1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 //#PY25 compatible generated code for GAE.
32 // Copyright 2007 Google Inc. All Rights Reserved.
33 // Author: robinson@google.com (Will Robinson)
34 //
35 // This module outputs pure-Python protocol message classes that will
36 // largely be constructed at runtime via the metaclass in reflection.py.
37 // In other words, our job is basically to output a Python equivalent
38 // of the C++ *Descriptor objects, and fix up all circular references
39 // within these objects.
40 //
41 // Note that the runtime performance of protocol message classes created in
42 // this way is expected to be lousy. The plan is to create an alternate
43 // generator that outputs a Python/C extension module that lets
44 // performance-minded Python code leverage the fast C++ implementation
45 // directly.
46
47 #include <google/protobuf/stubs/hash.h>
48 #include <limits>
49 #include <map>
50 #include <memory>
51 #ifndef _SHARED_PTR_H
52 #include <google/protobuf/stubs/shared_ptr.h>
53 #endif
54 #include <string>
55 #include <utility>
56 #include <vector>
57
58 #include <google/protobuf/compiler/python/python_generator.h>
59 #include <google/protobuf/descriptor.pb.h>
60
61 #include <google/protobuf/stubs/logging.h>
62 #include <google/protobuf/stubs/common.h>
63 #include <google/protobuf/stubs/stringprintf.h>
64 #include <google/protobuf/io/printer.h>
65 #include <google/protobuf/descriptor.h>
66 #include <google/protobuf/io/zero_copy_stream.h>
67 #include <google/protobuf/stubs/strutil.h>
68 #include <google/protobuf/stubs/substitute.h>
69
70 namespace google {
71 namespace protobuf {
72 namespace compiler {
73 namespace python {
74
75 namespace {
76
77 // Returns a copy of |filename| with any trailing ".protodevel" or ".proto
78 // suffix stripped.
79 // TODO(robinson): Unify with copy in compiler/cpp/internal/helpers.cc.
StripProto(const string & filename)80 string StripProto(const string& filename) {
81 const char* suffix = HasSuffixString(filename, ".protodevel")
82 ? ".protodevel" : ".proto";
83 return StripSuffixString(filename, suffix);
84 }
85
86
87 // Returns the Python module name expected for a given .proto filename.
ModuleName(const string & filename)88 string ModuleName(const string& filename) {
89 string basename = StripProto(filename);
90 StripString(&basename, "-", '_');
91 StripString(&basename, "/", '.');
92 return basename + "_pb2";
93 }
94
95
96 // Returns the alias we assign to the module of the given .proto filename
97 // when importing. See testPackageInitializationImport in
98 // google/protobuf/python/reflection_test.py
99 // to see why we need the alias.
ModuleAlias(const string & filename)100 string ModuleAlias(const string& filename) {
101 string module_name = ModuleName(filename);
102 // We can't have dots in the module name, so we replace each with _dot_.
103 // But that could lead to a collision between a.b and a_dot_b, so we also
104 // duplicate each underscore.
105 GlobalReplaceSubstring("_", "__", &module_name);
106 GlobalReplaceSubstring(".", "_dot_", &module_name);
107 return module_name;
108 }
109
110
111 // Returns an import statement of form "from X.Y.Z import T" for the given
112 // .proto filename.
ModuleImportStatement(const string & filename)113 string ModuleImportStatement(const string& filename) {
114 string module_name = ModuleName(filename);
115 int last_dot_pos = module_name.rfind('.');
116 if (last_dot_pos == string::npos) {
117 // NOTE(petya): this is not tested as it would require a protocol buffer
118 // outside of any package, and I don't think that is easily achievable.
119 return "import " + module_name;
120 } else {
121 return "from " + module_name.substr(0, last_dot_pos) + " import " +
122 module_name.substr(last_dot_pos + 1);
123 }
124 }
125
126
127 // Returns the name of all containing types for descriptor,
128 // in order from outermost to innermost, followed by descriptor's
129 // own name. Each name is separated by |separator|.
130 template <typename DescriptorT>
NamePrefixedWithNestedTypes(const DescriptorT & descriptor,const string & separator)131 string NamePrefixedWithNestedTypes(const DescriptorT& descriptor,
132 const string& separator) {
133 string name = descriptor.name();
134 for (const Descriptor* current = descriptor.containing_type();
135 current != NULL; current = current->containing_type()) {
136 name = current->name() + separator + name;
137 }
138 return name;
139 }
140
141
142 // Name of the class attribute where we store the Python
143 // descriptor.Descriptor instance for the generated class.
144 // Must stay consistent with the _DESCRIPTOR_KEY constant
145 // in proto2/public/reflection.py.
146 const char kDescriptorKey[] = "DESCRIPTOR";
147
148
149 // Does the file have top-level enums?
HasTopLevelEnums(const FileDescriptor * file)150 inline bool HasTopLevelEnums(const FileDescriptor *file) {
151 return file->enum_type_count() > 0;
152 }
153
154
155 // Should we generate generic services for this file?
HasGenericServices(const FileDescriptor * file)156 inline bool HasGenericServices(const FileDescriptor *file) {
157 return file->service_count() > 0 &&
158 file->options().py_generic_services();
159 }
160
161
162 // Prints the common boilerplate needed at the top of every .py
163 // file output by this generator.
PrintTopBoilerplate(io::Printer * printer,const FileDescriptor * file,bool descriptor_proto)164 void PrintTopBoilerplate(
165 io::Printer* printer, const FileDescriptor* file, bool descriptor_proto) {
166 // TODO(robinson): Allow parameterization of Python version?
167 printer->Print(
168 "# Generated by the protocol buffer compiler. DO NOT EDIT!\n"
169 "# source: $filename$\n"
170 "\nimport sys\n_b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1'))" //##PY25
171 "\n",
172 "filename", file->name());
173 if (HasTopLevelEnums(file)) {
174 printer->Print(
175 "from google.protobuf.internal import enum_type_wrapper\n");
176 }
177 printer->Print(
178 "from google.protobuf import descriptor as _descriptor\n"
179 "from google.protobuf import message as _message\n"
180 "from google.protobuf import reflection as _reflection\n"
181 "from google.protobuf import symbol_database as "
182 "_symbol_database\n");
183 if (HasGenericServices(file)) {
184 printer->Print(
185 "from google.protobuf import service as _service\n"
186 "from google.protobuf import service_reflection\n");
187 }
188
189 // Avoid circular imports if this module is descriptor_pb2.
190 if (!descriptor_proto) {
191 printer->Print(
192 "from google.protobuf import descriptor_pb2\n");
193 }
194 printer->Print(
195 "# @@protoc_insertion_point(imports)\n\n"
196 "_sym_db = _symbol_database.Default()\n");
197 printer->Print("\n\n");
198 }
199
200
201 // Returns a Python literal giving the default value for a field.
202 // If the field specifies no explicit default value, we'll return
203 // the default default value for the field type (zero for numbers,
204 // empty string for strings, empty list for repeated fields, and
205 // None for non-repeated, composite fields).
206 //
207 // TODO(robinson): Unify with code from
208 // //compiler/cpp/internal/primitive_field.cc
209 // //compiler/cpp/internal/enum_field.cc
210 // //compiler/cpp/internal/string_field.cc
StringifyDefaultValue(const FieldDescriptor & field)211 string StringifyDefaultValue(const FieldDescriptor& field) {
212 if (field.is_repeated()) {
213 return "[]";
214 }
215
216 switch (field.cpp_type()) {
217 case FieldDescriptor::CPPTYPE_INT32:
218 return SimpleItoa(field.default_value_int32());
219 case FieldDescriptor::CPPTYPE_UINT32:
220 return SimpleItoa(field.default_value_uint32());
221 case FieldDescriptor::CPPTYPE_INT64:
222 return SimpleItoa(field.default_value_int64());
223 case FieldDescriptor::CPPTYPE_UINT64:
224 return SimpleItoa(field.default_value_uint64());
225 case FieldDescriptor::CPPTYPE_DOUBLE: {
226 double value = field.default_value_double();
227 if (value == numeric_limits<double>::infinity()) {
228 // Python pre-2.6 on Windows does not parse "inf" correctly. However,
229 // a numeric literal that is too big for a double will become infinity.
230 return "1e10000";
231 } else if (value == -numeric_limits<double>::infinity()) {
232 // See above.
233 return "-1e10000";
234 } else if (value != value) {
235 // infinity * 0 = nan
236 return "(1e10000 * 0)";
237 } else {
238 return "float(" + SimpleDtoa(value) + ")";
239 }
240 }
241 case FieldDescriptor::CPPTYPE_FLOAT: {
242 float value = field.default_value_float();
243 if (value == numeric_limits<float>::infinity()) {
244 // Python pre-2.6 on Windows does not parse "inf" correctly. However,
245 // a numeric literal that is too big for a double will become infinity.
246 return "1e10000";
247 } else if (value == -numeric_limits<float>::infinity()) {
248 // See above.
249 return "-1e10000";
250 } else if (value != value) {
251 // infinity - infinity = nan
252 return "(1e10000 * 0)";
253 } else {
254 return "float(" + SimpleFtoa(value) + ")";
255 }
256 }
257 case FieldDescriptor::CPPTYPE_BOOL:
258 return field.default_value_bool() ? "True" : "False";
259 case FieldDescriptor::CPPTYPE_ENUM:
260 return SimpleItoa(field.default_value_enum()->number());
261 case FieldDescriptor::CPPTYPE_STRING:
262 //##!PY25 return "b\"" + CEscape(field.default_value_string()) +
263 //##!PY25 (field.type() != FieldDescriptor::TYPE_STRING ? "\"" :
264 //##!PY25 "\".decode('utf-8')");
265 return "_b(\"" + CEscape(field.default_value_string()) + //##PY25
266 (field.type() != FieldDescriptor::TYPE_STRING ? "\")" : //##PY25
267 "\").decode('utf-8')"); //##PY25
268 case FieldDescriptor::CPPTYPE_MESSAGE:
269 return "None";
270 }
271 // (We could add a default case above but then we wouldn't get the nice
272 // compiler warning when a new type is added.)
273 GOOGLE_LOG(FATAL) << "Not reached.";
274 return "";
275 }
276
StringifySyntax(FileDescriptor::Syntax syntax)277 string StringifySyntax(FileDescriptor::Syntax syntax) {
278 switch (syntax) {
279 case FileDescriptor::SYNTAX_PROTO2:
280 return "proto2";
281 case FileDescriptor::SYNTAX_PROTO3:
282 return "proto3";
283 case FileDescriptor::SYNTAX_UNKNOWN:
284 default:
285 GOOGLE_LOG(FATAL) << "Unsupported syntax; this generator only supports proto2 "
286 "and proto3 syntax.";
287 return "";
288 }
289 }
290
291
292 } // namespace
293
294
Generator()295 Generator::Generator() : file_(NULL) {
296 }
297
~Generator()298 Generator::~Generator() {
299 }
300
Generate(const FileDescriptor * file,const string & parameter,GeneratorContext * context,string * error) const301 bool Generator::Generate(const FileDescriptor* file,
302 const string& parameter,
303 GeneratorContext* context,
304 string* error) const {
305
306 // Completely serialize all Generate() calls on this instance. The
307 // thread-safety constraints of the CodeGenerator interface aren't clear so
308 // just be as conservative as possible. It's easier to relax this later if
309 // we need to, but I doubt it will be an issue.
310 // TODO(kenton): The proper thing to do would be to allocate any state on
311 // the stack and use that, so that the Generator class itself does not need
312 // to have any mutable members. Then it is implicitly thread-safe.
313 MutexLock lock(&mutex_);
314 file_ = file;
315 string module_name = ModuleName(file->name());
316 string filename = module_name;
317 StripString(&filename, ".", '/');
318 filename += ".py";
319
320 FileDescriptorProto fdp;
321 file_->CopyTo(&fdp);
322 fdp.SerializeToString(&file_descriptor_serialized_);
323
324
325 google::protobuf::scoped_ptr<io::ZeroCopyOutputStream> output(context->Open(filename));
326 GOOGLE_CHECK(output.get());
327 io::Printer printer(output.get(), '$');
328 printer_ = &printer;
329
330 PrintTopBoilerplate(printer_, file_, GeneratingDescriptorProto());
331 PrintImports();
332 PrintFileDescriptor();
333 PrintTopLevelEnums();
334 PrintTopLevelExtensions();
335 PrintAllNestedEnumsInFile();
336 PrintMessageDescriptors();
337 FixForeignFieldsInDescriptors();
338 PrintMessages();
339 // We have to fix up the extensions after the message classes themselves,
340 // since they need to call static RegisterExtension() methods on these
341 // classes.
342 FixForeignFieldsInExtensions();
343 // Descriptor options may have custom extensions. These custom options
344 // can only be successfully parsed after we register corresponding
345 // extensions. Therefore we parse all options again here to recognize
346 // custom options that may be unknown when we define the descriptors.
347 FixAllDescriptorOptions();
348 if (HasGenericServices(file)) {
349 PrintServices();
350 }
351
352 printer.Print(
353 "# @@protoc_insertion_point(module_scope)\n");
354
355 return !printer.failed();
356 }
357
358 // Prints Python imports for all modules imported by |file|.
PrintImports() const359 void Generator::PrintImports() const {
360 for (int i = 0; i < file_->dependency_count(); ++i) {
361 const string& filename = file_->dependency(i)->name();
362 string import_statement = ModuleImportStatement(filename);
363 string module_alias = ModuleAlias(filename);
364 printer_->Print("$statement$ as $alias$\n", "statement",
365 import_statement, "alias", module_alias);
366 CopyPublicDependenciesAliases(module_alias, file_->dependency(i));
367 }
368 printer_->Print("\n");
369
370 // Print public imports.
371 for (int i = 0; i < file_->public_dependency_count(); ++i) {
372 string module_name = ModuleName(file_->public_dependency(i)->name());
373 printer_->Print("from $module$ import *\n", "module", module_name);
374 }
375 printer_->Print("\n");
376 }
377
378 // Prints the single file descriptor for this file.
PrintFileDescriptor() const379 void Generator::PrintFileDescriptor() const {
380 map<string, string> m;
381 m["descriptor_name"] = kDescriptorKey;
382 m["name"] = file_->name();
383 m["package"] = file_->package();
384 m["syntax"] = StringifySyntax(file_->syntax());
385 const char file_descriptor_template[] =
386 "$descriptor_name$ = _descriptor.FileDescriptor(\n"
387 " name='$name$',\n"
388 " package='$package$',\n"
389 " syntax='$syntax$',\n";
390 printer_->Print(m, file_descriptor_template);
391 printer_->Indent();
392 printer_->Print(
393 //##!PY25 "serialized_pb=b'$value$'\n",
394 "serialized_pb=_b('$value$')\n", //##PY25
395 "value", strings::CHexEscape(file_descriptor_serialized_));
396 if (file_->dependency_count() != 0) {
397 printer_->Print(",\ndependencies=[");
398 for (int i = 0; i < file_->dependency_count(); ++i) {
399 string module_alias = ModuleAlias(file_->dependency(i)->name());
400 printer_->Print("$module_alias$.DESCRIPTOR,", "module_alias",
401 module_alias);
402 }
403 printer_->Print("]");
404 }
405
406 // TODO(falk): Also print options and fix the message_type, enum_type,
407 // service and extension later in the generation.
408
409 printer_->Outdent();
410 printer_->Print(")\n");
411 printer_->Print("_sym_db.RegisterFileDescriptor($name$)\n", "name",
412 kDescriptorKey);
413 printer_->Print("\n");
414 }
415
416 // Prints descriptors and module-level constants for all top-level
417 // enums defined in |file|.
PrintTopLevelEnums() const418 void Generator::PrintTopLevelEnums() const {
419 vector<pair<string, int> > top_level_enum_values;
420 for (int i = 0; i < file_->enum_type_count(); ++i) {
421 const EnumDescriptor& enum_descriptor = *file_->enum_type(i);
422 PrintEnum(enum_descriptor);
423 printer_->Print("$name$ = "
424 "enum_type_wrapper.EnumTypeWrapper($descriptor_name$)",
425 "name", enum_descriptor.name(),
426 "descriptor_name",
427 ModuleLevelDescriptorName(enum_descriptor));
428 printer_->Print("\n");
429
430 for (int j = 0; j < enum_descriptor.value_count(); ++j) {
431 const EnumValueDescriptor& value_descriptor = *enum_descriptor.value(j);
432 top_level_enum_values.push_back(
433 std::make_pair(value_descriptor.name(), value_descriptor.number()));
434 }
435 }
436
437 for (int i = 0; i < top_level_enum_values.size(); ++i) {
438 printer_->Print("$name$ = $value$\n",
439 "name", top_level_enum_values[i].first,
440 "value", SimpleItoa(top_level_enum_values[i].second));
441 }
442 printer_->Print("\n");
443 }
444
445 // Prints all enums contained in all message types in |file|.
PrintAllNestedEnumsInFile() const446 void Generator::PrintAllNestedEnumsInFile() const {
447 for (int i = 0; i < file_->message_type_count(); ++i) {
448 PrintNestedEnums(*file_->message_type(i));
449 }
450 }
451
452 // Prints a Python statement assigning the appropriate module-level
453 // enum name to a Python EnumDescriptor object equivalent to
454 // enum_descriptor.
PrintEnum(const EnumDescriptor & enum_descriptor) const455 void Generator::PrintEnum(const EnumDescriptor& enum_descriptor) const {
456 map<string, string> m;
457 string module_level_descriptor_name =
458 ModuleLevelDescriptorName(enum_descriptor);
459 m["descriptor_name"] = module_level_descriptor_name;
460 m["name"] = enum_descriptor.name();
461 m["full_name"] = enum_descriptor.full_name();
462 m["file"] = kDescriptorKey;
463 const char enum_descriptor_template[] =
464 "$descriptor_name$ = _descriptor.EnumDescriptor(\n"
465 " name='$name$',\n"
466 " full_name='$full_name$',\n"
467 " filename=None,\n"
468 " file=$file$,\n"
469 " values=[\n";
470 string options_string;
471 enum_descriptor.options().SerializeToString(&options_string);
472 printer_->Print(m, enum_descriptor_template);
473 printer_->Indent();
474 printer_->Indent();
475 for (int i = 0; i < enum_descriptor.value_count(); ++i) {
476 PrintEnumValueDescriptor(*enum_descriptor.value(i));
477 printer_->Print(",\n");
478 }
479 printer_->Outdent();
480 printer_->Print("],\n");
481 printer_->Print("containing_type=None,\n");
482 printer_->Print("options=$options_value$,\n",
483 "options_value",
484 OptionsValue("EnumOptions", options_string));
485 EnumDescriptorProto edp;
486 PrintSerializedPbInterval(enum_descriptor, edp);
487 printer_->Outdent();
488 printer_->Print(")\n");
489 printer_->Print("_sym_db.RegisterEnumDescriptor($name$)\n", "name",
490 module_level_descriptor_name);
491 printer_->Print("\n");
492 }
493
494 // Recursively prints enums in nested types within descriptor, then
495 // prints enums contained at the top level in descriptor.
PrintNestedEnums(const Descriptor & descriptor) const496 void Generator::PrintNestedEnums(const Descriptor& descriptor) const {
497 for (int i = 0; i < descriptor.nested_type_count(); ++i) {
498 PrintNestedEnums(*descriptor.nested_type(i));
499 }
500
501 for (int i = 0; i < descriptor.enum_type_count(); ++i) {
502 PrintEnum(*descriptor.enum_type(i));
503 }
504 }
505
PrintTopLevelExtensions() const506 void Generator::PrintTopLevelExtensions() const {
507 const bool is_extension = true;
508 for (int i = 0; i < file_->extension_count(); ++i) {
509 const FieldDescriptor& extension_field = *file_->extension(i);
510 string constant_name = extension_field.name() + "_FIELD_NUMBER";
511 UpperString(&constant_name);
512 printer_->Print("$constant_name$ = $number$\n",
513 "constant_name", constant_name,
514 "number", SimpleItoa(extension_field.number()));
515 printer_->Print("$name$ = ", "name", extension_field.name());
516 PrintFieldDescriptor(extension_field, is_extension);
517 printer_->Print("\n");
518 }
519 printer_->Print("\n");
520 }
521
522 // Prints Python equivalents of all Descriptors in |file|.
PrintMessageDescriptors() const523 void Generator::PrintMessageDescriptors() const {
524 for (int i = 0; i < file_->message_type_count(); ++i) {
525 PrintDescriptor(*file_->message_type(i));
526 printer_->Print("\n");
527 }
528 }
529
PrintServices() const530 void Generator::PrintServices() const {
531 for (int i = 0; i < file_->service_count(); ++i) {
532 PrintServiceDescriptor(*file_->service(i));
533 PrintServiceClass(*file_->service(i));
534 PrintServiceStub(*file_->service(i));
535 printer_->Print("\n");
536 }
537 }
538
PrintServiceDescriptor(const ServiceDescriptor & descriptor) const539 void Generator::PrintServiceDescriptor(
540 const ServiceDescriptor& descriptor) const {
541 printer_->Print("\n");
542 string service_name = ModuleLevelServiceDescriptorName(descriptor);
543 string options_string;
544 descriptor.options().SerializeToString(&options_string);
545
546 printer_->Print(
547 "$service_name$ = _descriptor.ServiceDescriptor(\n",
548 "service_name", service_name);
549 printer_->Indent();
550 map<string, string> m;
551 m["name"] = descriptor.name();
552 m["full_name"] = descriptor.full_name();
553 m["file"] = kDescriptorKey;
554 m["index"] = SimpleItoa(descriptor.index());
555 m["options_value"] = OptionsValue("ServiceOptions", options_string);
556 const char required_function_arguments[] =
557 "name='$name$',\n"
558 "full_name='$full_name$',\n"
559 "file=$file$,\n"
560 "index=$index$,\n"
561 "options=$options_value$,\n";
562 printer_->Print(m, required_function_arguments);
563
564 ServiceDescriptorProto sdp;
565 PrintSerializedPbInterval(descriptor, sdp);
566
567 printer_->Print("methods=[\n");
568 for (int i = 0; i < descriptor.method_count(); ++i) {
569 const MethodDescriptor* method = descriptor.method(i);
570 method->options().SerializeToString(&options_string);
571
572 m.clear();
573 m["name"] = method->name();
574 m["full_name"] = method->full_name();
575 m["index"] = SimpleItoa(method->index());
576 m["serialized_options"] = CEscape(options_string);
577 m["input_type"] = ModuleLevelDescriptorName(*(method->input_type()));
578 m["output_type"] = ModuleLevelDescriptorName(*(method->output_type()));
579 m["options_value"] = OptionsValue("MethodOptions", options_string);
580 printer_->Print("_descriptor.MethodDescriptor(\n");
581 printer_->Indent();
582 printer_->Print(
583 m,
584 "name='$name$',\n"
585 "full_name='$full_name$',\n"
586 "index=$index$,\n"
587 "containing_service=None,\n"
588 "input_type=$input_type$,\n"
589 "output_type=$output_type$,\n"
590 "options=$options_value$,\n");
591 printer_->Outdent();
592 printer_->Print("),\n");
593 }
594
595 printer_->Outdent();
596 printer_->Print("])\n\n");
597 }
598
599
PrintDescriptorKeyAndModuleName(const ServiceDescriptor & descriptor) const600 void Generator::PrintDescriptorKeyAndModuleName(
601 const ServiceDescriptor& descriptor) const {
602 printer_->Print(
603 "$descriptor_key$ = $descriptor_name$,\n",
604 "descriptor_key", kDescriptorKey,
605 "descriptor_name", ModuleLevelServiceDescriptorName(descriptor));
606 printer_->Print(
607 "__module__ = '$module_name$'\n",
608 "module_name", ModuleName(file_->name()));
609 }
610
PrintServiceClass(const ServiceDescriptor & descriptor) const611 void Generator::PrintServiceClass(const ServiceDescriptor& descriptor) const {
612 // Print the service.
613 printer_->Print("$class_name$ = service_reflection.GeneratedServiceType("
614 "'$class_name$', (_service.Service,), dict(\n",
615 "class_name", descriptor.name());
616 printer_->Indent();
617 Generator::PrintDescriptorKeyAndModuleName(descriptor);
618 printer_->Print("))\n\n");
619 printer_->Outdent();
620 }
621
PrintServiceStub(const ServiceDescriptor & descriptor) const622 void Generator::PrintServiceStub(const ServiceDescriptor& descriptor) const {
623 // Print the service stub.
624 printer_->Print("$class_name$_Stub = "
625 "service_reflection.GeneratedServiceStubType("
626 "'$class_name$_Stub', ($class_name$,), dict(\n",
627 "class_name", descriptor.name());
628 printer_->Indent();
629 Generator::PrintDescriptorKeyAndModuleName(descriptor);
630 printer_->Print("))\n\n");
631 printer_->Outdent();
632 }
633
634 // Prints statement assigning ModuleLevelDescriptorName(message_descriptor)
635 // to a Python Descriptor object for message_descriptor.
636 //
637 // Mutually recursive with PrintNestedDescriptors().
PrintDescriptor(const Descriptor & message_descriptor) const638 void Generator::PrintDescriptor(const Descriptor& message_descriptor) const {
639 PrintNestedDescriptors(message_descriptor);
640
641 printer_->Print("\n");
642 printer_->Print("$descriptor_name$ = _descriptor.Descriptor(\n",
643 "descriptor_name",
644 ModuleLevelDescriptorName(message_descriptor));
645 printer_->Indent();
646 map<string, string> m;
647 m["name"] = message_descriptor.name();
648 m["full_name"] = message_descriptor.full_name();
649 m["file"] = kDescriptorKey;
650 const char required_function_arguments[] =
651 "name='$name$',\n"
652 "full_name='$full_name$',\n"
653 "filename=None,\n"
654 "file=$file$,\n"
655 "containing_type=None,\n";
656 printer_->Print(m, required_function_arguments);
657 PrintFieldsInDescriptor(message_descriptor);
658 PrintExtensionsInDescriptor(message_descriptor);
659
660 // Nested types
661 printer_->Print("nested_types=[");
662 for (int i = 0; i < message_descriptor.nested_type_count(); ++i) {
663 const string nested_name = ModuleLevelDescriptorName(
664 *message_descriptor.nested_type(i));
665 printer_->Print("$name$, ", "name", nested_name);
666 }
667 printer_->Print("],\n");
668
669 // Enum types
670 printer_->Print("enum_types=[\n");
671 printer_->Indent();
672 for (int i = 0; i < message_descriptor.enum_type_count(); ++i) {
673 const string descriptor_name = ModuleLevelDescriptorName(
674 *message_descriptor.enum_type(i));
675 printer_->Print(descriptor_name.c_str());
676 printer_->Print(",\n");
677 }
678 printer_->Outdent();
679 printer_->Print("],\n");
680 string options_string;
681 message_descriptor.options().SerializeToString(&options_string);
682 printer_->Print(
683 "options=$options_value$,\n"
684 "is_extendable=$extendable$,\n"
685 "syntax='$syntax$'",
686 "options_value", OptionsValue("MessageOptions", options_string),
687 "extendable", message_descriptor.extension_range_count() > 0 ?
688 "True" : "False",
689 "syntax", StringifySyntax(message_descriptor.file()->syntax()));
690 printer_->Print(",\n");
691
692 // Extension ranges
693 printer_->Print("extension_ranges=[");
694 for (int i = 0; i < message_descriptor.extension_range_count(); ++i) {
695 const Descriptor::ExtensionRange* range =
696 message_descriptor.extension_range(i);
697 printer_->Print("($start$, $end$), ",
698 "start", SimpleItoa(range->start),
699 "end", SimpleItoa(range->end));
700 }
701 printer_->Print("],\n");
702 printer_->Print("oneofs=[\n");
703 printer_->Indent();
704 for (int i = 0; i < message_descriptor.oneof_decl_count(); ++i) {
705 const OneofDescriptor* desc = message_descriptor.oneof_decl(i);
706 map<string, string> m;
707 m["name"] = desc->name();
708 m["full_name"] = desc->full_name();
709 m["index"] = SimpleItoa(desc->index());
710 printer_->Print(
711 m,
712 "_descriptor.OneofDescriptor(\n"
713 " name='$name$', full_name='$full_name$',\n"
714 " index=$index$, containing_type=None, fields=[]),\n");
715 }
716 printer_->Outdent();
717 printer_->Print("],\n");
718 // Serialization of proto
719 DescriptorProto edp;
720 PrintSerializedPbInterval(message_descriptor, edp);
721
722 printer_->Outdent();
723 printer_->Print(")\n");
724 }
725
726 // Prints Python Descriptor objects for all nested types contained in
727 // message_descriptor.
728 //
729 // Mutually recursive with PrintDescriptor().
PrintNestedDescriptors(const Descriptor & containing_descriptor) const730 void Generator::PrintNestedDescriptors(
731 const Descriptor& containing_descriptor) const {
732 for (int i = 0; i < containing_descriptor.nested_type_count(); ++i) {
733 PrintDescriptor(*containing_descriptor.nested_type(i));
734 }
735 }
736
737 // Prints all messages in |file|.
PrintMessages() const738 void Generator::PrintMessages() const {
739 for (int i = 0; i < file_->message_type_count(); ++i) {
740 vector<string> to_register;
741 PrintMessage(*file_->message_type(i), "", &to_register);
742 for (int j = 0; j < to_register.size(); ++j) {
743 printer_->Print("_sym_db.RegisterMessage($name$)\n", "name",
744 to_register[j]);
745 }
746 printer_->Print("\n");
747 }
748 }
749
750 // Prints a Python class for the given message descriptor. We defer to the
751 // metaclass to do almost all of the work of actually creating a useful class.
752 // The purpose of this function and its many helper functions above is merely
753 // to output a Python version of the descriptors, which the metaclass in
754 // reflection.py will use to construct the meat of the class itself.
755 //
756 // Mutually recursive with PrintNestedMessages().
757 // Collect nested message names to_register for the symbol_database.
PrintMessage(const Descriptor & message_descriptor,const string & prefix,vector<string> * to_register) const758 void Generator::PrintMessage(const Descriptor& message_descriptor,
759 const string& prefix,
760 vector<string>* to_register) const {
761 string qualified_name(prefix + message_descriptor.name());
762 to_register->push_back(qualified_name);
763 printer_->Print(
764 "$name$ = _reflection.GeneratedProtocolMessageType('$name$', "
765 "(_message.Message,), dict(\n",
766 "name", message_descriptor.name());
767 printer_->Indent();
768
769 PrintNestedMessages(message_descriptor, qualified_name + ".", to_register);
770 map<string, string> m;
771 m["descriptor_key"] = kDescriptorKey;
772 m["descriptor_name"] = ModuleLevelDescriptorName(message_descriptor);
773 printer_->Print(m, "$descriptor_key$ = $descriptor_name$,\n");
774 printer_->Print("__module__ = '$module_name$'\n",
775 "module_name", ModuleName(file_->name()));
776 printer_->Print("# @@protoc_insertion_point(class_scope:$full_name$)\n",
777 "full_name", message_descriptor.full_name());
778 printer_->Print("))\n");
779 printer_->Outdent();
780 }
781
782 // Prints all nested messages within |containing_descriptor|.
783 // Mutually recursive with PrintMessage().
PrintNestedMessages(const Descriptor & containing_descriptor,const string & prefix,vector<string> * to_register) const784 void Generator::PrintNestedMessages(const Descriptor& containing_descriptor,
785 const string& prefix,
786 vector<string>* to_register) const {
787 for (int i = 0; i < containing_descriptor.nested_type_count(); ++i) {
788 printer_->Print("\n");
789 PrintMessage(*containing_descriptor.nested_type(i), prefix, to_register);
790 printer_->Print(",\n");
791 }
792 }
793
794 // Recursively fixes foreign fields in all nested types in |descriptor|, then
795 // sets the message_type and enum_type of all message and enum fields to point
796 // to their respective descriptors.
797 // Args:
798 // descriptor: descriptor to print fields for.
799 // containing_descriptor: if descriptor is a nested type, this is its
800 // containing type, or NULL if this is a root/top-level type.
FixForeignFieldsInDescriptor(const Descriptor & descriptor,const Descriptor * containing_descriptor) const801 void Generator::FixForeignFieldsInDescriptor(
802 const Descriptor& descriptor,
803 const Descriptor* containing_descriptor) const {
804 for (int i = 0; i < descriptor.nested_type_count(); ++i) {
805 FixForeignFieldsInDescriptor(*descriptor.nested_type(i), &descriptor);
806 }
807
808 for (int i = 0; i < descriptor.field_count(); ++i) {
809 const FieldDescriptor& field_descriptor = *descriptor.field(i);
810 FixForeignFieldsInField(&descriptor, field_descriptor, "fields_by_name");
811 }
812
813 FixContainingTypeInDescriptor(descriptor, containing_descriptor);
814 for (int i = 0; i < descriptor.enum_type_count(); ++i) {
815 const EnumDescriptor& enum_descriptor = *descriptor.enum_type(i);
816 FixContainingTypeInDescriptor(enum_descriptor, &descriptor);
817 }
818 for (int i = 0; i < descriptor.oneof_decl_count(); ++i) {
819 map<string, string> m;
820 const OneofDescriptor* oneof = descriptor.oneof_decl(i);
821 m["descriptor_name"] = ModuleLevelDescriptorName(descriptor);
822 m["oneof_name"] = oneof->name();
823 for (int j = 0; j < oneof->field_count(); ++j) {
824 m["field_name"] = oneof->field(j)->name();
825 printer_->Print(
826 m,
827 "$descriptor_name$.oneofs_by_name['$oneof_name$'].fields.append(\n"
828 " $descriptor_name$.fields_by_name['$field_name$'])\n");
829 printer_->Print(
830 m,
831 "$descriptor_name$.fields_by_name['$field_name$'].containing_oneof = "
832 "$descriptor_name$.oneofs_by_name['$oneof_name$']\n");
833 }
834 }
835 }
836
AddMessageToFileDescriptor(const Descriptor & descriptor) const837 void Generator::AddMessageToFileDescriptor(const Descriptor& descriptor) const {
838 map<string, string> m;
839 m["descriptor_name"] = kDescriptorKey;
840 m["message_name"] = descriptor.name();
841 m["message_descriptor_name"] = ModuleLevelDescriptorName(descriptor);
842 const char file_descriptor_template[] =
843 "$descriptor_name$.message_types_by_name['$message_name$'] = "
844 "$message_descriptor_name$\n";
845 printer_->Print(m, file_descriptor_template);
846 }
847
AddEnumToFileDescriptor(const EnumDescriptor & descriptor) const848 void Generator::AddEnumToFileDescriptor(
849 const EnumDescriptor& descriptor) const {
850 map<string, string> m;
851 m["descriptor_name"] = kDescriptorKey;
852 m["enum_name"] = descriptor.name();
853 m["enum_descriptor_name"] = ModuleLevelDescriptorName(descriptor);
854 const char file_descriptor_template[] =
855 "$descriptor_name$.enum_types_by_name['$enum_name$'] = "
856 "$enum_descriptor_name$\n";
857 printer_->Print(m, file_descriptor_template);
858 }
859
AddExtensionToFileDescriptor(const FieldDescriptor & descriptor) const860 void Generator::AddExtensionToFileDescriptor(
861 const FieldDescriptor& descriptor) const {
862 map<string, string> m;
863 m["descriptor_name"] = kDescriptorKey;
864 m["field_name"] = descriptor.name();
865 const char file_descriptor_template[] =
866 "$descriptor_name$.extensions_by_name['$field_name$'] = "
867 "$field_name$\n";
868 printer_->Print(m, file_descriptor_template);
869 }
870
871 // Sets any necessary message_type and enum_type attributes
872 // for the Python version of |field|.
873 //
874 // containing_type may be NULL, in which case this is a module-level field.
875 //
876 // python_dict_name is the name of the Python dict where we should
877 // look the field up in the containing type. (e.g., fields_by_name
878 // or extensions_by_name). We ignore python_dict_name if containing_type
879 // is NULL.
FixForeignFieldsInField(const Descriptor * containing_type,const FieldDescriptor & field,const string & python_dict_name) const880 void Generator::FixForeignFieldsInField(const Descriptor* containing_type,
881 const FieldDescriptor& field,
882 const string& python_dict_name) const {
883 const string field_referencing_expression = FieldReferencingExpression(
884 containing_type, field, python_dict_name);
885 map<string, string> m;
886 m["field_ref"] = field_referencing_expression;
887 const Descriptor* foreign_message_type = field.message_type();
888 if (foreign_message_type) {
889 m["foreign_type"] = ModuleLevelDescriptorName(*foreign_message_type);
890 printer_->Print(m, "$field_ref$.message_type = $foreign_type$\n");
891 }
892 const EnumDescriptor* enum_type = field.enum_type();
893 if (enum_type) {
894 m["enum_type"] = ModuleLevelDescriptorName(*enum_type);
895 printer_->Print(m, "$field_ref$.enum_type = $enum_type$\n");
896 }
897 }
898
899 // Returns the module-level expression for the given FieldDescriptor.
900 // Only works for fields in the .proto file this Generator is generating for.
901 //
902 // containing_type may be NULL, in which case this is a module-level field.
903 //
904 // python_dict_name is the name of the Python dict where we should
905 // look the field up in the containing type. (e.g., fields_by_name
906 // or extensions_by_name). We ignore python_dict_name if containing_type
907 // is NULL.
FieldReferencingExpression(const Descriptor * containing_type,const FieldDescriptor & field,const string & python_dict_name) const908 string Generator::FieldReferencingExpression(
909 const Descriptor* containing_type,
910 const FieldDescriptor& field,
911 const string& python_dict_name) const {
912 // We should only ever be looking up fields in the current file.
913 // The only things we refer to from other files are message descriptors.
914 GOOGLE_CHECK_EQ(field.file(), file_) << field.file()->name() << " vs. "
915 << file_->name();
916 if (!containing_type) {
917 return field.name();
918 }
919 return strings::Substitute(
920 "$0.$1['$2']",
921 ModuleLevelDescriptorName(*containing_type),
922 python_dict_name, field.name());
923 }
924
925 // Prints containing_type for nested descriptors or enum descriptors.
926 template <typename DescriptorT>
FixContainingTypeInDescriptor(const DescriptorT & descriptor,const Descriptor * containing_descriptor) const927 void Generator::FixContainingTypeInDescriptor(
928 const DescriptorT& descriptor,
929 const Descriptor* containing_descriptor) const {
930 if (containing_descriptor != NULL) {
931 const string nested_name = ModuleLevelDescriptorName(descriptor);
932 const string parent_name = ModuleLevelDescriptorName(
933 *containing_descriptor);
934 printer_->Print(
935 "$nested_name$.containing_type = $parent_name$\n",
936 "nested_name", nested_name,
937 "parent_name", parent_name);
938 }
939 }
940
941 // Prints statements setting the message_type and enum_type fields in the
942 // Python descriptor objects we've already output in ths file. We must
943 // do this in a separate step due to circular references (otherwise, we'd
944 // just set everything in the initial assignment statements).
FixForeignFieldsInDescriptors() const945 void Generator::FixForeignFieldsInDescriptors() const {
946 for (int i = 0; i < file_->message_type_count(); ++i) {
947 FixForeignFieldsInDescriptor(*file_->message_type(i), NULL);
948 }
949 for (int i = 0; i < file_->message_type_count(); ++i) {
950 AddMessageToFileDescriptor(*file_->message_type(i));
951 }
952 for (int i = 0; i < file_->enum_type_count(); ++i) {
953 AddEnumToFileDescriptor(*file_->enum_type(i));
954 }
955 for (int i = 0; i < file_->extension_count(); ++i) {
956 AddExtensionToFileDescriptor(*file_->extension(i));
957 }
958 printer_->Print("\n");
959 }
960
961 // We need to not only set any necessary message_type fields, but
962 // also need to call RegisterExtension() on each message we're
963 // extending.
FixForeignFieldsInExtensions() const964 void Generator::FixForeignFieldsInExtensions() const {
965 // Top-level extensions.
966 for (int i = 0; i < file_->extension_count(); ++i) {
967 FixForeignFieldsInExtension(*file_->extension(i));
968 }
969 // Nested extensions.
970 for (int i = 0; i < file_->message_type_count(); ++i) {
971 FixForeignFieldsInNestedExtensions(*file_->message_type(i));
972 }
973 printer_->Print("\n");
974 }
975
FixForeignFieldsInExtension(const FieldDescriptor & extension_field) const976 void Generator::FixForeignFieldsInExtension(
977 const FieldDescriptor& extension_field) const {
978 GOOGLE_CHECK(extension_field.is_extension());
979 // extension_scope() will be NULL for top-level extensions, which is
980 // exactly what FixForeignFieldsInField() wants.
981 FixForeignFieldsInField(extension_field.extension_scope(), extension_field,
982 "extensions_by_name");
983
984 map<string, string> m;
985 // Confusingly, for FieldDescriptors that happen to be extensions,
986 // containing_type() means "extended type."
987 // On the other hand, extension_scope() will give us what we normally
988 // mean by containing_type().
989 m["extended_message_class"] = ModuleLevelMessageName(
990 *extension_field.containing_type());
991 m["field"] = FieldReferencingExpression(extension_field.extension_scope(),
992 extension_field,
993 "extensions_by_name");
994 printer_->Print(m, "$extended_message_class$.RegisterExtension($field$)\n");
995 }
996
FixForeignFieldsInNestedExtensions(const Descriptor & descriptor) const997 void Generator::FixForeignFieldsInNestedExtensions(
998 const Descriptor& descriptor) const {
999 // Recursively fix up extensions in all nested types.
1000 for (int i = 0; i < descriptor.nested_type_count(); ++i) {
1001 FixForeignFieldsInNestedExtensions(*descriptor.nested_type(i));
1002 }
1003 // Fix up extensions directly contained within this type.
1004 for (int i = 0; i < descriptor.extension_count(); ++i) {
1005 FixForeignFieldsInExtension(*descriptor.extension(i));
1006 }
1007 }
1008
1009 // Returns a Python expression that instantiates a Python EnumValueDescriptor
1010 // object for the given C++ descriptor.
PrintEnumValueDescriptor(const EnumValueDescriptor & descriptor) const1011 void Generator::PrintEnumValueDescriptor(
1012 const EnumValueDescriptor& descriptor) const {
1013 // TODO(robinson): Fix up EnumValueDescriptor "type" fields.
1014 // More circular references. ::sigh::
1015 string options_string;
1016 descriptor.options().SerializeToString(&options_string);
1017 map<string, string> m;
1018 m["name"] = descriptor.name();
1019 m["index"] = SimpleItoa(descriptor.index());
1020 m["number"] = SimpleItoa(descriptor.number());
1021 m["options"] = OptionsValue("EnumValueOptions", options_string);
1022 printer_->Print(
1023 m,
1024 "_descriptor.EnumValueDescriptor(\n"
1025 " name='$name$', index=$index$, number=$number$,\n"
1026 " options=$options$,\n"
1027 " type=None)");
1028 }
1029
1030 // Returns a Python expression that calls descriptor._ParseOptions using
1031 // the given descriptor class name and serialized options protobuf string.
OptionsValue(const string & class_name,const string & serialized_options) const1032 string Generator::OptionsValue(
1033 const string& class_name, const string& serialized_options) const {
1034 if (serialized_options.length() == 0 || GeneratingDescriptorProto()) {
1035 return "None";
1036 } else {
1037 string full_class_name = "descriptor_pb2." + class_name;
1038 //##!PY25 return "_descriptor._ParseOptions(" + full_class_name + "(), b'"
1039 //##!PY25 + CEscape(serialized_options)+ "')";
1040 return "_descriptor._ParseOptions(" + full_class_name + "(), _b('" //##PY25
1041 + CEscape(serialized_options)+ "'))"; //##PY25
1042 }
1043 }
1044
1045 // Prints an expression for a Python FieldDescriptor for |field|.
PrintFieldDescriptor(const FieldDescriptor & field,bool is_extension) const1046 void Generator::PrintFieldDescriptor(
1047 const FieldDescriptor& field, bool is_extension) const {
1048 string options_string;
1049 field.options().SerializeToString(&options_string);
1050 map<string, string> m;
1051 m["name"] = field.name();
1052 m["full_name"] = field.full_name();
1053 m["index"] = SimpleItoa(field.index());
1054 m["number"] = SimpleItoa(field.number());
1055 m["type"] = SimpleItoa(field.type());
1056 m["cpp_type"] = SimpleItoa(field.cpp_type());
1057 m["label"] = SimpleItoa(field.label());
1058 m["has_default_value"] = field.has_default_value() ? "True" : "False";
1059 m["default_value"] = StringifyDefaultValue(field);
1060 m["is_extension"] = is_extension ? "True" : "False";
1061 m["options"] = OptionsValue("FieldOptions", options_string);
1062 // We always set message_type and enum_type to None at this point, and then
1063 // these fields in correctly after all referenced descriptors have been
1064 // defined and/or imported (see FixForeignFieldsInDescriptors()).
1065 const char field_descriptor_decl[] =
1066 "_descriptor.FieldDescriptor(\n"
1067 " name='$name$', full_name='$full_name$', index=$index$,\n"
1068 " number=$number$, type=$type$, cpp_type=$cpp_type$, label=$label$,\n"
1069 " has_default_value=$has_default_value$, default_value=$default_value$,\n"
1070 " message_type=None, enum_type=None, containing_type=None,\n"
1071 " is_extension=$is_extension$, extension_scope=None,\n"
1072 " options=$options$)";
1073 printer_->Print(m, field_descriptor_decl);
1074 }
1075
1076 // Helper for Print{Fields,Extensions}InDescriptor().
PrintFieldDescriptorsInDescriptor(const Descriptor & message_descriptor,bool is_extension,const string & list_variable_name,int (Descriptor::* CountFn)()const,const FieldDescriptor * (Descriptor::* GetterFn)(int)const) const1077 void Generator::PrintFieldDescriptorsInDescriptor(
1078 const Descriptor& message_descriptor,
1079 bool is_extension,
1080 const string& list_variable_name,
1081 int (Descriptor::*CountFn)() const,
1082 const FieldDescriptor* (Descriptor::*GetterFn)(int) const) const {
1083 printer_->Print("$list$=[\n", "list", list_variable_name);
1084 printer_->Indent();
1085 for (int i = 0; i < (message_descriptor.*CountFn)(); ++i) {
1086 PrintFieldDescriptor(*(message_descriptor.*GetterFn)(i),
1087 is_extension);
1088 printer_->Print(",\n");
1089 }
1090 printer_->Outdent();
1091 printer_->Print("],\n");
1092 }
1093
1094 // Prints a statement assigning "fields" to a list of Python FieldDescriptors,
1095 // one for each field present in message_descriptor.
PrintFieldsInDescriptor(const Descriptor & message_descriptor) const1096 void Generator::PrintFieldsInDescriptor(
1097 const Descriptor& message_descriptor) const {
1098 const bool is_extension = false;
1099 PrintFieldDescriptorsInDescriptor(
1100 message_descriptor, is_extension, "fields",
1101 &Descriptor::field_count, &Descriptor::field);
1102 }
1103
1104 // Prints a statement assigning "extensions" to a list of Python
1105 // FieldDescriptors, one for each extension present in message_descriptor.
PrintExtensionsInDescriptor(const Descriptor & message_descriptor) const1106 void Generator::PrintExtensionsInDescriptor(
1107 const Descriptor& message_descriptor) const {
1108 const bool is_extension = true;
1109 PrintFieldDescriptorsInDescriptor(
1110 message_descriptor, is_extension, "extensions",
1111 &Descriptor::extension_count, &Descriptor::extension);
1112 }
1113
GeneratingDescriptorProto() const1114 bool Generator::GeneratingDescriptorProto() const {
1115 return file_->name() == "google/protobuf/descriptor.proto";
1116 }
1117
1118 // Returns the unique Python module-level identifier given to a descriptor.
1119 // This name is module-qualified iff the given descriptor describes an
1120 // entity that doesn't come from the current file.
1121 template <typename DescriptorT>
ModuleLevelDescriptorName(const DescriptorT & descriptor) const1122 string Generator::ModuleLevelDescriptorName(
1123 const DescriptorT& descriptor) const {
1124 // FIXME(robinson):
1125 // We currently don't worry about collisions with underscores in the type
1126 // names, so these would collide in nasty ways if found in the same file:
1127 // OuterProto.ProtoA.ProtoB
1128 // OuterProto_ProtoA.ProtoB # Underscore instead of period.
1129 // As would these:
1130 // OuterProto.ProtoA_.ProtoB
1131 // OuterProto.ProtoA._ProtoB # Leading vs. trailing underscore.
1132 // (Contrived, but certainly possible).
1133 //
1134 // The C++ implementation doesn't guard against this either. Leaving
1135 // it for now...
1136 string name = NamePrefixedWithNestedTypes(descriptor, "_");
1137 UpperString(&name);
1138 // Module-private for now. Easy to make public later; almost impossible
1139 // to make private later.
1140 name = "_" + name;
1141 // We now have the name relative to its own module. Also qualify with
1142 // the module name iff this descriptor is from a different .proto file.
1143 if (descriptor.file() != file_) {
1144 name = ModuleAlias(descriptor.file()->name()) + "." + name;
1145 }
1146 return name;
1147 }
1148
1149 // Returns the name of the message class itself, not the descriptor.
1150 // Like ModuleLevelDescriptorName(), module-qualifies the name iff
1151 // the given descriptor describes an entity that doesn't come from
1152 // the current file.
ModuleLevelMessageName(const Descriptor & descriptor) const1153 string Generator::ModuleLevelMessageName(const Descriptor& descriptor) const {
1154 string name = NamePrefixedWithNestedTypes(descriptor, ".");
1155 if (descriptor.file() != file_) {
1156 name = ModuleAlias(descriptor.file()->name()) + "." + name;
1157 }
1158 return name;
1159 }
1160
1161 // Returns the unique Python module-level identifier given to a service
1162 // descriptor.
ModuleLevelServiceDescriptorName(const ServiceDescriptor & descriptor) const1163 string Generator::ModuleLevelServiceDescriptorName(
1164 const ServiceDescriptor& descriptor) const {
1165 string name = descriptor.name();
1166 UpperString(&name);
1167 name = "_" + name;
1168 if (descriptor.file() != file_) {
1169 name = ModuleAlias(descriptor.file()->name()) + "." + name;
1170 }
1171 return name;
1172 }
1173
1174 // Prints standard constructor arguments serialized_start and serialized_end.
1175 // Args:
1176 // descriptor: The cpp descriptor to have a serialized reference.
1177 // proto: A proto
1178 // Example printer output:
1179 // serialized_start=41,
1180 // serialized_end=43,
1181 //
1182 template <typename DescriptorT, typename DescriptorProtoT>
PrintSerializedPbInterval(const DescriptorT & descriptor,DescriptorProtoT & proto) const1183 void Generator::PrintSerializedPbInterval(
1184 const DescriptorT& descriptor, DescriptorProtoT& proto) const {
1185 descriptor.CopyTo(&proto);
1186 string sp;
1187 proto.SerializeToString(&sp);
1188 int offset = file_descriptor_serialized_.find(sp);
1189 GOOGLE_CHECK_GE(offset, 0);
1190
1191 printer_->Print("serialized_start=$serialized_start$,\n"
1192 "serialized_end=$serialized_end$,\n",
1193 "serialized_start", SimpleItoa(offset),
1194 "serialized_end", SimpleItoa(offset + sp.size()));
1195 }
1196
1197 namespace {
PrintDescriptorOptionsFixingCode(const string & descriptor,const string & options,io::Printer * printer)1198 void PrintDescriptorOptionsFixingCode(const string& descriptor,
1199 const string& options,
1200 io::Printer* printer) {
1201 // TODO(xiaofeng): I have added a method _SetOptions() to DescriptorBase
1202 // in proto2 python runtime but it couldn't be used here because appengine
1203 // uses a snapshot version of the library in which the new method is not
1204 // yet present. After appengine has synced their runtime library, the code
1205 // below should be cleaned up to use _SetOptions().
1206 printer->Print(
1207 "$descriptor$.has_options = True\n"
1208 "$descriptor$._options = $options$\n",
1209 "descriptor", descriptor, "options", options);
1210 }
1211 } // namespace
1212
1213 // Prints expressions that set the options field of all descriptors.
FixAllDescriptorOptions() const1214 void Generator::FixAllDescriptorOptions() const {
1215 // Prints an expression that sets the file descriptor's options.
1216 string file_options = OptionsValue(
1217 "FileOptions", file_->options().SerializeAsString());
1218 if (file_options != "None") {
1219 PrintDescriptorOptionsFixingCode(kDescriptorKey, file_options, printer_);
1220 }
1221 // Prints expressions that set the options for all top level enums.
1222 for (int i = 0; i < file_->enum_type_count(); ++i) {
1223 const EnumDescriptor& enum_descriptor = *file_->enum_type(i);
1224 FixOptionsForEnum(enum_descriptor);
1225 }
1226 // Prints expressions that set the options for all top level extensions.
1227 for (int i = 0; i < file_->extension_count(); ++i) {
1228 const FieldDescriptor& field = *file_->extension(i);
1229 FixOptionsForField(field);
1230 }
1231 // Prints expressions that set the options for all messages, nested enums,
1232 // nested extensions and message fields.
1233 for (int i = 0; i < file_->message_type_count(); ++i) {
1234 FixOptionsForMessage(*file_->message_type(i));
1235 }
1236 }
1237
1238 // Prints expressions that set the options for an enum descriptor and its
1239 // value descriptors.
FixOptionsForEnum(const EnumDescriptor & enum_descriptor) const1240 void Generator::FixOptionsForEnum(const EnumDescriptor& enum_descriptor) const {
1241 string descriptor_name = ModuleLevelDescriptorName(enum_descriptor);
1242 string enum_options = OptionsValue(
1243 "EnumOptions", enum_descriptor.options().SerializeAsString());
1244 if (enum_options != "None") {
1245 PrintDescriptorOptionsFixingCode(descriptor_name, enum_options, printer_);
1246 }
1247 for (int i = 0; i < enum_descriptor.value_count(); ++i) {
1248 const EnumValueDescriptor& value_descriptor = *enum_descriptor.value(i);
1249 string value_options = OptionsValue(
1250 "EnumValueOptions", value_descriptor.options().SerializeAsString());
1251 if (value_options != "None") {
1252 PrintDescriptorOptionsFixingCode(
1253 StringPrintf("%s.values_by_name[\"%s\"]", descriptor_name.c_str(),
1254 value_descriptor.name().c_str()),
1255 value_options, printer_);
1256 }
1257 }
1258 }
1259
1260 // Prints expressions that set the options for field descriptors (including
1261 // extensions).
FixOptionsForField(const FieldDescriptor & field) const1262 void Generator::FixOptionsForField(
1263 const FieldDescriptor& field) const {
1264 string field_options = OptionsValue(
1265 "FieldOptions", field.options().SerializeAsString());
1266 if (field_options != "None") {
1267 string field_name;
1268 if (field.is_extension()) {
1269 if (field.extension_scope() == NULL) {
1270 // Top level extensions.
1271 field_name = field.name();
1272 } else {
1273 field_name = FieldReferencingExpression(
1274 field.extension_scope(), field, "extensions_by_name");
1275 }
1276 } else {
1277 field_name = FieldReferencingExpression(
1278 field.containing_type(), field, "fields_by_name");
1279 }
1280 PrintDescriptorOptionsFixingCode(field_name, field_options, printer_);
1281 }
1282 }
1283
1284 // Prints expressions that set the options for a message and all its inner
1285 // types (nested messages, nested enums, extensions, fields).
FixOptionsForMessage(const Descriptor & descriptor) const1286 void Generator::FixOptionsForMessage(const Descriptor& descriptor) const {
1287 // Nested messages.
1288 for (int i = 0; i < descriptor.nested_type_count(); ++i) {
1289 FixOptionsForMessage(*descriptor.nested_type(i));
1290 }
1291 // Enums.
1292 for (int i = 0; i < descriptor.enum_type_count(); ++i) {
1293 FixOptionsForEnum(*descriptor.enum_type(i));
1294 }
1295 // Fields.
1296 for (int i = 0; i < descriptor.field_count(); ++i) {
1297 const FieldDescriptor& field = *descriptor.field(i);
1298 FixOptionsForField(field);
1299 }
1300 // Extensions.
1301 for (int i = 0; i < descriptor.extension_count(); ++i) {
1302 const FieldDescriptor& field = *descriptor.extension(i);
1303 FixOptionsForField(field);
1304 }
1305 // Message option for this message.
1306 string message_options = OptionsValue(
1307 "MessageOptions", descriptor.options().SerializeAsString());
1308 if (message_options != "None") {
1309 string descriptor_name = ModuleLevelDescriptorName(descriptor);
1310 PrintDescriptorOptionsFixingCode(descriptor_name,
1311 message_options,
1312 printer_);
1313 }
1314 }
1315
1316 // If a dependency forwards other files through public dependencies, let's
1317 // copy over the corresponding module aliases.
CopyPublicDependenciesAliases(const string & copy_from,const FileDescriptor * file) const1318 void Generator::CopyPublicDependenciesAliases(
1319 const string& copy_from, const FileDescriptor* file) const {
1320 for (int i = 0; i < file->public_dependency_count(); ++i) {
1321 string module_alias = ModuleAlias(file->public_dependency(i)->name());
1322 printer_->Print("$alias$ = $copy_from$.$alias$\n", "alias", module_alias,
1323 "copy_from", copy_from);
1324 CopyPublicDependenciesAliases(copy_from, file->public_dependency(i));
1325 }
1326 }
1327
1328 } // namespace python
1329 } // namespace compiler
1330 } // namespace protobuf
1331 } // namespace google
1332