIGEN_DEPRECATED Scalar& fillrand(Index r, Index c) 371 { 372 eigen_assert(r==0 || c==0); 373 return fillrand(IsColVector ? r : c); 374 } 375 376 /** \internal \deprecated use insert(Index) */ 377 EIGEN_DEPRECATED Scalar& fillrand(Index i) 378 { 379 return insert(i); 380 } 381 382 /** \internal \deprecated use finalize() */ 383 EIGEN_DEPRECATED void endFill() {} 384 385 // These two functions were here in the 3.1 release, so let's keep them in case some code rely on them. 386 /** \internal \deprecated use data() */ 387 EIGEN_DEPRECATED Storage& _data() { return m_data; } 388 /** \internal \deprecated use data() */ 389 EIGEN_DEPRECATED const Storage& _data() const { return m_data; } 390 391 # ifdef EIGEN_SPARSEVECTOR_PLUGIN 392 # include EIGEN_SPARSEVECTOR_PLUGIN 393 # endif 394 395 protected: 396 397 static void check_template_parameters() 398 { 399 EIGEN_STATIC_ASSERT(NumTraits<StorageIndex>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); 400 EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); 401 } 402 403 Storage m_data; 404 Index m_size; 405 }; 406 407 namespace internal { 408 409 template<typename _Scalar, int _Options, typename _Index> 410 struct evaluator<SparseVector<_Scalar,_Options,_Index> > 411 : evaluator_base<SparseVector<_Scalar,_Options,_Index> > 412 { 413 typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType; 414 typedef evaluator_base<SparseVectorType> Base; 415 typedef typename SparseVectorType::InnerIterator InnerIterator; 416 typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator; 417 418 enum { 419 CoeffReadCost = NumTraits<_Scalar>::ReadCost, 420 Flags = SparseVectorType::Flags 421 }; 422 423 evaluator() : Base() {} 424 425 explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat) 426 { 427 EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); 428 } 429 430 inline Index nonZerosEstimate() const { 431 return m_matrix->nonZeros(); 432 } 433 434 operator SparseVectorType&() { return m_matrix->const_cast_derived(); } 435 operator const SparseVectorType&() const { return *m_matrix; } 436 437 const SparseVectorType *m_matrix; 438 }; 439 440 template< typename Dest, typename Src> 441 struct sparse_vector_assign_selector<Dest,Src,SVA_Inner> { 442 static void run(Dest& dst, const Src& src) { 443 eigen_internal_assert(src.innerSize()==src.size()); 444 typedef internal::evaluator<Src> SrcEvaluatorType; 445 SrcEvaluatorType srcEval(src); 446 for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it) 447 dst.insert(it.index()) = it.value(); 448 } 449 }; 450 451 template< typename Dest, typename Src> 452 struct sparse_vector_assign_selector<Dest,Src,SVA_Outer> { 453 static void run(Dest& dst, const Src& src) { 454 eigen_internal_assert(src.outerSize()==src.size()); 455 typedef internal::evaluator<Src> SrcEvaluatorType; 456 SrcEvaluatorType srcEval(src); 457 for(Index i=0; i<src.size(); ++i) 458 { 459 typename SrcEvaluatorType::InnerIterator it(srcEval, i); 460 if(it) 461 dst.insert(i) = it.value(); 462 } 463 } 464 }; 465 466 template< typename Dest, typename Src> 467 struct sparse_vector_assign_selector<Dest,Src,SVA_RuntimeSwitch> { 468 static void run(Dest& dst, const Src& src) { 469 if(src.outerSize()==1) sparse_vector_assign_selector<Dest,Src,SVA_Inner>::run(dst, src); 470 else sparse_vector_assign_selector<Dest,Src,SVA_Outer>::run(dst, src); 471 } 472 }; 473 474 } 475 476 } // end namespace Eigen 477 478 #endif // EIGEN_SPARSEVECTOR_H 479