1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2011 the V8 project authors. All rights reserved.
34
35 // A light-weight IA32 Assembler.
36
37 #ifndef V8_IA32_ASSEMBLER_IA32_H_
38 #define V8_IA32_ASSEMBLER_IA32_H_
39
40 #include <deque>
41
42 #include "src/assembler.h"
43 #include "src/isolate.h"
44 #include "src/utils.h"
45
46 namespace v8 {
47 namespace internal {
48
49 #define GENERAL_REGISTERS(V) \
50 V(eax) \
51 V(ecx) \
52 V(edx) \
53 V(ebx) \
54 V(esp) \
55 V(ebp) \
56 V(esi) \
57 V(edi)
58
59 #define ALLOCATABLE_GENERAL_REGISTERS(V) \
60 V(eax) \
61 V(ecx) \
62 V(edx) \
63 V(ebx) \
64 V(esi) \
65 V(edi)
66
67 #define DOUBLE_REGISTERS(V) \
68 V(xmm0) \
69 V(xmm1) \
70 V(xmm2) \
71 V(xmm3) \
72 V(xmm4) \
73 V(xmm5) \
74 V(xmm6) \
75 V(xmm7)
76
77 #define FLOAT_REGISTERS DOUBLE_REGISTERS
78 #define SIMD128_REGISTERS DOUBLE_REGISTERS
79
80 #define ALLOCATABLE_DOUBLE_REGISTERS(V) \
81 V(xmm1) \
82 V(xmm2) \
83 V(xmm3) \
84 V(xmm4) \
85 V(xmm5) \
86 V(xmm6) \
87 V(xmm7)
88
89 // CPU Registers.
90 //
91 // 1) We would prefer to use an enum, but enum values are assignment-
92 // compatible with int, which has caused code-generation bugs.
93 //
94 // 2) We would prefer to use a class instead of a struct but we don't like
95 // the register initialization to depend on the particular initialization
96 // order (which appears to be different on OS X, Linux, and Windows for the
97 // installed versions of C++ we tried). Using a struct permits C-style
98 // "initialization". Also, the Register objects cannot be const as this
99 // forces initialization stubs in MSVC, making us dependent on initialization
100 // order.
101 //
102 // 3) By not using an enum, we are possibly preventing the compiler from
103 // doing certain constant folds, which may significantly reduce the
104 // code generated for some assembly instructions (because they boil down
105 // to a few constants). If this is a problem, we could change the code
106 // such that we use an enum in optimized mode, and the struct in debug
107 // mode. This way we get the compile-time error checking in debug mode
108 // and best performance in optimized code.
109 //
110 struct Register {
111 enum Code {
112 #define REGISTER_CODE(R) kCode_##R,
113 GENERAL_REGISTERS(REGISTER_CODE)
114 #undef REGISTER_CODE
115 kAfterLast,
116 kCode_no_reg = -1
117 };
118
119 static const int kNumRegisters = Code::kAfterLast;
120
from_codeRegister121 static Register from_code(int code) {
122 DCHECK(code >= 0);
123 DCHECK(code < kNumRegisters);
124 Register r = {code};
125 return r;
126 }
is_validRegister127 bool is_valid() const { return 0 <= reg_code && reg_code < kNumRegisters; }
isRegister128 bool is(Register reg) const { return reg_code == reg.reg_code; }
codeRegister129 int code() const {
130 DCHECK(is_valid());
131 return reg_code;
132 }
bitRegister133 int bit() const {
134 DCHECK(is_valid());
135 return 1 << reg_code;
136 }
137
is_byte_registerRegister138 bool is_byte_register() const { return reg_code <= 3; }
139
140 // Unfortunately we can't make this private in a struct.
141 int reg_code;
142 };
143
144
145 #define DECLARE_REGISTER(R) const Register R = {Register::kCode_##R};
146 GENERAL_REGISTERS(DECLARE_REGISTER)
147 #undef DECLARE_REGISTER
148 const Register no_reg = {Register::kCode_no_reg};
149
150 static const bool kSimpleFPAliasing = true;
151 static const bool kSimdMaskRegisters = false;
152
153 struct XMMRegister {
154 enum Code {
155 #define REGISTER_CODE(R) kCode_##R,
156 DOUBLE_REGISTERS(REGISTER_CODE)
157 #undef REGISTER_CODE
158 kAfterLast,
159 kCode_no_reg = -1
160 };
161
162 static const int kMaxNumRegisters = Code::kAfterLast;
163
from_codeXMMRegister164 static XMMRegister from_code(int code) {
165 XMMRegister result = {code};
166 return result;
167 }
168
is_validXMMRegister169 bool is_valid() const { return 0 <= reg_code && reg_code < kMaxNumRegisters; }
170
codeXMMRegister171 int code() const {
172 DCHECK(is_valid());
173 return reg_code;
174 }
175
isXMMRegister176 bool is(XMMRegister reg) const { return reg_code == reg.reg_code; }
177
178 int reg_code;
179 };
180
181 typedef XMMRegister FloatRegister;
182
183 typedef XMMRegister DoubleRegister;
184
185 typedef XMMRegister Simd128Register;
186
187 #define DECLARE_REGISTER(R) \
188 const DoubleRegister R = {DoubleRegister::kCode_##R};
189 DOUBLE_REGISTERS(DECLARE_REGISTER)
190 #undef DECLARE_REGISTER
191 const DoubleRegister no_double_reg = {DoubleRegister::kCode_no_reg};
192
193 enum Condition {
194 // any value < 0 is considered no_condition
195 no_condition = -1,
196
197 overflow = 0,
198 no_overflow = 1,
199 below = 2,
200 above_equal = 3,
201 equal = 4,
202 not_equal = 5,
203 below_equal = 6,
204 above = 7,
205 negative = 8,
206 positive = 9,
207 parity_even = 10,
208 parity_odd = 11,
209 less = 12,
210 greater_equal = 13,
211 less_equal = 14,
212 greater = 15,
213
214 // aliases
215 carry = below,
216 not_carry = above_equal,
217 zero = equal,
218 not_zero = not_equal,
219 sign = negative,
220 not_sign = positive
221 };
222
223
224 // Returns the equivalent of !cc.
225 // Negation of the default no_condition (-1) results in a non-default
226 // no_condition value (-2). As long as tests for no_condition check
227 // for condition < 0, this will work as expected.
NegateCondition(Condition cc)228 inline Condition NegateCondition(Condition cc) {
229 return static_cast<Condition>(cc ^ 1);
230 }
231
232
233 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cc)234 inline Condition CommuteCondition(Condition cc) {
235 switch (cc) {
236 case below:
237 return above;
238 case above:
239 return below;
240 case above_equal:
241 return below_equal;
242 case below_equal:
243 return above_equal;
244 case less:
245 return greater;
246 case greater:
247 return less;
248 case greater_equal:
249 return less_equal;
250 case less_equal:
251 return greater_equal;
252 default:
253 return cc;
254 }
255 }
256
257
258 enum RoundingMode {
259 kRoundToNearest = 0x0,
260 kRoundDown = 0x1,
261 kRoundUp = 0x2,
262 kRoundToZero = 0x3
263 };
264
265
266 // -----------------------------------------------------------------------------
267 // Machine instruction Immediates
268
269 class Immediate BASE_EMBEDDED {
270 public:
271 inline explicit Immediate(int x);
272 inline explicit Immediate(const ExternalReference& ext);
273 inline explicit Immediate(Handle<Object> handle);
274 inline explicit Immediate(Smi* value);
275 inline explicit Immediate(Address addr);
276 inline explicit Immediate(Address x, RelocInfo::Mode rmode);
277
CodeRelativeOffset(Label * label)278 static Immediate CodeRelativeOffset(Label* label) {
279 return Immediate(label);
280 }
281
is_zero()282 bool is_zero() const { return x_ == 0 && RelocInfo::IsNone(rmode_); }
is_int8()283 bool is_int8() const {
284 return -128 <= x_ && x_ < 128 && RelocInfo::IsNone(rmode_);
285 }
is_uint8()286 bool is_uint8() const {
287 return v8::internal::is_uint8(x_) && RelocInfo::IsNone(rmode_);
288 }
is_int16()289 bool is_int16() const {
290 return -32768 <= x_ && x_ < 32768 && RelocInfo::IsNone(rmode_);
291 }
is_uint16()292 bool is_uint16() const {
293 return v8::internal::is_uint16(x_) && RelocInfo::IsNone(rmode_);
294 }
295
296 private:
297 inline explicit Immediate(Label* value);
298
299 int x_;
300 RelocInfo::Mode rmode_;
301
302 friend class Operand;
303 friend class Assembler;
304 friend class MacroAssembler;
305 };
306
307
308 // -----------------------------------------------------------------------------
309 // Machine instruction Operands
310
311 enum ScaleFactor {
312 times_1 = 0,
313 times_2 = 1,
314 times_4 = 2,
315 times_8 = 3,
316 times_int_size = times_4,
317 times_half_pointer_size = times_2,
318 times_pointer_size = times_4,
319 times_twice_pointer_size = times_8
320 };
321
322
323 class Operand BASE_EMBEDDED {
324 public:
325 // reg
326 INLINE(explicit Operand(Register reg));
327
328 // XMM reg
329 INLINE(explicit Operand(XMMRegister xmm_reg));
330
331 // [disp/r]
332 INLINE(explicit Operand(int32_t disp, RelocInfo::Mode rmode));
333
334 // [disp/r]
335 INLINE(explicit Operand(Immediate imm));
336
337 // [base + disp/r]
338 explicit Operand(Register base, int32_t disp,
339 RelocInfo::Mode rmode = RelocInfo::NONE32);
340
341 // [base + index*scale + disp/r]
342 explicit Operand(Register base,
343 Register index,
344 ScaleFactor scale,
345 int32_t disp,
346 RelocInfo::Mode rmode = RelocInfo::NONE32);
347
348 // [index*scale + disp/r]
349 explicit Operand(Register index,
350 ScaleFactor scale,
351 int32_t disp,
352 RelocInfo::Mode rmode = RelocInfo::NONE32);
353
JumpTable(Register index,ScaleFactor scale,Label * table)354 static Operand JumpTable(Register index, ScaleFactor scale, Label* table) {
355 return Operand(index, scale, reinterpret_cast<int32_t>(table),
356 RelocInfo::INTERNAL_REFERENCE);
357 }
358
StaticVariable(const ExternalReference & ext)359 static Operand StaticVariable(const ExternalReference& ext) {
360 return Operand(reinterpret_cast<int32_t>(ext.address()),
361 RelocInfo::EXTERNAL_REFERENCE);
362 }
363
StaticArray(Register index,ScaleFactor scale,const ExternalReference & arr)364 static Operand StaticArray(Register index,
365 ScaleFactor scale,
366 const ExternalReference& arr) {
367 return Operand(index, scale, reinterpret_cast<int32_t>(arr.address()),
368 RelocInfo::EXTERNAL_REFERENCE);
369 }
370
ForCell(Handle<Cell> cell)371 static Operand ForCell(Handle<Cell> cell) {
372 AllowDeferredHandleDereference embedding_raw_address;
373 return Operand(reinterpret_cast<int32_t>(cell.location()),
374 RelocInfo::CELL);
375 }
376
ForRegisterPlusImmediate(Register base,Immediate imm)377 static Operand ForRegisterPlusImmediate(Register base, Immediate imm) {
378 return Operand(base, imm.x_, imm.rmode_);
379 }
380
381 // Returns true if this Operand is a wrapper for the specified register.
382 bool is_reg(Register reg) const;
383
384 // Returns true if this Operand is a wrapper for one register.
385 bool is_reg_only() const;
386
387 // Asserts that this Operand is a wrapper for one register and returns the
388 // register.
389 Register reg() const;
390
391 private:
392 // Set the ModRM byte without an encoded 'reg' register. The
393 // register is encoded later as part of the emit_operand operation.
394 inline void set_modrm(int mod, Register rm);
395
396 inline void set_sib(ScaleFactor scale, Register index, Register base);
397 inline void set_disp8(int8_t disp);
398 inline void set_dispr(int32_t disp, RelocInfo::Mode rmode);
399
400 byte buf_[6];
401 // The number of bytes in buf_.
402 unsigned int len_;
403 // Only valid if len_ > 4.
404 RelocInfo::Mode rmode_;
405
406 friend class Assembler;
407 friend class MacroAssembler;
408 };
409
410
411 // -----------------------------------------------------------------------------
412 // A Displacement describes the 32bit immediate field of an instruction which
413 // may be used together with a Label in order to refer to a yet unknown code
414 // position. Displacements stored in the instruction stream are used to describe
415 // the instruction and to chain a list of instructions using the same Label.
416 // A Displacement contains 2 different fields:
417 //
418 // next field: position of next displacement in the chain (0 = end of list)
419 // type field: instruction type
420 //
421 // A next value of null (0) indicates the end of a chain (note that there can
422 // be no displacement at position zero, because there is always at least one
423 // instruction byte before the displacement).
424 //
425 // Displacement _data field layout
426 //
427 // |31.....2|1......0|
428 // [ next | type |
429
430 class Displacement BASE_EMBEDDED {
431 public:
432 enum Type { UNCONDITIONAL_JUMP, CODE_RELATIVE, OTHER, CODE_ABSOLUTE };
433
data()434 int data() const { return data_; }
type()435 Type type() const { return TypeField::decode(data_); }
next(Label * L)436 void next(Label* L) const {
437 int n = NextField::decode(data_);
438 n > 0 ? L->link_to(n) : L->Unuse();
439 }
link_to(Label * L)440 void link_to(Label* L) { init(L, type()); }
441
Displacement(int data)442 explicit Displacement(int data) { data_ = data; }
443
Displacement(Label * L,Type type)444 Displacement(Label* L, Type type) { init(L, type); }
445
print()446 void print() {
447 PrintF("%s (%x) ", (type() == UNCONDITIONAL_JUMP ? "jmp" : "[other]"),
448 NextField::decode(data_));
449 }
450
451 private:
452 int data_;
453
454 class TypeField: public BitField<Type, 0, 2> {};
455 class NextField: public BitField<int, 2, 32-2> {};
456
457 void init(Label* L, Type type);
458 };
459
460
461 class Assembler : public AssemblerBase {
462 private:
463 // We check before assembling an instruction that there is sufficient
464 // space to write an instruction and its relocation information.
465 // The relocation writer's position must be kGap bytes above the end of
466 // the generated instructions. This leaves enough space for the
467 // longest possible ia32 instruction, 15 bytes, and the longest possible
468 // relocation information encoding, RelocInfoWriter::kMaxLength == 16.
469 // (There is a 15 byte limit on ia32 instruction length that rules out some
470 // otherwise valid instructions.)
471 // This allows for a single, fast space check per instruction.
472 static const int kGap = 32;
473
474 public:
475 // Create an assembler. Instructions and relocation information are emitted
476 // into a buffer, with the instructions starting from the beginning and the
477 // relocation information starting from the end of the buffer. See CodeDesc
478 // for a detailed comment on the layout (globals.h).
479 //
480 // If the provided buffer is NULL, the assembler allocates and grows its own
481 // buffer, and buffer_size determines the initial buffer size. The buffer is
482 // owned by the assembler and deallocated upon destruction of the assembler.
483 //
484 // If the provided buffer is not NULL, the assembler uses the provided buffer
485 // for code generation and assumes its size to be buffer_size. If the buffer
486 // is too small, a fatal error occurs. No deallocation of the buffer is done
487 // upon destruction of the assembler.
488 // TODO(vitalyr): the assembler does not need an isolate.
489 Assembler(Isolate* isolate, void* buffer, int buffer_size);
~Assembler()490 virtual ~Assembler() { }
491
492 // GetCode emits any pending (non-emitted) code and fills the descriptor
493 // desc. GetCode() is idempotent; it returns the same result if no other
494 // Assembler functions are invoked in between GetCode() calls.
495 void GetCode(CodeDesc* desc);
496
497 // Read/Modify the code target in the branch/call instruction at pc.
498 inline static Address target_address_at(Address pc, Address constant_pool);
499 inline static void set_target_address_at(
500 Isolate* isolate, Address pc, Address constant_pool, Address target,
501 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
502 static inline Address target_address_at(Address pc, Code* code);
503 static inline void set_target_address_at(
504 Isolate* isolate, Address pc, Code* code, Address target,
505 ICacheFlushMode icache_flush_mode = FLUSH_ICACHE_IF_NEEDED);
506
507 // Return the code target address at a call site from the return address
508 // of that call in the instruction stream.
509 inline static Address target_address_from_return_address(Address pc);
510
511 // This sets the branch destination (which is in the instruction on x86).
512 // This is for calls and branches within generated code.
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)513 inline static void deserialization_set_special_target_at(
514 Isolate* isolate, Address instruction_payload, Code* code,
515 Address target) {
516 set_target_address_at(isolate, instruction_payload, code, target);
517 }
518
519 // This sets the internal reference at the pc.
520 inline static void deserialization_set_target_internal_reference_at(
521 Isolate* isolate, Address pc, Address target,
522 RelocInfo::Mode mode = RelocInfo::INTERNAL_REFERENCE);
523
524 static const int kSpecialTargetSize = kPointerSize;
525
526 // Distance between the address of the code target in the call instruction
527 // and the return address
528 static const int kCallTargetAddressOffset = kPointerSize;
529
530 static const int kCallInstructionLength = 5;
531
532 // The debug break slot must be able to contain a call instruction.
533 static const int kDebugBreakSlotLength = kCallInstructionLength;
534
535 // Distance between start of patched debug break slot and the emitted address
536 // to jump to.
537 static const int kPatchDebugBreakSlotAddressOffset = 1; // JMP imm32.
538
539 // One byte opcode for test al, 0xXX.
540 static const byte kTestAlByte = 0xA8;
541 // One byte opcode for nop.
542 static const byte kNopByte = 0x90;
543
544 // One byte opcode for a short unconditional jump.
545 static const byte kJmpShortOpcode = 0xEB;
546 // One byte prefix for a short conditional jump.
547 static const byte kJccShortPrefix = 0x70;
548 static const byte kJncShortOpcode = kJccShortPrefix | not_carry;
549 static const byte kJcShortOpcode = kJccShortPrefix | carry;
550 static const byte kJnzShortOpcode = kJccShortPrefix | not_zero;
551 static const byte kJzShortOpcode = kJccShortPrefix | zero;
552
553
554 // ---------------------------------------------------------------------------
555 // Code generation
556 //
557 // - function names correspond one-to-one to ia32 instruction mnemonics
558 // - unless specified otherwise, instructions operate on 32bit operands
559 // - instructions on 8bit (byte) operands/registers have a trailing '_b'
560 // - instructions on 16bit (word) operands/registers have a trailing '_w'
561 // - naming conflicts with C++ keywords are resolved via a trailing '_'
562
563 // NOTE ON INTERFACE: Currently, the interface is not very consistent
564 // in the sense that some operations (e.g. mov()) can be called in more
565 // the one way to generate the same instruction: The Register argument
566 // can in some cases be replaced with an Operand(Register) argument.
567 // This should be cleaned up and made more orthogonal. The questions
568 // is: should we always use Operands instead of Registers where an
569 // Operand is possible, or should we have a Register (overloaded) form
570 // instead? We must be careful to make sure that the selected instruction
571 // is obvious from the parameters to avoid hard-to-find code generation
572 // bugs.
573
574 // Insert the smallest number of nop instructions
575 // possible to align the pc offset to a multiple
576 // of m. m must be a power of 2.
577 void Align(int m);
578 // Insert the smallest number of zero bytes possible to align the pc offset
579 // to a mulitple of m. m must be a power of 2 (>= 2).
580 void DataAlign(int m);
581 void Nop(int bytes = 1);
582 // Aligns code to something that's optimal for a jump target for the platform.
583 void CodeTargetAlign();
584
585 // Stack
586 void pushad();
587 void popad();
588
589 void pushfd();
590 void popfd();
591
592 void push(const Immediate& x);
593 void push_imm32(int32_t imm32);
594 void push(Register src);
595 void push(const Operand& src);
596
597 void pop(Register dst);
598 void pop(const Operand& dst);
599
600 void enter(const Immediate& size);
601 void leave();
602
603 // Moves
mov_b(Register dst,Register src)604 void mov_b(Register dst, Register src) { mov_b(dst, Operand(src)); }
605 void mov_b(Register dst, const Operand& src);
mov_b(Register dst,int8_t imm8)606 void mov_b(Register dst, int8_t imm8) { mov_b(Operand(dst), imm8); }
mov_b(const Operand & dst,int8_t src)607 void mov_b(const Operand& dst, int8_t src) { mov_b(dst, Immediate(src)); }
608 void mov_b(const Operand& dst, const Immediate& src);
609 void mov_b(const Operand& dst, Register src);
610
611 void mov_w(Register dst, const Operand& src);
mov_w(const Operand & dst,int16_t src)612 void mov_w(const Operand& dst, int16_t src) { mov_w(dst, Immediate(src)); }
613 void mov_w(const Operand& dst, const Immediate& src);
614 void mov_w(const Operand& dst, Register src);
615
616 void mov(Register dst, int32_t imm32);
617 void mov(Register dst, const Immediate& x);
618 void mov(Register dst, Handle<Object> handle);
619 void mov(Register dst, const Operand& src);
620 void mov(Register dst, Register src);
621 void mov(const Operand& dst, const Immediate& x);
622 void mov(const Operand& dst, Handle<Object> handle);
623 void mov(const Operand& dst, Register src);
624
movsx_b(Register dst,Register src)625 void movsx_b(Register dst, Register src) { movsx_b(dst, Operand(src)); }
626 void movsx_b(Register dst, const Operand& src);
627
movsx_w(Register dst,Register src)628 void movsx_w(Register dst, Register src) { movsx_w(dst, Operand(src)); }
629 void movsx_w(Register dst, const Operand& src);
630
movzx_b(Register dst,Register src)631 void movzx_b(Register dst, Register src) { movzx_b(dst, Operand(src)); }
632 void movzx_b(Register dst, const Operand& src);
633
movzx_w(Register dst,Register src)634 void movzx_w(Register dst, Register src) { movzx_w(dst, Operand(src)); }
635 void movzx_w(Register dst, const Operand& src);
636
637 // Conditional moves
cmov(Condition cc,Register dst,Register src)638 void cmov(Condition cc, Register dst, Register src) {
639 cmov(cc, dst, Operand(src));
640 }
641 void cmov(Condition cc, Register dst, const Operand& src);
642
643 // Flag management.
644 void cld();
645
646 // Repetitive string instructions.
647 void rep_movs();
648 void rep_stos();
649 void stos();
650
651 // Exchange
652 void xchg(Register dst, Register src);
653 void xchg(Register dst, const Operand& src);
654 void xchg_b(Register reg, const Operand& op);
655 void xchg_w(Register reg, const Operand& op);
656
657 // Lock prefix
658 void lock();
659
660 // CompareExchange
661 void cmpxchg(const Operand& dst, Register src);
662 void cmpxchg_b(const Operand& dst, Register src);
663 void cmpxchg_w(const Operand& dst, Register src);
664
665 // Arithmetics
666 void adc(Register dst, int32_t imm32);
667 void adc(Register dst, const Operand& src);
668
add(Register dst,Register src)669 void add(Register dst, Register src) { add(dst, Operand(src)); }
670 void add(Register dst, const Operand& src);
671 void add(const Operand& dst, Register src);
add(Register dst,const Immediate & imm)672 void add(Register dst, const Immediate& imm) { add(Operand(dst), imm); }
673 void add(const Operand& dst, const Immediate& x);
674
675 void and_(Register dst, int32_t imm32);
676 void and_(Register dst, const Immediate& x);
and_(Register dst,Register src)677 void and_(Register dst, Register src) { and_(dst, Operand(src)); }
678 void and_(Register dst, const Operand& src);
679 void and_(const Operand& dst, Register src);
680 void and_(const Operand& dst, const Immediate& x);
681
cmpb(Register reg,Immediate imm8)682 void cmpb(Register reg, Immediate imm8) { cmpb(Operand(reg), imm8); }
683 void cmpb(const Operand& op, Immediate imm8);
684 void cmpb(Register reg, const Operand& op);
685 void cmpb(const Operand& op, Register reg);
cmpb(Register dst,Register src)686 void cmpb(Register dst, Register src) { cmpb(Operand(dst), src); }
687 void cmpb_al(const Operand& op);
688 void cmpw_ax(const Operand& op);
689 void cmpw(const Operand& dst, Immediate src);
cmpw(Register dst,Immediate src)690 void cmpw(Register dst, Immediate src) { cmpw(Operand(dst), src); }
691 void cmpw(Register dst, const Operand& src);
cmpw(Register dst,Register src)692 void cmpw(Register dst, Register src) { cmpw(Operand(dst), src); }
693 void cmpw(const Operand& dst, Register src);
694 void cmp(Register reg, int32_t imm32);
695 void cmp(Register reg, Handle<Object> handle);
cmp(Register reg0,Register reg1)696 void cmp(Register reg0, Register reg1) { cmp(reg0, Operand(reg1)); }
697 void cmp(Register reg, const Operand& op);
cmp(Register reg,const Immediate & imm)698 void cmp(Register reg, const Immediate& imm) { cmp(Operand(reg), imm); }
699 void cmp(const Operand& op, Register reg);
700 void cmp(const Operand& op, const Immediate& imm);
701 void cmp(const Operand& op, Handle<Object> handle);
702
703 void dec_b(Register dst);
704 void dec_b(const Operand& dst);
705
706 void dec(Register dst);
707 void dec(const Operand& dst);
708
709 void cdq();
710
idiv(Register src)711 void idiv(Register src) { idiv(Operand(src)); }
712 void idiv(const Operand& src);
div(Register src)713 void div(Register src) { div(Operand(src)); }
714 void div(const Operand& src);
715
716 // Signed multiply instructions.
717 void imul(Register src); // edx:eax = eax * src.
imul(Register dst,Register src)718 void imul(Register dst, Register src) { imul(dst, Operand(src)); }
719 void imul(Register dst, const Operand& src); // dst = dst * src.
720 void imul(Register dst, Register src, int32_t imm32); // dst = src * imm32.
721 void imul(Register dst, const Operand& src, int32_t imm32);
722
723 void inc(Register dst);
724 void inc(const Operand& dst);
725
726 void lea(Register dst, const Operand& src);
727
728 // Unsigned multiply instruction.
729 void mul(Register src); // edx:eax = eax * reg.
730
731 void neg(Register dst);
732 void neg(const Operand& dst);
733
734 void not_(Register dst);
735 void not_(const Operand& dst);
736
737 void or_(Register dst, int32_t imm32);
or_(Register dst,Register src)738 void or_(Register dst, Register src) { or_(dst, Operand(src)); }
739 void or_(Register dst, const Operand& src);
740 void or_(const Operand& dst, Register src);
or_(Register dst,const Immediate & imm)741 void or_(Register dst, const Immediate& imm) { or_(Operand(dst), imm); }
742 void or_(const Operand& dst, const Immediate& x);
743
744 void rcl(Register dst, uint8_t imm8);
745 void rcr(Register dst, uint8_t imm8);
746
ror(Register dst,uint8_t imm8)747 void ror(Register dst, uint8_t imm8) { ror(Operand(dst), imm8); }
748 void ror(const Operand& dst, uint8_t imm8);
ror_cl(Register dst)749 void ror_cl(Register dst) { ror_cl(Operand(dst)); }
750 void ror_cl(const Operand& dst);
751
sar(Register dst,uint8_t imm8)752 void sar(Register dst, uint8_t imm8) { sar(Operand(dst), imm8); }
753 void sar(const Operand& dst, uint8_t imm8);
sar_cl(Register dst)754 void sar_cl(Register dst) { sar_cl(Operand(dst)); }
755 void sar_cl(const Operand& dst);
756
757 void sbb(Register dst, const Operand& src);
758
shl(Register dst,uint8_t imm8)759 void shl(Register dst, uint8_t imm8) { shl(Operand(dst), imm8); }
760 void shl(const Operand& dst, uint8_t imm8);
shl_cl(Register dst)761 void shl_cl(Register dst) { shl_cl(Operand(dst)); }
762 void shl_cl(const Operand& dst);
763 void shld(Register dst, Register src, uint8_t shift);
764 void shld_cl(Register dst, Register src);
765
shr(Register dst,uint8_t imm8)766 void shr(Register dst, uint8_t imm8) { shr(Operand(dst), imm8); }
767 void shr(const Operand& dst, uint8_t imm8);
shr_cl(Register dst)768 void shr_cl(Register dst) { shr_cl(Operand(dst)); }
769 void shr_cl(const Operand& dst);
770 void shrd(Register dst, Register src, uint8_t shift);
shrd_cl(Register dst,Register src)771 void shrd_cl(Register dst, Register src) { shrd_cl(Operand(dst), src); }
772 void shrd_cl(const Operand& dst, Register src);
773
sub(Register dst,const Immediate & imm)774 void sub(Register dst, const Immediate& imm) { sub(Operand(dst), imm); }
775 void sub(const Operand& dst, const Immediate& x);
sub(Register dst,Register src)776 void sub(Register dst, Register src) { sub(dst, Operand(src)); }
777 void sub(Register dst, const Operand& src);
778 void sub(const Operand& dst, Register src);
779
780 void test(Register reg, const Immediate& imm);
test(Register reg0,Register reg1)781 void test(Register reg0, Register reg1) { test(reg0, Operand(reg1)); }
782 void test(Register reg, const Operand& op);
783 void test(const Operand& op, const Immediate& imm);
test(const Operand & op,Register reg)784 void test(const Operand& op, Register reg) { test(reg, op); }
785 void test_b(Register reg, const Operand& op);
786 void test_b(Register reg, Immediate imm8);
787 void test_b(const Operand& op, Immediate imm8);
test_b(const Operand & op,Register reg)788 void test_b(const Operand& op, Register reg) { test_b(reg, op); }
test_b(Register dst,Register src)789 void test_b(Register dst, Register src) { test_b(dst, Operand(src)); }
790 void test_w(Register reg, const Operand& op);
791 void test_w(Register reg, Immediate imm16);
792 void test_w(const Operand& op, Immediate imm16);
test_w(const Operand & op,Register reg)793 void test_w(const Operand& op, Register reg) { test_w(reg, op); }
test_w(Register dst,Register src)794 void test_w(Register dst, Register src) { test_w(dst, Operand(src)); }
795
796 void xor_(Register dst, int32_t imm32);
xor_(Register dst,Register src)797 void xor_(Register dst, Register src) { xor_(dst, Operand(src)); }
798 void xor_(Register dst, const Operand& src);
799 void xor_(const Operand& dst, Register src);
xor_(Register dst,const Immediate & imm)800 void xor_(Register dst, const Immediate& imm) { xor_(Operand(dst), imm); }
801 void xor_(const Operand& dst, const Immediate& x);
802
803 // Bit operations.
804 void bt(const Operand& dst, Register src);
bts(Register dst,Register src)805 void bts(Register dst, Register src) { bts(Operand(dst), src); }
806 void bts(const Operand& dst, Register src);
bsr(Register dst,Register src)807 void bsr(Register dst, Register src) { bsr(dst, Operand(src)); }
808 void bsr(Register dst, const Operand& src);
bsf(Register dst,Register src)809 void bsf(Register dst, Register src) { bsf(dst, Operand(src)); }
810 void bsf(Register dst, const Operand& src);
811
812 // Miscellaneous
813 void hlt();
814 void int3();
815 void nop();
816 void ret(int imm16);
817 void ud2();
818
819 // Label operations & relative jumps (PPUM Appendix D)
820 //
821 // Takes a branch opcode (cc) and a label (L) and generates
822 // either a backward branch or a forward branch and links it
823 // to the label fixup chain. Usage:
824 //
825 // Label L; // unbound label
826 // j(cc, &L); // forward branch to unbound label
827 // bind(&L); // bind label to the current pc
828 // j(cc, &L); // backward branch to bound label
829 // bind(&L); // illegal: a label may be bound only once
830 //
831 // Note: The same Label can be used for forward and backward branches
832 // but it may be bound only once.
833
834 void bind(Label* L); // binds an unbound label L to the current code position
835
836 // Calls
837 void call(Label* L);
838 void call(byte* entry, RelocInfo::Mode rmode);
839 int CallSize(const Operand& adr);
call(Register reg)840 void call(Register reg) { call(Operand(reg)); }
841 void call(const Operand& adr);
842 int CallSize(Handle<Code> code, RelocInfo::Mode mode);
843 void call(Handle<Code> code,
844 RelocInfo::Mode rmode,
845 TypeFeedbackId id = TypeFeedbackId::None());
846
847 // Jumps
848 // unconditional jump to L
849 void jmp(Label* L, Label::Distance distance = Label::kFar);
850 void jmp(byte* entry, RelocInfo::Mode rmode);
jmp(Register reg)851 void jmp(Register reg) { jmp(Operand(reg)); }
852 void jmp(const Operand& adr);
853 void jmp(Handle<Code> code, RelocInfo::Mode rmode);
854
855 // Conditional jumps
856 void j(Condition cc,
857 Label* L,
858 Label::Distance distance = Label::kFar);
859 void j(Condition cc, byte* entry, RelocInfo::Mode rmode);
860 void j(Condition cc, Handle<Code> code,
861 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET);
862
863 // Floating-point operations
864 void fld(int i);
865 void fstp(int i);
866
867 void fld1();
868 void fldz();
869 void fldpi();
870 void fldln2();
871
872 void fld_s(const Operand& adr);
873 void fld_d(const Operand& adr);
874
875 void fstp_s(const Operand& adr);
876 void fst_s(const Operand& adr);
877 void fstp_d(const Operand& adr);
878 void fst_d(const Operand& adr);
879
880 void fild_s(const Operand& adr);
881 void fild_d(const Operand& adr);
882
883 void fist_s(const Operand& adr);
884
885 void fistp_s(const Operand& adr);
886 void fistp_d(const Operand& adr);
887
888 // The fisttp instructions require SSE3.
889 void fisttp_s(const Operand& adr);
890 void fisttp_d(const Operand& adr);
891
892 void fabs();
893 void fchs();
894 void fcos();
895 void fsin();
896 void fptan();
897 void fyl2x();
898 void f2xm1();
899 void fscale();
900 void fninit();
901
902 void fadd(int i);
903 void fadd_i(int i);
904 void fsub(int i);
905 void fsub_i(int i);
906 void fmul(int i);
907 void fmul_i(int i);
908 void fdiv(int i);
909 void fdiv_i(int i);
910
911 void fisub_s(const Operand& adr);
912
913 void faddp(int i = 1);
914 void fsubp(int i = 1);
915 void fsubrp(int i = 1);
916 void fmulp(int i = 1);
917 void fdivp(int i = 1);
918 void fprem();
919 void fprem1();
920
921 void fxch(int i = 1);
922 void fincstp();
923 void ffree(int i = 0);
924
925 void ftst();
926 void fucomp(int i);
927 void fucompp();
928 void fucomi(int i);
929 void fucomip();
930 void fcompp();
931 void fnstsw_ax();
932 void fwait();
933 void fnclex();
934
935 void frndint();
936
937 void sahf();
938 void setcc(Condition cc, Register reg);
939
940 void cpuid();
941
942 // SSE instructions
addss(XMMRegister dst,XMMRegister src)943 void addss(XMMRegister dst, XMMRegister src) { addss(dst, Operand(src)); }
944 void addss(XMMRegister dst, const Operand& src);
subss(XMMRegister dst,XMMRegister src)945 void subss(XMMRegister dst, XMMRegister src) { subss(dst, Operand(src)); }
946 void subss(XMMRegister dst, const Operand& src);
mulss(XMMRegister dst,XMMRegister src)947 void mulss(XMMRegister dst, XMMRegister src) { mulss(dst, Operand(src)); }
948 void mulss(XMMRegister dst, const Operand& src);
divss(XMMRegister dst,XMMRegister src)949 void divss(XMMRegister dst, XMMRegister src) { divss(dst, Operand(src)); }
950 void divss(XMMRegister dst, const Operand& src);
sqrtss(XMMRegister dst,XMMRegister src)951 void sqrtss(XMMRegister dst, XMMRegister src) { sqrtss(dst, Operand(src)); }
952 void sqrtss(XMMRegister dst, const Operand& src);
953
ucomiss(XMMRegister dst,XMMRegister src)954 void ucomiss(XMMRegister dst, XMMRegister src) { ucomiss(dst, Operand(src)); }
955 void ucomiss(XMMRegister dst, const Operand& src);
956 void movaps(XMMRegister dst, XMMRegister src);
957 void movups(XMMRegister dst, XMMRegister src);
958 void movups(XMMRegister dst, const Operand& src);
959 void movups(const Operand& dst, XMMRegister src);
960 void shufps(XMMRegister dst, XMMRegister src, byte imm8);
961
maxss(XMMRegister dst,XMMRegister src)962 void maxss(XMMRegister dst, XMMRegister src) { maxss(dst, Operand(src)); }
963 void maxss(XMMRegister dst, const Operand& src);
minss(XMMRegister dst,XMMRegister src)964 void minss(XMMRegister dst, XMMRegister src) { minss(dst, Operand(src)); }
965 void minss(XMMRegister dst, const Operand& src);
966
967 void andps(XMMRegister dst, const Operand& src);
andps(XMMRegister dst,XMMRegister src)968 void andps(XMMRegister dst, XMMRegister src) { andps(dst, Operand(src)); }
969 void xorps(XMMRegister dst, const Operand& src);
xorps(XMMRegister dst,XMMRegister src)970 void xorps(XMMRegister dst, XMMRegister src) { xorps(dst, Operand(src)); }
971 void orps(XMMRegister dst, const Operand& src);
orps(XMMRegister dst,XMMRegister src)972 void orps(XMMRegister dst, XMMRegister src) { orps(dst, Operand(src)); }
973
974 void addps(XMMRegister dst, const Operand& src);
addps(XMMRegister dst,XMMRegister src)975 void addps(XMMRegister dst, XMMRegister src) { addps(dst, Operand(src)); }
976 void subps(XMMRegister dst, const Operand& src);
subps(XMMRegister dst,XMMRegister src)977 void subps(XMMRegister dst, XMMRegister src) { subps(dst, Operand(src)); }
978 void mulps(XMMRegister dst, const Operand& src);
mulps(XMMRegister dst,XMMRegister src)979 void mulps(XMMRegister dst, XMMRegister src) { mulps(dst, Operand(src)); }
980 void divps(XMMRegister dst, const Operand& src);
divps(XMMRegister dst,XMMRegister src)981 void divps(XMMRegister dst, XMMRegister src) { divps(dst, Operand(src)); }
982
983 // SSE2 instructions
984 void cvttss2si(Register dst, const Operand& src);
cvttss2si(Register dst,XMMRegister src)985 void cvttss2si(Register dst, XMMRegister src) {
986 cvttss2si(dst, Operand(src));
987 }
988 void cvttsd2si(Register dst, const Operand& src);
cvttsd2si(Register dst,XMMRegister src)989 void cvttsd2si(Register dst, XMMRegister src) {
990 cvttsd2si(dst, Operand(src));
991 }
992 void cvtsd2si(Register dst, XMMRegister src);
993
cvtsi2ss(XMMRegister dst,Register src)994 void cvtsi2ss(XMMRegister dst, Register src) { cvtsi2ss(dst, Operand(src)); }
995 void cvtsi2ss(XMMRegister dst, const Operand& src);
cvtsi2sd(XMMRegister dst,Register src)996 void cvtsi2sd(XMMRegister dst, Register src) { cvtsi2sd(dst, Operand(src)); }
997 void cvtsi2sd(XMMRegister dst, const Operand& src);
998 void cvtss2sd(XMMRegister dst, const Operand& src);
cvtss2sd(XMMRegister dst,XMMRegister src)999 void cvtss2sd(XMMRegister dst, XMMRegister src) {
1000 cvtss2sd(dst, Operand(src));
1001 }
1002 void cvtsd2ss(XMMRegister dst, const Operand& src);
cvtsd2ss(XMMRegister dst,XMMRegister src)1003 void cvtsd2ss(XMMRegister dst, XMMRegister src) {
1004 cvtsd2ss(dst, Operand(src));
1005 }
addsd(XMMRegister dst,XMMRegister src)1006 void addsd(XMMRegister dst, XMMRegister src) { addsd(dst, Operand(src)); }
1007 void addsd(XMMRegister dst, const Operand& src);
subsd(XMMRegister dst,XMMRegister src)1008 void subsd(XMMRegister dst, XMMRegister src) { subsd(dst, Operand(src)); }
1009 void subsd(XMMRegister dst, const Operand& src);
mulsd(XMMRegister dst,XMMRegister src)1010 void mulsd(XMMRegister dst, XMMRegister src) { mulsd(dst, Operand(src)); }
1011 void mulsd(XMMRegister dst, const Operand& src);
divsd(XMMRegister dst,XMMRegister src)1012 void divsd(XMMRegister dst, XMMRegister src) { divsd(dst, Operand(src)); }
1013 void divsd(XMMRegister dst, const Operand& src);
1014 void xorpd(XMMRegister dst, XMMRegister src);
sqrtsd(XMMRegister dst,XMMRegister src)1015 void sqrtsd(XMMRegister dst, XMMRegister src) { sqrtsd(dst, Operand(src)); }
1016 void sqrtsd(XMMRegister dst, const Operand& src);
1017
1018 void andpd(XMMRegister dst, XMMRegister src);
1019 void orpd(XMMRegister dst, XMMRegister src);
1020
ucomisd(XMMRegister dst,XMMRegister src)1021 void ucomisd(XMMRegister dst, XMMRegister src) { ucomisd(dst, Operand(src)); }
1022 void ucomisd(XMMRegister dst, const Operand& src);
1023
1024 void roundss(XMMRegister dst, XMMRegister src, RoundingMode mode);
1025 void roundsd(XMMRegister dst, XMMRegister src, RoundingMode mode);
1026
1027 void movmskpd(Register dst, XMMRegister src);
1028 void movmskps(Register dst, XMMRegister src);
1029
1030 void cmpltsd(XMMRegister dst, XMMRegister src);
1031 void pcmpeqd(XMMRegister dst, XMMRegister src);
1032
1033 void punpckldq(XMMRegister dst, XMMRegister src);
1034 void punpckhdq(XMMRegister dst, XMMRegister src);
1035
maxsd(XMMRegister dst,XMMRegister src)1036 void maxsd(XMMRegister dst, XMMRegister src) { maxsd(dst, Operand(src)); }
1037 void maxsd(XMMRegister dst, const Operand& src);
minsd(XMMRegister dst,XMMRegister src)1038 void minsd(XMMRegister dst, XMMRegister src) { minsd(dst, Operand(src)); }
1039 void minsd(XMMRegister dst, const Operand& src);
1040
1041 void movdqa(XMMRegister dst, const Operand& src);
1042 void movdqa(const Operand& dst, XMMRegister src);
1043 void movdqu(XMMRegister dst, const Operand& src);
1044 void movdqu(const Operand& dst, XMMRegister src);
movdq(bool aligned,XMMRegister dst,const Operand & src)1045 void movdq(bool aligned, XMMRegister dst, const Operand& src) {
1046 if (aligned) {
1047 movdqa(dst, src);
1048 } else {
1049 movdqu(dst, src);
1050 }
1051 }
1052
movd(XMMRegister dst,Register src)1053 void movd(XMMRegister dst, Register src) { movd(dst, Operand(src)); }
1054 void movd(XMMRegister dst, const Operand& src);
movd(Register dst,XMMRegister src)1055 void movd(Register dst, XMMRegister src) { movd(Operand(dst), src); }
1056 void movd(const Operand& dst, XMMRegister src);
movsd(XMMRegister dst,XMMRegister src)1057 void movsd(XMMRegister dst, XMMRegister src) { movsd(dst, Operand(src)); }
1058 void movsd(XMMRegister dst, const Operand& src);
1059 void movsd(const Operand& dst, XMMRegister src);
1060
1061
1062 void movss(XMMRegister dst, const Operand& src);
1063 void movss(const Operand& dst, XMMRegister src);
movss(XMMRegister dst,XMMRegister src)1064 void movss(XMMRegister dst, XMMRegister src) { movss(dst, Operand(src)); }
1065 void extractps(Register dst, XMMRegister src, byte imm8);
1066
1067 void pand(XMMRegister dst, XMMRegister src);
1068 void pxor(XMMRegister dst, XMMRegister src);
1069 void por(XMMRegister dst, XMMRegister src);
1070 void ptest(XMMRegister dst, XMMRegister src);
1071
1072 void pslld(XMMRegister reg, int8_t shift);
1073 void psrld(XMMRegister reg, int8_t shift);
1074 void psllq(XMMRegister reg, int8_t shift);
1075 void psllq(XMMRegister dst, XMMRegister src);
1076 void psrlq(XMMRegister reg, int8_t shift);
1077 void psrlq(XMMRegister dst, XMMRegister src);
1078 void pshufd(XMMRegister dst, XMMRegister src, uint8_t shuffle);
pextrd(Register dst,XMMRegister src,int8_t offset)1079 void pextrd(Register dst, XMMRegister src, int8_t offset) {
1080 pextrd(Operand(dst), src, offset);
1081 }
1082 void pextrd(const Operand& dst, XMMRegister src, int8_t offset);
pinsrd(XMMRegister dst,Register src,int8_t offset)1083 void pinsrd(XMMRegister dst, Register src, int8_t offset) {
1084 pinsrd(dst, Operand(src), offset);
1085 }
1086 void pinsrd(XMMRegister dst, const Operand& src, int8_t offset);
1087
1088 // AVX instructions
vfmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1089 void vfmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1090 vfmadd132sd(dst, src1, Operand(src2));
1091 }
vfmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1092 void vfmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1093 vfmadd213sd(dst, src1, Operand(src2));
1094 }
vfmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1095 void vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1096 vfmadd231sd(dst, src1, Operand(src2));
1097 }
vfmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1098 void vfmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1099 vfmasd(0x99, dst, src1, src2);
1100 }
vfmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1101 void vfmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1102 vfmasd(0xa9, dst, src1, src2);
1103 }
vfmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1104 void vfmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1105 vfmasd(0xb9, dst, src1, src2);
1106 }
vfmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1107 void vfmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1108 vfmsub132sd(dst, src1, Operand(src2));
1109 }
vfmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1110 void vfmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1111 vfmsub213sd(dst, src1, Operand(src2));
1112 }
vfmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1113 void vfmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1114 vfmsub231sd(dst, src1, Operand(src2));
1115 }
vfmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1116 void vfmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1117 vfmasd(0x9b, dst, src1, src2);
1118 }
vfmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1119 void vfmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1120 vfmasd(0xab, dst, src1, src2);
1121 }
vfmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1122 void vfmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1123 vfmasd(0xbb, dst, src1, src2);
1124 }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1125 void vfnmadd132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1126 vfnmadd132sd(dst, src1, Operand(src2));
1127 }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1128 void vfnmadd213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1129 vfnmadd213sd(dst, src1, Operand(src2));
1130 }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1131 void vfnmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1132 vfnmadd231sd(dst, src1, Operand(src2));
1133 }
vfnmadd132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1134 void vfnmadd132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1135 vfmasd(0x9d, dst, src1, src2);
1136 }
vfnmadd213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1137 void vfnmadd213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1138 vfmasd(0xad, dst, src1, src2);
1139 }
vfnmadd231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1140 void vfnmadd231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1141 vfmasd(0xbd, dst, src1, src2);
1142 }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1143 void vfnmsub132sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1144 vfnmsub132sd(dst, src1, Operand(src2));
1145 }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1146 void vfnmsub213sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1147 vfnmsub213sd(dst, src1, Operand(src2));
1148 }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1149 void vfnmsub231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1150 vfnmsub231sd(dst, src1, Operand(src2));
1151 }
vfnmsub132sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1152 void vfnmsub132sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1153 vfmasd(0x9f, dst, src1, src2);
1154 }
vfnmsub213sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1155 void vfnmsub213sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1156 vfmasd(0xaf, dst, src1, src2);
1157 }
vfnmsub231sd(XMMRegister dst,XMMRegister src1,const Operand & src2)1158 void vfnmsub231sd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1159 vfmasd(0xbf, dst, src1, src2);
1160 }
1161 void vfmasd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1162
vfmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1163 void vfmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1164 vfmadd132ss(dst, src1, Operand(src2));
1165 }
vfmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1166 void vfmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1167 vfmadd213ss(dst, src1, Operand(src2));
1168 }
vfmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1169 void vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1170 vfmadd231ss(dst, src1, Operand(src2));
1171 }
vfmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1172 void vfmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1173 vfmass(0x99, dst, src1, src2);
1174 }
vfmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1175 void vfmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1176 vfmass(0xa9, dst, src1, src2);
1177 }
vfmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1178 void vfmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1179 vfmass(0xb9, dst, src1, src2);
1180 }
vfmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1181 void vfmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1182 vfmsub132ss(dst, src1, Operand(src2));
1183 }
vfmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1184 void vfmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1185 vfmsub213ss(dst, src1, Operand(src2));
1186 }
vfmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1187 void vfmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1188 vfmsub231ss(dst, src1, Operand(src2));
1189 }
vfmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1190 void vfmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1191 vfmass(0x9b, dst, src1, src2);
1192 }
vfmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1193 void vfmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1194 vfmass(0xab, dst, src1, src2);
1195 }
vfmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1196 void vfmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1197 vfmass(0xbb, dst, src1, src2);
1198 }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1199 void vfnmadd132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1200 vfnmadd132ss(dst, src1, Operand(src2));
1201 }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1202 void vfnmadd213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1203 vfnmadd213ss(dst, src1, Operand(src2));
1204 }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1205 void vfnmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1206 vfnmadd231ss(dst, src1, Operand(src2));
1207 }
vfnmadd132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1208 void vfnmadd132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1209 vfmass(0x9d, dst, src1, src2);
1210 }
vfnmadd213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1211 void vfnmadd213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1212 vfmass(0xad, dst, src1, src2);
1213 }
vfnmadd231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1214 void vfnmadd231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1215 vfmass(0xbd, dst, src1, src2);
1216 }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1217 void vfnmsub132ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1218 vfnmsub132ss(dst, src1, Operand(src2));
1219 }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1220 void vfnmsub213ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1221 vfnmsub213ss(dst, src1, Operand(src2));
1222 }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1223 void vfnmsub231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1224 vfnmsub231ss(dst, src1, Operand(src2));
1225 }
vfnmsub132ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1226 void vfnmsub132ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1227 vfmass(0x9f, dst, src1, src2);
1228 }
vfnmsub213ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1229 void vfnmsub213ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1230 vfmass(0xaf, dst, src1, src2);
1231 }
vfnmsub231ss(XMMRegister dst,XMMRegister src1,const Operand & src2)1232 void vfnmsub231ss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1233 vfmass(0xbf, dst, src1, src2);
1234 }
1235 void vfmass(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1236
vaddsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1237 void vaddsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1238 vaddsd(dst, src1, Operand(src2));
1239 }
vaddsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1240 void vaddsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1241 vsd(0x58, dst, src1, src2);
1242 }
vsubsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1243 void vsubsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1244 vsubsd(dst, src1, Operand(src2));
1245 }
vsubsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1246 void vsubsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1247 vsd(0x5c, dst, src1, src2);
1248 }
vmulsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1249 void vmulsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1250 vmulsd(dst, src1, Operand(src2));
1251 }
vmulsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1252 void vmulsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1253 vsd(0x59, dst, src1, src2);
1254 }
vdivsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1255 void vdivsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1256 vdivsd(dst, src1, Operand(src2));
1257 }
vdivsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1258 void vdivsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1259 vsd(0x5e, dst, src1, src2);
1260 }
vmaxsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1261 void vmaxsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1262 vmaxsd(dst, src1, Operand(src2));
1263 }
vmaxsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1264 void vmaxsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1265 vsd(0x5f, dst, src1, src2);
1266 }
vminsd(XMMRegister dst,XMMRegister src1,XMMRegister src2)1267 void vminsd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1268 vminsd(dst, src1, Operand(src2));
1269 }
vminsd(XMMRegister dst,XMMRegister src1,const Operand & src2)1270 void vminsd(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1271 vsd(0x5d, dst, src1, src2);
1272 }
1273 void vsd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1274
vaddss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1275 void vaddss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1276 vaddss(dst, src1, Operand(src2));
1277 }
vaddss(XMMRegister dst,XMMRegister src1,const Operand & src2)1278 void vaddss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1279 vss(0x58, dst, src1, src2);
1280 }
vsubss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1281 void vsubss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1282 vsubss(dst, src1, Operand(src2));
1283 }
vsubss(XMMRegister dst,XMMRegister src1,const Operand & src2)1284 void vsubss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1285 vss(0x5c, dst, src1, src2);
1286 }
vmulss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1287 void vmulss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1288 vmulss(dst, src1, Operand(src2));
1289 }
vmulss(XMMRegister dst,XMMRegister src1,const Operand & src2)1290 void vmulss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1291 vss(0x59, dst, src1, src2);
1292 }
vdivss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1293 void vdivss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1294 vdivss(dst, src1, Operand(src2));
1295 }
vdivss(XMMRegister dst,XMMRegister src1,const Operand & src2)1296 void vdivss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1297 vss(0x5e, dst, src1, src2);
1298 }
vmaxss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1299 void vmaxss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1300 vmaxss(dst, src1, Operand(src2));
1301 }
vmaxss(XMMRegister dst,XMMRegister src1,const Operand & src2)1302 void vmaxss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1303 vss(0x5f, dst, src1, src2);
1304 }
vminss(XMMRegister dst,XMMRegister src1,XMMRegister src2)1305 void vminss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
1306 vminss(dst, src1, Operand(src2));
1307 }
vminss(XMMRegister dst,XMMRegister src1,const Operand & src2)1308 void vminss(XMMRegister dst, XMMRegister src1, const Operand& src2) {
1309 vss(0x5d, dst, src1, src2);
1310 }
1311 void vss(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1312
1313 // BMI instruction
andn(Register dst,Register src1,Register src2)1314 void andn(Register dst, Register src1, Register src2) {
1315 andn(dst, src1, Operand(src2));
1316 }
andn(Register dst,Register src1,const Operand & src2)1317 void andn(Register dst, Register src1, const Operand& src2) {
1318 bmi1(0xf2, dst, src1, src2);
1319 }
bextr(Register dst,Register src1,Register src2)1320 void bextr(Register dst, Register src1, Register src2) {
1321 bextr(dst, Operand(src1), src2);
1322 }
bextr(Register dst,const Operand & src1,Register src2)1323 void bextr(Register dst, const Operand& src1, Register src2) {
1324 bmi1(0xf7, dst, src2, src1);
1325 }
blsi(Register dst,Register src)1326 void blsi(Register dst, Register src) { blsi(dst, Operand(src)); }
blsi(Register dst,const Operand & src)1327 void blsi(Register dst, const Operand& src) {
1328 Register ireg = {3};
1329 bmi1(0xf3, ireg, dst, src);
1330 }
blsmsk(Register dst,Register src)1331 void blsmsk(Register dst, Register src) { blsmsk(dst, Operand(src)); }
blsmsk(Register dst,const Operand & src)1332 void blsmsk(Register dst, const Operand& src) {
1333 Register ireg = {2};
1334 bmi1(0xf3, ireg, dst, src);
1335 }
blsr(Register dst,Register src)1336 void blsr(Register dst, Register src) { blsr(dst, Operand(src)); }
blsr(Register dst,const Operand & src)1337 void blsr(Register dst, const Operand& src) {
1338 Register ireg = {1};
1339 bmi1(0xf3, ireg, dst, src);
1340 }
tzcnt(Register dst,Register src)1341 void tzcnt(Register dst, Register src) { tzcnt(dst, Operand(src)); }
1342 void tzcnt(Register dst, const Operand& src);
1343
lzcnt(Register dst,Register src)1344 void lzcnt(Register dst, Register src) { lzcnt(dst, Operand(src)); }
1345 void lzcnt(Register dst, const Operand& src);
1346
popcnt(Register dst,Register src)1347 void popcnt(Register dst, Register src) { popcnt(dst, Operand(src)); }
1348 void popcnt(Register dst, const Operand& src);
1349
bzhi(Register dst,Register src1,Register src2)1350 void bzhi(Register dst, Register src1, Register src2) {
1351 bzhi(dst, Operand(src1), src2);
1352 }
bzhi(Register dst,const Operand & src1,Register src2)1353 void bzhi(Register dst, const Operand& src1, Register src2) {
1354 bmi2(kNone, 0xf5, dst, src2, src1);
1355 }
mulx(Register dst1,Register dst2,Register src)1356 void mulx(Register dst1, Register dst2, Register src) {
1357 mulx(dst1, dst2, Operand(src));
1358 }
mulx(Register dst1,Register dst2,const Operand & src)1359 void mulx(Register dst1, Register dst2, const Operand& src) {
1360 bmi2(kF2, 0xf6, dst1, dst2, src);
1361 }
pdep(Register dst,Register src1,Register src2)1362 void pdep(Register dst, Register src1, Register src2) {
1363 pdep(dst, src1, Operand(src2));
1364 }
pdep(Register dst,Register src1,const Operand & src2)1365 void pdep(Register dst, Register src1, const Operand& src2) {
1366 bmi2(kF2, 0xf5, dst, src1, src2);
1367 }
pext(Register dst,Register src1,Register src2)1368 void pext(Register dst, Register src1, Register src2) {
1369 pext(dst, src1, Operand(src2));
1370 }
pext(Register dst,Register src1,const Operand & src2)1371 void pext(Register dst, Register src1, const Operand& src2) {
1372 bmi2(kF3, 0xf5, dst, src1, src2);
1373 }
sarx(Register dst,Register src1,Register src2)1374 void sarx(Register dst, Register src1, Register src2) {
1375 sarx(dst, Operand(src1), src2);
1376 }
sarx(Register dst,const Operand & src1,Register src2)1377 void sarx(Register dst, const Operand& src1, Register src2) {
1378 bmi2(kF3, 0xf7, dst, src2, src1);
1379 }
shlx(Register dst,Register src1,Register src2)1380 void shlx(Register dst, Register src1, Register src2) {
1381 shlx(dst, Operand(src1), src2);
1382 }
shlx(Register dst,const Operand & src1,Register src2)1383 void shlx(Register dst, const Operand& src1, Register src2) {
1384 bmi2(k66, 0xf7, dst, src2, src1);
1385 }
shrx(Register dst,Register src1,Register src2)1386 void shrx(Register dst, Register src1, Register src2) {
1387 shrx(dst, Operand(src1), src2);
1388 }
shrx(Register dst,const Operand & src1,Register src2)1389 void shrx(Register dst, const Operand& src1, Register src2) {
1390 bmi2(kF2, 0xf7, dst, src2, src1);
1391 }
rorx(Register dst,Register src,byte imm8)1392 void rorx(Register dst, Register src, byte imm8) {
1393 rorx(dst, Operand(src), imm8);
1394 }
1395 void rorx(Register dst, const Operand& src, byte imm8);
1396
1397 #define PACKED_OP_LIST(V) \
1398 V(and, 0x54) \
1399 V(xor, 0x57)
1400
1401 #define AVX_PACKED_OP_DECLARE(name, opcode) \
1402 void v##name##ps(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
1403 vps(opcode, dst, src1, Operand(src2)); \
1404 } \
1405 void v##name##ps(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1406 vps(opcode, dst, src1, src2); \
1407 } \
1408 void v##name##pd(XMMRegister dst, XMMRegister src1, XMMRegister src2) { \
1409 vpd(opcode, dst, src1, Operand(src2)); \
1410 } \
1411 void v##name##pd(XMMRegister dst, XMMRegister src1, const Operand& src2) { \
1412 vpd(opcode, dst, src1, src2); \
1413 }
1414
1415 PACKED_OP_LIST(AVX_PACKED_OP_DECLARE);
1416 void vps(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1417 void vps(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1418 void vpd(byte op, XMMRegister dst, XMMRegister src1, XMMRegister src2);
1419 void vpd(byte op, XMMRegister dst, XMMRegister src1, const Operand& src2);
1420
1421 // Prefetch src position into cache level.
1422 // Level 1, 2 or 3 specifies CPU cache level. Level 0 specifies a
1423 // non-temporal
1424 void prefetch(const Operand& src, int level);
1425 // TODO(lrn): Need SFENCE for movnt?
1426
1427 // Check the code size generated from label to here.
SizeOfCodeGeneratedSince(Label * label)1428 int SizeOfCodeGeneratedSince(Label* label) {
1429 return pc_offset() - label->pos();
1430 }
1431
1432 // Mark address of a debug break slot.
1433 void RecordDebugBreakSlot(RelocInfo::Mode mode);
1434
1435 // Record a comment relocation entry that can be used by a disassembler.
1436 // Use --code-comments to enable.
1437 void RecordComment(const char* msg);
1438
1439 // Record a deoptimization reason that can be used by a log or cpu profiler.
1440 // Use --trace-deopt to enable.
1441 void RecordDeoptReason(DeoptimizeReason reason, SourcePosition position,
1442 int id);
1443
1444 // Writes a single byte or word of data in the code stream. Used for
1445 // inline tables, e.g., jump-tables.
1446 void db(uint8_t data);
1447 void dd(uint32_t data);
1448 void dq(uint64_t data);
dp(uintptr_t data)1449 void dp(uintptr_t data) { dd(data); }
1450 void dd(Label* label);
1451
1452 // Check if there is less than kGap bytes available in the buffer.
1453 // If this is the case, we need to grow the buffer before emitting
1454 // an instruction or relocation information.
buffer_overflow()1455 inline bool buffer_overflow() const {
1456 return pc_ >= reloc_info_writer.pos() - kGap;
1457 }
1458
1459 // Get the number of bytes available in the buffer.
available_space()1460 inline int available_space() const { return reloc_info_writer.pos() - pc_; }
1461
1462 static bool IsNop(Address addr);
1463
relocation_writer_size()1464 int relocation_writer_size() {
1465 return (buffer_ + buffer_size_) - reloc_info_writer.pos();
1466 }
1467
1468 // Avoid overflows for displacements etc.
1469 static const int kMaximalBufferSize = 512*MB;
1470
byte_at(int pos)1471 byte byte_at(int pos) { return buffer_[pos]; }
set_byte_at(int pos,byte value)1472 void set_byte_at(int pos, byte value) { buffer_[pos] = value; }
1473
PatchConstantPoolAccessInstruction(int pc_offset,int offset,ConstantPoolEntry::Access access,ConstantPoolEntry::Type type)1474 void PatchConstantPoolAccessInstruction(int pc_offset, int offset,
1475 ConstantPoolEntry::Access access,
1476 ConstantPoolEntry::Type type) {
1477 // No embedded constant pool support.
1478 UNREACHABLE();
1479 }
1480
1481 protected:
1482 void emit_sse_operand(XMMRegister reg, const Operand& adr);
1483 void emit_sse_operand(XMMRegister dst, XMMRegister src);
1484 void emit_sse_operand(Register dst, XMMRegister src);
1485 void emit_sse_operand(XMMRegister dst, Register src);
1486
addr_at(int pos)1487 byte* addr_at(int pos) { return buffer_ + pos; }
1488
1489
1490 private:
long_at(int pos)1491 uint32_t long_at(int pos) {
1492 return *reinterpret_cast<uint32_t*>(addr_at(pos));
1493 }
long_at_put(int pos,uint32_t x)1494 void long_at_put(int pos, uint32_t x) {
1495 *reinterpret_cast<uint32_t*>(addr_at(pos)) = x;
1496 }
1497
1498 // code emission
1499 void GrowBuffer();
1500 inline void emit(uint32_t x);
1501 inline void emit(Handle<Object> handle);
1502 inline void emit(uint32_t x,
1503 RelocInfo::Mode rmode,
1504 TypeFeedbackId id = TypeFeedbackId::None());
1505 inline void emit(Handle<Code> code,
1506 RelocInfo::Mode rmode,
1507 TypeFeedbackId id = TypeFeedbackId::None());
1508 inline void emit(const Immediate& x);
1509 inline void emit_b(Immediate x);
1510 inline void emit_w(const Immediate& x);
1511 inline void emit_q(uint64_t x);
1512
1513 // Emit the code-object-relative offset of the label's position
1514 inline void emit_code_relative_offset(Label* label);
1515
1516 // instruction generation
1517 void emit_arith_b(int op1, int op2, Register dst, int imm8);
1518
1519 // Emit a basic arithmetic instruction (i.e. first byte of the family is 0x81)
1520 // with a given destination expression and an immediate operand. It attempts
1521 // to use the shortest encoding possible.
1522 // sel specifies the /n in the modrm byte (see the Intel PRM).
1523 void emit_arith(int sel, Operand dst, const Immediate& x);
1524
1525 void emit_operand(Register reg, const Operand& adr);
1526
1527 void emit_label(Label* label);
1528
1529 void emit_farith(int b1, int b2, int i);
1530
1531 // Emit vex prefix
1532 enum SIMDPrefix { kNone = 0x0, k66 = 0x1, kF3 = 0x2, kF2 = 0x3 };
1533 enum VectorLength { kL128 = 0x0, kL256 = 0x4, kLIG = kL128, kLZ = kL128 };
1534 enum VexW { kW0 = 0x0, kW1 = 0x80, kWIG = kW0 };
1535 enum LeadingOpcode { k0F = 0x1, k0F38 = 0x2, k0F3A = 0x3 };
1536 inline void emit_vex_prefix(XMMRegister v, VectorLength l, SIMDPrefix pp,
1537 LeadingOpcode m, VexW w);
1538 inline void emit_vex_prefix(Register v, VectorLength l, SIMDPrefix pp,
1539 LeadingOpcode m, VexW w);
1540
1541 // labels
1542 void print(Label* L);
1543 void bind_to(Label* L, int pos);
1544
1545 // displacements
1546 inline Displacement disp_at(Label* L);
1547 inline void disp_at_put(Label* L, Displacement disp);
1548 inline void emit_disp(Label* L, Displacement::Type type);
1549 inline void emit_near_disp(Label* L);
1550
1551 // Most BMI instructions are similiar.
1552 void bmi1(byte op, Register reg, Register vreg, const Operand& rm);
1553 void bmi2(SIMDPrefix pp, byte op, Register reg, Register vreg,
1554 const Operand& rm);
1555
1556 // record reloc info for current pc_
1557 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1558
1559 friend class CodePatcher;
1560 friend class EnsureSpace;
1561
1562 // Internal reference positions, required for (potential) patching in
1563 // GrowBuffer(); contains only those internal references whose labels
1564 // are already bound.
1565 std::deque<int> internal_reference_positions_;
1566
1567 // code generation
1568 RelocInfoWriter reloc_info_writer;
1569 };
1570
1571
1572 // Helper class that ensures that there is enough space for generating
1573 // instructions and relocation information. The constructor makes
1574 // sure that there is enough space and (in debug mode) the destructor
1575 // checks that we did not generate too much.
1576 class EnsureSpace BASE_EMBEDDED {
1577 public:
EnsureSpace(Assembler * assembler)1578 explicit EnsureSpace(Assembler* assembler) : assembler_(assembler) {
1579 if (assembler_->buffer_overflow()) assembler_->GrowBuffer();
1580 #ifdef DEBUG
1581 space_before_ = assembler_->available_space();
1582 #endif
1583 }
1584
1585 #ifdef DEBUG
~EnsureSpace()1586 ~EnsureSpace() {
1587 int bytes_generated = space_before_ - assembler_->available_space();
1588 DCHECK(bytes_generated < assembler_->kGap);
1589 }
1590 #endif
1591
1592 private:
1593 Assembler* assembler_;
1594 #ifdef DEBUG
1595 int space_before_;
1596 #endif
1597 };
1598
1599 } // namespace internal
1600 } // namespace v8
1601
1602 #endif // V8_IA32_ASSEMBLER_IA32_H_
1603