• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34 
35 // A light-weight IA32 Assembler.
36 
37 #ifndef V8_IA32_ASSEMBLER_IA32_H_
38 #define V8_IA32_ASSEMBLER_IA32_H_
39 
40 #include <deque>
41 
42 #include "src/assembler.h"
43 #include "src/isolate.h"
44 #include "src/utils.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 #define GENERAL_REGISTERS(V) \
50   V(eax)                     \
51   V(ecx)                     \
52   V(edx)                     \
53   V(ebx)                     \
54   V(esp)                     \
55   V(ebp)                     \
56   V(esi)                     \
57   V(edi)
58 
59 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
60   V(eax)                                 \
61   V(ecx)                                 \
62   V(edx)                                 \
63   V(ebx)                                 \
64   V(esi)                                 \
65   V(edi)
66 
67 #define DOUBLE_REGISTERS(V) \
68   V(xmm0)                   \
69   V(xmm1)                   \
70   V(xmm2)                   \
71   V(xmm3)                   \
72   V(xmm4)                   \
73   V(xmm5)                   \
74   V(xmm6)                   \
75   V(xmm7)
76 
77 #define FLOAT_REGISTERS DOUBLE_REGISTERS
78 #define SIMD128_REGISTERS DOUBLE_REGISTERS
79 
80 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
81   V(xmm1)                               \
82   V(xmm2)                               \
83   V(xmm3)                               \
84   V(xmm4)                               \
85   V(xmm5)                               \
86   V(xmm6)                               \
87   V(xmm7)
88 
89 // CPU Registers.
90 //
91 // 1) We would prefer to use an enum, but enum values are assignment-
92 // compatible with int, which has caused code-generation bugs.
93 //
94 // 2) We would prefer to use a class instead of a struct but we don't like
95 // the register initialization to depend on the particular initialization
96 // order (which appears to be different on OS X, Linux, and Windows for the
97 // installed versions of C++ we tried). Using a struct permits C-style
98 // "initialization". Also, the Register objects cannot be const as this
99 // forces initialization stubs in MSVC, making us dependent on initialization
100 // order.
101 //
102 // 3) By not using an enum, we are possibly preventing the compiler from
103 // doing certain constant folds, which may significantly reduce the
104 // code generated for some assembly instructions (because they boil down
105 // to a few constants). If this is a problem, we could change the code
106 // such that we use an enum in optimized mode, and the struct in debug
107 // mode. This way we get the compile-time error checking in debug mode
108 // and best performance in optimized code.
109 //
110 struct Register {
111   enum Code {
112 #define REGISTER_CODE(R) kCode_##R,
113     GENERAL_REGISTERS(REGISTER_CODE)
114 #undef REGISTER_CODE
115         kAfterLast,
116     kCode_no_reg = -1
117   };
118 
119   static const int kNumRegisters = Code::kAfterLast;
120 
from_codeRegister121   static Register from_code(int code) {
122     DCHECK(code >= 0);
123     DCHECK(code < kNumRegisters);
124     Register r = {code};
125     return r;
126   }
is_validRegister127   bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister128   bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister129   int code() const {
130     DCHECK(is_valid());
131     return reg_code;
132   }
bitRegister133   int bit() const {
134     DCHECK(is_valid());
135     return 1 << reg_code;
136   }
137 
is_byte_registerRegister138   bool is_byte_register() const { return reg_code <= 3; }
139 
140   // Unfortunately we can't make this private in a struct.
141   int reg_code;
142 };
143 
144 
145 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
146 GENERAL_REGISTERS(DECLARE_REGISTER)
147 #undef DECLARE_REGISTER
148 const Register no_reg = {Register::kCode_no_reg};
149 
150 static const bool kSimpleFPAliasing = true;
151 static const bool kSimdMaskRegisters = false;
152 
153 struct XMMRegister {
154   enum Code {
155 #define REGISTER_CODE(R) kCode_##R,
156     DOUBLE_REGISTERS(REGISTER_CODE)
157 #undef REGISTER_CODE
158         kAfterLast,
159     kCode_no_reg = -1
160   };
161 
162   static const int kMaxNumRegisters = Code::kAfterLast;
163 
from_codeXMMRegister164   static XMMRegister from_code(int code) {
165     XMMRegister result = {code};
166     return result;
167   }
168 
is_validXMMRegister169   bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
170 
codeXMMRegister171   int code() const {
172     DCHECK(is_valid());
173     return reg_code;
174   }
175 
isXMMRegister176   bool is(XMMRegister reg) const { return reg_code == reg.reg_code; }
177 
178   int reg_code;
179 };
180 
181 typedef XMMRegister FloatRegister;
182 
183 typedef XMMRegister DoubleRegister;
184 
185 typedef XMMRegister Simd128Register;
186 
187 #define DECLARE_REGISTER(R) \
188   const DoubleRegister R = {DoubleRegister::kCode_##R};
189 DOUBLE_REGISTERS(DECLARE_REGISTER)
190 #undef DECLARE_REGISTER
191 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
192 
193 enum Condition {
194   // any value < 0 is considered no_condition
195   no_condition  = -1,
196 
197   overflow      =  0,
198   no_overflow   =  1,
199   below         =  2,
200   above_equal   =  3,
201   equal         =  4,
202   not_equal     =  5,
203   below_equal   =  6,
204   above         =  7,
205   negative      =  8,
206   positive      =  9,
207   parity_even   = 10,
208   parity_odd    = 11,
209   less          = 12,
210   greater_equal = 13,
211   less_equal    = 14,
212   greater       = 15,
213 
214   // aliases
215   carry         = below,
216   not_carry     = above_equal,
217   zero          = equal,
218   not_zero      = not_equal,
219   sign          = negative,
220   not_sign      = positive
221 };
222 
223 
224 // Returns the equivalent of !cc.
225 // Negation of the default no_condition (-1) results in a non-default
226 // no_condition value (-2). As long as tests for no_condition check
227 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)228 inline Condition NegateCondition(Condition cc) {
229   return static_cast<Condition>(cc ^ 1);
230 }
231 
232 
233 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)234 inline Condition CommuteCondition(Condition cc) {
235   switch (cc) {
236     case below:
237       return above;
238     case above:
239       return below;
240     case above_equal:
241       return below_equal;
242     case below_equal:
243       return above_equal;
244     case less:
245       return greater;
246     case greater:
247       return less;
248     case greater_equal:
249       return less_equal;
250     case less_equal:
251       return greater_equal;
252     default:
253       return cc;
254   }
255 }
256 
257 
258 enum RoundingMode {
259   kRoundToNearest = 0x0,
260   kRoundDown = 0x1,
261   kRoundUp = 0x2,
262   kRoundToZero = 0x3
263 };
264 
265 
266 // -----------------------------------------------------------------------------
267 // Machine instruction Immediates
268 
269 class Immediate BASE_EMBEDDED {
270  public:
271   inline explicit Immediate(int x);
272   inline explicit Immediate(const ExternalReference& ext);
273   inline explicit Immediate(Handle<Object> handle);
274   inline explicit Immediate(Smi* value);
275   inline explicit Immediate(Address addr);
276   inline explicit Immediate(Address x, RelocInfo::Mode rmode);
277 
CodeRelativeOffset(Label * label)278   static Immediate CodeRelativeOffset(Label* label) {
279     return Immediate(label);
280   }
281 
is_zero()282   bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()283   bool is_int8() const {
284     return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
285   }
is_uint8()286   bool is_uint8() const {
287     return v8::internal::is_uint8(x_) && RelocInfo::IsNone(rmode_);
288   }
is_int16()289   bool is_int16() const {
290     return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
291   }
is_uint16()292   bool is_uint16() const {
293     return v8::internal::is_uint16(x_) && RelocInfo::IsNone(rmode_);
294   }
295 
296  private:
297   inline explicit Immediate(Label* value);
298 
299   int x_;
300   RelocInfo::Mode rmode_;
301 
302   friend class Operand;
303   friend class Assembler;
304   friend class MacroAssembler;
305 };
306 
307 
308 // -----------------------------------------------------------------------------
309 // Machine instruction Operands
310 
311 enum ScaleFactor {
312   times_1 = 0,
313   times_2 = 1,
314   times_4 = 2,
315   times_8 = 3,
316   times_int_size = times_4,
317   times_half_pointer_size = times_2,
318   times_pointer_size = times_4,
319   times_twice_pointer_size = times_8
320 };
321 
322 
323 class Operand BASE_EMBEDDED {
324  public:
325   // reg
326   INLINE(explicit Operand(Register reg));
327 
328   // XMM reg
329   INLINE(explicit Operand(XMMRegister xmm_reg));
330 
331   // [disp/r]
332   INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
333 
334   // [disp/r]
335   INLINE(explicit Operand(Immediate imm));
336 
337   // [base + disp/r]
338   explicit Operand(Register base, int32_t disp,
339                    RelocInfo::Mode rmode = RelocInfo::NONE32);
340 
341   // [base + index*scale + disp/r]
342   explicit Operand(Register base,
343                    Register index,
344                    ScaleFactor scale,
345                    int32_t disp,
346                    RelocInfo::Mode rmode = RelocInfo::NONE32);
347 
348   // [index*scale + disp/r]
349   explicit Operand(Register index,
350                    ScaleFactor scale,
351                    int32_t disp,
352                    RelocInfo::Mode rmode = RelocInfo::NONE32);
353 
JumpTable(Register index,ScaleFactor scale,Label * table)354   static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
355     return Operand(index, scale, reinterpret_cast<int32_t>(table),
356                    RelocInfo::INTERNAL_REFERENCE);
357   }
358 
StaticVariable(const ExternalReference & ext)359   static Operand StaticVariable(const ExternalReference& ext) {
360     return Operand(reinterpret_cast<int32_t>(ext.address()),
361                    RelocInfo::EXTERNAL_REFERENCE);
362   }
363 
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)364   static Operand StaticArray(Register index,
365                              ScaleFactor scale,
366                              const ExternalReference& arr) {
367     return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
368                    RelocInfo::EXTERNAL_REFERENCE);
369   }
370 
ForCell(Handle<Cell> cell)371   static Operand ForCell(Handle<Cell> cell) {
372     AllowDeferredHandleDereference embedding_raw_address;
373     return Operand(reinterpret_cast<int32_t>(cell.location()),
374                    RelocInfo::CELL);
375   }
376 
ForRegisterPlusImmediate(Register base,Immediate imm)377   static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
378     return Operand(base, imm.x_, imm.rmode_);
379   }
380 
381   // Returns true if this Operand is a wrapper for the specified register.
382   bool is_reg(Register reg) const;
383 
384   // Returns true if this Operand is a wrapper for one register.
385   bool is_reg_only() const;
386 
387   // Asserts that this Operand is a wrapper for one register and returns the
388   // register.
389   Register reg() const;
390 
391  private:
392   // Set the ModRM byte without an encoded 'reg' register. The
393   // register is encoded later as part of the emit_operand operation.
394   inline void set_modrm(int mod, Register rm);
395 
396   inline void set_sib(ScaleFactor scale, Register index, Register base);
397   inline void set_disp8(int8_t disp);
398   inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
399 
400   byte buf_[6];
401   // The number of bytes in buf_.
402   unsigned int len_;
403   // Only valid if len_ > 4.
404   RelocInfo::Mode rmode_;
405 
406   friend class Assembler;
407   friend class MacroAssembler;
408 };
409 
410 
411 // -----------------------------------------------------------------------------
412 // A Displacement describes the 32bit immediate field of an instruction which
413 // may be used together with a Label in order to refer to a yet unknown code
414 // position. Displacements stored in the instruction stream are used to describe
415 // the instruction and to chain a list of instructions using the same Label.
416 // A Displacement contains 2 different fields:
417 //
418 // next field: position of next displacement in the chain (0 = end of list)
419 // type field: instruction type
420 //
421 // A next value of null (0) indicates the end of a chain (note that there can
422 // be no displacement at position zero, because there is always at least one
423 // instruction byte before the displacement).
424 //
425 // Displacement _data field layout
426 //
427 // |31.....2|1......0|
428 // [  next  |  type  |
429 
430 class Displacement BASE_EMBEDDED {
431  public:
432   enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
433 
data()434   int data() const { return data_; }
type()435   Type type() const { return TypeField::decode(data_); }
next(Label * L)436   void next(Label* L) const {
437     int n = NextField::decode(data_);
438     n > 0 ? L->link_to(n) : L->Unuse();
439   }
link_to(Label * L)440   void link_to(Label* L) { init(L, type()); }
441 
Displacement(int data)442   explicit Displacement(int data) { data_ = data; }
443 
Displacement(Label * L,Type type)444   Displacement(Label* L, Type type) { init(L, type); }
445 
print()446   void print() {
447     PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
448                        NextField::decode(data_));
449   }
450 
451  private:
452   int data_;
453 
454   class TypeField: public BitField<Type, 0, 2> {};
455   class NextField: public BitField<int,  2, 32-2> {};
456 
457   void init(Label* L, Type type);
458 };
459 
460 
461 class Assembler : public AssemblerBase {
462  private:
463   // We check before assembling an instruction that there is sufficient
464   // space to write an instruction and its relocation information.
465   // The relocation writer's position must be kGap bytes above the end of
466   // the generated instructions. This leaves enough space for the
467   // longest possible ia32 instruction, 15 bytes, and the longest possible
468   // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
469   // (There is a 15 byte limit on ia32 instruction length that rules out some
470   // otherwise valid instructions.)
471   // This allows for a single, fast space check per instruction.
472   static const int kGap = 32;
473 
474  public:
475   // Create an assembler. Instructions and relocation information are emitted
476   // into a buffer, with the instructions starting from the beginning and the
477   // relocation information starting from the end of the buffer. See CodeDesc
478   // for a detailed comment on the layout (globals.h).
479   //
480   // If the provided buffer is NULL, the assembler allocates and grows its own
481   // buffer, and buffer_size determines the initial buffer size. The buffer is
482   // owned by the assembler and deallocated upon destruction of the assembler.
483   //
484   // If the provided buffer is not NULL, the assembler uses the provided buffer
485   // for code generation and assumes its size to be buffer_size. If the buffer
486   // is too small, a fatal error occurs. No deallocation of the buffer is done
487   // upon destruction of the assembler.
488   // TODO(vitalyr): the assembler does not need an isolate.
489   Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()490   virtual ~Assembler() { }
491 
492   // GetCode emits any pending (non-emitted) code and fills the descriptor
493   // desc. GetCode() is idempotent; it returns the same result if no other
494   // Assembler functions are invoked in between GetCode() calls.
495   void GetCode(CodeDesc* desc);
496 
497   // Read/Modify the code target in the branch/call instruction at pc.
498   inline static Address target_address_at(Address pc, Address constant_pool);
499   inline static void set_target_address_at(
500       Isolate* isolate, Address pc, Address constant_pool, Address target,
501       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
502   static inline Address target_address_at(Address pc, Code* code);
503   static inline void set_target_address_at(
504       Isolate* isolate, Address pc, Code* code, Address target,
505       ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
506 
507   // Return the code target address at a call site from the return address
508   // of that call in the instruction stream.
509   inline static Address target_address_from_return_address(Address pc);
510 
511   // This sets the branch destination (which is in the instruction on x86).
512   // This is for calls and branches within generated code.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)513   inline static void deserialization_set_special_target_at(
514       Isolate* isolate, Address instruction_payload, Code* code,
515       Address target) {
516     set_target_address_at(isolate, instruction_payload, code, target);
517   }
518 
519   // This sets the internal reference at the pc.
520   inline static void deserialization_set_target_internal_reference_at(
521       Isolate* isolate, Address pc, Address target,
522       RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
523 
524   static const int kSpecialTargetSize = kPointerSize;
525 
526   // Distance between the address of the code target in the call instruction
527   // and the return address
528   static const int kCallTargetAddressOffset = kPointerSize;
529 
530   static const int kCallInstructionLength = 5;
531 
532   // The debug break slot must be able to contain a call instruction.
533   static const int kDebugBreakSlotLength = kCallInstructionLength;
534 
535   // Distance between start of patched debug break slot and the emitted address
536   // to jump to.
537   static const int kPatchDebugBreakSlotAddressOffset = 1;  // JMP imm32.
538 
539   // One byte opcode for test al, 0xXX.
540   static const byte kTestAlByte = 0xA8;
541   // One byte opcode for nop.
542   static const byte kNopByte = 0x90;
543 
544   // One byte opcode for a short unconditional jump.
545   static const byte kJmpShortOpcode = 0xEB;
546   // One byte prefix for a short conditional jump.
547   static const byte kJccShortPrefix = 0x70;
548   static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
549   static const byte kJcShortOpcode = kJccShortPrefix | carry;
550   static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
551   static const byte kJzShortOpcode = kJccShortPrefix | zero;
552 
553 
554   // ---------------------------------------------------------------------------
555   // Code generation
556   //
557   // - function names correspond one-to-one to ia32 instruction mnemonics
558   // - unless specified otherwise, instructions operate on 32bit operands
559   // - instructions on 8bit (byte) operands/registers have a trailing '_b'
560   // - instructions on 16bit (word) operands/registers have a trailing '_w'
561   // - naming conflicts with C++ keywords are resolved via a trailing '_'
562 
563   // NOTE ON INTERFACE: Currently, the interface is not very consistent
564   // in the sense that some operations (e.g. mov()) can be called in more
565   // the one way to generate the same instruction: The Register argument
566   // can in some cases be replaced with an Operand(Register) argument.
567   // This should be cleaned up and made more orthogonal. The questions
568   // is: should we always use Operands instead of Registers where an
569   // Operand is possible, or should we have a Register (overloaded) form
570   // instead? We must be careful to make sure that the selected instruction
571   // is obvious from the parameters to avoid hard-to-find code generation
572   // bugs.
573 
574   // Insert the smallest number of nop instructions
575   // possible to align the pc offset to a multiple
576   // of m. m must be a power of 2.
577   void Align(int m);
578   // Insert the smallest number of zero bytes possible to align the pc offset
579   // to a mulitple of m. m must be a power of 2 (>= 2).
580   void DataAlign(int m);
581   void Nop(int bytes = 1);
582   // Aligns code to something that's optimal for a jump target for the platform.
583   void CodeTargetAlign();
584 
585   // Stack
586   void pushad();
587   void popad();
588 
589   void pushfd();
590   void popfd();
591 
592   void push(const Immediate& x);
593   void push_imm32(int32_t imm32);
594   void push(Register src);
595   void push(const Operand& src);
596 
597   void pop(Register dst);
598   void pop(const Operand& dst);
599 
600   void enter(const Immediate& size);
601   void leave();
602 
603   // Moves
mov_b(Register dst,Register src)604   void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
605   void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)606   void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
mov_b(const Operand & dst,int8_t src)607   void mov_b(const Operand& dst, int8_t src) { mov_b(dst, Immediate(src)); }
608   void mov_b(const Operand& dst, const Immediate& src);
609   void mov_b(const Operand& dst, Register src);
610 
611   void mov_w(Register dst, const Operand& src);
mov_w(const Operand & dst,int16_t src)612   void mov_w(const Operand& dst, int16_t src) { mov_w(dst, Immediate(src)); }
613   void mov_w(const Operand& dst, const Immediate& src);
614   void mov_w(const Operand& dst, Register src);
615 
616   void mov(Register dst, int32_t imm32);
617   void mov(Register dst, const Immediate& x);
618   void mov(Register dst, Handle<Object> handle);
619   void mov(Register dst, const Operand& src);
620   void mov(Register dst, Register src);
621   void mov(const Operand& dst, const Immediate& x);
622   void mov(const Operand& dst, Handle<Object> handle);
623   void mov(const Operand& dst, Register src);
624 
movsx_b(Register dst,Register src)625   void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
626   void movsx_b(Register dst, const Operand& src);
627 
movsx_w(Register dst,Register src)628   void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
629   void movsx_w(Register dst, const Operand& src);
630 
movzx_b(Register dst,Register src)631   void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
632   void movzx_b(Register dst, const Operand& src);
633 
movzx_w(Register dst,Register src)634   void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
635   void movzx_w(Register dst, const Operand& src);
636 
637   // Conditional moves
cmov(Condition cc,Register dst,Register src)638   void cmov(Condition cc, Register dst, Register src) {
639     cmov(cc, dst, Operand(src));
640   }
641   void cmov(Condition cc, Register dst, const Operand& src);
642 
643   // Flag management.
644   void cld();
645 
646   // Repetitive string instructions.
647   void rep_movs();
648   void rep_stos();
649   void stos();
650 
651   // Exchange
652   void xchg(Register dst, Register src);
653   void xchg(Register dst, const Operand& src);
654   void xchg_b(Register reg, const Operand& op);
655   void xchg_w(Register reg, const Operand& op);
656 
657   // Lock prefix
658   void lock();
659 
660   // CompareExchange
661   void cmpxchg(const Operand& dst, Register src);
662   void cmpxchg_b(const Operand& dst, Register src);
663   void cmpxchg_w(const Operand& dst, Register src);
664 
665   // Arithmetics
666   void adc(Register dst, int32_t imm32);
667   void adc(Register dst, const Operand& src);
668 
add(Register dst,Register src)669   void add(Register dst, Register src) { add(dst, Operand(src)); }
670   void add(Register dst, const Operand& src);
671   void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)672   void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
673   void add(const Operand& dst, const Immediate& x);
674 
675   void and_(Register dst, int32_t imm32);
676   void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)677   void and_(Register dst, Register src) { and_(dst, Operand(src)); }
678   void and_(Register dst, const Operand& src);
679   void and_(const Operand& dst, Register src);
680   void and_(const Operand& dst, const Immediate& x);
681 
cmpb(Register reg,Immediate imm8)682   void cmpb(Register reg, Immediate imm8) { cmpb(Operand(reg), imm8); }
683   void cmpb(const Operand& op, Immediate imm8);
684   void cmpb(Register reg, const Operand& op);
685   void cmpb(const Operand& op, Register reg);
cmpb(Register dst,Register src)686   void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
687   void cmpb_al(const Operand& op);
688   void cmpw_ax(const Operand& op);
689   void cmpw(const Operand& dst, Immediate src);
cmpw(Register dst,Immediate src)690   void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
691   void cmpw(Register dst, const Operand& src);
cmpw(Register dst,Register src)692   void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
693   void cmpw(const Operand& dst, Register src);
694   void cmp(Register reg, int32_t imm32);
695   void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)696   void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
697   void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)698   void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
699   void cmp(const Operand& op, Register reg);
700   void cmp(const Operand& op, const Immediate& imm);
701   void cmp(const Operand& op, Handle<Object> handle);
702 
703   void dec_b(Register dst);
704   void dec_b(const Operand& dst);
705 
706   void dec(Register dst);
707   void dec(const Operand& dst);
708 
709   void cdq();
710 
idiv(Register src)711   void idiv(Register src) { idiv(Operand(src)); }
712   void idiv(const Operand& src);
div(Register src)713   void div(Register src) { div(Operand(src)); }
714   void div(const Operand& src);
715 
716   // Signed multiply instructions.
717   void imul(Register src);                               // edx:eax = eax * src.
imul(Register dst,Register src)718   void imul(Register dst, Register src) { imul(dst, Operand(src)); }
719   void imul(Register dst, const Operand& src);           // dst = dst * src.
720   void imul(Register dst, Register src, int32_t imm32);  // dst = src * imm32.
721   void imul(Register dst, const Operand& src, int32_t imm32);
722 
723   void inc(Register dst);
724   void inc(const Operand& dst);
725 
726   void lea(Register dst, const Operand& src);
727 
728   // Unsigned multiply instruction.
729   void mul(Register src);                                // edx:eax = eax * reg.
730 
731   void neg(Register dst);
732   void neg(const Operand& dst);
733 
734   void not_(Register dst);
735   void not_(const Operand& dst);
736 
737   void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)738   void or_(Register dst, Register src) { or_(dst, Operand(src)); }
739   void or_(Register dst, const Operand& src);
740   void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)741   void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
742   void or_(const Operand& dst, const Immediate& x);
743 
744   void rcl(Register dst, uint8_t imm8);
745   void rcr(Register dst, uint8_t imm8);
746 
ror(Register dst,uint8_t imm8)747   void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
748   void ror(const Operand& dst, uint8_t imm8);
ror_cl(Register dst)749   void ror_cl(Register dst) { ror_cl(Operand(dst)); }
750   void ror_cl(const Operand& dst);
751 
sar(Register dst,uint8_t imm8)752   void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
753   void sar(const Operand& dst, uint8_t imm8);
sar_cl(Register dst)754   void sar_cl(Register dst) { sar_cl(Operand(dst)); }
755   void sar_cl(const Operand& dst);
756 
757   void sbb(Register dst, const Operand& src);
758 
shl(Register dst,uint8_t imm8)759   void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
760   void shl(const Operand& dst, uint8_t imm8);
shl_cl(Register dst)761   void shl_cl(Register dst) { shl_cl(Operand(dst)); }
762   void shl_cl(const Operand& dst);
763   void shld(Register dst, Register src, uint8_t shift);
764   void shld_cl(Register dst, Register src);
765 
shr(Register dst,uint8_t imm8)766   void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
767   void shr(const Operand& dst, uint8_t imm8);
shr_cl(Register dst)768   void shr_cl(Register dst) { shr_cl(Operand(dst)); }
769   void shr_cl(const Operand& dst);
770   void shrd(Register dst, Register src, uint8_t shift);
shrd_cl(Register dst,Register src)771   void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
772   void shrd_cl(const Operand& dst, Register src);
773 
sub(Register dst,const Immediate & imm)774   void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
775   void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)776   void sub(Register dst, Register src) { sub(dst, Operand(src)); }
777   void sub(Register dst, const Operand& src);
778   void sub(const Operand& dst, Register src);
779 
780   void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)781   void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
782   void test(Register reg, const Operand& op);
783   void test(const Operand& op, const Immediate& imm);
test(const Operand & op,Register reg)784   void test(const Operand& op, Register reg) { test(reg, op); }
785   void test_b(Register reg, const Operand& op);
786   void test_b(Register reg, Immediate imm8);
787   void test_b(const Operand& op, Immediate imm8);
test_b(const Operand & op,Register reg)788   void test_b(const Operand& op, Register reg) { test_b(reg, op); }
test_b(Register dst,Register src)789   void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
790   void test_w(Register reg, const Operand& op);
791   void test_w(Register reg, Immediate imm16);
792   void test_w(const Operand& op, Immediate imm16);
test_w(const Operand & op,Register reg)793   void test_w(const Operand& op, Register reg) { test_w(reg, op); }
test_w(Register dst,Register src)794   void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }
795 
796   void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)797   void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
798   void xor_(Register dst, const Operand& src);
799   void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)800   void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
801   void xor_(const Operand& dst, const Immediate& x);
802 
803   // Bit operations.
804   void bt(const Operand& dst, Register src);
bts(Register dst,Register src)805   void bts(Register dst, Register src) { bts(Operand(dst), src); }
806   void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)807   void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
808   void bsr(Register dst, const Operand& src);
bsf(Register dst,Register src)809   void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
810   void bsf(Register dst, const Operand& src);
811 
812   // Miscellaneous
813   void hlt();
814   void int3();
815   void nop();
816   void ret(int imm16);
817   void ud2();
818 
819   // Label operations & relative jumps (PPUM Appendix D)
820   //
821   // Takes a branch opcode (cc) and a label (L) and generates
822   // either a backward branch or a forward branch and links it
823   // to the label fixup chain. Usage:
824   //
825   // Label L;    // unbound label
826   // j(cc, &L);  // forward branch to unbound label
827   // bind(&L);   // bind label to the current pc
828   // j(cc, &L);  // backward branch to bound label
829   // bind(&L);   // illegal: a label may be bound only once
830   //
831   // Note: The same Label can be used for forward and backward branches
832   // but it may be bound only once.
833 
834   void bind(Label* L);  // binds an unbound label L to the current code position
835 
836   // Calls
837   void call(Label* L);
838   void call(byte* entry, RelocInfo::Mode rmode);
839   int CallSize(const Operand& adr);
call(Register reg)840   void call(Register reg) { call(Operand(reg)); }
841   void call(const Operand& adr);
842   int CallSize(Handle<Code> code, RelocInfo::Mode mode);
843   void call(Handle<Code> code,
844             RelocInfo::Mode rmode,
845             TypeFeedbackId id = TypeFeedbackId::None());
846 
847   // Jumps
848   // unconditional jump to L
849   void jmp(Label* L, Label::Distance distance = Label::kFar);
850   void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)851   void jmp(Register reg) { jmp(Operand(reg)); }
852   void jmp(const Operand& adr);
853   void jmp(Handle<Code> code, RelocInfo::Mode rmode);
854 
855   // Conditional jumps
856   void j(Condition cc,
857          Label* L,
858          Label::Distance distance = Label::kFar);
859   void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
860   void j(Condition cc, Handle<Code> code,
861          RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
862 
863   // Floating-point operations
864   void fld(int i);
865   void fstp(int i);
866 
867   void fld1();
868   void fldz();
869   void fldpi();
870   void fldln2();
871 
872   void fld_s(const Operand& adr);
873   void fld_d(const Operand& adr);
874 
875   void fstp_s(const Operand& adr);
876   void fst_s(const Operand& adr);
877   void fstp_d(const Operand& adr);
878   void fst_d(const Operand& adr);
879 
880   void fild_s(const Operand& adr);
881   void fild_d(const Operand& adr);
882 
883   void fist_s(const Operand& adr);
884 
885   void fistp_s(const Operand& adr);
886   void fistp_d(const Operand& adr);
887 
888   // The fisttp instructions require SSE3.
889   void fisttp_s(const Operand& adr);
890   void fisttp_d(const Operand& adr);
891 
892   void fabs();
893   void fchs();
894   void fcos();
895   void fsin();
896   void fptan();
897   void fyl2x();
898   void f2xm1();
899   void fscale();
900   void fninit();
901 
902   void fadd(int i);
903   void fadd_i(int i);
904   void fsub(int i);
905   void fsub_i(int i);
906   void fmul(int i);
907   void fmul_i(int i);
908   void fdiv(int i);
909   void fdiv_i(int i);
910 
911   void fisub_s(const Operand& adr);
912 
913   void faddp(int i = 1);
914   void fsubp(int i = 1);
915   void fsubrp(int i = 1);
916   void fmulp(int i = 1);
917   void fdivp(int i = 1);
918   void fprem();
919   void fprem1();
920 
921   void fxch(int i = 1);
922   void fincstp();
923   void ffree(int i = 0);
924 
925   void ftst();
926   void fucomp(int i);
927   void fucompp();
928   void fucomi(int i);
929   void fucomip();
930   void fcompp();
931   void fnstsw_ax();
932   void fwait();
933   void fnclex();
934 
935   void frndint();
936 
937   void sahf();
938   void setcc(Condition cc, Register reg);
939 
940   void cpuid();
941 
942   // SSE instructions
addss(XMMRegister dst,XMMRegister src)943   void addss(XMMRegister dst, XMMRegister src) { addss(dst, Operand(src)); }
944   void addss(XMMRegister dst, const Operand& src);
subss(XMMRegister dst,XMMRegister src)945   void subss(XMMRegister dst, XMMRegister src) { subss(dst, Operand(src)); }
946   void subss(XMMRegister dst, const Operand& src);
mulss(XMMRegister dst,XMMRegister src)947   void mulss(XMMRegister dst, XMMRegister src) { mulss(dst, Operand(src)); }
948   void mulss(XMMRegister dst, const Operand& src);
divss(XMMRegister dst,XMMRegister src)949   void divss(XMMRegister dst, XMMRegister src) { divss(dst, Operand(src)); }
950   void divss(XMMRegister dst, const Operand& src);
sqrtss(XMMRegister dst,XMMRegister src)951   void sqrtss(XMMRegister dst, XMMRegister src) { sqrtss(dst, Operand(src)); }
952   void sqrtss(XMMRegister dst, const Operand& src);
953 
ucomiss(XMMRegister dst,XMMRegister src)954   void ucomiss(XMMRegister dst, XMMRegister src) { ucomiss(dst, Operand(src)); }
955   void ucomiss(XMMRegister dst, const Operand& src);
956   void movaps(XMMRegister dst, XMMRegister src);
957   void movups(XMMRegister dst, XMMRegister src);
958   void movups(XMMRegister dst, const Operand& src);
959   void movups(const Operand& dst, XMMRegister src);
960   void shufps(XMMRegister dst, XMMRegister src, byte imm8);
961 
maxss(XMMRegister dst,XMMRegister src)962   void maxss(XMMRegister dst, XMMRegister src) { maxss(dst, Operand(src)); }
963   void maxss(XMMRegister dst, const Operand& src);
minss(XMMRegister dst,XMMRegister src)964   void minss(XMMRegister dst, XMMRegister src) { minss(dst, Operand(src)); }
965   void minss(XMMRegister dst, const Operand& src);
966 
967   void andps(XMMRegister dst, const Operand& src);
andps(XMMRegister dst,XMMRegister src)968   void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
969   void xorps(XMMRegister dst, const Operand& src);
xorps(XMMRegister dst,XMMRegister src)970   void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
971   void orps(XMMRegister dst, const Operand& src);
orps(XMMRegister dst,XMMRegister src)972   void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
973 
974   void addps(XMMRegister dst, const Operand& src);
addps(XMMRegister dst,XMMRegister src)975   void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
976   void subps(XMMRegister dst, const Operand& src);
subps(XMMRegister dst,XMMRegister src)977   void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
978   void mulps(XMMRegister dst, const Operand& src);
mulps(XMMRegister dst,XMMRegister src)979   void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
980   void divps(XMMRegister dst, const Operand& src);
divps(XMMRegister dst,XMMRegister src)981   void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
982 
983   // SSE2 instructions
984   void cvttss2si(Register dst, const Operand& src);
cvttss2si(Register dst,XMMRegister src)985   void cvttss2si(Register dst, XMMRegister src) {
986     cvttss2si(dst, Operand(src));
987   }
988   void cvttsd2si(Register dst, const Operand& src);
cvttsd2si(Register dst,XMMRegister src)989   void cvttsd2si(Register dst, XMMRegister src) {
990     cvttsd2si(dst, Operand(src));
991   }
992   void cvtsd2si(Register dst, XMMRegister src);
993 
cvtsi2ss(XMMRegister dst,Register src)994   void cvtsi2ss(XMMRegister dst, Register src) { cvtsi2ss(dst, Operand(src)); }
995   void cvtsi2ss(XMMRegister dst, const Operand& src);
cvtsi2sd(XMMRegister dst,Register src)996   void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
997   void cvtsi2sd(XMMRegister dst, const Operand& src);
998   void cvtss2sd(XMMRegister dst, const Operand& src);
cvtss2sd(XMMRegister dst,XMMRegister src)999   void cvtss2sd(XMMRegister dst, XMMRegister src) {
1000     cvtss2sd(dst, Operand(src));
1001   }
1002   void cvtsd2ss(XMMRegister dst, const Operand& src);
cvtsd2ss(XMMRegister dst,XMMRegister src)1003   void cvtsd2ss(XMMRegister dst, XMMRegister src) {
1004     cvtsd2ss(dst, Operand(src));
1005   }
addsd(XMMRegister dst,XMMRegister src)1006   void addsd(XMMRegister dst, XMMRegister src) { addsd(dst, Operand(src)); }
1007   void addsd(XMMRegister dst, const Operand& src);
subsd(XMMRegister dst,XMMRegister src)1008   void subsd(XMMRegister dst, XMMRegister src) { subsd(dst, Operand(src)); }
1009   void subsd(XMMRegister dst, const Operand& src);
mulsd(XMMRegister dst,XMMRegister src)1010   void mulsd(XMMRegister dst, XMMRegister src) { mulsd(dst, Operand(src)); }
1011   void mulsd(XMMRegister dst, const Operand& src);
divsd(XMMRegister dst,XMMRegister src)1012   void divsd(XMMRegister dst, XMMRegister src) { divsd(dst, Operand(src)); }
1013   void divsd(XMMRegister dst, const Operand& src);
1014   void xorpd(XMMRegister dst, XMMRegister src);
sqrtsd(XMMRegister dst,XMMRegister src)1015   void sqrtsd(XMMRegister dst, XMMRegister src) { sqrtsd(dst, Operand(src)); }
1016   void sqrtsd(XMMRegister dst, const Operand& src);
1017 
1018   void andpd(XMMRegister dst, XMMRegister src);
1019   void orpd(XMMRegister dst, XMMRegister src);
1020 
ucomisd(XMMRegister dst,XMMRegister src)1021   void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
1022   void ucomisd(XMMRegister dst, const Operand& src);
1023 
1024   void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
1025   void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
1026 
1027   void movmskpd(Register dst, XMMRegister src);
1028   void movmskps(Register dst, XMMRegister src);
1029 
1030   void cmpltsd(XMMRegister dst, XMMRegister src);
1031   void pcmpeqd(XMMRegister dst, XMMRegister src);
1032 
1033   void punpckldq(XMMRegister dst, XMMRegister src);
1034   void punpckhdq(XMMRegister dst, XMMRegister src);
1035 
maxsd(XMMRegister dst,XMMRegister src)1036   void maxsd(XMMRegister dst, XMMRegister src) { maxsd(dst, Operand(src)); }
1037   void maxsd(XMMRegister dst, const Operand& src);
minsd(XMMRegister dst,XMMRegister src)1038   void minsd(XMMRegister dst, XMMRegister src) { minsd(dst, Operand(src)); }
1039   void minsd(XMMRegister dst, const Operand& src);
1040 
1041   void movdqa(XMMRegister dst, const Operand& src);
1042   void movdqa(const Operand& dst, XMMRegister src);
1043   void movdqu(XMMRegister dst, const Operand& src);
1044   void movdqu(const Operand& dst, XMMRegister src);
movdq(bool aligned,XMMRegister dst,const Operand & src)1045   void movdq(bool aligned, XMMRegister dst, const Operand& src) {
1046     if (aligned) {
1047       movdqa(dst, src);
1048     } else {
1049       movdqu(dst, src);
1050     }
1051   }
1052 
movd(XMMRegister dst,Register src)1053   void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
1054   void movd(XMMRegister dst, const Operand& src);
movd(Register dst,XMMRegister src)1055   void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
1056   void movd(const Operand& dst, XMMRegister src);
movsd(XMMRegister dst,XMMRegister src)1057   void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
1058   void movsd(XMMRegister dst, const Operand& src);
1059   void movsd(const Operand& dst, XMMRegister src);
1060 
1061 
1062   void movss(XMMRegister dst, const Operand& src);
1063   void movss(const Operand& dst, XMMRegister src);
movss(XMMRegister dst,XMMRegister src)1064   void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
1065   void extractps(Register dst, XMMRegister src, byte imm8);
1066 
1067   void pand(XMMRegister dst, XMMRegister src);
1068   void pxor(XMMRegister dst, XMMRegister src);
1069   void por(XMMRegister dst, XMMRegister src);
1070   void ptest(XMMRegister dst, XMMRegister src);
1071 
1072   void pslld(XMMRegister reg, int8_t shift);
1073   void psrld(XMMRegister reg, int8_t shift);
1074   void psllq(XMMRegister reg, int8_t shift);
1075   void psllq(XMMRegister dst, XMMRegister src);
1076   void psrlq(XMMRegister reg, int8_t shift);
1077   void psrlq(XMMRegister dst, XMMRegister src);
1078   void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
pextrd(Register dst,XMMRegister src,int8_t offset)1079   void pextrd(Register dst, XMMRegister src, int8_t offset) {
1080     pextrd(Operand(dst), src, offset);
1081   }
1082   void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
pinsrd(XMMRegister dst,Register src,int8_t offset)1083   void pinsrd(XMMRegister dst, Register src, int8_t offset) {
1084     pinsrd(dst, Operand(src), offset);
1085   }
1086   void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
1087 
1088   // AVX instructions
vfmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1089   void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1090     vfmadd132sd(dst, src1, Operand(src2));
1091   }
vfmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1092   void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1093     vfmadd213sd(dst, src1, Operand(src2));
1094   }
vfmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1095   void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1096     vfmadd231sd(dst, src1, Operand(src2));
1097   }
vfmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1098   void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1099     vfmasd(0x99, dst, src1, src2);
1100   }
vfmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1101   void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1102     vfmasd(0xa9, dst, src1, src2);
1103   }
vfmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1104   void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1105     vfmasd(0xb9, dst, src1, src2);
1106   }
vfmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1107   void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1108     vfmsub132sd(dst, src1, Operand(src2));
1109   }
vfmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1110   void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1111     vfmsub213sd(dst, src1, Operand(src2));
1112   }
vfmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1113   void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1114     vfmsub231sd(dst, src1, Operand(src2));
1115   }
vfmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1116   void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1117     vfmasd(0x9b, dst, src1, src2);
1118   }
vfmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1119   void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1120     vfmasd(0xab, dst, src1, src2);
1121   }
vfmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1122   void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1123     vfmasd(0xbb, dst, src1, src2);
1124   }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1125   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1126     vfnmadd132sd(dst, src1, Operand(src2));
1127   }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1128   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1129     vfnmadd213sd(dst, src1, Operand(src2));
1130   }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1131   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1132     vfnmadd231sd(dst, src1, Operand(src2));
1133   }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1134   void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1135     vfmasd(0x9d, dst, src1, src2);
1136   }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1137   void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1138     vfmasd(0xad, dst, src1, src2);
1139   }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1140   void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1141     vfmasd(0xbd, dst, src1, src2);
1142   }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1143   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1144     vfnmsub132sd(dst, src1, Operand(src2));
1145   }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1146   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1147     vfnmsub213sd(dst, src1, Operand(src2));
1148   }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1149   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1150     vfnmsub231sd(dst, src1, Operand(src2));
1151   }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1152   void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1153     vfmasd(0x9f, dst, src1, src2);
1154   }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1155   void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1156     vfmasd(0xaf, dst, src1, src2);
1157   }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1158   void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1159     vfmasd(0xbf, dst, src1, src2);
1160   }
1161   void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1162 
vfmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1163   void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1164     vfmadd132ss(dst, src1, Operand(src2));
1165   }
vfmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1166   void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1167     vfmadd213ss(dst, src1, Operand(src2));
1168   }
vfmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1169   void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1170     vfmadd231ss(dst, src1, Operand(src2));
1171   }
vfmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1172   void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1173     vfmass(0x99, dst, src1, src2);
1174   }
vfmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1175   void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1176     vfmass(0xa9, dst, src1, src2);
1177   }
vfmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1178   void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1179     vfmass(0xb9, dst, src1, src2);
1180   }
vfmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1181   void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1182     vfmsub132ss(dst, src1, Operand(src2));
1183   }
vfmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1184   void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1185     vfmsub213ss(dst, src1, Operand(src2));
1186   }
vfmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1187   void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1188     vfmsub231ss(dst, src1, Operand(src2));
1189   }
vfmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1190   void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1191     vfmass(0x9b, dst, src1, src2);
1192   }
vfmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1193   void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1194     vfmass(0xab, dst, src1, src2);
1195   }
vfmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1196   void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1197     vfmass(0xbb, dst, src1, src2);
1198   }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1199   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1200     vfnmadd132ss(dst, src1, Operand(src2));
1201   }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1202   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1203     vfnmadd213ss(dst, src1, Operand(src2));
1204   }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1205   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1206     vfnmadd231ss(dst, src1, Operand(src2));
1207   }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1208   void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1209     vfmass(0x9d, dst, src1, src2);
1210   }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1211   void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1212     vfmass(0xad, dst, src1, src2);
1213   }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1214   void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1215     vfmass(0xbd, dst, src1, src2);
1216   }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1217   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1218     vfnmsub132ss(dst, src1, Operand(src2));
1219   }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1220   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1221     vfnmsub213ss(dst, src1, Operand(src2));
1222   }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1223   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1224     vfnmsub231ss(dst, src1, Operand(src2));
1225   }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1226   void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1227     vfmass(0x9f, dst, src1, src2);
1228   }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1229   void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1230     vfmass(0xaf, dst, src1, src2);
1231   }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1232   void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1233     vfmass(0xbf, dst, src1, src2);
1234   }
1235   void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1236 
vaddsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1237   void vaddsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1238     vaddsd(dst, src1, Operand(src2));
1239   }
vaddsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1240   void vaddsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1241     vsd(0x58, dst, src1, src2);
1242   }
vsubsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1243   void vsubsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1244     vsubsd(dst, src1, Operand(src2));
1245   }
vsubsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1246   void vsubsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1247     vsd(0x5c, dst, src1, src2);
1248   }
vmulsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1249   void vmulsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1250     vmulsd(dst, src1, Operand(src2));
1251   }
vmulsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1252   void vmulsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1253     vsd(0x59, dst, src1, src2);
1254   }
vdivsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1255   void vdivsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1256     vdivsd(dst, src1, Operand(src2));
1257   }
vdivsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1258   void vdivsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1259     vsd(0x5e, dst, src1, src2);
1260   }
vmaxsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1261   void vmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1262     vmaxsd(dst, src1, Operand(src2));
1263   }
vmaxsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1264   void vmaxsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1265     vsd(0x5f, dst, src1, src2);
1266   }
vminsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1267   void vminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1268     vminsd(dst, src1, Operand(src2));
1269   }
vminsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1270   void vminsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1271     vsd(0x5d, dst, src1, src2);
1272   }
1273   void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1274 
vaddss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1275   void vaddss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1276     vaddss(dst, src1, Operand(src2));
1277   }
vaddss(XMMRegister dst,XMMRegister src1,const Operand & src2)1278   void vaddss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1279     vss(0x58, dst, src1, src2);
1280   }
vsubss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1281   void vsubss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1282     vsubss(dst, src1, Operand(src2));
1283   }
vsubss(XMMRegister dst,XMMRegister src1,const Operand & src2)1284   void vsubss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1285     vss(0x5c, dst, src1, src2);
1286   }
vmulss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1287   void vmulss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1288     vmulss(dst, src1, Operand(src2));
1289   }
vmulss(XMMRegister dst,XMMRegister src1,const Operand & src2)1290   void vmulss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1291     vss(0x59, dst, src1, src2);
1292   }
vdivss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1293   void vdivss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1294     vdivss(dst, src1, Operand(src2));
1295   }
vdivss(XMMRegister dst,XMMRegister src1,const Operand & src2)1296   void vdivss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1297     vss(0x5e, dst, src1, src2);
1298   }
vmaxss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1299   void vmaxss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1300     vmaxss(dst, src1, Operand(src2));
1301   }
vmaxss(XMMRegister dst,XMMRegister src1,const Operand & src2)1302   void vmaxss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1303     vss(0x5f, dst, src1, src2);
1304   }
vminss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1305   void vminss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1306     vminss(dst, src1, Operand(src2));
1307   }
vminss(XMMRegister dst,XMMRegister src1,const Operand & src2)1308   void vminss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1309     vss(0x5d, dst, src1, src2);
1310   }
1311   void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1312 
1313   // BMI instruction
andn(Register dst,Register src1,Register src2)1314   void andn(Register dst, Register src1, Register src2) {
1315     andn(dst, src1, Operand(src2));
1316   }
andn(Register dst,Register src1,const Operand & src2)1317   void andn(Register dst, Register src1, const Operand& src2) {
1318     bmi1(0xf2, dst, src1, src2);
1319   }
bextr(Register dst,Register src1,Register src2)1320   void bextr(Register dst, Register src1, Register src2) {
1321     bextr(dst, Operand(src1), src2);
1322   }
bextr(Register dst,const Operand & src1,Register src2)1323   void bextr(Register dst, const Operand& src1, Register src2) {
1324     bmi1(0xf7, dst, src2, src1);
1325   }
blsi(Register dst,Register src)1326   void blsi(Register dst, Register src) { blsi(dst, Operand(src)); }
blsi(Register dst,const Operand & src)1327   void blsi(Register dst, const Operand& src) {
1328     Register ireg = {3};
1329     bmi1(0xf3, ireg, dst, src);
1330   }
blsmsk(Register dst,Register src)1331   void blsmsk(Register dst, Register src) { blsmsk(dst, Operand(src)); }
blsmsk(Register dst,const Operand & src)1332   void blsmsk(Register dst, const Operand& src) {
1333     Register ireg = {2};
1334     bmi1(0xf3, ireg, dst, src);
1335   }
blsr(Register dst,Register src)1336   void blsr(Register dst, Register src) { blsr(dst, Operand(src)); }
blsr(Register dst,const Operand & src)1337   void blsr(Register dst, const Operand& src) {
1338     Register ireg = {1};
1339     bmi1(0xf3, ireg, dst, src);
1340   }
tzcnt(Register dst,Register src)1341   void tzcnt(Register dst, Register src) { tzcnt(dst, Operand(src)); }
1342   void tzcnt(Register dst, const Operand& src);
1343 
lzcnt(Register dst,Register src)1344   void lzcnt(Register dst, Register src) { lzcnt(dst, Operand(src)); }
1345   void lzcnt(Register dst, const Operand& src);
1346 
popcnt(Register dst,Register src)1347   void popcnt(Register dst, Register src) { popcnt(dst, Operand(src)); }
1348   void popcnt(Register dst, const Operand& src);
1349 
bzhi(Register dst,Register src1,Register src2)1350   void bzhi(Register dst, Register src1, Register src2) {
1351     bzhi(dst, Operand(src1), src2);
1352   }
bzhi(Register dst,const Operand & src1,Register src2)1353   void bzhi(Register dst, const Operand& src1, Register src2) {
1354     bmi2(kNone, 0xf5, dst, src2, src1);
1355   }
mulx(Register dst1,Register dst2,Register src)1356   void mulx(Register dst1, Register dst2, Register src) {
1357     mulx(dst1, dst2, Operand(src));
1358   }
mulx(Register dst1,Register dst2,const Operand & src)1359   void mulx(Register dst1, Register dst2, const Operand& src) {
1360     bmi2(kF2, 0xf6, dst1, dst2, src);
1361   }
pdep(Register dst,Register src1,Register src2)1362   void pdep(Register dst, Register src1, Register src2) {
1363     pdep(dst, src1, Operand(src2));
1364   }
pdep(Register dst,Register src1,const Operand & src2)1365   void pdep(Register dst, Register src1, const Operand& src2) {
1366     bmi2(kF2, 0xf5, dst, src1, src2);
1367   }
pext(Register dst,Register src1,Register src2)1368   void pext(Register dst, Register src1, Register src2) {
1369     pext(dst, src1, Operand(src2));
1370   }
pext(Register dst,Register src1,const Operand & src2)1371   void pext(Register dst, Register src1, const Operand& src2) {
1372     bmi2(kF3, 0xf5, dst, src1, src2);
1373   }
sarx(Register dst,Register src1,Register src2)1374   void sarx(Register dst, Register src1, Register src2) {
1375     sarx(dst, Operand(src1), src2);
1376   }
sarx(Register dst,const Operand & src1,Register src2)1377   void sarx(Register dst, const Operand& src1, Register src2) {
1378     bmi2(kF3, 0xf7, dst, src2, src1);
1379   }
shlx(Register dst,Register src1,Register src2)1380   void shlx(Register dst, Register src1, Register src2) {
1381     shlx(dst, Operand(src1), src2);
1382   }
shlx(Register dst,const Operand & src1,Register src2)1383   void shlx(Register dst, const Operand& src1, Register src2) {
1384     bmi2(k66, 0xf7, dst, src2, src1);
1385   }
shrx(Register dst,Register src1,Register src2)1386   void shrx(Register dst, Register src1, Register src2) {
1387     shrx(dst, Operand(src1), src2);
1388   }
shrx(Register dst,const Operand & src1,Register src2)1389   void shrx(Register dst, const Operand& src1, Register src2) {
1390     bmi2(kF2, 0xf7, dst, src2, src1);
1391   }
rorx(Register dst,Register src,byte imm8)1392   void rorx(Register dst, Register src, byte imm8) {
1393     rorx(dst, Operand(src), imm8);
1394   }
1395   void rorx(Register dst, const Operand& src, byte imm8);
1396 
1397 #define PACKED_OP_LIST(V) \
1398   V(and, 0x54)            \
1399   V(xor, 0x57)
1400 
1401 #define AVX_PACKED_OP_DECLARE(name, opcode)                                  \
1402   void v##name##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1403     vps(opcode, dst, src1, Operand(src2));                                   \
1404   }                                                                          \
1405   void v##name##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1406     vps(opcode, dst, src1, src2);                                            \
1407   }                                                                          \
1408   void v##name##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {    \
1409     vpd(opcode, dst, src1, Operand(src2));                                   \
1410   }                                                                          \
1411   void v##name##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1412     vpd(opcode, dst, src1, src2);                                            \
1413   }
1414 
1415   PACKED_OP_LIST(AVX_PACKED_OP_DECLARE);
1416   void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1417   void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1418   void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1419   void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1420 
1421   // Prefetch src position into cache level.
1422   // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
1423   // non-temporal
1424   void prefetch(const Operand& src, int level);
1425   // TODO(lrn): Need SFENCE for movnt?
1426 
1427   // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1428   int SizeOfCodeGeneratedSince(Label* label) {
1429     return pc_offset() - label->pos();
1430   }
1431 
1432   // Mark address of a debug break slot.
1433   void RecordDebugBreakSlot(RelocInfo::Mode mode);
1434 
1435   // Record a comment relocation entry that can be used by a disassembler.
1436   // Use --code-comments to enable.
1437   void RecordComment(const char* msg);
1438 
1439   // Record a deoptimization reason that can be used by a log or cpu profiler.
1440   // Use --trace-deopt to enable.
1441   void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1442                          int id);
1443 
1444   // Writes a single byte or word of data in the code stream.  Used for
1445   // inline tables, e.g., jump-tables.
1446   void db(uint8_t data);
1447   void dd(uint32_t data);
1448   void dq(uint64_t data);
dp(uintptr_t data)1449   void dp(uintptr_t data) { dd(data); }
1450   void dd(Label* label);
1451 
1452   // Check if there is less than kGap bytes available in the buffer.
1453   // If this is the case, we need to grow the buffer before emitting
1454   // an instruction or relocation information.
buffer_overflow()1455   inline bool buffer_overflow() const {
1456     return pc_ >= reloc_info_writer.pos() - kGap;
1457   }
1458 
1459   // Get the number of bytes available in the buffer.
available_space()1460   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1461 
1462   static bool IsNop(Address addr);
1463 
relocation_writer_size()1464   int relocation_writer_size() {
1465     return (buffer_ + buffer_size_) - reloc_info_writer.pos();
1466   }
1467 
1468   // Avoid overflows for displacements etc.
1469   static const int kMaximalBufferSize = 512*MB;
1470 
byte_at(int pos)1471   byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)1472   void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1473 
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1474   void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1475                                           ConstantPoolEntry::Access access,
1476                                           ConstantPoolEntry::Type type) {
1477     // No embedded constant pool support.
1478     UNREACHABLE();
1479   }
1480 
1481  protected:
1482   void emit_sse_operand(XMMRegister reg, const Operand& adr);
1483   void emit_sse_operand(XMMRegister dst, XMMRegister src);
1484   void emit_sse_operand(Register dst, XMMRegister src);
1485   void emit_sse_operand(XMMRegister dst, Register src);
1486 
addr_at(int pos)1487   byte* addr_at(int pos) { return buffer_ + pos; }
1488 
1489 
1490  private:
long_at(int pos)1491   uint32_t long_at(int pos)  {
1492     return *reinterpret_cast<uint32_t*>(addr_at(pos));
1493   }
long_at_put(int pos,uint32_t x)1494   void long_at_put(int pos, uint32_t x)  {
1495     *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1496   }
1497 
1498   // code emission
1499   void GrowBuffer();
1500   inline void emit(uint32_t x);
1501   inline void emit(Handle<Object> handle);
1502   inline void emit(uint32_t x,
1503                    RelocInfo::Mode rmode,
1504                    TypeFeedbackId id = TypeFeedbackId::None());
1505   inline void emit(Handle<Code> code,
1506                    RelocInfo::Mode rmode,
1507                    TypeFeedbackId id = TypeFeedbackId::None());
1508   inline void emit(const Immediate& x);
1509   inline void emit_b(Immediate x);
1510   inline void emit_w(const Immediate& x);
1511   inline void emit_q(uint64_t x);
1512 
1513   // Emit the code-object-relative offset of the label's position
1514   inline void emit_code_relative_offset(Label* label);
1515 
1516   // instruction generation
1517   void emit_arith_b(int op1, int op2, Register dst, int imm8);
1518 
1519   // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1520   // with a given destination expression and an immediate operand.  It attempts
1521   // to use the shortest encoding possible.
1522   // sel specifies the /n in the modrm byte (see the Intel PRM).
1523   void emit_arith(int sel, Operand dst, const Immediate& x);
1524 
1525   void emit_operand(Register reg, const Operand& adr);
1526 
1527   void emit_label(Label* label);
1528 
1529   void emit_farith(int b1, int b2, int i);
1530 
1531   // Emit vex prefix
1532   enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
1533   enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
1534   enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
1535   enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
1536   inline void emit_vex_prefix(XMMRegister v, VectorLength l, SIMDPrefix pp,
1537                               LeadingOpcode m, VexW w);
1538   inline void emit_vex_prefix(Register v, VectorLength l, SIMDPrefix pp,
1539                               LeadingOpcode m, VexW w);
1540 
1541   // labels
1542   void print(Label* L);
1543   void bind_to(Label* L, int pos);
1544 
1545   // displacements
1546   inline Displacement disp_at(Label* L);
1547   inline void disp_at_put(Label* L, Displacement disp);
1548   inline void emit_disp(Label* L, Displacement::Type type);
1549   inline void emit_near_disp(Label* L);
1550 
1551   // Most BMI instructions are similiar.
1552   void bmi1(byte op, Register reg, Register vreg, const Operand& rm);
1553   void bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
1554             const Operand& rm);
1555 
1556   // record reloc info for current pc_
1557   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1558 
1559   friend class CodePatcher;
1560   friend class EnsureSpace;
1561 
1562   // Internal reference positions, required for (potential) patching in
1563   // GrowBuffer(); contains only those internal references whose labels
1564   // are already bound.
1565   std::deque<int> internal_reference_positions_;
1566 
1567   // code generation
1568   RelocInfoWriter reloc_info_writer;
1569 };
1570 
1571 
1572 // Helper class that ensures that there is enough space for generating
1573 // instructions and relocation information.  The constructor makes
1574 // sure that there is enough space and (in debug mode) the destructor
1575 // checks that we did not generate too much.
1576 class EnsureSpace BASE_EMBEDDED {
1577  public:
EnsureSpace(Assembler * assembler)1578   explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1579     if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1580 #ifdef DEBUG
1581     space_before_ = assembler_->available_space();
1582 #endif
1583   }
1584 
1585 #ifdef DEBUG
~EnsureSpace()1586   ~EnsureSpace() {
1587     int bytes_generated = space_before_ - assembler_->available_space();
1588     DCHECK(bytes_generated < assembler_->kGap);
1589   }
1590 #endif
1591 
1592  private:
1593   Assembler* assembler_;
1594 #ifdef DEBUG
1595   int space_before_;
1596 #endif
1597 };
1598 
1599 }  // namespace internal
1600 }  // namespace v8
1601 
1602 #endif  // V8_IA32_ASSEMBLER_IA32_H_
1603