1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions
6 // are met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the
14 // distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23 // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24 // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25 // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26 // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29 // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31 // OF THE POSSIBILITY OF SUCH DAMAGE.
32
33 // The original source code covered by the above license above has been modified
34 // significantly by Google Inc.
35 // Copyright 2014 the V8 project authors. All rights reserved.
36
37 #ifndef V8_S390_ASSEMBLER_S390_INL_H_
38 #define V8_S390_ASSEMBLER_S390_INL_H_
39
40 #include "src/s390/assembler-s390.h"
41
42 #include "src/assembler.h"
43 #include "src/debug/debug.h"
44 #include "src/objects-inl.h"
45
46 namespace v8 {
47 namespace internal {
48
SupportsCrankshaft()49 bool CpuFeatures::SupportsCrankshaft() { return true; }
50
SupportsSimd128()51 bool CpuFeatures::SupportsSimd128() { return false; }
52
apply(intptr_t delta)53 void RelocInfo::apply(intptr_t delta) {
54 // Absolute code pointer inside code object moves with the code object.
55 if (IsInternalReference(rmode_)) {
56 // Jump table entry
57 Address target = Memory::Address_at(pc_);
58 Memory::Address_at(pc_) = target + delta;
59 } else if (IsCodeTarget(rmode_)) {
60 SixByteInstr instr =
61 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc_));
62 int32_t dis = static_cast<int32_t>(instr & 0xFFFFFFFF) * 2 // halfwords
63 - static_cast<int32_t>(delta);
64 instr >>= 32; // Clear the 4-byte displacement field.
65 instr <<= 32;
66 instr |= static_cast<uint32_t>(dis / 2);
67 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc_),
68 instr);
69 } else {
70 // mov sequence
71 DCHECK(IsInternalReferenceEncoded(rmode_));
72 Address target = Assembler::target_address_at(pc_, host_);
73 Assembler::set_target_address_at(isolate_, pc_, host_, target + delta,
74 SKIP_ICACHE_FLUSH);
75 }
76 }
77
target_internal_reference()78 Address RelocInfo::target_internal_reference() {
79 if (IsInternalReference(rmode_)) {
80 // Jump table entry
81 return Memory::Address_at(pc_);
82 } else {
83 // mov sequence
84 DCHECK(IsInternalReferenceEncoded(rmode_));
85 return Assembler::target_address_at(pc_, host_);
86 }
87 }
88
target_internal_reference_address()89 Address RelocInfo::target_internal_reference_address() {
90 DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
91 return reinterpret_cast<Address>(pc_);
92 }
93
target_address()94 Address RelocInfo::target_address() {
95 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_));
96 return Assembler::target_address_at(pc_, host_);
97 }
98
target_address_address()99 Address RelocInfo::target_address_address() {
100 DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) ||
101 rmode_ == EMBEDDED_OBJECT || rmode_ == EXTERNAL_REFERENCE);
102
103 // Read the address of the word containing the target_address in an
104 // instruction stream.
105 // The only architecture-independent user of this function is the serializer.
106 // The serializer uses it to find out how many raw bytes of instruction to
107 // output before the next target.
108 // For an instruction like LIS/ORI where the target bits are mixed into the
109 // instruction bits, the size of the target will be zero, indicating that the
110 // serializer should not step forward in memory after a target is resolved
111 // and written.
112 return reinterpret_cast<Address>(pc_);
113 }
114
constant_pool_entry_address()115 Address RelocInfo::constant_pool_entry_address() {
116 UNREACHABLE();
117 return NULL;
118 }
119
target_address_size()120 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
121
target_address_at(Address pc,Code * code)122 Address Assembler::target_address_at(Address pc, Code* code) {
123 Address constant_pool = code ? code->constant_pool() : NULL;
124 return target_address_at(pc, constant_pool);
125 }
126
set_target_address_at(Isolate * isolate,Address pc,Code * code,Address target,ICacheFlushMode icache_flush_mode)127 void Assembler::set_target_address_at(Isolate* isolate, Address pc, Code* code,
128 Address target,
129 ICacheFlushMode icache_flush_mode) {
130 Address constant_pool = code ? code->constant_pool() : NULL;
131 set_target_address_at(isolate, pc, constant_pool, target, icache_flush_mode);
132 }
133
target_address_from_return_address(Address pc)134 Address Assembler::target_address_from_return_address(Address pc) {
135 // Returns the address of the call target from the return address that will
136 // be returned to after a call.
137 // Sequence is:
138 // BRASL r14, RI
139 return pc - kCallTargetAddressOffset;
140 }
141
return_address_from_call_start(Address pc)142 Address Assembler::return_address_from_call_start(Address pc) {
143 // Sequence is:
144 // BRASL r14, RI
145 return pc + kCallTargetAddressOffset;
146 }
147
code_target_object_handle_at(Address pc)148 Handle<Object> Assembler::code_target_object_handle_at(Address pc) {
149 SixByteInstr instr =
150 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
151 int index = instr & 0xFFFFFFFF;
152 return code_targets_[index];
153 }
154
target_object()155 Object* RelocInfo::target_object() {
156 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
157 return reinterpret_cast<Object*>(Assembler::target_address_at(pc_, host_));
158 }
159
target_object_handle(Assembler * origin)160 Handle<Object> RelocInfo::target_object_handle(Assembler* origin) {
161 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
162 if (rmode_ == EMBEDDED_OBJECT) {
163 return Handle<Object>(
164 reinterpret_cast<Object**>(Assembler::target_address_at(pc_, host_)));
165 } else {
166 return origin->code_target_object_handle_at(pc_);
167 }
168 }
169
set_target_object(Object * target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)170 void RelocInfo::set_target_object(Object* target,
171 WriteBarrierMode write_barrier_mode,
172 ICacheFlushMode icache_flush_mode) {
173 DCHECK(IsCodeTarget(rmode_) || rmode_ == EMBEDDED_OBJECT);
174 Assembler::set_target_address_at(isolate_, pc_, host_,
175 reinterpret_cast<Address>(target),
176 icache_flush_mode);
177 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL &&
178 target->IsHeapObject()) {
179 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
180 host(), this, HeapObject::cast(target));
181 host()->GetHeap()->RecordWriteIntoCode(host(), this, target);
182 }
183 }
184
target_external_reference()185 Address RelocInfo::target_external_reference() {
186 DCHECK(rmode_ == EXTERNAL_REFERENCE);
187 return Assembler::target_address_at(pc_, host_);
188 }
189
target_runtime_entry(Assembler * origin)190 Address RelocInfo::target_runtime_entry(Assembler* origin) {
191 DCHECK(IsRuntimeEntry(rmode_));
192 return target_address();
193 }
194
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)195 void RelocInfo::set_target_runtime_entry(Address target,
196 WriteBarrierMode write_barrier_mode,
197 ICacheFlushMode icache_flush_mode) {
198 DCHECK(IsRuntimeEntry(rmode_));
199 if (target_address() != target)
200 set_target_address(target, write_barrier_mode, icache_flush_mode);
201 }
202
target_cell_handle()203 Handle<Cell> RelocInfo::target_cell_handle() {
204 DCHECK(rmode_ == RelocInfo::CELL);
205 Address address = Memory::Address_at(pc_);
206 return Handle<Cell>(reinterpret_cast<Cell**>(address));
207 }
208
target_cell()209 Cell* RelocInfo::target_cell() {
210 DCHECK(rmode_ == RelocInfo::CELL);
211 return Cell::FromValueAddress(Memory::Address_at(pc_));
212 }
213
set_target_cell(Cell * cell,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)214 void RelocInfo::set_target_cell(Cell* cell, WriteBarrierMode write_barrier_mode,
215 ICacheFlushMode icache_flush_mode) {
216 DCHECK(rmode_ == RelocInfo::CELL);
217 Address address = cell->address() + Cell::kValueOffset;
218 Memory::Address_at(pc_) = address;
219 if (write_barrier_mode == UPDATE_WRITE_BARRIER && host() != NULL) {
220 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(host(), this,
221 cell);
222 }
223 }
224
225 #if V8_TARGET_ARCH_S390X
226 // NOP(2byte) + PUSH + MOV + BASR =
227 // NOP + LAY + STG + IIHF + IILF + BASR
228 static const int kCodeAgingSequenceLength = 28;
229 static const int kCodeAgingTargetDelta = 14; // Jump past NOP + PUSH to IIHF
230 // LAY + 4 * STG + LA
231 static const int kNoCodeAgeSequenceLength = 34;
232 #else
233 #if (V8_HOST_ARCH_S390)
234 // NOP + NILH + LAY + ST + IILF + BASR
235 static const int kCodeAgingSequenceLength = 24;
236 static const int kCodeAgingTargetDelta = 16; // Jump past NOP to IILF
237 // NILH + LAY + 4 * ST + LA
238 static const int kNoCodeAgeSequenceLength = 30;
239 #else
240 // NOP + LAY + ST + IILF + BASR
241 static const int kCodeAgingSequenceLength = 20;
242 static const int kCodeAgingTargetDelta = 12; // Jump past NOP to IILF
243 // LAY + 4 * ST + LA
244 static const int kNoCodeAgeSequenceLength = 26;
245 #endif
246 #endif
247
code_age_stub_handle(Assembler * origin)248 Handle<Object> RelocInfo::code_age_stub_handle(Assembler* origin) {
249 UNREACHABLE(); // This should never be reached on S390.
250 return Handle<Object>();
251 }
252
code_age_stub()253 Code* RelocInfo::code_age_stub() {
254 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
255 return Code::GetCodeFromTargetAddress(
256 Assembler::target_address_at(pc_ + kCodeAgingTargetDelta, host_));
257 }
258
set_code_age_stub(Code * stub,ICacheFlushMode icache_flush_mode)259 void RelocInfo::set_code_age_stub(Code* stub,
260 ICacheFlushMode icache_flush_mode) {
261 DCHECK(rmode_ == RelocInfo::CODE_AGE_SEQUENCE);
262 Assembler::set_target_address_at(isolate_, pc_ + kCodeAgingTargetDelta, host_,
263 stub->instruction_start(),
264 icache_flush_mode);
265 }
266
debug_call_address()267 Address RelocInfo::debug_call_address() {
268 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
269 return Assembler::target_address_at(pc_, host_);
270 }
271
set_debug_call_address(Address target)272 void RelocInfo::set_debug_call_address(Address target) {
273 DCHECK(IsDebugBreakSlot(rmode()) && IsPatchedDebugBreakSlotSequence());
274 Assembler::set_target_address_at(isolate_, pc_, host_, target);
275 if (host() != NULL) {
276 Object* target_code = Code::GetCodeFromTargetAddress(target);
277 host()->GetHeap()->incremental_marking()->RecordWriteIntoCode(
278 host(), this, HeapObject::cast(target_code));
279 }
280 }
281
WipeOut()282 void RelocInfo::WipeOut() {
283 DCHECK(IsEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
284 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
285 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
286 if (IsInternalReference(rmode_)) {
287 // Jump table entry
288 Memory::Address_at(pc_) = NULL;
289 } else if (IsInternalReferenceEncoded(rmode_)) {
290 // mov sequence
291 // Currently used only by deserializer, no need to flush.
292 Assembler::set_target_address_at(isolate_, pc_, host_, NULL,
293 SKIP_ICACHE_FLUSH);
294 } else {
295 Assembler::set_target_address_at(isolate_, pc_, host_, NULL);
296 }
297 }
298
299 template <typename ObjectVisitor>
Visit(Isolate * isolate,ObjectVisitor * visitor)300 void RelocInfo::Visit(Isolate* isolate, ObjectVisitor* visitor) {
301 RelocInfo::Mode mode = rmode();
302 if (mode == RelocInfo::EMBEDDED_OBJECT) {
303 visitor->VisitEmbeddedPointer(this);
304 } else if (RelocInfo::IsCodeTarget(mode)) {
305 visitor->VisitCodeTarget(this);
306 } else if (mode == RelocInfo::CELL) {
307 visitor->VisitCell(this);
308 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
309 visitor->VisitExternalReference(this);
310 } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
311 visitor->VisitInternalReference(this);
312 } else if (RelocInfo::IsCodeAgeSequence(mode)) {
313 visitor->VisitCodeAgeSequence(this);
314 } else if (RelocInfo::IsDebugBreakSlot(mode) &&
315 IsPatchedDebugBreakSlotSequence()) {
316 visitor->VisitDebugTarget(this);
317 } else if (IsRuntimeEntry(mode)) {
318 visitor->VisitRuntimeEntry(this);
319 }
320 }
321
322 template <typename StaticVisitor>
Visit(Heap * heap)323 void RelocInfo::Visit(Heap* heap) {
324 RelocInfo::Mode mode = rmode();
325 if (mode == RelocInfo::EMBEDDED_OBJECT) {
326 StaticVisitor::VisitEmbeddedPointer(heap, this);
327 } else if (RelocInfo::IsCodeTarget(mode)) {
328 StaticVisitor::VisitCodeTarget(heap, this);
329 } else if (mode == RelocInfo::CELL) {
330 StaticVisitor::VisitCell(heap, this);
331 } else if (mode == RelocInfo::EXTERNAL_REFERENCE) {
332 StaticVisitor::VisitExternalReference(this);
333 } else if (mode == RelocInfo::INTERNAL_REFERENCE) {
334 StaticVisitor::VisitInternalReference(this);
335 } else if (RelocInfo::IsCodeAgeSequence(mode)) {
336 StaticVisitor::VisitCodeAgeSequence(heap, this);
337 } else if (RelocInfo::IsDebugBreakSlot(mode) &&
338 IsPatchedDebugBreakSlotSequence()) {
339 StaticVisitor::VisitDebugTarget(heap, this);
340 } else if (IsRuntimeEntry(mode)) {
341 StaticVisitor::VisitRuntimeEntry(this);
342 }
343 }
344
345 // Operand constructors
Operand(intptr_t immediate,RelocInfo::Mode rmode)346 Operand::Operand(intptr_t immediate, RelocInfo::Mode rmode) {
347 rm_ = no_reg;
348 imm_ = immediate;
349 rmode_ = rmode;
350 }
351
Operand(const ExternalReference & f)352 Operand::Operand(const ExternalReference& f) {
353 rm_ = no_reg;
354 imm_ = reinterpret_cast<intptr_t>(f.address());
355 rmode_ = RelocInfo::EXTERNAL_REFERENCE;
356 }
357
Operand(Smi * value)358 Operand::Operand(Smi* value) {
359 rm_ = no_reg;
360 imm_ = reinterpret_cast<intptr_t>(value);
361 rmode_ = kRelocInfo_NONEPTR;
362 }
363
Operand(Register rm)364 Operand::Operand(Register rm) {
365 rm_ = rm;
366 rmode_ = kRelocInfo_NONEPTR; // S390 -why doesn't ARM do this?
367 }
368
CheckBuffer()369 void Assembler::CheckBuffer() {
370 if (buffer_space() <= kGap) {
371 GrowBuffer();
372 }
373 }
374
emit_code_target(Handle<Code> target,RelocInfo::Mode rmode,TypeFeedbackId ast_id)375 int32_t Assembler::emit_code_target(Handle<Code> target, RelocInfo::Mode rmode,
376 TypeFeedbackId ast_id) {
377 DCHECK(RelocInfo::IsCodeTarget(rmode));
378 if (rmode == RelocInfo::CODE_TARGET && !ast_id.IsNone()) {
379 SetRecordedAstId(ast_id);
380 RecordRelocInfo(RelocInfo::CODE_TARGET_WITH_ID);
381 } else {
382 RecordRelocInfo(rmode);
383 }
384
385 int current = code_targets_.length();
386 if (current > 0 && code_targets_.last().is_identical_to(target)) {
387 // Optimization if we keep jumping to the same code target.
388 current--;
389 } else {
390 code_targets_.Add(target);
391 }
392 return current;
393 }
394
395 // Helper to emit the binary encoding of a 2 byte instruction
emit2bytes(uint16_t x)396 void Assembler::emit2bytes(uint16_t x) {
397 CheckBuffer();
398 #if V8_TARGET_LITTLE_ENDIAN
399 // We need to emit instructions in big endian format as disassembler /
400 // simulator require the first byte of the instruction in order to decode
401 // the instruction length. Swap the bytes.
402 x = ((x & 0x00FF) << 8) | ((x & 0xFF00) >> 8);
403 #endif
404 *reinterpret_cast<uint16_t*>(pc_) = x;
405 pc_ += 2;
406 }
407
408 // Helper to emit the binary encoding of a 4 byte instruction
emit4bytes(uint32_t x)409 void Assembler::emit4bytes(uint32_t x) {
410 CheckBuffer();
411 #if V8_TARGET_LITTLE_ENDIAN
412 // We need to emit instructions in big endian format as disassembler /
413 // simulator require the first byte of the instruction in order to decode
414 // the instruction length. Swap the bytes.
415 x = ((x & 0x000000FF) << 24) | ((x & 0x0000FF00) << 8) |
416 ((x & 0x00FF0000) >> 8) | ((x & 0xFF000000) >> 24);
417 #endif
418 *reinterpret_cast<uint32_t*>(pc_) = x;
419 pc_ += 4;
420 }
421
422 // Helper to emit the binary encoding of a 6 byte instruction
emit6bytes(uint64_t x)423 void Assembler::emit6bytes(uint64_t x) {
424 CheckBuffer();
425 #if V8_TARGET_LITTLE_ENDIAN
426 // We need to emit instructions in big endian format as disassembler /
427 // simulator require the first byte of the instruction in order to decode
428 // the instruction length. Swap the bytes.
429 x = (static_cast<uint64_t>(x & 0xFF) << 40) |
430 (static_cast<uint64_t>((x >> 8) & 0xFF) << 32) |
431 (static_cast<uint64_t>((x >> 16) & 0xFF) << 24) |
432 (static_cast<uint64_t>((x >> 24) & 0xFF) << 16) |
433 (static_cast<uint64_t>((x >> 32) & 0xFF) << 8) |
434 (static_cast<uint64_t>((x >> 40) & 0xFF));
435 x |= (*reinterpret_cast<uint64_t*>(pc_) >> 48) << 48;
436 #else
437 // We need to pad two bytes of zeros in order to get the 6-bytes
438 // stored from low address.
439 x = x << 16;
440 x |= *reinterpret_cast<uint64_t*>(pc_) & 0xFFFF;
441 #endif
442 // It is safe to store 8-bytes, as CheckBuffer() guarantees we have kGap
443 // space left over.
444 *reinterpret_cast<uint64_t*>(pc_) = x;
445 pc_ += 6;
446 }
447
is_reg()448 bool Operand::is_reg() const { return rm_.is_valid(); }
449
450 // Fetch the 32bit value from the FIXED_SEQUENCE IIHF / IILF
target_address_at(Address pc,Address constant_pool)451 Address Assembler::target_address_at(Address pc, Address constant_pool) {
452 // S390 Instruction!
453 // We want to check for instructions generated by Asm::mov()
454 Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
455 SixByteInstr instr_1 =
456 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
457
458 if (BRASL == op1 || BRCL == op1) {
459 int32_t dis = static_cast<int32_t>(instr_1 & 0xFFFFFFFF) * 2;
460 return reinterpret_cast<Address>(reinterpret_cast<uint64_t>(pc) + dis);
461 }
462
463 #if V8_TARGET_ARCH_S390X
464 int instr1_length =
465 Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
466 Opcode op2 = Instruction::S390OpcodeValue(
467 reinterpret_cast<const byte*>(pc + instr1_length));
468 SixByteInstr instr_2 = Instruction::InstructionBits(
469 reinterpret_cast<const byte*>(pc + instr1_length));
470 // IIHF for hi_32, IILF for lo_32
471 if (IIHF == op1 && IILF == op2) {
472 return reinterpret_cast<Address>(((instr_1 & 0xFFFFFFFF) << 32) |
473 ((instr_2 & 0xFFFFFFFF)));
474 }
475 #else
476 // IILF loads 32-bits
477 if (IILF == op1 || CFI == op1) {
478 return reinterpret_cast<Address>((instr_1 & 0xFFFFFFFF));
479 }
480 #endif
481
482 UNIMPLEMENTED();
483 return (Address)0;
484 }
485
486 // This sets the branch destination (which gets loaded at the call address).
487 // This is for calls and branches within generated code. The serializer
488 // has already deserialized the mov instructions etc.
489 // There is a FIXED_SEQUENCE assumption here
deserialization_set_special_target_at(Isolate * isolate,Address instruction_payload,Code * code,Address target)490 void Assembler::deserialization_set_special_target_at(
491 Isolate* isolate, Address instruction_payload, Code* code, Address target) {
492 set_target_address_at(isolate, instruction_payload, code, target);
493 }
494
deserialization_set_target_internal_reference_at(Isolate * isolate,Address pc,Address target,RelocInfo::Mode mode)495 void Assembler::deserialization_set_target_internal_reference_at(
496 Isolate* isolate, Address pc, Address target, RelocInfo::Mode mode) {
497 if (RelocInfo::IsInternalReferenceEncoded(mode)) {
498 Code* code = NULL;
499 set_target_address_at(isolate, pc, code, target, SKIP_ICACHE_FLUSH);
500 } else {
501 Memory::Address_at(pc) = target;
502 }
503 }
504
505 // This code assumes the FIXED_SEQUENCE of IIHF/IILF
set_target_address_at(Isolate * isolate,Address pc,Address constant_pool,Address target,ICacheFlushMode icache_flush_mode)506 void Assembler::set_target_address_at(Isolate* isolate, Address pc,
507 Address constant_pool, Address target,
508 ICacheFlushMode icache_flush_mode) {
509 // Check for instructions generated by Asm::mov()
510 Opcode op1 = Instruction::S390OpcodeValue(reinterpret_cast<const byte*>(pc));
511 SixByteInstr instr_1 =
512 Instruction::InstructionBits(reinterpret_cast<const byte*>(pc));
513 bool patched = false;
514
515 if (BRASL == op1 || BRCL == op1) {
516 instr_1 >>= 32; // Zero out the lower 32-bits
517 instr_1 <<= 32;
518 int32_t halfwords = (target - pc) / 2; // number of halfwords
519 instr_1 |= static_cast<uint32_t>(halfwords);
520 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
521 instr_1);
522 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
523 Assembler::FlushICache(isolate, pc, 6);
524 }
525 patched = true;
526 } else {
527 #if V8_TARGET_ARCH_S390X
528 int instr1_length =
529 Instruction::InstructionLength(reinterpret_cast<const byte*>(pc));
530 Opcode op2 = Instruction::S390OpcodeValue(
531 reinterpret_cast<const byte*>(pc + instr1_length));
532 SixByteInstr instr_2 = Instruction::InstructionBits(
533 reinterpret_cast<const byte*>(pc + instr1_length));
534 // IIHF for hi_32, IILF for lo_32
535 if (IIHF == op1 && IILF == op2) {
536 // IIHF
537 instr_1 >>= 32; // Zero out the lower 32-bits
538 instr_1 <<= 32;
539 instr_1 |= reinterpret_cast<uint64_t>(target) >> 32;
540
541 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
542 instr_1);
543
544 // IILF
545 instr_2 >>= 32;
546 instr_2 <<= 32;
547 instr_2 |= reinterpret_cast<uint64_t>(target) & 0xFFFFFFFF;
548
549 Instruction::SetInstructionBits<SixByteInstr>(
550 reinterpret_cast<byte*>(pc + instr1_length), instr_2);
551 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
552 Assembler::FlushICache(isolate, pc, 12);
553 }
554 patched = true;
555 }
556 #else
557 // IILF loads 32-bits
558 if (IILF == op1 || CFI == op1) {
559 instr_1 >>= 32; // Zero out the lower 32-bits
560 instr_1 <<= 32;
561 instr_1 |= reinterpret_cast<uint32_t>(target);
562
563 Instruction::SetInstructionBits<SixByteInstr>(reinterpret_cast<byte*>(pc),
564 instr_1);
565 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
566 Assembler::FlushICache(isolate, pc, 6);
567 }
568 patched = true;
569 }
570 #endif
571 }
572 if (!patched) UNREACHABLE();
573 }
574
575 } // namespace internal
576 } // namespace v8
577
578 #endif // V8_S390_ASSEMBLER_S390_INL_H_
579