• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
6 #define V8_ARM_MACRO_ASSEMBLER_ARM_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_r0};
18 const Register kReturnRegister1 = {Register::kCode_r1};
19 const Register kReturnRegister2 = {Register::kCode_r2};
20 const Register kJSFunctionRegister = {Register::kCode_r1};
21 const Register kContextRegister = {Register::kCode_r7};
22 const Register kAllocateSizeRegister = {Register::kCode_r1};
23 const Register kInterpreterAccumulatorRegister = {Register::kCode_r0};
24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_r5};
25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_r6};
26 const Register kInterpreterDispatchTableRegister = {Register::kCode_r8};
27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_r0};
28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_r3};
29 const Register kRuntimeCallFunctionRegister = {Register::kCode_r1};
30 const Register kRuntimeCallArgCountRegister = {Register::kCode_r0};
31 
32 // ----------------------------------------------------------------------------
33 // Static helper functions
34 
35 // Generate a MemOperand for loading a field from an object.
FieldMemOperand(Register object,int offset)36 inline MemOperand FieldMemOperand(Register object, int offset) {
37   return MemOperand(object, offset - kHeapObjectTag);
38 }
39 
40 
41 // Give alias names to registers
42 const Register cp = {Register::kCode_r7};  // JavaScript context pointer.
43 const Register pp = {Register::kCode_r8};  // Constant pool pointer.
44 const Register kRootRegister = {Register::kCode_r10};  // Roots array pointer.
45 
46 // Flags used for AllocateHeapNumber
47 enum TaggingMode {
48   // Tag the result.
49   TAG_RESULT,
50   // Don't tag
51   DONT_TAG_RESULT
52 };
53 
54 
55 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
56 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
57 enum PointersToHereCheck {
58   kPointersToHereMaybeInteresting,
59   kPointersToHereAreAlwaysInteresting
60 };
61 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
62 
63 
64 Register GetRegisterThatIsNotOneOf(Register reg1,
65                                    Register reg2 = no_reg,
66                                    Register reg3 = no_reg,
67                                    Register reg4 = no_reg,
68                                    Register reg5 = no_reg,
69                                    Register reg6 = no_reg);
70 
71 
72 #ifdef DEBUG
73 bool AreAliased(Register reg1,
74                 Register reg2,
75                 Register reg3 = no_reg,
76                 Register reg4 = no_reg,
77                 Register reg5 = no_reg,
78                 Register reg6 = no_reg,
79                 Register reg7 = no_reg,
80                 Register reg8 = no_reg);
81 #endif
82 
83 
84 enum TargetAddressStorageMode {
85   CAN_INLINE_TARGET_ADDRESS,
86   NEVER_INLINE_TARGET_ADDRESS
87 };
88 
89 // MacroAssembler implements a collection of frequently used macros.
90 class MacroAssembler: public Assembler {
91  public:
92   MacroAssembler(Isolate* isolate, void* buffer, int size,
93                  CodeObjectRequired create_code_object);
94 
95 
96   // Returns the size of a call in instructions. Note, the value returned is
97   // only valid as long as no entries are added to the constant pool between
98   // checking the call size and emitting the actual call.
99   static int CallSize(Register target, Condition cond = al);
100   int CallSize(Address target, RelocInfo::Mode rmode, Condition cond = al);
101   int CallStubSize(CodeStub* stub,
102                    TypeFeedbackId ast_id = TypeFeedbackId::None(),
103                    Condition cond = al);
104 
105   // Jump, Call, and Ret pseudo instructions implementing inter-working.
106   void Jump(Register target, Condition cond = al);
107   void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al);
108   void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
109   void Call(Register target, Condition cond = al);
110   void Call(Address target, RelocInfo::Mode rmode,
111             Condition cond = al,
112             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
113   void Call(Handle<Code> code, RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
114             TypeFeedbackId ast_id = TypeFeedbackId::None(), Condition cond = al,
115             TargetAddressStorageMode mode = CAN_INLINE_TARGET_ADDRESS);
116   int CallSize(Handle<Code> code,
117                RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
118                TypeFeedbackId ast_id = TypeFeedbackId::None(),
119                Condition cond = al);
120   void Ret(Condition cond = al);
121 
122   // Used for patching in calls to the deoptimizer.
123   void CallDeoptimizer(Address target);
124   static int CallDeoptimizerSize();
125 
126   // Emit code that loads |parameter_index|'th parameter from the stack to
127   // the register according to the CallInterfaceDescriptor definition.
128   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
129   // below the caller's sp.
130   template <class Descriptor>
131   void LoadParameterFromStack(
132       Register reg, typename Descriptor::ParameterIndices parameter_index,
133       int sp_to_ra_offset_in_words = 0) {
134     DCHECK(Descriptor::kPassLastArgsOnStack);
135     UNIMPLEMENTED();
136   }
137 
138   // Emit code to discard a non-negative number of pointer-sized elements
139   // from the stack, clobbering only the sp register.
140   void Drop(int count, Condition cond = al);
141   void Drop(Register count, Condition cond = al);
142 
143   void Ret(int drop, Condition cond = al);
144 
145   // Swap two registers.  If the scratch register is omitted then a slightly
146   // less efficient form using xor instead of mov is emitted.
147   void Swap(Register reg1,
148             Register reg2,
149             Register scratch = no_reg,
150             Condition cond = al);
151 
152   void Mls(Register dst, Register src1, Register src2, Register srcA,
153            Condition cond = al);
154   void And(Register dst, Register src1, const Operand& src2,
155            Condition cond = al);
156   void Ubfx(Register dst, Register src, int lsb, int width,
157             Condition cond = al);
158   void Sbfx(Register dst, Register src, int lsb, int width,
159             Condition cond = al);
160   // The scratch register is not used for ARMv7.
161   // scratch can be the same register as src (in which case it is trashed), but
162   // not the same as dst.
163   void Bfi(Register dst,
164            Register src,
165            Register scratch,
166            int lsb,
167            int width,
168            Condition cond = al);
169   void Bfc(Register dst, Register src, int lsb, int width, Condition cond = al);
170 
171   void Call(Label* target);
Push(Register src)172   void Push(Register src) { push(src); }
Pop(Register dst)173   void Pop(Register dst) { pop(dst); }
174 
175   // Register move. May do nothing if the registers are identical.
Move(Register dst,Smi * smi)176   void Move(Register dst, Smi* smi) { mov(dst, Operand(smi)); }
177   void Move(Register dst, Handle<Object> value);
178   void Move(Register dst, Register src, Condition cond = al);
179   void Move(Register dst, const Operand& src, SBit sbit = LeaveCC,
180             Condition cond = al) {
181     if (!src.is_reg() || !src.rm().is(dst) || sbit != LeaveCC) {
182       mov(dst, src, sbit, cond);
183     }
184   }
185   void Move(SwVfpRegister dst, SwVfpRegister src, Condition cond = al);
186   void Move(DwVfpRegister dst, DwVfpRegister src, Condition cond = al);
187   void Move(QwNeonRegister dst, QwNeonRegister src);
188   // Register swap.
189   void Swap(DwVfpRegister srcdst0, DwVfpRegister srcdst1);
190   void Swap(QwNeonRegister srcdst0, QwNeonRegister srcdst1);
191 
192   void Load(Register dst, const MemOperand& src, Representation r);
193   void Store(Register src, const MemOperand& dst, Representation r);
194 
195   // Load an object from the root table.
196   void LoadRoot(Register destination,
197                 Heap::RootListIndex index,
198                 Condition cond = al);
199   // Store an object to the root table.
200   void StoreRoot(Register source,
201                  Heap::RootListIndex index,
202                  Condition cond = al);
203 
204   // ---------------------------------------------------------------------------
205   // GC Support
206 
207   void IncrementalMarkingRecordWriteHelper(Register object,
208                                            Register value,
209                                            Register address);
210 
211   enum RememberedSetFinalAction {
212     kReturnAtEnd,
213     kFallThroughAtEnd
214   };
215 
216   // Record in the remembered set the fact that we have a pointer to new space
217   // at the address pointed to by the addr register.  Only works if addr is not
218   // in new space.
219   void RememberedSetHelper(Register object,  // Used for debug code.
220                            Register addr,
221                            Register scratch,
222                            SaveFPRegsMode save_fp,
223                            RememberedSetFinalAction and_then);
224 
225   void CheckPageFlag(Register object,
226                      Register scratch,
227                      int mask,
228                      Condition cc,
229                      Label* condition_met);
230 
231   // Check if object is in new space.  Jumps if the object is not in new space.
232   // The register scratch can be object itself, but scratch will be clobbered.
JumpIfNotInNewSpace(Register object,Register scratch,Label * branch)233   void JumpIfNotInNewSpace(Register object,
234                            Register scratch,
235                            Label* branch) {
236     InNewSpace(object, scratch, eq, branch);
237   }
238 
239   // Check if object is in new space.  Jumps if the object is in new space.
240   // The register scratch can be object itself, but it will be clobbered.
JumpIfInNewSpace(Register object,Register scratch,Label * branch)241   void JumpIfInNewSpace(Register object,
242                         Register scratch,
243                         Label* branch) {
244     InNewSpace(object, scratch, ne, branch);
245   }
246 
247   // Check if an object has a given incremental marking color.
248   void HasColor(Register object,
249                 Register scratch0,
250                 Register scratch1,
251                 Label* has_color,
252                 int first_bit,
253                 int second_bit);
254 
255   void JumpIfBlack(Register object,
256                    Register scratch0,
257                    Register scratch1,
258                    Label* on_black);
259 
260   // Checks the color of an object.  If the object is white we jump to the
261   // incremental marker.
262   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
263                    Register scratch3, Label* value_is_white);
264 
265   // Notify the garbage collector that we wrote a pointer into an object.
266   // |object| is the object being stored into, |value| is the object being
267   // stored.  value and scratch registers are clobbered by the operation.
268   // The offset is the offset from the start of the object, not the offset from
269   // the tagged HeapObject pointer.  For use with FieldMemOperand(reg, off).
270   void RecordWriteField(
271       Register object,
272       int offset,
273       Register value,
274       Register scratch,
275       LinkRegisterStatus lr_status,
276       SaveFPRegsMode save_fp,
277       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
278       SmiCheck smi_check = INLINE_SMI_CHECK,
279       PointersToHereCheck pointers_to_here_check_for_value =
280           kPointersToHereMaybeInteresting);
281 
282   // As above, but the offset has the tag presubtracted.  For use with
283   // MemOperand(reg, off).
284   inline void RecordWriteContextSlot(
285       Register context,
286       int offset,
287       Register value,
288       Register scratch,
289       LinkRegisterStatus lr_status,
290       SaveFPRegsMode save_fp,
291       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
292       SmiCheck smi_check = INLINE_SMI_CHECK,
293       PointersToHereCheck pointers_to_here_check_for_value =
294           kPointersToHereMaybeInteresting) {
295     RecordWriteField(context,
296                      offset + kHeapObjectTag,
297                      value,
298                      scratch,
299                      lr_status,
300                      save_fp,
301                      remembered_set_action,
302                      smi_check,
303                      pointers_to_here_check_for_value);
304   }
305 
306   // Notify the garbage collector that we wrote a code entry into a
307   // JSFunction. Only scratch is clobbered by the operation.
308   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
309                                  Register scratch);
310 
311   void RecordWriteForMap(
312       Register object,
313       Register map,
314       Register dst,
315       LinkRegisterStatus lr_status,
316       SaveFPRegsMode save_fp);
317 
318   // For a given |object| notify the garbage collector that the slot |address|
319   // has been written.  |value| is the object being stored. The value and
320   // address registers are clobbered by the operation.
321   void RecordWrite(
322       Register object,
323       Register address,
324       Register value,
325       LinkRegisterStatus lr_status,
326       SaveFPRegsMode save_fp,
327       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
328       SmiCheck smi_check = INLINE_SMI_CHECK,
329       PointersToHereCheck pointers_to_here_check_for_value =
330           kPointersToHereMaybeInteresting);
331 
332   // Push a handle.
333   void Push(Handle<Object> handle);
Push(Smi * smi)334   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
335 
336   // Push two registers.  Pushes leftmost register first (to highest address).
337   void Push(Register src1, Register src2, Condition cond = al) {
338     if (src1.code() > src2.code()) {
339       stm(db_w, sp, src1.bit() | src2.bit(), cond);
340     } else {
341       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
342       str(src2, MemOperand(sp, 4, NegPreIndex), cond);
343     }
344   }
345 
346   // Push three registers.  Pushes leftmost register first (to highest address).
347   void Push(Register src1, Register src2, Register src3, Condition cond = al) {
348     if (src1.code() > src2.code()) {
349       if (src2.code() > src3.code()) {
350         stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
351       } else {
352         stm(db_w, sp, src1.bit() | src2.bit(), cond);
353         str(src3, MemOperand(sp, 4, NegPreIndex), cond);
354       }
355     } else {
356       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
357       Push(src2, src3, cond);
358     }
359   }
360 
361   // Push four registers.  Pushes leftmost register first (to highest address).
362   void Push(Register src1,
363             Register src2,
364             Register src3,
365             Register src4,
366             Condition cond = al) {
367     if (src1.code() > src2.code()) {
368       if (src2.code() > src3.code()) {
369         if (src3.code() > src4.code()) {
370           stm(db_w,
371               sp,
372               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
373               cond);
374         } else {
375           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
376           str(src4, MemOperand(sp, 4, NegPreIndex), cond);
377         }
378       } else {
379         stm(db_w, sp, src1.bit() | src2.bit(), cond);
380         Push(src3, src4, cond);
381       }
382     } else {
383       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
384       Push(src2, src3, src4, cond);
385     }
386   }
387 
388   // Push five registers.  Pushes leftmost register first (to highest address).
389   void Push(Register src1, Register src2, Register src3, Register src4,
390             Register src5, Condition cond = al) {
391     if (src1.code() > src2.code()) {
392       if (src2.code() > src3.code()) {
393         if (src3.code() > src4.code()) {
394           if (src4.code() > src5.code()) {
395             stm(db_w, sp,
396                 src1.bit() | src2.bit() | src3.bit() | src4.bit() | src5.bit(),
397                 cond);
398           } else {
399             stm(db_w, sp, src1.bit() | src2.bit() | src3.bit() | src4.bit(),
400                 cond);
401             str(src5, MemOperand(sp, 4, NegPreIndex), cond);
402           }
403         } else {
404           stm(db_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
405           Push(src4, src5, cond);
406         }
407       } else {
408         stm(db_w, sp, src1.bit() | src2.bit(), cond);
409         Push(src3, src4, src5, cond);
410       }
411     } else {
412       str(src1, MemOperand(sp, 4, NegPreIndex), cond);
413       Push(src2, src3, src4, src5, cond);
414     }
415   }
416 
417   // Pop two registers. Pops rightmost register first (from lower address).
418   void Pop(Register src1, Register src2, Condition cond = al) {
419     DCHECK(!src1.is(src2));
420     if (src1.code() > src2.code()) {
421       ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
422     } else {
423       ldr(src2, MemOperand(sp, 4, PostIndex), cond);
424       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
425     }
426   }
427 
428   // Pop three registers.  Pops rightmost register first (from lower address).
429   void Pop(Register src1, Register src2, Register src3, Condition cond = al) {
430     DCHECK(!AreAliased(src1, src2, src3));
431     if (src1.code() > src2.code()) {
432       if (src2.code() > src3.code()) {
433         ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
434       } else {
435         ldr(src3, MemOperand(sp, 4, PostIndex), cond);
436         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
437       }
438     } else {
439       Pop(src2, src3, cond);
440       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
441     }
442   }
443 
444   // Pop four registers.  Pops rightmost register first (from lower address).
445   void Pop(Register src1,
446            Register src2,
447            Register src3,
448            Register src4,
449            Condition cond = al) {
450     DCHECK(!AreAliased(src1, src2, src3, src4));
451     if (src1.code() > src2.code()) {
452       if (src2.code() > src3.code()) {
453         if (src3.code() > src4.code()) {
454           ldm(ia_w,
455               sp,
456               src1.bit() | src2.bit() | src3.bit() | src4.bit(),
457               cond);
458         } else {
459           ldr(src4, MemOperand(sp, 4, PostIndex), cond);
460           ldm(ia_w, sp, src1.bit() | src2.bit() | src3.bit(), cond);
461         }
462       } else {
463         Pop(src3, src4, cond);
464         ldm(ia_w, sp, src1.bit() | src2.bit(), cond);
465       }
466     } else {
467       Pop(src2, src3, src4, cond);
468       ldr(src1, MemOperand(sp, 4, PostIndex), cond);
469     }
470   }
471 
472   // Push a fixed frame, consisting of lr, fp, constant pool (if
473   // FLAG_enable_embedded_constant_pool)
474   void PushCommonFrame(Register marker_reg = no_reg);
475 
476   // Push a standard frame, consisting of lr, fp, constant pool (if
477   // FLAG_enable_embedded_constant_pool), context and JS function
478   void PushStandardFrame(Register function_reg);
479 
480   void PopCommonFrame(Register marker_reg = no_reg);
481 
482   // Push and pop the registers that can hold pointers, as defined by the
483   // RegList constant kSafepointSavedRegisters.
484   void PushSafepointRegisters();
485   void PopSafepointRegisters();
486   // Store value in register src in the safepoint stack slot for
487   // register dst.
488   void StoreToSafepointRegisterSlot(Register src, Register dst);
489   // Load the value of the src register from its safepoint stack slot
490   // into register dst.
491   void LoadFromSafepointRegisterSlot(Register dst, Register src);
492 
493   // Load two consecutive registers with two consecutive memory locations.
494   void Ldrd(Register dst1,
495             Register dst2,
496             const MemOperand& src,
497             Condition cond = al);
498 
499   // Store two consecutive registers to two consecutive memory locations.
500   void Strd(Register src1,
501             Register src2,
502             const MemOperand& dst,
503             Condition cond = al);
504 
505   // If the value is a NaN, canonicalize the value else, do nothing.
506   void VFPCanonicalizeNaN(const DwVfpRegister dst,
507                           const DwVfpRegister src,
508                           const Condition cond = al);
509   void VFPCanonicalizeNaN(const DwVfpRegister value,
510                           const Condition cond = al) {
511     VFPCanonicalizeNaN(value, value, cond);
512   }
513 
514   // Compare single values and move the result to the normal condition flags.
515   void VFPCompareAndSetFlags(const SwVfpRegister src1, const SwVfpRegister src2,
516                              const Condition cond = al);
517   void VFPCompareAndSetFlags(const SwVfpRegister src1, const float src2,
518                              const Condition cond = al);
519 
520   // Compare double values and move the result to the normal condition flags.
521   void VFPCompareAndSetFlags(const DwVfpRegister src1,
522                              const DwVfpRegister src2,
523                              const Condition cond = al);
524   void VFPCompareAndSetFlags(const DwVfpRegister src1,
525                              const double src2,
526                              const Condition cond = al);
527 
528   // Compare single values and then load the fpscr flags to a register.
529   void VFPCompareAndLoadFlags(const SwVfpRegister src1,
530                               const SwVfpRegister src2,
531                               const Register fpscr_flags,
532                               const Condition cond = al);
533   void VFPCompareAndLoadFlags(const SwVfpRegister src1, const float src2,
534                               const Register fpscr_flags,
535                               const Condition cond = al);
536 
537   // Compare double values and then load the fpscr flags to a register.
538   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
539                               const DwVfpRegister src2,
540                               const Register fpscr_flags,
541                               const Condition cond = al);
542   void VFPCompareAndLoadFlags(const DwVfpRegister src1,
543                               const double src2,
544                               const Register fpscr_flags,
545                               const Condition cond = al);
546 
547   void Vmov(const DwVfpRegister dst,
548             const double imm,
549             const Register scratch = no_reg);
550 
551   void VmovHigh(Register dst, DwVfpRegister src);
552   void VmovHigh(DwVfpRegister dst, Register src);
553   void VmovLow(Register dst, DwVfpRegister src);
554   void VmovLow(DwVfpRegister dst, Register src);
555 
556   // Simulate s-register moves for imaginary s32 - s63 registers.
557   void VmovExtended(Register dst, int src_code);
558   void VmovExtended(int dst_code, Register src);
559   // Move between s-registers and imaginary s-registers.
560   void VmovExtended(int dst_code, int src_code, Register scratch);
561   void VmovExtended(int dst_code, const MemOperand& src, Register scratch);
562   void VmovExtended(const MemOperand& dst, int src_code, Register scratch);
563 
564   void ExtractLane(Register dst, QwNeonRegister src, NeonDataType dt, int lane);
565   void ExtractLane(SwVfpRegister dst, QwNeonRegister src, Register scratch,
566                    int lane);
567   void ReplaceLane(QwNeonRegister dst, QwNeonRegister src, Register src_lane,
568                    NeonDataType dt, int lane);
569   void ReplaceLane(QwNeonRegister dst, QwNeonRegister src,
570                    SwVfpRegister src_lane, Register scratch, int lane);
571   void Swizzle(QwNeonRegister dst, QwNeonRegister src, Register scratch,
572                NeonSize size, uint32_t lanes);
573 
574   void LslPair(Register dst_low, Register dst_high, Register src_low,
575                Register src_high, Register scratch, Register shift);
576   void LslPair(Register dst_low, Register dst_high, Register src_low,
577                Register src_high, uint32_t shift);
578   void LsrPair(Register dst_low, Register dst_high, Register src_low,
579                Register src_high, Register scratch, Register shift);
580   void LsrPair(Register dst_low, Register dst_high, Register src_low,
581                Register src_high, uint32_t shift);
582   void AsrPair(Register dst_low, Register dst_high, Register src_low,
583                Register src_high, Register scratch, Register shift);
584   void AsrPair(Register dst_low, Register dst_high, Register src_low,
585                Register src_high, uint32_t shift);
586 
587   // Loads the number from object into dst register.
588   // If |object| is neither smi nor heap number, |not_number| is jumped to
589   // with |object| still intact.
590   void LoadNumber(Register object,
591                   LowDwVfpRegister dst,
592                   Register heap_number_map,
593                   Register scratch,
594                   Label* not_number);
595 
596   // Loads the number from object into double_dst in the double format.
597   // Control will jump to not_int32 if the value cannot be exactly represented
598   // by a 32-bit integer.
599   // Floating point value in the 32-bit integer range that are not exact integer
600   // won't be loaded.
601   void LoadNumberAsInt32Double(Register object,
602                                DwVfpRegister double_dst,
603                                Register heap_number_map,
604                                Register scratch,
605                                LowDwVfpRegister double_scratch,
606                                Label* not_int32);
607 
608   // Loads the number from object into dst as a 32-bit integer.
609   // Control will jump to not_int32 if the object cannot be exactly represented
610   // by a 32-bit integer.
611   // Floating point value in the 32-bit integer range that are not exact integer
612   // won't be converted.
613   void LoadNumberAsInt32(Register object,
614                          Register dst,
615                          Register heap_number_map,
616                          Register scratch,
617                          DwVfpRegister double_scratch0,
618                          LowDwVfpRegister double_scratch1,
619                          Label* not_int32);
620 
621   // Generates function and stub prologue code.
622   void StubPrologue(StackFrame::Type type);
623   void Prologue(bool code_pre_aging);
624 
625   // Enter exit frame.
626   // stack_space - extra stack space, used for alignment before call to C.
627   void EnterExitFrame(bool save_doubles, int stack_space = 0,
628                       StackFrame::Type frame_type = StackFrame::EXIT);
629 
630   // Leave the current exit frame. Expects the return value in r0.
631   // Expect the number of values, pushed prior to the exit frame, to
632   // remove in a register (or no_reg, if there is nothing to remove).
633   void LeaveExitFrame(bool save_doubles, Register argument_count,
634                       bool restore_context,
635                       bool argument_count_is_length = false);
636 
637   // Get the actual activation frame alignment for target environment.
638   static int ActivationFrameAlignment();
639 
640   void LoadContext(Register dst, int context_chain_length);
641 
642   // Load the global object from the current context.
LoadGlobalObject(Register dst)643   void LoadGlobalObject(Register dst) {
644     LoadNativeContextSlot(Context::EXTENSION_INDEX, dst);
645   }
646 
647   // Load the global proxy from the current context.
LoadGlobalProxy(Register dst)648   void LoadGlobalProxy(Register dst) {
649     LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst);
650   }
651 
652   void LoadNativeContextSlot(int index, Register dst);
653 
654   // Load the initial map from the global function. The registers
655   // function and map can be the same, function is then overwritten.
656   void LoadGlobalFunctionInitialMap(Register function,
657                                     Register map,
658                                     Register scratch);
659 
InitializeRootRegister()660   void InitializeRootRegister() {
661     ExternalReference roots_array_start =
662         ExternalReference::roots_array_start(isolate());
663     mov(kRootRegister, Operand(roots_array_start));
664   }
665 
666   // ---------------------------------------------------------------------------
667   // JavaScript invokes
668 
669   // Removes current frame and its arguments from the stack preserving
670   // the arguments and a return address pushed to the stack for the next call.
671   // Both |callee_args_count| and |caller_args_count_reg| do not include
672   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
673   // is trashed.
674   void PrepareForTailCall(const ParameterCount& callee_args_count,
675                           Register caller_args_count_reg, Register scratch0,
676                           Register scratch1);
677 
678   // Invoke the JavaScript function code by either calling or jumping.
679   void InvokeFunctionCode(Register function, Register new_target,
680                           const ParameterCount& expected,
681                           const ParameterCount& actual, InvokeFlag flag,
682                           const CallWrapper& call_wrapper);
683 
684   // On function call, call into the debugger if necessary.
685   void CheckDebugHook(Register fun, Register new_target,
686                       const ParameterCount& expected,
687                       const ParameterCount& actual);
688 
689   // Invoke the JavaScript function in the given register. Changes the
690   // current context to the context in the function before invoking.
691   void InvokeFunction(Register function,
692                       Register new_target,
693                       const ParameterCount& actual,
694                       InvokeFlag flag,
695                       const CallWrapper& call_wrapper);
696 
697   void InvokeFunction(Register function,
698                       const ParameterCount& expected,
699                       const ParameterCount& actual,
700                       InvokeFlag flag,
701                       const CallWrapper& call_wrapper);
702 
703   void InvokeFunction(Handle<JSFunction> function,
704                       const ParameterCount& expected,
705                       const ParameterCount& actual,
706                       InvokeFlag flag,
707                       const CallWrapper& call_wrapper);
708 
709   void IsObjectJSStringType(Register object,
710                             Register scratch,
711                             Label* fail);
712 
713   void IsObjectNameType(Register object,
714                         Register scratch,
715                         Label* fail);
716 
717   // Frame restart support
718   void MaybeDropFrames();
719 
720   // Exception handling
721 
722   // Push a new stack handler and link into stack handler chain.
723   void PushStackHandler();
724 
725   // Unlink the stack handler on top of the stack from the stack handler chain.
726   // Must preserve the result register.
727   void PopStackHandler();
728 
729   // ---------------------------------------------------------------------------
730   // Inline caching support
731 
732   void GetNumberHash(Register t0, Register scratch);
733 
MarkCode(NopMarkerTypes type)734   inline void MarkCode(NopMarkerTypes type) {
735     nop(type);
736   }
737 
738   // Check if the given instruction is a 'type' marker.
739   // i.e. check if is is a mov r<type>, r<type> (referenced as nop(type))
740   // These instructions are generated to mark special location in the code,
741   // like some special IC code.
IsMarkedCode(Instr instr,int type)742   static inline bool IsMarkedCode(Instr instr, int type) {
743     DCHECK((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER));
744     return IsNop(instr, type);
745   }
746 
747 
GetCodeMarker(Instr instr)748   static inline int GetCodeMarker(Instr instr) {
749     int dst_reg_offset = 12;
750     int dst_mask = 0xf << dst_reg_offset;
751     int src_mask = 0xf;
752     int dst_reg = (instr & dst_mask) >> dst_reg_offset;
753     int src_reg = instr & src_mask;
754     uint32_t non_register_mask = ~(dst_mask | src_mask);
755     uint32_t mov_mask = al | 13 << 21;
756 
757     // Return <n> if we have a mov rn rn, else return -1.
758     int type = ((instr & non_register_mask) == mov_mask) &&
759                (dst_reg == src_reg) &&
760                (FIRST_IC_MARKER <= dst_reg) && (dst_reg < LAST_CODE_MARKER)
761                    ? src_reg
762                    : -1;
763     DCHECK((type == -1) ||
764            ((FIRST_IC_MARKER <= type) && (type < LAST_CODE_MARKER)));
765     return type;
766   }
767 
768 
769   // ---------------------------------------------------------------------------
770   // Allocation support
771 
772   // Allocate an object in new space or old space. The object_size is
773   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
774   // is passed. If the space is exhausted control continues at the gc_required
775   // label. The allocated object is returned in result. If the flag
776   // tag_allocated_object is true the result is tagged as as a heap object.
777   // All registers are clobbered also when control continues at the gc_required
778   // label.
779   void Allocate(int object_size,
780                 Register result,
781                 Register scratch1,
782                 Register scratch2,
783                 Label* gc_required,
784                 AllocationFlags flags);
785 
786   void Allocate(Register object_size, Register result, Register result_end,
787                 Register scratch, Label* gc_required, AllocationFlags flags);
788 
789   // FastAllocate is right now only used for folded allocations. It just
790   // increments the top pointer without checking against limit. This can only
791   // be done if it was proved earlier that the allocation will succeed.
792   void FastAllocate(int object_size, Register result, Register scratch1,
793                     Register scratch2, AllocationFlags flags);
794 
795   void FastAllocate(Register object_size, Register result, Register result_end,
796                     Register scratch, AllocationFlags flags);
797 
798   // Allocates a heap number or jumps to the gc_required label if the young
799   // space is full and a scavenge is needed. All registers are clobbered also
800   // when control continues at the gc_required label.
801   void AllocateHeapNumber(Register result,
802                           Register scratch1,
803                           Register scratch2,
804                           Register heap_number_map,
805                           Label* gc_required,
806                           MutableMode mode = IMMUTABLE);
807   void AllocateHeapNumberWithValue(Register result,
808                                    DwVfpRegister value,
809                                    Register scratch1,
810                                    Register scratch2,
811                                    Register heap_number_map,
812                                    Label* gc_required);
813 
814   // Allocate and initialize a JSValue wrapper with the specified {constructor}
815   // and {value}.
816   void AllocateJSValue(Register result, Register constructor, Register value,
817                        Register scratch1, Register scratch2,
818                        Label* gc_required);
819 
820   // Initialize fields with filler values.  Fields starting at |current_address|
821   // not including |end_address| are overwritten with the value in |filler|.  At
822   // the end the loop, |current_address| takes the value of |end_address|.
823   void InitializeFieldsWithFiller(Register current_address,
824                                   Register end_address, Register filler);
825 
826   // ---------------------------------------------------------------------------
827   // Support functions.
828 
829   // Machine code version of Map::GetConstructor().
830   // |temp| holds |result|'s map when done, and |temp2| its instance type.
831   void GetMapConstructor(Register result, Register map, Register temp,
832                          Register temp2);
833 
834   // Compare object type for heap object.  heap_object contains a non-Smi
835   // whose object type should be compared with the given type.  This both
836   // sets the flags and leaves the object type in the type_reg register.
837   // It leaves the map in the map register (unless the type_reg and map register
838   // are the same register).  It leaves the heap object in the heap_object
839   // register unless the heap_object register is the same register as one of the
840   // other registers.
841   // Type_reg can be no_reg. In that case ip is used.
842   void CompareObjectType(Register heap_object,
843                          Register map,
844                          Register type_reg,
845                          InstanceType type);
846 
847   // Compare instance type in a map.  map contains a valid map object whose
848   // object type should be compared with the given type.  This both
849   // sets the flags and leaves the object type in the type_reg register.
850   void CompareInstanceType(Register map,
851                            Register type_reg,
852                            InstanceType type);
853 
854   // Compare an object's map with the specified map and its transitioned
855   // elements maps if mode is ALLOW_ELEMENT_TRANSITION_MAPS. Condition flags are
856   // set with result of map compare. If multiple map compares are required, the
857   // compare sequences branches to early_success.
858   void CompareMap(Register obj,
859                   Register scratch,
860                   Handle<Map> map,
861                   Label* early_success);
862 
863   // As above, but the map of the object is already loaded into the register
864   // which is preserved by the code generated.
865   void CompareMap(Register obj_map,
866                   Handle<Map> map,
867                   Label* early_success);
868 
869   // Check if the map of an object is equal to a specified map and branch to
870   // label if not. Skip the smi check if not required (object is known to be a
871   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
872   // against maps that are ElementsKind transition maps of the specified map.
873   void CheckMap(Register obj,
874                 Register scratch,
875                 Handle<Map> map,
876                 Label* fail,
877                 SmiCheckType smi_check_type);
878 
879 
880   void CheckMap(Register obj,
881                 Register scratch,
882                 Heap::RootListIndex index,
883                 Label* fail,
884                 SmiCheckType smi_check_type);
885 
886 
887   // Check if the map of an object is equal to a specified weak map and branch
888   // to a specified target if equal. Skip the smi check if not required
889   // (object is known to be a heap object)
890   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
891                        Handle<WeakCell> cell, Handle<Code> success,
892                        SmiCheckType smi_check_type);
893 
894   // Compare the given value and the value of weak cell.
895   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
896 
897   void GetWeakValue(Register value, Handle<WeakCell> cell);
898 
899   // Load the value of the weak cell in the value register. Branch to the given
900   // miss label if the weak cell was cleared.
901   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
902 
903   // Compare the object in a register to a value from the root list.
904   // Uses the ip register as scratch.
905   void CompareRoot(Register obj, Heap::RootListIndex index);
PushRoot(Heap::RootListIndex index)906   void PushRoot(Heap::RootListIndex index) {
907     LoadRoot(ip, index);
908     Push(ip);
909   }
910 
911   // Compare the object in a register to a value and jump if they are equal.
JumpIfRoot(Register with,Heap::RootListIndex index,Label * if_equal)912   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal) {
913     CompareRoot(with, index);
914     b(eq, if_equal);
915   }
916 
917   // Compare the object in a register to a value and jump if they are not equal.
JumpIfNotRoot(Register with,Heap::RootListIndex index,Label * if_not_equal)918   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
919                      Label* if_not_equal) {
920     CompareRoot(with, index);
921     b(ne, if_not_equal);
922   }
923 
924   // Load and check the instance type of an object for being a string.
925   // Loads the type into the second argument register.
926   // Returns a condition that will be enabled if the object was a string
927   // and the passed-in condition passed. If the passed-in condition failed
928   // then flags remain unchanged.
929   Condition IsObjectStringType(Register obj,
930                                Register type,
931                                Condition cond = al) {
932     ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset), cond);
933     ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset), cond);
934     tst(type, Operand(kIsNotStringMask), cond);
935     DCHECK_EQ(0u, kStringTag);
936     return eq;
937   }
938 
939 
940   // Get the number of least significant bits from a register
941   void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
942   void GetLeastBitsFromInt32(Register dst, Register src, int mun_least_bits);
943 
944   // Load the value of a smi object into a double register.
945   // The register value must be between d0 and d15.
946   void SmiToDouble(LowDwVfpRegister value, Register smi);
947 
948   // Check if a double can be exactly represented as a signed 32-bit integer.
949   // Z flag set to one if true.
950   void TestDoubleIsInt32(DwVfpRegister double_input,
951                          LowDwVfpRegister double_scratch);
952 
953   // Try to convert a double to a signed 32-bit integer.
954   // Z flag set to one and result assigned if the conversion is exact.
955   void TryDoubleToInt32Exact(Register result,
956                              DwVfpRegister double_input,
957                              LowDwVfpRegister double_scratch);
958 
959   // Floor a double and writes the value to the result register.
960   // Go to exact if the conversion is exact (to be able to test -0),
961   // fall through calling code if an overflow occurred, else go to done.
962   // In return, input_high is loaded with high bits of input.
963   void TryInt32Floor(Register result,
964                      DwVfpRegister double_input,
965                      Register input_high,
966                      LowDwVfpRegister double_scratch,
967                      Label* done,
968                      Label* exact);
969 
970   // Performs a truncating conversion of a floating point number as used by
971   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. Goes to 'done' if it
972   // succeeds, otherwise falls through if result is saturated. On return
973   // 'result' either holds answer, or is clobbered on fall through.
974   //
975   // Only public for the test code in test-code-stubs-arm.cc.
976   void TryInlineTruncateDoubleToI(Register result,
977                                   DwVfpRegister input,
978                                   Label* done);
979 
980   // Performs a truncating conversion of a floating point number as used by
981   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
982   // Exits with 'result' holding the answer.
983   void TruncateDoubleToI(Register result, DwVfpRegister double_input);
984 
985   // Performs a truncating conversion of a heap number as used by
986   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
987   // must be different registers.  Exits with 'result' holding the answer.
988   void TruncateHeapNumberToI(Register result, Register object);
989 
990   // Converts the smi or heap number in object to an int32 using the rules
991   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
992   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
993   // different registers.
994   void TruncateNumberToI(Register object,
995                          Register result,
996                          Register heap_number_map,
997                          Register scratch1,
998                          Label* not_int32);
999 
1000   // Check whether d16-d31 are available on the CPU. The result is given by the
1001   // Z condition flag: Z==0 if d16-d31 available, Z==1 otherwise.
1002   void CheckFor32DRegs(Register scratch);
1003 
1004   // Does a runtime check for 16/32 FP registers. Either way, pushes 32 double
1005   // values to location, saving [d0..(d15|d31)].
1006   void SaveFPRegs(Register location, Register scratch);
1007 
1008   // Does a runtime check for 16/32 FP registers. Either way, pops 32 double
1009   // values to location, restoring [d0..(d15|d31)].
1010   void RestoreFPRegs(Register location, Register scratch);
1011 
1012   // Perform a floating-point min or max operation with the
1013   // (IEEE-754-compatible) semantics of ARM64's fmin/fmax. Some cases, typically
1014   // NaNs or +/-0.0, are expected to be rare and are handled in out-of-line
1015   // code. The specific behaviour depends on supported instructions.
1016   //
1017   // These functions assume (and assert) that !left.is(right). It is permitted
1018   // for the result to alias either input register.
1019   void FloatMax(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
1020                 Label* out_of_line);
1021   void FloatMin(SwVfpRegister result, SwVfpRegister left, SwVfpRegister right,
1022                 Label* out_of_line);
1023   void FloatMax(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
1024                 Label* out_of_line);
1025   void FloatMin(DwVfpRegister result, DwVfpRegister left, DwVfpRegister right,
1026                 Label* out_of_line);
1027 
1028   // Generate out-of-line cases for the macros above.
1029   void FloatMaxOutOfLine(SwVfpRegister result, SwVfpRegister left,
1030                          SwVfpRegister right);
1031   void FloatMinOutOfLine(SwVfpRegister result, SwVfpRegister left,
1032                          SwVfpRegister right);
1033   void FloatMaxOutOfLine(DwVfpRegister result, DwVfpRegister left,
1034                          DwVfpRegister right);
1035   void FloatMinOutOfLine(DwVfpRegister result, DwVfpRegister left,
1036                          DwVfpRegister right);
1037 
1038   // ---------------------------------------------------------------------------
1039   // Runtime calls
1040 
1041   // Call a code stub.
1042   void CallStub(CodeStub* stub,
1043                 TypeFeedbackId ast_id = TypeFeedbackId::None(),
1044                 Condition cond = al);
1045 
1046   // Call a code stub.
1047   void TailCallStub(CodeStub* stub, Condition cond = al);
1048 
1049   // Call a runtime routine.
1050   void CallRuntime(const Runtime::Function* f,
1051                    int num_arguments,
1052                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)1053   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
1054     const Runtime::Function* function = Runtime::FunctionForId(fid);
1055     CallRuntime(function, function->nargs, kSaveFPRegs);
1056   }
1057 
1058   // Convenience function: Same as above, but takes the fid instead.
1059   void CallRuntime(Runtime::FunctionId fid,
1060                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1061     const Runtime::Function* function = Runtime::FunctionForId(fid);
1062     CallRuntime(function, function->nargs, save_doubles);
1063   }
1064 
1065   // Convenience function: Same as above, but takes the fid instead.
1066   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
1067                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1068     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
1069   }
1070 
1071   // Convenience function: call an external reference.
1072   void CallExternalReference(const ExternalReference& ext,
1073                              int num_arguments);
1074 
1075   // Convenience function: tail call a runtime routine (jump).
1076   void TailCallRuntime(Runtime::FunctionId fid);
1077 
1078   int CalculateStackPassedWords(int num_reg_arguments,
1079                                 int num_double_arguments);
1080 
1081   // Before calling a C-function from generated code, align arguments on stack.
1082   // After aligning the frame, non-register arguments must be stored in
1083   // sp[0], sp[4], etc., not pushed. The argument count assumes all arguments
1084   // are word sized. If double arguments are used, this function assumes that
1085   // all double arguments are stored before core registers; otherwise the
1086   // correct alignment of the double values is not guaranteed.
1087   // Some compilers/platforms require the stack to be aligned when calling
1088   // C++ code.
1089   // Needs a scratch register to do some arithmetic. This register will be
1090   // trashed.
1091   void PrepareCallCFunction(int num_reg_arguments,
1092                             int num_double_registers,
1093                             Register scratch);
1094   void PrepareCallCFunction(int num_reg_arguments,
1095                             Register scratch);
1096 
1097   // There are two ways of passing double arguments on ARM, depending on
1098   // whether soft or hard floating point ABI is used. These functions
1099   // abstract parameter passing for the three different ways we call
1100   // C functions from generated code.
1101   void MovToFloatParameter(DwVfpRegister src);
1102   void MovToFloatParameters(DwVfpRegister src1, DwVfpRegister src2);
1103   void MovToFloatResult(DwVfpRegister src);
1104 
1105   // Calls a C function and cleans up the space for arguments allocated
1106   // by PrepareCallCFunction. The called function is not allowed to trigger a
1107   // garbage collection, since that might move the code and invalidate the
1108   // return address (unless this is somehow accounted for by the called
1109   // function).
1110   void CallCFunction(ExternalReference function, int num_arguments);
1111   void CallCFunction(Register function, int num_arguments);
1112   void CallCFunction(ExternalReference function,
1113                      int num_reg_arguments,
1114                      int num_double_arguments);
1115   void CallCFunction(Register function,
1116                      int num_reg_arguments,
1117                      int num_double_arguments);
1118 
1119   void MovFromFloatParameter(DwVfpRegister dst);
1120   void MovFromFloatResult(DwVfpRegister dst);
1121 
1122   // Jump to a runtime routine.
1123   void JumpToExternalReference(const ExternalReference& builtin,
1124                                bool builtin_exit_frame = false);
1125 
CodeObject()1126   Handle<Object> CodeObject() {
1127     DCHECK(!code_object_.is_null());
1128     return code_object_;
1129   }
1130 
1131 
1132   // Emit code for a truncating division by a constant. The dividend register is
1133   // unchanged and ip gets clobbered. Dividend and result must be different.
1134   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1135 
1136   // ---------------------------------------------------------------------------
1137   // StatsCounter support
1138 
1139   void SetCounter(StatsCounter* counter, int value,
1140                   Register scratch1, Register scratch2);
1141   void IncrementCounter(StatsCounter* counter, int value,
1142                         Register scratch1, Register scratch2);
1143   void DecrementCounter(StatsCounter* counter, int value,
1144                         Register scratch1, Register scratch2);
1145 
1146 
1147   // ---------------------------------------------------------------------------
1148   // Debugging
1149 
1150   // Calls Abort(msg) if the condition cond is not satisfied.
1151   // Use --debug_code to enable.
1152   void Assert(Condition cond, BailoutReason reason);
1153   void AssertFastElements(Register elements);
1154 
1155   // Like Assert(), but always enabled.
1156   void Check(Condition cond, BailoutReason reason);
1157 
1158   // Print a message to stdout and abort execution.
1159   void Abort(BailoutReason msg);
1160 
1161   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1162   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1163   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1164   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1165   bool has_frame() { return has_frame_; }
1166   inline bool AllowThisStubCall(CodeStub* stub);
1167 
1168   // EABI variant for double arguments in use.
use_eabi_hardfloat()1169   bool use_eabi_hardfloat() {
1170 #ifdef __arm__
1171     return base::OS::ArmUsingHardFloat();
1172 #elif USE_EABI_HARDFLOAT
1173     return true;
1174 #else
1175     return false;
1176 #endif
1177   }
1178 
1179   // ---------------------------------------------------------------------------
1180   // Number utilities
1181 
1182   // Check whether the value of reg is a power of two and not zero. If not
1183   // control continues at the label not_power_of_two. If reg is a power of two
1184   // the register scratch contains the value of (reg - 1) when control falls
1185   // through.
1186   void JumpIfNotPowerOfTwoOrZero(Register reg,
1187                                  Register scratch,
1188                                  Label* not_power_of_two_or_zero);
1189   // Check whether the value of reg is a power of two and not zero.
1190   // Control falls through if it is, with scratch containing the mask
1191   // value (reg - 1).
1192   // Otherwise control jumps to the 'zero_and_neg' label if the value of reg is
1193   // zero or negative, or jumps to the 'not_power_of_two' label if the value is
1194   // strictly positive but not a power of two.
1195   void JumpIfNotPowerOfTwoOrZeroAndNeg(Register reg,
1196                                        Register scratch,
1197                                        Label* zero_and_neg,
1198                                        Label* not_power_of_two);
1199 
1200   // ---------------------------------------------------------------------------
1201   // Smi utilities
1202 
1203   void SmiTag(Register reg, SBit s = LeaveCC) {
1204     add(reg, reg, Operand(reg), s);
1205   }
1206   void SmiTag(Register dst, Register src, SBit s = LeaveCC) {
1207     add(dst, src, Operand(src), s);
1208   }
1209 
1210   // Try to convert int32 to smi. If the value is to large, preserve
1211   // the original value and jump to not_a_smi. Destroys scratch and
1212   // sets flags.
TrySmiTag(Register reg,Label * not_a_smi)1213   void TrySmiTag(Register reg, Label* not_a_smi) {
1214     TrySmiTag(reg, reg, not_a_smi);
1215   }
TrySmiTag(Register reg,Register src,Label * not_a_smi)1216   void TrySmiTag(Register reg, Register src, Label* not_a_smi) {
1217     SmiTag(ip, src, SetCC);
1218     b(vs, not_a_smi);
1219     mov(reg, ip);
1220   }
1221 
1222 
1223   void SmiUntag(Register reg, SBit s = LeaveCC) {
1224     mov(reg, Operand::SmiUntag(reg), s);
1225   }
1226   void SmiUntag(Register dst, Register src, SBit s = LeaveCC) {
1227     mov(dst, Operand::SmiUntag(src), s);
1228   }
1229 
1230   // Untag the source value into destination and jump if source is a smi.
1231   // Souce and destination can be the same register.
1232   void UntagAndJumpIfSmi(Register dst, Register src, Label* smi_case);
1233 
1234   // Test if the register contains a smi (Z == 0 (eq) if true).
SmiTst(Register value)1235   inline void SmiTst(Register value) {
1236     tst(value, Operand(kSmiTagMask));
1237   }
NonNegativeSmiTst(Register value)1238   inline void NonNegativeSmiTst(Register value) {
1239     tst(value, Operand(kSmiTagMask | kSmiSignMask));
1240   }
1241   // Jump if the register contains a smi.
JumpIfSmi(Register value,Label * smi_label)1242   inline void JumpIfSmi(Register value, Label* smi_label) {
1243     tst(value, Operand(kSmiTagMask));
1244     b(eq, smi_label);
1245   }
1246   // Jump if either of the registers contain a non-smi.
JumpIfNotSmi(Register value,Label * not_smi_label)1247   inline void JumpIfNotSmi(Register value, Label* not_smi_label) {
1248     tst(value, Operand(kSmiTagMask));
1249     b(ne, not_smi_label);
1250   }
1251   // Jump if either of the registers contain a non-smi.
1252   void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
1253   // Jump if either of the registers contain a smi.
1254   void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
1255 
1256   // Abort execution if argument is a number, enabled via --debug-code.
1257   void AssertNotNumber(Register object);
1258 
1259   // Abort execution if argument is a smi, enabled via --debug-code.
1260   void AssertNotSmi(Register object);
1261   void AssertSmi(Register object);
1262 
1263   // Abort execution if argument is not a string, enabled via --debug-code.
1264   void AssertString(Register object);
1265 
1266   // Abort execution if argument is not a name, enabled via --debug-code.
1267   void AssertName(Register object);
1268 
1269   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
1270   void AssertFunction(Register object);
1271 
1272   // Abort execution if argument is not a JSBoundFunction,
1273   // enabled via --debug-code.
1274   void AssertBoundFunction(Register object);
1275 
1276   // Abort execution if argument is not a JSGeneratorObject,
1277   // enabled via --debug-code.
1278   void AssertGeneratorObject(Register object);
1279 
1280   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
1281   void AssertReceiver(Register object);
1282 
1283   // Abort execution if argument is not undefined or an AllocationSite, enabled
1284   // via --debug-code.
1285   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
1286 
1287   // Abort execution if reg is not the root value with the given index,
1288   // enabled via --debug-code.
1289   void AssertIsRoot(Register reg, Heap::RootListIndex index);
1290 
1291   // ---------------------------------------------------------------------------
1292   // HeapNumber utilities
1293 
1294   void JumpIfNotHeapNumber(Register object,
1295                            Register heap_number_map,
1296                            Register scratch,
1297                            Label* on_not_heap_number);
1298 
1299   // ---------------------------------------------------------------------------
1300   // String utilities
1301 
1302   // Checks if both objects are sequential one-byte strings and jumps to label
1303   // if either is not. Assumes that neither object is a smi.
1304   void JumpIfNonSmisNotBothSequentialOneByteStrings(Register object1,
1305                                                     Register object2,
1306                                                     Register scratch1,
1307                                                     Register scratch2,
1308                                                     Label* failure);
1309 
1310   // Checks if both objects are sequential one-byte strings and jumps to label
1311   // if either is not.
1312   void JumpIfNotBothSequentialOneByteStrings(Register first, Register second,
1313                                              Register scratch1,
1314                                              Register scratch2,
1315                                              Label* not_flat_one_byte_strings);
1316 
1317   // Checks if both instance types are sequential one-byte strings and jumps to
1318   // label if either is not.
1319   void JumpIfBothInstanceTypesAreNotSequentialOneByte(
1320       Register first_object_instance_type, Register second_object_instance_type,
1321       Register scratch1, Register scratch2, Label* failure);
1322 
1323   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name);
1324 
1325   void EmitSeqStringSetCharCheck(Register string,
1326                                  Register index,
1327                                  Register value,
1328                                  uint32_t encoding_mask);
1329 
1330 
1331   void ClampUint8(Register output_reg, Register input_reg);
1332 
1333   void ClampDoubleToUint8(Register result_reg,
1334                           DwVfpRegister input_reg,
1335                           LowDwVfpRegister double_scratch);
1336 
1337 
1338   void LoadInstanceDescriptors(Register map, Register descriptors);
1339   void EnumLength(Register dst, Register map);
1340   void NumberOfOwnDescriptors(Register dst, Register map);
1341   void LoadAccessor(Register dst, Register holder, int accessor_index,
1342                     AccessorComponent accessor);
1343 
1344   template<typename Field>
DecodeField(Register dst,Register src)1345   void DecodeField(Register dst, Register src) {
1346     Ubfx(dst, src, Field::kShift, Field::kSize);
1347   }
1348 
1349   template<typename Field>
DecodeField(Register reg)1350   void DecodeField(Register reg) {
1351     DecodeField<Field>(reg, reg);
1352   }
1353 
1354   template<typename Field>
DecodeFieldToSmi(Register dst,Register src)1355   void DecodeFieldToSmi(Register dst, Register src) {
1356     static const int shift = Field::kShift;
1357     static const int mask = Field::kMask >> shift << kSmiTagSize;
1358     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
1359     STATIC_ASSERT(kSmiTag == 0);
1360     if (shift < kSmiTagSize) {
1361       mov(dst, Operand(src, LSL, kSmiTagSize - shift));
1362       and_(dst, dst, Operand(mask));
1363     } else if (shift > kSmiTagSize) {
1364       mov(dst, Operand(src, LSR, shift - kSmiTagSize));
1365       and_(dst, dst, Operand(mask));
1366     } else {
1367       and_(dst, src, Operand(mask));
1368     }
1369   }
1370 
1371   template<typename Field>
DecodeFieldToSmi(Register reg)1372   void DecodeFieldToSmi(Register reg) {
1373     DecodeField<Field>(reg, reg);
1374   }
1375 
1376   // Load the type feedback vector from a JavaScript frame.
1377   void EmitLoadFeedbackVector(Register vector);
1378 
1379   // Activation support.
1380   void EnterFrame(StackFrame::Type type,
1381                   bool load_constant_pool_pointer_reg = false);
1382   // Returns the pc offset at which the frame ends.
1383   int LeaveFrame(StackFrame::Type type);
1384 
1385   void EnterBuiltinFrame(Register context, Register target, Register argc);
1386   void LeaveBuiltinFrame(Register context, Register target, Register argc);
1387 
1388   // Expects object in r0 and returns map with validated enum cache
1389   // in r0.  Assumes that any other register can be used as a scratch.
1390   void CheckEnumCache(Label* call_runtime);
1391 
1392   // AllocationMemento support. Arrays may have an associated
1393   // AllocationMemento object that can be checked for in order to pretransition
1394   // to another type.
1395   // On entry, receiver_reg should point to the array object.
1396   // scratch_reg gets clobbered.
1397   // If allocation info is present, condition flags are set to eq.
1398   void TestJSArrayForAllocationMemento(Register receiver_reg,
1399                                        Register scratch_reg,
1400                                        Label* no_memento_found);
1401 
1402   // Loads the constant pool pointer (pp) register.
1403   void LoadConstantPoolPointerRegisterFromCodeTargetAddress(
1404       Register code_target_address);
1405   void LoadConstantPoolPointerRegister();
1406 
1407  private:
1408   void CallCFunctionHelper(Register function,
1409                            int num_reg_arguments,
1410                            int num_double_arguments);
1411 
1412   void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
1413 
1414   // Helper functions for generating invokes.
1415   void InvokePrologue(const ParameterCount& expected,
1416                       const ParameterCount& actual,
1417                       Label* done,
1418                       bool* definitely_mismatches,
1419                       InvokeFlag flag,
1420                       const CallWrapper& call_wrapper);
1421 
1422   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1423   void InNewSpace(Register object,
1424                   Register scratch,
1425                   Condition cond,  // eq for new space, ne otherwise.
1426                   Label* branch);
1427 
1428   // Helper for finding the mark bits for an address.  Afterwards, the
1429   // bitmap register points at the word with the mark bits and the mask
1430   // the position of the first bit.  Leaves addr_reg unchanged.
1431   inline void GetMarkBits(Register addr_reg,
1432                           Register bitmap_reg,
1433                           Register mask_reg);
1434 
1435   // Compute memory operands for safepoint stack slots.
1436   static int SafepointRegisterStackIndex(int reg_code);
1437   MemOperand SafepointRegisterSlot(Register reg);
1438   MemOperand SafepointRegistersAndDoublesSlot(Register reg);
1439 
1440   // Implementation helpers for FloatMin and FloatMax.
1441   template <typename T>
1442   void FloatMaxHelper(T result, T left, T right, Label* out_of_line);
1443   template <typename T>
1444   void FloatMinHelper(T result, T left, T right, Label* out_of_line);
1445   template <typename T>
1446   void FloatMaxOutOfLineHelper(T result, T left, T right);
1447   template <typename T>
1448   void FloatMinOutOfLineHelper(T result, T left, T right);
1449 
1450   bool generating_stub_;
1451   bool has_frame_;
1452   // This handle will be patched with the code object on installation.
1453   Handle<Object> code_object_;
1454 
1455   // Needs access to SafepointRegisterStackIndex for compiled frame
1456   // traversal.
1457   friend class StandardFrame;
1458 };
1459 
1460 
1461 // The code patcher is used to patch (typically) small parts of code e.g. for
1462 // debugging and other types of instrumentation. When using the code patcher
1463 // the exact number of bytes specified must be emitted. It is not legal to emit
1464 // relocation information. If any of these constraints are violated it causes
1465 // an assertion to fail.
1466 class CodePatcher {
1467  public:
1468   enum FlushICache {
1469     FLUSH,
1470     DONT_FLUSH
1471   };
1472 
1473   CodePatcher(Isolate* isolate, byte* address, int instructions,
1474               FlushICache flush_cache = FLUSH);
1475   ~CodePatcher();
1476 
1477   // Macro assembler to emit code.
masm()1478   MacroAssembler* masm() { return &masm_; }
1479 
1480   // Emit an instruction directly.
1481   void Emit(Instr instr);
1482 
1483   // Emit an address directly.
1484   void Emit(Address addr);
1485 
1486   // Emit the condition part of an instruction leaving the rest of the current
1487   // instruction unchanged.
1488   void EmitCondition(Condition cond);
1489 
1490  private:
1491   byte* address_;  // The address of the code being patched.
1492   int size_;  // Number of bytes of the expected patch size.
1493   MacroAssembler masm_;  // Macro assembler used to generate the code.
1494   FlushICache flush_cache_;  // Whether to flush the I cache after patching.
1495 };
1496 
1497 
1498 // -----------------------------------------------------------------------------
1499 // Static helper functions.
1500 
1501 inline MemOperand ContextMemOperand(Register context, int index = 0) {
1502   return MemOperand(context, Context::SlotOffset(index));
1503 }
1504 
1505 
NativeContextMemOperand()1506 inline MemOperand NativeContextMemOperand() {
1507   return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX);
1508 }
1509 
1510 #define ACCESS_MASM(masm) masm->
1511 
1512 }  // namespace internal
1513 }  // namespace v8
1514 
1515 #endif  // V8_ARM_MACRO_ASSEMBLER_ARM_H_
1516