• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_IA32_MACRO_ASSEMBLER_IA32_H_
6 #define V8_IA32_MACRO_ASSEMBLER_IA32_H_
7 
8 #include "src/assembler.h"
9 #include "src/bailout-reason.h"
10 #include "src/frames.h"
11 #include "src/globals.h"
12 
13 namespace v8 {
14 namespace internal {
15 
16 // Give alias names to registers for calling conventions.
17 const Register kReturnRegister0 = {Register::kCode_eax};
18 const Register kReturnRegister1 = {Register::kCode_edx};
19 const Register kReturnRegister2 = {Register::kCode_edi};
20 const Register kJSFunctionRegister = {Register::kCode_edi};
21 const Register kContextRegister = {Register::kCode_esi};
22 const Register kAllocateSizeRegister = {Register::kCode_edx};
23 const Register kInterpreterAccumulatorRegister = {Register::kCode_eax};
24 const Register kInterpreterBytecodeOffsetRegister = {Register::kCode_ecx};
25 const Register kInterpreterBytecodeArrayRegister = {Register::kCode_edi};
26 const Register kInterpreterDispatchTableRegister = {Register::kCode_esi};
27 const Register kJavaScriptCallArgCountRegister = {Register::kCode_eax};
28 const Register kJavaScriptCallNewTargetRegister = {Register::kCode_edx};
29 const Register kRuntimeCallFunctionRegister = {Register::kCode_ebx};
30 const Register kRuntimeCallArgCountRegister = {Register::kCode_eax};
31 
32 // Convenience for platform-independent signatures.  We do not normally
33 // distinguish memory operands from other operands on ia32.
34 typedef Operand MemOperand;
35 
36 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
37 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
38 enum PointersToHereCheck {
39   kPointersToHereMaybeInteresting,
40   kPointersToHereAreAlwaysInteresting
41 };
42 
43 enum RegisterValueType { REGISTER_VALUE_IS_SMI, REGISTER_VALUE_IS_INT32 };
44 
45 enum class ReturnAddressState { kOnStack, kNotOnStack };
46 
47 #ifdef DEBUG
48 bool AreAliased(Register reg1, Register reg2, Register reg3 = no_reg,
49                 Register reg4 = no_reg, Register reg5 = no_reg,
50                 Register reg6 = no_reg, Register reg7 = no_reg,
51                 Register reg8 = no_reg);
52 #endif
53 
54 // MacroAssembler implements a collection of frequently used macros.
55 class MacroAssembler: public Assembler {
56  public:
57   MacroAssembler(Isolate* isolate, void* buffer, int size,
58                  CodeObjectRequired create_code_object);
59 
60   void Load(Register dst, const Operand& src, Representation r);
61   void Store(Register src, const Operand& dst, Representation r);
62 
63   // Load a register with a long value as efficiently as possible.
Set(Register dst,int32_t x)64   void Set(Register dst, int32_t x) {
65     if (x == 0) {
66       xor_(dst, dst);
67     } else {
68       mov(dst, Immediate(x));
69     }
70   }
Set(const Operand & dst,int32_t x)71   void Set(const Operand& dst, int32_t x) { mov(dst, Immediate(x)); }
72 
73   // Operations on roots in the root-array.
74   void LoadRoot(Register destination, Heap::RootListIndex index);
75   void StoreRoot(Register source, Register scratch, Heap::RootListIndex index);
76   void CompareRoot(Register with, Register scratch, Heap::RootListIndex index);
77   // These methods can only be used with constant roots (i.e. non-writable
78   // and not in new space).
79   void CompareRoot(Register with, Heap::RootListIndex index);
80   void CompareRoot(const Operand& with, Heap::RootListIndex index);
81   void PushRoot(Heap::RootListIndex index);
82 
83   // Compare the object in a register to a value and jump if they are equal.
84   void JumpIfRoot(Register with, Heap::RootListIndex index, Label* if_equal,
85                   Label::Distance if_equal_distance = Label::kFar) {
86     CompareRoot(with, index);
87     j(equal, if_equal, if_equal_distance);
88   }
89   void JumpIfRoot(const Operand& with, Heap::RootListIndex index,
90                   Label* if_equal,
91                   Label::Distance if_equal_distance = Label::kFar) {
92     CompareRoot(with, index);
93     j(equal, if_equal, if_equal_distance);
94   }
95 
96   // Compare the object in a register to a value and jump if they are not equal.
97   void JumpIfNotRoot(Register with, Heap::RootListIndex index,
98                      Label* if_not_equal,
99                      Label::Distance if_not_equal_distance = Label::kFar) {
100     CompareRoot(with, index);
101     j(not_equal, if_not_equal, if_not_equal_distance);
102   }
103   void JumpIfNotRoot(const Operand& with, Heap::RootListIndex index,
104                      Label* if_not_equal,
105                      Label::Distance if_not_equal_distance = Label::kFar) {
106     CompareRoot(with, index);
107     j(not_equal, if_not_equal, if_not_equal_distance);
108   }
109 
110   // These functions do not arrange the registers in any particular order so
111   // they are not useful for calls that can cause a GC.  The caller can
112   // exclude up to 3 registers that do not need to be saved and restored.
113   void PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
114                        Register exclusion2 = no_reg,
115                        Register exclusion3 = no_reg);
116   void PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1 = no_reg,
117                       Register exclusion2 = no_reg,
118                       Register exclusion3 = no_reg);
119 
120   // ---------------------------------------------------------------------------
121   // GC Support
122   enum RememberedSetFinalAction { kReturnAtEnd, kFallThroughAtEnd };
123 
124   // Record in the remembered set the fact that we have a pointer to new space
125   // at the address pointed to by the addr register.  Only works if addr is not
126   // in new space.
127   void RememberedSetHelper(Register object,  // Used for debug code.
128                            Register addr, Register scratch,
129                            SaveFPRegsMode save_fp,
130                            RememberedSetFinalAction and_then);
131 
132   void CheckPageFlag(Register object, Register scratch, int mask, Condition cc,
133                      Label* condition_met,
134                      Label::Distance condition_met_distance = Label::kFar);
135 
136   void CheckPageFlagForMap(
137       Handle<Map> map, int mask, Condition cc, Label* condition_met,
138       Label::Distance condition_met_distance = Label::kFar);
139 
140   // Check if object is in new space.  Jumps if the object is not in new space.
141   // The register scratch can be object itself, but scratch will be clobbered.
142   void JumpIfNotInNewSpace(Register object, Register scratch, Label* branch,
143                            Label::Distance distance = Label::kFar) {
144     InNewSpace(object, scratch, zero, branch, distance);
145   }
146 
147   // Check if object is in new space.  Jumps if the object is in new space.
148   // The register scratch can be object itself, but it will be clobbered.
149   void JumpIfInNewSpace(Register object, Register scratch, Label* branch,
150                         Label::Distance distance = Label::kFar) {
151     InNewSpace(object, scratch, not_zero, branch, distance);
152   }
153 
154   // Check if an object has a given incremental marking color.  Also uses ecx!
155   void HasColor(Register object, Register scratch0, Register scratch1,
156                 Label* has_color, Label::Distance has_color_distance,
157                 int first_bit, int second_bit);
158 
159   void JumpIfBlack(Register object, Register scratch0, Register scratch1,
160                    Label* on_black,
161                    Label::Distance on_black_distance = Label::kFar);
162 
163   // Checks the color of an object.  If the object is white we jump to the
164   // incremental marker.
165   void JumpIfWhite(Register value, Register scratch1, Register scratch2,
166                    Label* value_is_white, Label::Distance distance);
167 
168   // Notify the garbage collector that we wrote a pointer into an object.
169   // |object| is the object being stored into, |value| is the object being
170   // stored.  value and scratch registers are clobbered by the operation.
171   // The offset is the offset from the start of the object, not the offset from
172   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
173   void RecordWriteField(
174       Register object, int offset, Register value, Register scratch,
175       SaveFPRegsMode save_fp,
176       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
177       SmiCheck smi_check = INLINE_SMI_CHECK,
178       PointersToHereCheck pointers_to_here_check_for_value =
179           kPointersToHereMaybeInteresting);
180 
181   // As above, but the offset has the tag presubtracted.  For use with
182   // Operand(reg, off).
183   void RecordWriteContextSlot(
184       Register context, int offset, Register value, Register scratch,
185       SaveFPRegsMode save_fp,
186       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
187       SmiCheck smi_check = INLINE_SMI_CHECK,
188       PointersToHereCheck pointers_to_here_check_for_value =
189           kPointersToHereMaybeInteresting) {
190     RecordWriteField(context, offset + kHeapObjectTag, value, scratch, save_fp,
191                      remembered_set_action, smi_check,
192                      pointers_to_here_check_for_value);
193   }
194 
195   // Notify the garbage collector that we wrote a pointer into a fixed array.
196   // |array| is the array being stored into, |value| is the
197   // object being stored.  |index| is the array index represented as a
198   // Smi. All registers are clobbered by the operation RecordWriteArray
199   // filters out smis so it does not update the write barrier if the
200   // value is a smi.
201   void RecordWriteArray(
202       Register array, Register value, Register index, SaveFPRegsMode save_fp,
203       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
204       SmiCheck smi_check = INLINE_SMI_CHECK,
205       PointersToHereCheck pointers_to_here_check_for_value =
206           kPointersToHereMaybeInteresting);
207 
208   // For page containing |object| mark region covering |address|
209   // dirty. |object| is the object being stored into, |value| is the
210   // object being stored. The address and value registers are clobbered by the
211   // operation. RecordWrite filters out smis so it does not update the
212   // write barrier if the value is a smi.
213   void RecordWrite(
214       Register object, Register address, Register value, SaveFPRegsMode save_fp,
215       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
216       SmiCheck smi_check = INLINE_SMI_CHECK,
217       PointersToHereCheck pointers_to_here_check_for_value =
218           kPointersToHereMaybeInteresting);
219 
220   // Notify the garbage collector that we wrote a code entry into a
221   // JSFunction. Only scratch is clobbered by the operation.
222   void RecordWriteCodeEntryField(Register js_function, Register code_entry,
223                                  Register scratch);
224 
225   // For page containing |object| mark the region covering the object's map
226   // dirty. |object| is the object being stored into, |map| is the Map object
227   // that was stored.
228   void RecordWriteForMap(Register object, Handle<Map> map, Register scratch1,
229                          Register scratch2, SaveFPRegsMode save_fp);
230 
231   // Frame restart support
232   void MaybeDropFrames();
233 
234   // Generates function and stub prologue code.
235   void StubPrologue(StackFrame::Type type);
236   void Prologue(bool code_pre_aging);
237 
238   // Enter specific kind of exit frame. Expects the number of
239   // arguments in register eax and sets up the number of arguments in
240   // register edi and the pointer to the first argument in register
241   // esi.
242   void EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type);
243 
244   void EnterApiExitFrame(int argc);
245 
246   // Leave the current exit frame. Expects the return value in
247   // register eax:edx (untouched) and the pointer to the first
248   // argument in register esi (if pop_arguments == true).
249   void LeaveExitFrame(bool save_doubles, bool pop_arguments = true);
250 
251   // Leave the current exit frame. Expects the return value in
252   // register eax (untouched).
253   void LeaveApiExitFrame(bool restore_context);
254 
255   // Find the function context up the context chain.
256   void LoadContext(Register dst, int context_chain_length);
257 
258   // Load the global proxy from the current context.
259   void LoadGlobalProxy(Register dst);
260 
261   // Load the global function with the given index.
262   void LoadGlobalFunction(int index, Register function);
263 
264   // Load the initial map from the global function. The registers
265   // function and map can be the same.
266   void LoadGlobalFunctionInitialMap(Register function, Register map);
267 
268   // Push and pop the registers that can hold pointers.
PushSafepointRegisters()269   void PushSafepointRegisters() { pushad(); }
PopSafepointRegisters()270   void PopSafepointRegisters() { popad(); }
271   // Store the value in register/immediate src in the safepoint
272   // register stack slot for register dst.
273   void StoreToSafepointRegisterSlot(Register dst, Register src);
274   void StoreToSafepointRegisterSlot(Register dst, Immediate src);
275   void LoadFromSafepointRegisterSlot(Register dst, Register src);
276 
277   // Nop, because ia32 does not have a root register.
InitializeRootRegister()278   void InitializeRootRegister() {}
279 
280   void LoadHeapObject(Register result, Handle<HeapObject> object);
281   void CmpHeapObject(Register reg, Handle<HeapObject> object);
282   void PushHeapObject(Handle<HeapObject> object);
283 
LoadObject(Register result,Handle<Object> object)284   void LoadObject(Register result, Handle<Object> object) {
285     AllowDeferredHandleDereference heap_object_check;
286     if (object->IsHeapObject()) {
287       LoadHeapObject(result, Handle<HeapObject>::cast(object));
288     } else {
289       Move(result, Immediate(object));
290     }
291   }
292 
CmpObject(Register reg,Handle<Object> object)293   void CmpObject(Register reg, Handle<Object> object) {
294     AllowDeferredHandleDereference heap_object_check;
295     if (object->IsHeapObject()) {
296       CmpHeapObject(reg, Handle<HeapObject>::cast(object));
297     } else {
298       cmp(reg, Immediate(object));
299     }
300   }
301 
302   // Compare the given value and the value of weak cell.
303   void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch);
304 
305   void GetWeakValue(Register value, Handle<WeakCell> cell);
306 
307   // Load the value of the weak cell in the value register. Branch to the given
308   // miss label if the weak cell was cleared.
309   void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss);
310 
311   // ---------------------------------------------------------------------------
312   // JavaScript invokes
313 
314   // Removes current frame and its arguments from the stack preserving
315   // the arguments and a return address pushed to the stack for the next call.
316   // |ra_state| defines whether return address is already pushed to stack or
317   // not. Both |callee_args_count| and |caller_args_count_reg| do not include
318   // receiver. |callee_args_count| is not modified, |caller_args_count_reg|
319   // is trashed. |number_of_temp_values_after_return_address| specifies
320   // the number of words pushed to the stack after the return address. This is
321   // to allow "allocation" of scratch registers that this function requires
322   // by saving their values on the stack.
323   void PrepareForTailCall(const ParameterCount& callee_args_count,
324                           Register caller_args_count_reg, Register scratch0,
325                           Register scratch1, ReturnAddressState ra_state,
326                           int number_of_temp_values_after_return_address);
327 
328   // Invoke the JavaScript function code by either calling or jumping.
329 
330   void InvokeFunctionCode(Register function, Register new_target,
331                           const ParameterCount& expected,
332                           const ParameterCount& actual, InvokeFlag flag,
333                           const CallWrapper& call_wrapper);
334 
335   // On function call, call into the debugger if necessary.
336   void CheckDebugHook(Register fun, Register new_target,
337                       const ParameterCount& expected,
338                       const ParameterCount& actual);
339 
340   // Invoke the JavaScript function in the given register. Changes the
341   // current context to the context in the function before invoking.
342   void InvokeFunction(Register function, Register new_target,
343                       const ParameterCount& actual, InvokeFlag flag,
344                       const CallWrapper& call_wrapper);
345 
346   void InvokeFunction(Register function, const ParameterCount& expected,
347                       const ParameterCount& actual, InvokeFlag flag,
348                       const CallWrapper& call_wrapper);
349 
350   void InvokeFunction(Handle<JSFunction> function,
351                       const ParameterCount& expected,
352                       const ParameterCount& actual, InvokeFlag flag,
353                       const CallWrapper& call_wrapper);
354 
355   // Expression support
356   // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
357   // hinders register renaming and makes dependence chains longer. So we use
358   // xorps to clear the dst register before cvtsi2sd to solve this issue.
Cvtsi2sd(XMMRegister dst,Register src)359   void Cvtsi2sd(XMMRegister dst, Register src) { Cvtsi2sd(dst, Operand(src)); }
360   void Cvtsi2sd(XMMRegister dst, const Operand& src);
361 
362   void Cvtui2ss(XMMRegister dst, Register src, Register tmp);
363 
364   void ShlPair(Register high, Register low, uint8_t imm8);
365   void ShlPair_cl(Register high, Register low);
366   void ShrPair(Register high, Register low, uint8_t imm8);
367   void ShrPair_cl(Register high, Register src);
368   void SarPair(Register high, Register low, uint8_t imm8);
369   void SarPair_cl(Register high, Register low);
370 
371   // Support for constant splitting.
372   bool IsUnsafeImmediate(const Immediate& x);
373   void SafeMove(Register dst, const Immediate& x);
374   void SafePush(const Immediate& x);
375 
376   // Compare object type for heap object.
377   // Incoming register is heap_object and outgoing register is map.
378   void CmpObjectType(Register heap_object, InstanceType type, Register map);
379 
380   // Compare instance type for map.
381   void CmpInstanceType(Register map, InstanceType type);
382 
383   // Compare an object's map with the specified map.
384   void CompareMap(Register obj, Handle<Map> map);
385 
386   // Check if the map of an object is equal to a specified map and branch to
387   // label if not. Skip the smi check if not required (object is known to be a
388   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
389   // against maps that are ElementsKind transition maps of the specified map.
390   void CheckMap(Register obj, Handle<Map> map, Label* fail,
391                 SmiCheckType smi_check_type);
392 
393   // Check if the map of an object is equal to a specified weak map and branch
394   // to a specified target if equal. Skip the smi check if not required
395   // (object is known to be a heap object)
396   void DispatchWeakMap(Register obj, Register scratch1, Register scratch2,
397                        Handle<WeakCell> cell, Handle<Code> success,
398                        SmiCheckType smi_check_type);
399 
400   // Check if the object in register heap_object is a string. Afterwards the
401   // register map contains the object map and the register instance_type
402   // contains the instance_type. The registers map and instance_type can be the
403   // same in which case it contains the instance type afterwards. Either of the
404   // registers map and instance_type can be the same as heap_object.
405   Condition IsObjectStringType(Register heap_object, Register map,
406                                Register instance_type);
407 
408   // Check if the object in register heap_object is a name. Afterwards the
409   // register map contains the object map and the register instance_type
410   // contains the instance_type. The registers map and instance_type can be the
411   // same in which case it contains the instance type afterwards. Either of the
412   // registers map and instance_type can be the same as heap_object.
413   Condition IsObjectNameType(Register heap_object, Register map,
414                              Register instance_type);
415 
416   // FCmp is similar to integer cmp, but requires unsigned
417   // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
418   void FCmp();
419 
420   void ClampUint8(Register reg);
421 
422   void ClampDoubleToUint8(XMMRegister input_reg, XMMRegister scratch_reg,
423                           Register result_reg);
424 
425   void SlowTruncateToI(Register result_reg, Register input_reg,
426       int offset = HeapNumber::kValueOffset - kHeapObjectTag);
427 
428   void TruncateHeapNumberToI(Register result_reg, Register input_reg);
429   void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
430 
431   void DoubleToI(Register result_reg, XMMRegister input_reg,
432                  XMMRegister scratch, MinusZeroMode minus_zero_mode,
433                  Label* lost_precision, Label* is_nan, Label* minus_zero,
434                  Label::Distance dst = Label::kFar);
435 
436   // Smi tagging support.
SmiTag(Register reg)437   void SmiTag(Register reg) {
438     STATIC_ASSERT(kSmiTag == 0);
439     STATIC_ASSERT(kSmiTagSize == 1);
440     add(reg, reg);
441   }
SmiUntag(Register reg)442   void SmiUntag(Register reg) {
443     sar(reg, kSmiTagSize);
444   }
445 
446   // Modifies the register even if it does not contain a Smi!
SmiUntag(Register reg,Label * is_smi)447   void SmiUntag(Register reg, Label* is_smi) {
448     STATIC_ASSERT(kSmiTagSize == 1);
449     sar(reg, kSmiTagSize);
450     STATIC_ASSERT(kSmiTag == 0);
451     j(not_carry, is_smi);
452   }
453 
LoadUint32(XMMRegister dst,Register src)454   void LoadUint32(XMMRegister dst, Register src) {
455     LoadUint32(dst, Operand(src));
456   }
457   void LoadUint32(XMMRegister dst, const Operand& src);
458 
459   // Jump the register contains a smi.
460   inline void JumpIfSmi(Register value, Label* smi_label,
461                         Label::Distance distance = Label::kFar) {
462     test(value, Immediate(kSmiTagMask));
463     j(zero, smi_label, distance);
464   }
465   // Jump if the operand is a smi.
466   inline void JumpIfSmi(Operand value, Label* smi_label,
467                         Label::Distance distance = Label::kFar) {
468     test(value, Immediate(kSmiTagMask));
469     j(zero, smi_label, distance);
470   }
471   // Jump if register contain a non-smi.
472   inline void JumpIfNotSmi(Register value, Label* not_smi_label,
473                            Label::Distance distance = Label::kFar) {
474     test(value, Immediate(kSmiTagMask));
475     j(not_zero, not_smi_label, distance);
476   }
477   // Jump if the operand is not a smi.
478   inline void JumpIfNotSmi(Operand value, Label* smi_label,
479                            Label::Distance distance = Label::kFar) {
480     test(value, Immediate(kSmiTagMask));
481     j(not_zero, smi_label, distance);
482   }
483   // Jump if the value cannot be represented by a smi.
484   inline void JumpIfNotValidSmiValue(Register value, Register scratch,
485                                      Label* on_invalid,
486                                      Label::Distance distance = Label::kFar) {
487     mov(scratch, value);
488     add(scratch, Immediate(0x40000000U));
489     j(sign, on_invalid, distance);
490   }
491 
492   // Jump if the unsigned integer value cannot be represented by a smi.
493   inline void JumpIfUIntNotValidSmiValue(
494       Register value, Label* on_invalid,
495       Label::Distance distance = Label::kFar) {
496     cmp(value, Immediate(0x40000000U));
497     j(above_equal, on_invalid, distance);
498   }
499 
500   void LoadInstanceDescriptors(Register map, Register descriptors);
501   void EnumLength(Register dst, Register map);
502   void NumberOfOwnDescriptors(Register dst, Register map);
503   void LoadAccessor(Register dst, Register holder, int accessor_index,
504                     AccessorComponent accessor);
505 
506   template<typename Field>
DecodeField(Register reg)507   void DecodeField(Register reg) {
508     static const int shift = Field::kShift;
509     static const int mask = Field::kMask >> Field::kShift;
510     if (shift != 0) {
511       sar(reg, shift);
512     }
513     and_(reg, Immediate(mask));
514   }
515 
516   template<typename Field>
DecodeFieldToSmi(Register reg)517   void DecodeFieldToSmi(Register reg) {
518     static const int shift = Field::kShift;
519     static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
520     STATIC_ASSERT((mask & (0x80000000u >> (kSmiTagSize - 1))) == 0);
521     STATIC_ASSERT(kSmiTag == 0);
522     if (shift < kSmiTagSize) {
523       shl(reg, kSmiTagSize - shift);
524     } else if (shift > kSmiTagSize) {
525       sar(reg, shift - kSmiTagSize);
526     }
527     and_(reg, Immediate(mask));
528   }
529 
530   void LoadPowerOf2(XMMRegister dst, Register scratch, int power);
531 
532   // Abort execution if argument is not a number, enabled via --debug-code.
533   void AssertNumber(Register object);
534   void AssertNotNumber(Register object);
535 
536   // Abort execution if argument is not a smi, enabled via --debug-code.
537   void AssertSmi(Register object);
538 
539   // Abort execution if argument is a smi, enabled via --debug-code.
540   void AssertNotSmi(Register object);
541 
542   // Abort execution if argument is not a string, enabled via --debug-code.
543   void AssertString(Register object);
544 
545   // Abort execution if argument is not a name, enabled via --debug-code.
546   void AssertName(Register object);
547 
548   // Abort execution if argument is not a JSFunction, enabled via --debug-code.
549   void AssertFunction(Register object);
550 
551   // Abort execution if argument is not a JSBoundFunction,
552   // enabled via --debug-code.
553   void AssertBoundFunction(Register object);
554 
555   // Abort execution if argument is not a JSGeneratorObject,
556   // enabled via --debug-code.
557   void AssertGeneratorObject(Register object);
558 
559   // Abort execution if argument is not a JSReceiver, enabled via --debug-code.
560   void AssertReceiver(Register object);
561 
562   // Abort execution if argument is not undefined or an AllocationSite, enabled
563   // via --debug-code.
564   void AssertUndefinedOrAllocationSite(Register object);
565 
566   // ---------------------------------------------------------------------------
567   // Exception handling
568 
569   // Push a new stack handler and link it into stack handler chain.
570   void PushStackHandler();
571 
572   // Unlink the stack handler on top of the stack from the stack handler chain.
573   void PopStackHandler();
574 
575   // ---------------------------------------------------------------------------
576   // Inline caching support
577 
578   void GetNumberHash(Register r0, Register scratch);
579 
580   // ---------------------------------------------------------------------------
581   // Allocation support
582 
583   // Allocate an object in new space or old space. If the given space
584   // is exhausted control continues at the gc_required label. The allocated
585   // object is returned in result and end of the new object is returned in
586   // result_end. The register scratch can be passed as no_reg in which case
587   // an additional object reference will be added to the reloc info. The
588   // returned pointers in result and result_end have not yet been tagged as
589   // heap objects. If result_contains_top_on_entry is true the content of
590   // result is known to be the allocation top on entry (could be result_end
591   // from a previous call). If result_contains_top_on_entry is true scratch
592   // should be no_reg as it is never used.
593   void Allocate(int object_size, Register result, Register result_end,
594                 Register scratch, Label* gc_required, AllocationFlags flags);
595 
596   void Allocate(int header_size, ScaleFactor element_size,
597                 Register element_count, RegisterValueType element_count_type,
598                 Register result, Register result_end, Register scratch,
599                 Label* gc_required, AllocationFlags flags);
600 
601   void Allocate(Register object_size, Register result, Register result_end,
602                 Register scratch, Label* gc_required, AllocationFlags flags);
603 
604   // FastAllocate is right now only used for folded allocations. It just
605   // increments the top pointer without checking against limit. This can only
606   // be done if it was proved earlier that the allocation will succeed.
607   void FastAllocate(int object_size, Register result, Register result_end,
608                     AllocationFlags flags);
609   void FastAllocate(Register object_size, Register result, Register result_end,
610                     AllocationFlags flags);
611 
612   // Allocate a heap number in new space with undefined value. The
613   // register scratch2 can be passed as no_reg; the others must be
614   // valid registers. Returns tagged pointer in result register, or
615   // jumps to gc_required if new space is full.
616   void AllocateHeapNumber(Register result, Register scratch1, Register scratch2,
617                           Label* gc_required, MutableMode mode = IMMUTABLE);
618 
619   // Allocate and initialize a JSValue wrapper with the specified {constructor}
620   // and {value}.
621   void AllocateJSValue(Register result, Register constructor, Register value,
622                        Register scratch, Label* gc_required);
623 
624   // Initialize fields with filler values.  Fields starting at |current_address|
625   // not including |end_address| are overwritten with the value in |filler|.  At
626   // the end the loop, |current_address| takes the value of |end_address|.
627   void InitializeFieldsWithFiller(Register current_address,
628                                   Register end_address, Register filler);
629 
630   // ---------------------------------------------------------------------------
631   // Support functions.
632 
633   // Check a boolean-bit of a Smi field.
634   void BooleanBitTest(Register object, int field_offset, int bit_index);
635 
636   // Check if result is zero and op is negative.
637   void NegativeZeroTest(Register result, Register op, Label* then_label);
638 
639   // Check if result is zero and any of op1 and op2 are negative.
640   // Register scratch is destroyed, and it must be different from op2.
641   void NegativeZeroTest(Register result, Register op1, Register op2,
642                         Register scratch, Label* then_label);
643 
644   // Machine code version of Map::GetConstructor().
645   // |temp| holds |result|'s map when done.
646   void GetMapConstructor(Register result, Register map, Register temp);
647 
648   // ---------------------------------------------------------------------------
649   // Runtime calls
650 
651   // Call a code stub.  Generate the code if necessary.
652   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
653 
654   // Tail call a code stub (jump).  Generate the code if necessary.
655   void TailCallStub(CodeStub* stub);
656 
657   // Return from a code stub after popping its arguments.
658   void StubReturn(int argc);
659 
660   // Call a runtime routine.
661   void CallRuntime(const Runtime::Function* f, int num_arguments,
662                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
CallRuntimeSaveDoubles(Runtime::FunctionId fid)663   void CallRuntimeSaveDoubles(Runtime::FunctionId fid) {
664     const Runtime::Function* function = Runtime::FunctionForId(fid);
665     CallRuntime(function, function->nargs, kSaveFPRegs);
666   }
667 
668   // Convenience function: Same as above, but takes the fid instead.
669   void CallRuntime(Runtime::FunctionId fid,
670                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
671     const Runtime::Function* function = Runtime::FunctionForId(fid);
672     CallRuntime(function, function->nargs, save_doubles);
673   }
674 
675   // Convenience function: Same as above, but takes the fid instead.
676   void CallRuntime(Runtime::FunctionId fid, int num_arguments,
677                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
678     CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles);
679   }
680 
681   // Convenience function: call an external reference.
682   void CallExternalReference(ExternalReference ref, int num_arguments);
683 
684   // Convenience function: tail call a runtime routine (jump).
685   void TailCallRuntime(Runtime::FunctionId fid);
686 
687   // Before calling a C-function from generated code, align arguments on stack.
688   // After aligning the frame, arguments must be stored in esp[0], esp[4],
689   // etc., not pushed. The argument count assumes all arguments are word sized.
690   // Some compilers/platforms require the stack to be aligned when calling
691   // C++ code.
692   // Needs a scratch register to do some arithmetic. This register will be
693   // trashed.
694   void PrepareCallCFunction(int num_arguments, Register scratch);
695 
696   // Calls a C function and cleans up the space for arguments allocated
697   // by PrepareCallCFunction. The called function is not allowed to trigger a
698   // garbage collection, since that might move the code and invalidate the
699   // return address (unless this is somehow accounted for by the called
700   // function).
701   void CallCFunction(ExternalReference function, int num_arguments);
702   void CallCFunction(Register function, int num_arguments);
703 
704   // Jump to a runtime routine.
705   void JumpToExternalReference(const ExternalReference& ext,
706                                bool builtin_exit_frame = false);
707 
708   // ---------------------------------------------------------------------------
709   // Utilities
710 
711   void Ret();
712 
713   // Return and drop arguments from stack, where the number of arguments
714   // may be bigger than 2^16 - 1.  Requires a scratch register.
715   void Ret(int bytes_dropped, Register scratch);
716 
717   // Emit code that loads |parameter_index|'th parameter from the stack to
718   // the register according to the CallInterfaceDescriptor definition.
719   // |sp_to_caller_sp_offset_in_words| specifies the number of words pushed
720   // below the caller's sp (on ia32 it's at least return address).
721   template <class Descriptor>
722   void LoadParameterFromStack(
723       Register reg, typename Descriptor::ParameterIndices parameter_index,
724       int sp_to_ra_offset_in_words = 1) {
725     DCHECK(Descriptor::kPassLastArgsOnStack);
726     DCHECK_LT(parameter_index, Descriptor::kParameterCount);
727     DCHECK_LE(Descriptor::kParameterCount - Descriptor::kStackArgumentsCount,
728               parameter_index);
729     int offset = (Descriptor::kParameterCount - parameter_index - 1 +
730                   sp_to_ra_offset_in_words) *
731                  kPointerSize;
732     mov(reg, Operand(esp, offset));
733   }
734 
735   // Emit code to discard a non-negative number of pointer-sized elements
736   // from the stack, clobbering only the esp register.
737   void Drop(int element_count);
738 
Call(Label * target)739   void Call(Label* target) { call(target); }
740   void Call(Handle<Code> target, RelocInfo::Mode rmode,
741             TypeFeedbackId id = TypeFeedbackId::None()) {
742     call(target, rmode, id);
743   }
Jump(Handle<Code> target,RelocInfo::Mode rmode)744   void Jump(Handle<Code> target, RelocInfo::Mode rmode) { jmp(target, rmode); }
Push(Register src)745   void Push(Register src) { push(src); }
Push(const Operand & src)746   void Push(const Operand& src) { push(src); }
Push(Immediate value)747   void Push(Immediate value) { push(value); }
Pop(Register dst)748   void Pop(Register dst) { pop(dst); }
Pop(const Operand & dst)749   void Pop(const Operand& dst) { pop(dst); }
PushReturnAddressFrom(Register src)750   void PushReturnAddressFrom(Register src) { push(src); }
PopReturnAddressTo(Register dst)751   void PopReturnAddressTo(Register dst) { pop(dst); }
752 
753   // Non-SSE2 instructions.
754   void Pextrd(Register dst, XMMRegister src, int8_t imm8);
Pinsrd(XMMRegister dst,Register src,int8_t imm8)755   void Pinsrd(XMMRegister dst, Register src, int8_t imm8) {
756     Pinsrd(dst, Operand(src), imm8);
757   }
758   void Pinsrd(XMMRegister dst, const Operand& src, int8_t imm8);
759 
Lzcnt(Register dst,Register src)760   void Lzcnt(Register dst, Register src) { Lzcnt(dst, Operand(src)); }
761   void Lzcnt(Register dst, const Operand& src);
762 
Tzcnt(Register dst,Register src)763   void Tzcnt(Register dst, Register src) { Tzcnt(dst, Operand(src)); }
764   void Tzcnt(Register dst, const Operand& src);
765 
Popcnt(Register dst,Register src)766   void Popcnt(Register dst, Register src) { Popcnt(dst, Operand(src)); }
767   void Popcnt(Register dst, const Operand& src);
768 
769   // Move if the registers are not identical.
770   void Move(Register target, Register source);
771 
772   // Move a constant into a destination using the most efficient encoding.
773   void Move(Register dst, const Immediate& x);
774   void Move(const Operand& dst, const Immediate& x);
775 
776   // Move an immediate into an XMM register.
777   void Move(XMMRegister dst, uint32_t src);
778   void Move(XMMRegister dst, uint64_t src);
Move(XMMRegister dst,float src)779   void Move(XMMRegister dst, float src) { Move(dst, bit_cast<uint32_t>(src)); }
Move(XMMRegister dst,double src)780   void Move(XMMRegister dst, double src) { Move(dst, bit_cast<uint64_t>(src)); }
781 
Move(Register dst,Handle<Object> handle)782   void Move(Register dst, Handle<Object> handle) { LoadObject(dst, handle); }
Move(Register dst,Smi * source)783   void Move(Register dst, Smi* source) { Move(dst, Immediate(source)); }
784 
785   // Push a handle value.
Push(Handle<Object> handle)786   void Push(Handle<Object> handle) { push(Immediate(handle)); }
Push(Smi * smi)787   void Push(Smi* smi) { Push(Immediate(smi)); }
788 
CodeObject()789   Handle<Object> CodeObject() {
790     DCHECK(!code_object_.is_null());
791     return code_object_;
792   }
793 
794   // Emit code for a truncating division by a constant. The dividend register is
795   // unchanged, the result is in edx, and eax gets clobbered.
796   void TruncatingDiv(Register dividend, int32_t divisor);
797 
798   // ---------------------------------------------------------------------------
799   // StatsCounter support
800 
801   void SetCounter(StatsCounter* counter, int value);
802   void IncrementCounter(StatsCounter* counter, int value);
803   void DecrementCounter(StatsCounter* counter, int value);
804   void IncrementCounter(Condition cc, StatsCounter* counter, int value);
805   void DecrementCounter(Condition cc, StatsCounter* counter, int value);
806 
807   // ---------------------------------------------------------------------------
808   // Debugging
809 
810   // Calls Abort(msg) if the condition cc is not satisfied.
811   // Use --debug_code to enable.
812   void Assert(Condition cc, BailoutReason reason);
813 
814   void AssertFastElements(Register elements);
815 
816   // Like Assert(), but always enabled.
817   void Check(Condition cc, BailoutReason reason);
818 
819   // Print a message to stdout and abort execution.
820   void Abort(BailoutReason reason);
821 
822   // Check that the stack is aligned.
823   void CheckStackAlignment();
824 
825   // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)826   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()827   bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)828   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()829   bool has_frame() { return has_frame_; }
830   inline bool AllowThisStubCall(CodeStub* stub);
831 
832   // ---------------------------------------------------------------------------
833   // String utilities.
834 
835   // Checks if both objects are sequential one-byte strings, and jumps to label
836   // if either is not.
837   void JumpIfNotBothSequentialOneByteStrings(
838       Register object1, Register object2, Register scratch1, Register scratch2,
839       Label* on_not_flat_one_byte_strings);
840 
841   // Checks if the given register or operand is a unique name
842   void JumpIfNotUniqueNameInstanceType(Register reg, Label* not_unique_name,
843                                        Label::Distance distance = Label::kFar) {
844     JumpIfNotUniqueNameInstanceType(Operand(reg), not_unique_name, distance);
845   }
846 
847   void JumpIfNotUniqueNameInstanceType(Operand operand, Label* not_unique_name,
848                                        Label::Distance distance = Label::kFar);
849 
850   void EmitSeqStringSetCharCheck(Register string, Register index,
851                                  Register value, uint32_t encoding_mask);
852 
SafepointRegisterStackIndex(Register reg)853   static int SafepointRegisterStackIndex(Register reg) {
854     return SafepointRegisterStackIndex(reg.code());
855   }
856 
857   // Load the type feedback vector from a JavaScript frame.
858   void EmitLoadFeedbackVector(Register vector);
859 
860   // Activation support.
861   void EnterFrame(StackFrame::Type type);
862   void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg);
863   void LeaveFrame(StackFrame::Type type);
864 
865   void EnterBuiltinFrame(Register context, Register target, Register argc);
866   void LeaveBuiltinFrame(Register context, Register target, Register argc);
867 
868   // Expects object in eax and returns map with validated enum cache
869   // in eax.  Assumes that any other register can be used as a scratch.
870   void CheckEnumCache(Label* call_runtime);
871 
872   // AllocationMemento support. Arrays may have an associated
873   // AllocationMemento object that can be checked for in order to pretransition
874   // to another type.
875   // On entry, receiver_reg should point to the array object.
876   // scratch_reg gets clobbered.
877   // If allocation info is present, conditional code is set to equal.
878   void TestJSArrayForAllocationMemento(Register receiver_reg,
879                                        Register scratch_reg,
880                                        Label* no_memento_found);
881 
882  private:
883   bool generating_stub_;
884   bool has_frame_;
885   // This handle will be patched with the code object on installation.
886   Handle<Object> code_object_;
887 
888   // Helper functions for generating invokes.
889   void InvokePrologue(const ParameterCount& expected,
890                       const ParameterCount& actual, Label* done,
891                       bool* definitely_mismatches, InvokeFlag flag,
892                       Label::Distance done_distance,
893                       const CallWrapper& call_wrapper);
894 
895   void EnterExitFramePrologue(StackFrame::Type frame_type);
896   void EnterExitFrameEpilogue(int argc, bool save_doubles);
897 
898   void LeaveExitFrameEpilogue(bool restore_context);
899 
900   // Allocation support helpers.
901   void LoadAllocationTopHelper(Register result, Register scratch,
902                                AllocationFlags flags);
903 
904   void UpdateAllocationTopHelper(Register result_end, Register scratch,
905                                  AllocationFlags flags);
906 
907   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
908   void InNewSpace(Register object, Register scratch, Condition cc,
909                   Label* condition_met,
910                   Label::Distance condition_met_distance = Label::kFar);
911 
912   // Helper for finding the mark bits for an address.  Afterwards, the
913   // bitmap register points at the word with the mark bits and the mask
914   // the position of the first bit.  Uses ecx as scratch and leaves addr_reg
915   // unchanged.
916   inline void GetMarkBits(Register addr_reg, Register bitmap_reg,
917                           Register mask_reg);
918 
919   // Compute memory operands for safepoint stack slots.
920   Operand SafepointRegisterSlot(Register reg);
921   static int SafepointRegisterStackIndex(int reg_code);
922 
923   // Needs access to SafepointRegisterStackIndex for compiled frame
924   // traversal.
925   friend class StandardFrame;
926 };
927 
928 // The code patcher is used to patch (typically) small parts of code e.g. for
929 // debugging and other types of instrumentation. When using the code patcher
930 // the exact number of bytes specified must be emitted. Is not legal to emit
931 // relocation information. If any of these constraints are violated it causes
932 // an assertion.
933 class CodePatcher {
934  public:
935   CodePatcher(Isolate* isolate, byte* address, int size);
936   ~CodePatcher();
937 
938   // Macro assembler to emit code.
masm()939   MacroAssembler* masm() { return &masm_; }
940 
941  private:
942   byte* address_;        // The address of the code being patched.
943   int size_;             // Number of bytes of the expected patch size.
944   MacroAssembler masm_;  // Macro assembler used to generate the code.
945 };
946 
947 // -----------------------------------------------------------------------------
948 // Static helper functions.
949 
950 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)951 inline Operand FieldOperand(Register object, int offset) {
952   return Operand(object, offset - kHeapObjectTag);
953 }
954 
955 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)956 inline Operand FieldOperand(Register object, Register index, ScaleFactor scale,
957                             int offset) {
958   return Operand(object, index, scale, offset - kHeapObjectTag);
959 }
960 
961 inline Operand FixedArrayElementOperand(Register array, Register index_as_smi,
962                                         int additional_offset = 0) {
963   int offset = FixedArray::kHeaderSize + additional_offset * kPointerSize;
964   return FieldOperand(array, index_as_smi, times_half_pointer_size, offset);
965 }
966 
ContextOperand(Register context,int index)967 inline Operand ContextOperand(Register context, int index) {
968   return Operand(context, Context::SlotOffset(index));
969 }
970 
ContextOperand(Register context,Register index)971 inline Operand ContextOperand(Register context, Register index) {
972   return Operand(context, index, times_pointer_size, Context::SlotOffset(0));
973 }
974 
NativeContextOperand()975 inline Operand NativeContextOperand() {
976   return ContextOperand(esi, Context::NATIVE_CONTEXT_INDEX);
977 }
978 
979 #define ACCESS_MASM(masm) masm->
980 
981 }  // namespace internal
982 }  // namespace v8
983 
984 #endif  // V8_IA32_MACRO_ASSEMBLER_IA32_H_
985