• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 
37 #ifndef V8_MIPS_ASSEMBLER_MIPS_INL_H_
38 #define V8_MIPS_ASSEMBLER_MIPS_INL_H_
39 
40 #include "src/mips/assembler-mips.h"
41 
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects-inl.h"
45 
46 namespace v8 {
47 namespace internal {
48 
49 
SupportsCrankshaft()50 bool CpuFeatures::SupportsCrankshaft() { return IsSupported(FPU); }
51 
SupportsSimd128()52 bool CpuFeatures::SupportsSimd128() { return false; }
53 
54 // -----------------------------------------------------------------------------
55 // Operand and MemOperand.
56 
Operand(int32_t immediate,RelocInfo::Mode rmode)57 Operand::Operand(int32_t immediate, RelocInfo::Mode rmode)  {
58   rm_ = no_reg;
59   imm32_ = immediate;
60   rmode_ = rmode;
61 }
62 
63 
Operand(const ExternalReference & f)64 Operand::Operand(const ExternalReference& f)  {
65   rm_ = no_reg;
66   imm32_ = reinterpret_cast<int32_t>(f.address());
67   rmode_ = RelocInfo::EXTERNAL_REFERENCE;
68 }
69 
70 
Operand(Smi * value)71 Operand::Operand(Smi* value) {
72   rm_ = no_reg;
73   imm32_ =  reinterpret_cast<intptr_t>(value);
74   rmode_ = RelocInfo::NONE32;
75 }
76 
77 
Operand(Register rm)78 Operand::Operand(Register rm) {
79   rm_ = rm;
80 }
81 
82 
is_reg()83 bool Operand::is_reg() const {
84   return rm_.is_valid();
85 }
86 
87 
88 // -----------------------------------------------------------------------------
89 // RelocInfo.
90 
apply(intptr_t delta)91 void RelocInfo::apply(intptr_t delta) {
92   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
93     // Absolute code pointer inside code object moves with the code object.
94     byte* p = reinterpret_cast<byte*>(pc_);
95     int count = Assembler::RelocateInternalReference(rmode_, p, delta);
96     Assembler::FlushICache(isolate_, p, count * sizeof(uint32_t));
97   }
98 }
99 
100 
target_address()101 Address RelocInfo::target_address() {
102   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
103   return Assembler::target_address_at(pc_, host_);
104 }
105 
target_address_address()106 Address RelocInfo::target_address_address() {
107   DCHECK(IsCodeTarget(rmode_) ||
108          IsRuntimeEntry(rmode_) ||
109          rmode_ == EMBEDDED_OBJECT ||
110          rmode_ == EXTERNAL_REFERENCE);
111   // Read the address of the word containing the target_address in an
112   // instruction stream.
113   // The only architecture-independent user of this function is the serializer.
114   // The serializer uses it to find out how many raw bytes of instruction to
115   // output before the next target.
116   // For an instruction like LUI/ORI where the target bits are mixed into the
117   // instruction bits, the size of the target will be zero, indicating that the
118   // serializer should not step forward in memory after a target is resolved
119   // and written. In this case the target_address_address function should
120   // return the end of the instructions to be patched, allowing the
121   // deserializer to deserialize the instructions as raw bytes and put them in
122   // place, ready to be patched with the target. After jump optimization,
123   // that is the address of the instruction that follows J/JAL/JR/JALR
124   // instruction.
125   return reinterpret_cast<Address>(
126     pc_ + Assembler::kInstructionsFor32BitConstant * Assembler::kInstrSize);
127 }
128 
129 
constant_pool_entry_address()130 Address RelocInfo::constant_pool_entry_address() {
131   UNREACHABLE();
132   return NULL;
133 }
134 
135 
target_address_size()136 int RelocInfo::target_address_size() {
137   return Assembler::kSpecialTargetSize;
138 }
139 
target_address_at(Address pc,Code * code)140 Address Assembler::target_address_at(Address pc, Code* code) {
141   Address constant_pool = code ? code->constant_pool() : NULL;
142   return target_address_at(pc, constant_pool);
143 }
144 
set_target_address_at(Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode)145 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
146                                       Address target,
147                                       ICacheFlushMode icache_flush_mode) {
148   Address constant_pool = code ? code->constant_pool() : NULL;
149   set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
150 }
151 
target_address_from_return_address(Address pc)152 Address Assembler::target_address_from_return_address(Address pc) {
153   return pc - kCallTargetAddressOffset;
154 }
155 
156 
set_target_internal_reference_encoded_at(Address pc,Address target)157 void Assembler::set_target_internal_reference_encoded_at(Address pc,
158                                                          Address target) {
159   Instr instr1 = Assembler::instr_at(pc + 0 * Assembler::kInstrSize);
160   Instr instr2 = Assembler::instr_at(pc + 1 * Assembler::kInstrSize);
161   DCHECK(Assembler::IsLui(instr1));
162   DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
163   instr1 &= ~kImm16Mask;
164   instr2 &= ~kImm16Mask;
165   int32_t imm = reinterpret_cast<int32_t>(target);
166   DCHECK((imm & 3) == 0);
167   if (Assembler::IsJicOrJialc(instr2)) {
168     // Encoded internal references are lui/jic load of 32-bit absolute address.
169     uint32_t lui_offset_u, jic_offset_u;
170     Assembler::UnpackTargetAddressUnsigned(imm, lui_offset_u, jic_offset_u);
171 
172     Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
173                             instr1 | lui_offset_u);
174     Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
175                             instr2 | jic_offset_u);
176   } else {
177     // Encoded internal references are lui/ori load of 32-bit absolute address.
178     Assembler::instr_at_put(pc + 0 * Assembler::kInstrSize,
179                             instr1 | ((imm >> kLuiShift) & kImm16Mask));
180     Assembler::instr_at_put(pc + 1 * Assembler::kInstrSize,
181                             instr2 | (imm & kImm16Mask));
182   }
183 
184   // Currently used only by deserializer, and all code will be flushed
185   // after complete deserialization, no need to flush on each reference.
186 }
187 
188 
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)189 void Assembler::deserialization_set_target_internal_reference_at(
190     Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
191   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
192     DCHECK(IsLui(instr_at(pc)));
193     set_target_internal_reference_encoded_at(pc, target);
194   } else {
195     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
196     Memory::Address_at(pc) = target;
197   }
198 }
199 
200 
target_object()201 Object* RelocInfo::target_object() {
202   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
203   return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
204 }
205 
206 
target_object_handle(Assembler * origin)207 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
208   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
209   return Handle<Object>(reinterpret_cast<Object**>(
210       Assembler::target_address_at(pc_, host_)));
211 }
212 
213 
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)214 void RelocInfo::set_target_object(Object* target,
215                                   WriteBarrierMode write_barrier_mode,
216                                   ICacheFlushMode icache_flush_mode) {
217   DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
218   Assembler::set_target_address_at(isolate_, pc_, host_,
219                                    reinterpret_cast<Address>(target),
220                                    icache_flush_mode);
221   if (write_barrier_mode == UPDATE_WRITE_BARRIER &&
222       host() != NULL &&
223       target->IsHeapObject()) {
224     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
225         host(), this, HeapObject::cast(target));
226     host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
227   }
228 }
229 
230 
target_external_reference()231 Address RelocInfo::target_external_reference() {
232   DCHECK(rmode_ == EXTERNAL_REFERENCE);
233   return Assembler::target_address_at(pc_, host_);
234 }
235 
236 
target_internal_reference()237 Address RelocInfo::target_internal_reference() {
238   if (rmode_ == INTERNAL_REFERENCE) {
239     return Memory::Address_at(pc_);
240   } else {
241     // Encoded internal references are lui/ori or lui/jic load of 32-bit
242     // absolute address.
243     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
244     Instr instr1 = Assembler::instr_at(pc_ + 0 * Assembler::kInstrSize);
245     Instr instr2 = Assembler::instr_at(pc_ + 1 * Assembler::kInstrSize);
246     DCHECK(Assembler::IsLui(instr1));
247     DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
248     if (Assembler::IsJicOrJialc(instr2)) {
249       return reinterpret_cast<Address>(
250           Assembler::CreateTargetAddress(instr1, instr2));
251     }
252     int32_t imm = (instr1 & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
253     imm |= (instr2 & static_cast<int32_t>(kImm16Mask));
254     return reinterpret_cast<Address>(imm);
255   }
256 }
257 
258 
target_internal_reference_address()259 Address RelocInfo::target_internal_reference_address() {
260   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
261   return reinterpret_cast<Address>(pc_);
262 }
263 
264 
target_runtime_entry(Assembler * origin)265 Address RelocInfo::target_runtime_entry(Assembler* origin) {
266   DCHECK(IsRuntimeEntry(rmode_));
267   return target_address();
268 }
269 
270 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)271 void RelocInfo::set_target_runtime_entry(Address target,
272                                          WriteBarrierMode write_barrier_mode,
273                                          ICacheFlushMode icache_flush_mode) {
274   DCHECK(IsRuntimeEntry(rmode_));
275   if (target_address() != target)
276     set_target_address(target, write_barrier_mode, icache_flush_mode);
277 }
278 
279 
target_cell_handle()280 Handle<Cell> RelocInfo::target_cell_handle() {
281   DCHECK(rmode_ == RelocInfo::CELL);
282   Address address = Memory::Address_at(pc_);
283   return Handle<Cell>(reinterpret_cast<Cell**>(address));
284 }
285 
286 
target_cell()287 Cell* RelocInfo::target_cell() {
288   DCHECK(rmode_ == RelocInfo::CELL);
289   return Cell::FromValueAddress(Memory::Address_at(pc_));
290 }
291 
292 
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)293 void RelocInfo::set_target_cell(Cell* cell,
294                                 WriteBarrierMode write_barrier_mode,
295                                 ICacheFlushMode icache_flush_mode) {
296   DCHECK(rmode_ == RelocInfo::CELL);
297   Address address = cell->address() + Cell::kValueOffset;
298   Memory::Address_at(pc_) = address;
299   if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
300     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
301                                                                   cell);
302   }
303 }
304 
305 
306 static const int kNoCodeAgeSequenceLength = 7 * Assembler::kInstrSize;
307 
308 
code_age_stub_handle(Assembler * origin)309 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
310   UNREACHABLE();  // This should never be reached on Arm.
311   return Handle<Object>();
312 }
313 
314 
code_age_stub()315 Code* RelocInfo::code_age_stub() {
316   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
317   return Code::GetCodeFromTargetAddress(
318       Assembler::target_address_at(pc_ + Assembler::kInstrSize, host_));
319 }
320 
321 
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)322 void RelocInfo::set_code_age_stub(Code* stub,
323                                   ICacheFlushMode icache_flush_mode) {
324   DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
325   Assembler::set_target_address_at(isolate_, pc_ + Assembler::kInstrSize, host_,
326                                    stub->instruction_start());
327 }
328 
329 
debug_call_address()330 Address RelocInfo::debug_call_address() {
331   // The pc_ offset of 0 assumes patched debug break slot or return
332   // sequence.
333   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
334   return Assembler::target_address_at(pc_, host_);
335 }
336 
337 
set_debug_call_address(Address target)338 void RelocInfo::set_debug_call_address(Address target) {
339   DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
340   // The pc_ offset of 0 assumes patched debug break slot or return
341   // sequence.
342   Assembler::set_target_address_at(isolate_, pc_, host_, target);
343   if (host() != NULL) {
344     Object* target_code = Code::GetCodeFromTargetAddress(target);
345     host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
346         host(), this, HeapObject::cast(target_code));
347   }
348 }
349 
350 
WipeOut()351 void RelocInfo::WipeOut() {
352   DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
353          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
354          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
355   if (IsInternalReference(rmode_)) {
356     Memory::Address_at(pc_) = NULL;
357   } else if (IsInternalReferenceEncoded(rmode_)) {
358     Assembler::set_target_internal_reference_encoded_at(pc_, nullptr);
359   } else {
360     Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
361   }
362 }
363 
364 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)365 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
366   RelocInfo::Mode mode = rmode();
367   if (mode == RelocInfo::EMBEDDED_OBJECT) {
368     visitor->VisitEmbeddedPointer(this);
369   } else if (RelocInfo::IsCodeTarget(mode)) {
370     visitor->VisitCodeTarget(this);
371   } else if (mode == RelocInfo::CELL) {
372     visitor->VisitCell(this);
373   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
374     visitor->VisitExternalReference(this);
375   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
376              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
377     visitor->VisitInternalReference(this);
378   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
379     visitor->VisitCodeAgeSequence(this);
380   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
381              IsPatchedDebugBreakSlotSequence()) {
382     visitor->VisitDebugTarget(this);
383   } else if (RelocInfo::IsRuntimeEntry(mode)) {
384     visitor->VisitRuntimeEntry(this);
385   }
386 }
387 
388 
389 template<typename StaticVisitor>
Visit(Heap * heap)390 void RelocInfo::Visit(Heap* heap) {
391   RelocInfo::Mode mode = rmode();
392   if (mode == RelocInfo::EMBEDDED_OBJECT) {
393     StaticVisitor::VisitEmbeddedPointer(heap, this);
394   } else if (RelocInfo::IsCodeTarget(mode)) {
395     StaticVisitor::VisitCodeTarget(heap, this);
396   } else if (mode == RelocInfo::CELL) {
397     StaticVisitor::VisitCell(heap, this);
398   } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
399     StaticVisitor::VisitExternalReference(this);
400   } else if (mode == RelocInfo::INTERNAL_REFERENCE ||
401              mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
402     StaticVisitor::VisitInternalReference(this);
403   } else if (RelocInfo::IsCodeAgeSequence(mode)) {
404     StaticVisitor::VisitCodeAgeSequence(heap, this);
405   } else if (RelocInfo::IsDebugBreakSlot(mode) &&
406              IsPatchedDebugBreakSlotSequence()) {
407     StaticVisitor::VisitDebugTarget(heap, this);
408   } else if (RelocInfo::IsRuntimeEntry(mode)) {
409     StaticVisitor::VisitRuntimeEntry(this);
410   }
411 }
412 
413 
414 // -----------------------------------------------------------------------------
415 // Assembler.
416 
417 
CheckBuffer()418 void Assembler::CheckBuffer() {
419   if (buffer_space() <= kGap) {
420     GrowBuffer();
421   }
422 }
423 
424 
CheckTrampolinePoolQuick(int extra_instructions)425 void Assembler::CheckTrampolinePoolQuick(int extra_instructions) {
426   if (pc_offset() >= next_buffer_check_ - extra_instructions * kInstrSize) {
427     CheckTrampolinePool();
428   }
429 }
430 
431 
CheckForEmitInForbiddenSlot()432 void Assembler::CheckForEmitInForbiddenSlot() {
433   if (!is_buffer_growth_blocked()) {
434     CheckBuffer();
435   }
436   if (IsPrevInstrCompactBranch()) {
437     // Nop instruction to preceed a CTI in forbidden slot:
438     Instr nop = SPECIAL | SLL;
439     *reinterpret_cast<Instr*>(pc_) = nop;
440     pc_ += kInstrSize;
441 
442     ClearCompactBranchState();
443   }
444 }
445 
446 
EmitHelper(Instr x,CompactBranchType is_compact_branch)447 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
448   if (IsPrevInstrCompactBranch()) {
449     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
450       // Nop instruction to preceed a CTI in forbidden slot:
451       Instr nop = SPECIAL | SLL;
452       *reinterpret_cast<Instr*>(pc_) = nop;
453       pc_ += kInstrSize;
454     }
455     ClearCompactBranchState();
456   }
457   *reinterpret_cast<Instr*>(pc_) = x;
458   pc_ += kInstrSize;
459   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
460     EmittedCompactBranchInstruction();
461   }
462   CheckTrampolinePoolQuick();
463 }
464 
465 template <>
466 inline void Assembler::EmitHelper(uint8_t x);
467 
468 template <typename T>
EmitHelper(T x)469 void Assembler::EmitHelper(T x) {
470   *reinterpret_cast<T*>(pc_) = x;
471   pc_ += sizeof(x);
472   CheckTrampolinePoolQuick();
473 }
474 
475 template <>
EmitHelper(uint8_t x)476 void Assembler::EmitHelper(uint8_t x) {
477   *reinterpret_cast<uint8_t*>(pc_) = x;
478   pc_ += sizeof(x);
479   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
480     CheckTrampolinePoolQuick();
481   }
482 }
483 
emit(Instr x,CompactBranchType is_compact_branch)484 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
485   if (!is_buffer_growth_blocked()) {
486     CheckBuffer();
487   }
488   EmitHelper(x, is_compact_branch);
489 }
490 
491 
492 }  // namespace internal
493 }  // namespace v8
494 
495 #endif  // V8_MIPS_ASSEMBLER_MIPS_INL_H_
496