• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2007 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com).
108  *
109  */
110 /* ====================================================================
111  * Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
112  * ECC cipher suite support in OpenSSL originally developed by
113  * SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
114  */
115 /* ====================================================================
116  * Copyright 2005 Nokia. All rights reserved.
117  *
118  * The portions of the attached software ("Contribution") is developed by
119  * Nokia Corporation and is licensed pursuant to the OpenSSL open source
120  * license.
121  *
122  * The Contribution, originally written by Mika Kousa and Pasi Eronen of
123  * Nokia Corporation, consists of the "PSK" (Pre-Shared Key) ciphersuites
124  * support (see RFC 4279) to OpenSSL.
125  *
126  * No patent licenses or other rights except those expressly stated in
127  * the OpenSSL open source license shall be deemed granted or received
128  * expressly, by implication, estoppel, or otherwise.
129  *
130  * No assurances are provided by Nokia that the Contribution does not
131  * infringe the patent or other intellectual property rights of any third
132  * party or that the license provides you with all the necessary rights
133  * to make use of the Contribution.
134  *
135  * THE SOFTWARE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN
136  * ADDITION TO THE DISCLAIMERS INCLUDED IN THE LICENSE, NOKIA
137  * SPECIFICALLY DISCLAIMS ANY LIABILITY FOR CLAIMS BROUGHT BY YOU OR ANY
138  * OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS OR
139  * OTHERWISE. */
140 
141 #include <openssl/ssl.h>
142 
143 #include <assert.h>
144 #include <string.h>
145 
146 #include <openssl/buf.h>
147 #include <openssl/err.h>
148 #include <openssl/md5.h>
149 #include <openssl/mem.h>
150 #include <openssl/sha.h>
151 #include <openssl/stack.h>
152 
153 #include "internal.h"
154 #include "../crypto/internal.h"
155 
156 
157 /* kCiphers is an array of all supported ciphers, sorted by id. */
158 static const SSL_CIPHER kCiphers[] = {
159     /* The RSA ciphers */
160     /* Cipher 02 */
161     {
162      SSL3_TXT_RSA_NULL_SHA,
163      "TLS_RSA_WITH_NULL_SHA",
164      SSL3_CK_RSA_NULL_SHA,
165      SSL_kRSA,
166      SSL_aRSA,
167      SSL_eNULL,
168      SSL_SHA1,
169      SSL_HANDSHAKE_MAC_DEFAULT,
170     },
171 
172     /* Cipher 0A */
173     {
174      SSL3_TXT_RSA_DES_192_CBC3_SHA,
175      "TLS_RSA_WITH_3DES_EDE_CBC_SHA",
176      SSL3_CK_RSA_DES_192_CBC3_SHA,
177      SSL_kRSA,
178      SSL_aRSA,
179      SSL_3DES,
180      SSL_SHA1,
181      SSL_HANDSHAKE_MAC_DEFAULT,
182     },
183 
184 
185     /* New AES ciphersuites */
186 
187     /* Cipher 2F */
188     {
189      TLS1_TXT_RSA_WITH_AES_128_SHA,
190      "TLS_RSA_WITH_AES_128_CBC_SHA",
191      TLS1_CK_RSA_WITH_AES_128_SHA,
192      SSL_kRSA,
193      SSL_aRSA,
194      SSL_AES128,
195      SSL_SHA1,
196      SSL_HANDSHAKE_MAC_DEFAULT,
197     },
198 
199     /* Cipher 35 */
200     {
201      TLS1_TXT_RSA_WITH_AES_256_SHA,
202      "TLS_RSA_WITH_AES_256_CBC_SHA",
203      TLS1_CK_RSA_WITH_AES_256_SHA,
204      SSL_kRSA,
205      SSL_aRSA,
206      SSL_AES256,
207      SSL_SHA1,
208      SSL_HANDSHAKE_MAC_DEFAULT,
209     },
210 
211 
212     /* TLS v1.2 ciphersuites */
213 
214     /* Cipher 3C */
215     {
216      TLS1_TXT_RSA_WITH_AES_128_SHA256,
217      "TLS_RSA_WITH_AES_128_CBC_SHA256",
218      TLS1_CK_RSA_WITH_AES_128_SHA256,
219      SSL_kRSA,
220      SSL_aRSA,
221      SSL_AES128,
222      SSL_SHA256,
223      SSL_HANDSHAKE_MAC_SHA256,
224     },
225 
226     /* Cipher 3D */
227     {
228      TLS1_TXT_RSA_WITH_AES_256_SHA256,
229      "TLS_RSA_WITH_AES_256_CBC_SHA256",
230      TLS1_CK_RSA_WITH_AES_256_SHA256,
231      SSL_kRSA,
232      SSL_aRSA,
233      SSL_AES256,
234      SSL_SHA256,
235      SSL_HANDSHAKE_MAC_SHA256,
236     },
237 
238     /* PSK cipher suites. */
239 
240     /* Cipher 8C */
241     {
242      TLS1_TXT_PSK_WITH_AES_128_CBC_SHA,
243      "TLS_PSK_WITH_AES_128_CBC_SHA",
244      TLS1_CK_PSK_WITH_AES_128_CBC_SHA,
245      SSL_kPSK,
246      SSL_aPSK,
247      SSL_AES128,
248      SSL_SHA1,
249      SSL_HANDSHAKE_MAC_DEFAULT,
250     },
251 
252     /* Cipher 8D */
253     {
254      TLS1_TXT_PSK_WITH_AES_256_CBC_SHA,
255      "TLS_PSK_WITH_AES_256_CBC_SHA",
256      TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
257      SSL_kPSK,
258      SSL_aPSK,
259      SSL_AES256,
260      SSL_SHA1,
261      SSL_HANDSHAKE_MAC_DEFAULT,
262     },
263 
264     /* GCM ciphersuites from RFC5288 */
265 
266     /* Cipher 9C */
267     {
268      TLS1_TXT_RSA_WITH_AES_128_GCM_SHA256,
269      "TLS_RSA_WITH_AES_128_GCM_SHA256",
270      TLS1_CK_RSA_WITH_AES_128_GCM_SHA256,
271      SSL_kRSA,
272      SSL_aRSA,
273      SSL_AES128GCM,
274      SSL_AEAD,
275      SSL_HANDSHAKE_MAC_SHA256,
276     },
277 
278     /* Cipher 9D */
279     {
280      TLS1_TXT_RSA_WITH_AES_256_GCM_SHA384,
281      "TLS_RSA_WITH_AES_256_GCM_SHA384",
282      TLS1_CK_RSA_WITH_AES_256_GCM_SHA384,
283      SSL_kRSA,
284      SSL_aRSA,
285      SSL_AES256GCM,
286      SSL_AEAD,
287      SSL_HANDSHAKE_MAC_SHA384,
288     },
289 
290     /* TLS 1.3 suites. */
291 
292     /* Cipher 1301 */
293     {
294       TLS1_TXT_AES_128_GCM_SHA256,
295       "TLS_AES_128_GCM_SHA256",
296       TLS1_CK_AES_128_GCM_SHA256,
297       SSL_kGENERIC,
298       SSL_aGENERIC,
299       SSL_AES128GCM,
300       SSL_AEAD,
301       SSL_HANDSHAKE_MAC_SHA256,
302     },
303 
304     /* Cipher 1302 */
305     {
306       TLS1_TXT_AES_256_GCM_SHA384,
307       "TLS_AES_256_GCM_SHA384",
308       TLS1_CK_AES_256_GCM_SHA384,
309       SSL_kGENERIC,
310       SSL_aGENERIC,
311       SSL_AES256GCM,
312       SSL_AEAD,
313       SSL_HANDSHAKE_MAC_SHA384,
314     },
315 
316     /* Cipher 1303 */
317     {
318       TLS1_TXT_CHACHA20_POLY1305_SHA256,
319       "TLS_CHACHA20_POLY1305_SHA256",
320       TLS1_CK_CHACHA20_POLY1305_SHA256,
321       SSL_kGENERIC,
322       SSL_aGENERIC,
323       SSL_CHACHA20POLY1305,
324       SSL_AEAD,
325       SSL_HANDSHAKE_MAC_SHA256,
326     },
327 
328     /* Cipher C009 */
329     {
330      TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
331      "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",
332      TLS1_CK_ECDHE_ECDSA_WITH_AES_128_CBC_SHA,
333      SSL_kECDHE,
334      SSL_aECDSA,
335      SSL_AES128,
336      SSL_SHA1,
337      SSL_HANDSHAKE_MAC_DEFAULT,
338     },
339 
340     /* Cipher C00A */
341     {
342      TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
343      "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",
344      TLS1_CK_ECDHE_ECDSA_WITH_AES_256_CBC_SHA,
345      SSL_kECDHE,
346      SSL_aECDSA,
347      SSL_AES256,
348      SSL_SHA1,
349      SSL_HANDSHAKE_MAC_DEFAULT,
350     },
351 
352     /* Cipher C013 */
353     {
354      TLS1_TXT_ECDHE_RSA_WITH_AES_128_CBC_SHA,
355      "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
356      TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
357      SSL_kECDHE,
358      SSL_aRSA,
359      SSL_AES128,
360      SSL_SHA1,
361      SSL_HANDSHAKE_MAC_DEFAULT,
362     },
363 
364     /* Cipher C014 */
365     {
366      TLS1_TXT_ECDHE_RSA_WITH_AES_256_CBC_SHA,
367      "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
368      TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
369      SSL_kECDHE,
370      SSL_aRSA,
371      SSL_AES256,
372      SSL_SHA1,
373      SSL_HANDSHAKE_MAC_DEFAULT,
374     },
375 
376 
377     /* HMAC based TLS v1.2 ciphersuites from RFC5289 */
378 
379     /* Cipher C023 */
380     {
381      TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_SHA256,
382      "TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256",
383      TLS1_CK_ECDHE_ECDSA_WITH_AES_128_SHA256,
384      SSL_kECDHE,
385      SSL_aECDSA,
386      SSL_AES128,
387      SSL_SHA256,
388      SSL_HANDSHAKE_MAC_SHA256,
389     },
390 
391     /* Cipher C024 */
392     {
393      TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_SHA384,
394      "TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384",
395      TLS1_CK_ECDHE_ECDSA_WITH_AES_256_SHA384,
396      SSL_kECDHE,
397      SSL_aECDSA,
398      SSL_AES256,
399      SSL_SHA384,
400      SSL_HANDSHAKE_MAC_SHA384,
401     },
402 
403     /* Cipher C027 */
404     {
405      TLS1_TXT_ECDHE_RSA_WITH_AES_128_SHA256,
406      "TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256",
407      TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256,
408      SSL_kECDHE,
409      SSL_aRSA,
410      SSL_AES128,
411      SSL_SHA256,
412      SSL_HANDSHAKE_MAC_SHA256,
413     },
414 
415     /* Cipher C028 */
416     {
417      TLS1_TXT_ECDHE_RSA_WITH_AES_256_SHA384,
418      "TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384",
419      TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384,
420      SSL_kECDHE,
421      SSL_aRSA,
422      SSL_AES256,
423      SSL_SHA384,
424      SSL_HANDSHAKE_MAC_SHA384,
425     },
426 
427 
428     /* GCM based TLS v1.2 ciphersuites from RFC5289 */
429 
430     /* Cipher C02B */
431     {
432      TLS1_TXT_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
433      "TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
434      TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
435      SSL_kECDHE,
436      SSL_aECDSA,
437      SSL_AES128GCM,
438      SSL_AEAD,
439      SSL_HANDSHAKE_MAC_SHA256,
440     },
441 
442     /* Cipher C02C */
443     {
444      TLS1_TXT_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
445      "TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
446      TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
447      SSL_kECDHE,
448      SSL_aECDSA,
449      SSL_AES256GCM,
450      SSL_AEAD,
451      SSL_HANDSHAKE_MAC_SHA384,
452     },
453 
454     /* Cipher C02F */
455     {
456      TLS1_TXT_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
457      "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
458      TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
459      SSL_kECDHE,
460      SSL_aRSA,
461      SSL_AES128GCM,
462      SSL_AEAD,
463      SSL_HANDSHAKE_MAC_SHA256,
464     },
465 
466     /* Cipher C030 */
467     {
468      TLS1_TXT_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
469      "TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",
470      TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384,
471      SSL_kECDHE,
472      SSL_aRSA,
473      SSL_AES256GCM,
474      SSL_AEAD,
475      SSL_HANDSHAKE_MAC_SHA384,
476     },
477 
478     /* ECDHE-PSK cipher suites. */
479 
480     /* Cipher C035 */
481     {
482      TLS1_TXT_ECDHE_PSK_WITH_AES_128_CBC_SHA,
483      "TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
484      TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
485      SSL_kECDHE,
486      SSL_aPSK,
487      SSL_AES128,
488      SSL_SHA1,
489      SSL_HANDSHAKE_MAC_DEFAULT,
490     },
491 
492     /* Cipher C036 */
493     {
494      TLS1_TXT_ECDHE_PSK_WITH_AES_256_CBC_SHA,
495      "TLS_ECDHE_PSK_WITH_AES_256_CBC_SHA",
496      TLS1_CK_ECDHE_PSK_WITH_AES_256_CBC_SHA,
497      SSL_kECDHE,
498      SSL_aPSK,
499      SSL_AES256,
500      SSL_SHA1,
501      SSL_HANDSHAKE_MAC_DEFAULT,
502     },
503 
504     /* ChaCha20-Poly1305 cipher suites. */
505 
506     /* Cipher CCA8 */
507     {
508      TLS1_TXT_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
509      "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
510      TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
511      SSL_kECDHE,
512      SSL_aRSA,
513      SSL_CHACHA20POLY1305,
514      SSL_AEAD,
515      SSL_HANDSHAKE_MAC_SHA256,
516     },
517 
518     /* Cipher CCA9 */
519     {
520      TLS1_TXT_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
521      "TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",
522      TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256,
523      SSL_kECDHE,
524      SSL_aECDSA,
525      SSL_CHACHA20POLY1305,
526      SSL_AEAD,
527      SSL_HANDSHAKE_MAC_SHA256,
528     },
529 
530     /* Cipher CCAB */
531     {
532      TLS1_TXT_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
533      "TLS_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256",
534      TLS1_CK_ECDHE_PSK_WITH_CHACHA20_POLY1305_SHA256,
535      SSL_kECDHE,
536      SSL_aPSK,
537      SSL_CHACHA20POLY1305,
538      SSL_AEAD,
539      SSL_HANDSHAKE_MAC_SHA256,
540     },
541 
542 };
543 
544 static const size_t kCiphersLen = OPENSSL_ARRAY_SIZE(kCiphers);
545 
546 #define CIPHER_ADD 1
547 #define CIPHER_KILL 2
548 #define CIPHER_DEL 3
549 #define CIPHER_ORD 4
550 #define CIPHER_SPECIAL 5
551 
552 typedef struct cipher_order_st {
553   const SSL_CIPHER *cipher;
554   int active;
555   int in_group;
556   struct cipher_order_st *next, *prev;
557 } CIPHER_ORDER;
558 
559 typedef struct cipher_alias_st {
560   /* name is the name of the cipher alias. */
561   const char *name;
562 
563   /* The following fields are bitmasks for the corresponding fields on
564    * |SSL_CIPHER|. A cipher matches a cipher alias iff, for each bitmask, the
565    * bit corresponding to the cipher's value is set to 1. If any bitmask is
566    * all zeroes, the alias matches nothing. Use |~0u| for the default value. */
567   uint32_t algorithm_mkey;
568   uint32_t algorithm_auth;
569   uint32_t algorithm_enc;
570   uint32_t algorithm_mac;
571 
572   /* min_version, if non-zero, matches all ciphers which were added in that
573    * particular protocol version. */
574   uint16_t min_version;
575 } CIPHER_ALIAS;
576 
577 static const CIPHER_ALIAS kCipherAliases[] = {
578     /* "ALL" doesn't include eNULL. It must be explicitly enabled. */
579     {"ALL", ~0u, ~0u, ~SSL_eNULL, ~0u, 0},
580 
581     /* The "COMPLEMENTOFDEFAULT" rule is omitted. It matches nothing. */
582 
583     /* key exchange aliases
584      * (some of those using only a single bit here combine
585      * multiple key exchange algs according to the RFCs. */
586     {"kRSA", SSL_kRSA, ~0u, ~0u, ~0u, 0},
587 
588     {"kECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
589     {"kEECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
590     {"ECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
591 
592     {"kPSK", SSL_kPSK, ~0u, ~0u, ~0u, 0},
593 
594     /* server authentication aliases */
595     {"aRSA", ~0u, SSL_aRSA, ~SSL_eNULL, ~0u, 0},
596     {"aECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
597     {"ECDSA", ~0u, SSL_aECDSA, ~0u, ~0u, 0},
598     {"aPSK", ~0u, SSL_aPSK, ~0u, ~0u, 0},
599 
600     /* aliases combining key exchange and server authentication */
601     {"ECDHE", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
602     {"EECDH", SSL_kECDHE, ~0u, ~0u, ~0u, 0},
603     {"RSA", SSL_kRSA, SSL_aRSA, ~SSL_eNULL, ~0u, 0},
604     {"PSK", SSL_kPSK, SSL_aPSK, ~0u, ~0u, 0},
605 
606     /* symmetric encryption aliases */
607     {"3DES", ~0u, ~0u, SSL_3DES, ~0u, 0},
608     {"AES128", ~0u, ~0u, SSL_AES128 | SSL_AES128GCM, ~0u, 0},
609     {"AES256", ~0u, ~0u, SSL_AES256 | SSL_AES256GCM, ~0u, 0},
610     {"AES", ~0u, ~0u, SSL_AES, ~0u, 0},
611     {"AESGCM", ~0u, ~0u, SSL_AES128GCM | SSL_AES256GCM, ~0u, 0},
612     {"CHACHA20", ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0},
613 
614     /* MAC aliases */
615     {"SHA1", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0},
616     {"SHA", ~0u, ~0u, ~SSL_eNULL, SSL_SHA1, 0},
617     {"SHA256", ~0u, ~0u, ~0u, SSL_SHA256, 0},
618     {"SHA384", ~0u, ~0u, ~0u, SSL_SHA384, 0},
619 
620     /* Legacy protocol minimum version aliases. "TLSv1" is intentionally the
621      * same as "SSLv3". */
622     {"SSLv3", ~0u, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION},
623     {"TLSv1", ~0u, ~0u, ~SSL_eNULL, ~0u, SSL3_VERSION},
624     {"TLSv1.2", ~0u, ~0u, ~SSL_eNULL, ~0u, TLS1_2_VERSION},
625 
626     /* Legacy strength classes. */
627     {"HIGH", ~0u, ~0u, ~SSL_eNULL, ~0u, 0},
628     {"FIPS", ~0u, ~0u, ~SSL_eNULL, ~0u, 0},
629 };
630 
631 static const size_t kCipherAliasesLen = OPENSSL_ARRAY_SIZE(kCipherAliases);
632 
ssl_cipher_id_cmp(const void * in_a,const void * in_b)633 static int ssl_cipher_id_cmp(const void *in_a, const void *in_b) {
634   const SSL_CIPHER *a = reinterpret_cast<const SSL_CIPHER *>(in_a);
635   const SSL_CIPHER *b = reinterpret_cast<const SSL_CIPHER *>(in_b);
636 
637   if (a->id > b->id) {
638     return 1;
639   } else if (a->id < b->id) {
640     return -1;
641   } else {
642     return 0;
643   }
644 }
645 
SSL_get_cipher_by_value(uint16_t value)646 const SSL_CIPHER *SSL_get_cipher_by_value(uint16_t value) {
647   SSL_CIPHER c;
648 
649   c.id = 0x03000000L | value;
650   return reinterpret_cast<const SSL_CIPHER *>(bsearch(
651       &c, kCiphers, kCiphersLen, sizeof(SSL_CIPHER), ssl_cipher_id_cmp));
652 }
653 
ssl_cipher_get_evp_aead(const EVP_AEAD ** out_aead,size_t * out_mac_secret_len,size_t * out_fixed_iv_len,const SSL_CIPHER * cipher,uint16_t version,int is_dtls)654 int ssl_cipher_get_evp_aead(const EVP_AEAD **out_aead,
655                             size_t *out_mac_secret_len,
656                             size_t *out_fixed_iv_len,
657                             const SSL_CIPHER *cipher, uint16_t version, int is_dtls) {
658   *out_aead = NULL;
659   *out_mac_secret_len = 0;
660   *out_fixed_iv_len = 0;
661 
662   const int is_tls12 = version == TLS1_2_VERSION && !is_dtls;
663 
664   if (cipher->algorithm_mac == SSL_AEAD) {
665     if (cipher->algorithm_enc == SSL_AES128GCM) {
666       *out_aead =
667           is_tls12 ? EVP_aead_aes_128_gcm_tls12() : EVP_aead_aes_128_gcm();
668       *out_fixed_iv_len = 4;
669     } else if (cipher->algorithm_enc == SSL_AES256GCM) {
670       *out_aead =
671           is_tls12 ? EVP_aead_aes_256_gcm_tls12() : EVP_aead_aes_256_gcm();
672       *out_fixed_iv_len = 4;
673     } else if (cipher->algorithm_enc == SSL_CHACHA20POLY1305) {
674       *out_aead = EVP_aead_chacha20_poly1305();
675       *out_fixed_iv_len = 12;
676     } else {
677       return 0;
678     }
679 
680     /* In TLS 1.3, the iv_len is equal to the AEAD nonce length whereas the code
681      * above computes the TLS 1.2 construction. */
682     if (version >= TLS1_3_VERSION) {
683       *out_fixed_iv_len = EVP_AEAD_nonce_length(*out_aead);
684     }
685   } else if (cipher->algorithm_mac == SSL_SHA1) {
686     if (cipher->algorithm_enc == SSL_eNULL) {
687       if (version == SSL3_VERSION) {
688         *out_aead = EVP_aead_null_sha1_ssl3();
689       } else {
690         *out_aead = EVP_aead_null_sha1_tls();
691       }
692     } else if (cipher->algorithm_enc == SSL_3DES) {
693       if (version == SSL3_VERSION) {
694         *out_aead = EVP_aead_des_ede3_cbc_sha1_ssl3();
695         *out_fixed_iv_len = 8;
696       } else if (version == TLS1_VERSION) {
697         *out_aead = EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv();
698         *out_fixed_iv_len = 8;
699       } else {
700         *out_aead = EVP_aead_des_ede3_cbc_sha1_tls();
701       }
702     } else if (cipher->algorithm_enc == SSL_AES128) {
703       if (version == SSL3_VERSION) {
704         *out_aead = EVP_aead_aes_128_cbc_sha1_ssl3();
705         *out_fixed_iv_len = 16;
706       } else if (version == TLS1_VERSION) {
707         *out_aead = EVP_aead_aes_128_cbc_sha1_tls_implicit_iv();
708         *out_fixed_iv_len = 16;
709       } else {
710         *out_aead = EVP_aead_aes_128_cbc_sha1_tls();
711       }
712     } else if (cipher->algorithm_enc == SSL_AES256) {
713       if (version == SSL3_VERSION) {
714         *out_aead = EVP_aead_aes_256_cbc_sha1_ssl3();
715         *out_fixed_iv_len = 16;
716       } else if (version == TLS1_VERSION) {
717         *out_aead = EVP_aead_aes_256_cbc_sha1_tls_implicit_iv();
718         *out_fixed_iv_len = 16;
719       } else {
720         *out_aead = EVP_aead_aes_256_cbc_sha1_tls();
721       }
722     } else {
723       return 0;
724     }
725 
726     *out_mac_secret_len = SHA_DIGEST_LENGTH;
727   } else if (cipher->algorithm_mac == SSL_SHA256) {
728     if (cipher->algorithm_enc == SSL_AES128) {
729       *out_aead = EVP_aead_aes_128_cbc_sha256_tls();
730     } else if (cipher->algorithm_enc == SSL_AES256) {
731       *out_aead = EVP_aead_aes_256_cbc_sha256_tls();
732     } else {
733       return 0;
734     }
735 
736     *out_mac_secret_len = SHA256_DIGEST_LENGTH;
737   } else if (cipher->algorithm_mac == SSL_SHA384) {
738       if (cipher->algorithm_enc != SSL_AES256) {
739         return 0;
740       }
741 
742       *out_aead = EVP_aead_aes_256_cbc_sha384_tls();
743       *out_mac_secret_len = SHA384_DIGEST_LENGTH;
744   } else {
745     return 0;
746   }
747 
748   return 1;
749 }
750 
ssl_get_handshake_digest(uint32_t algorithm_prf,uint16_t version)751 const EVP_MD *ssl_get_handshake_digest(uint32_t algorithm_prf,
752                                        uint16_t version) {
753   switch (algorithm_prf) {
754     case SSL_HANDSHAKE_MAC_DEFAULT:
755       return version >= TLS1_2_VERSION ? EVP_sha256() : EVP_md5_sha1();
756     case SSL_HANDSHAKE_MAC_SHA256:
757       return EVP_sha256();
758     case SSL_HANDSHAKE_MAC_SHA384:
759       return EVP_sha384();
760     default:
761       return NULL;
762   }
763 }
764 
765 #define ITEM_SEP(a) \
766   (((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
767 
768 /* rule_equals returns one iff the NUL-terminated string |rule| is equal to the
769  * |buf_len| bytes at |buf|. */
rule_equals(const char * rule,const char * buf,size_t buf_len)770 static int rule_equals(const char *rule, const char *buf, size_t buf_len) {
771   /* |strncmp| alone only checks that |buf| is a prefix of |rule|. */
772   return strncmp(rule, buf, buf_len) == 0 && rule[buf_len] == '\0';
773 }
774 
ll_append_tail(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)775 static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
776                            CIPHER_ORDER **tail) {
777   if (curr == *tail) {
778     return;
779   }
780   if (curr == *head) {
781     *head = curr->next;
782   }
783   if (curr->prev != NULL) {
784     curr->prev->next = curr->next;
785   }
786   if (curr->next != NULL) {
787     curr->next->prev = curr->prev;
788   }
789   (*tail)->next = curr;
790   curr->prev = *tail;
791   curr->next = NULL;
792   *tail = curr;
793 }
794 
ll_append_head(CIPHER_ORDER ** head,CIPHER_ORDER * curr,CIPHER_ORDER ** tail)795 static void ll_append_head(CIPHER_ORDER **head, CIPHER_ORDER *curr,
796                            CIPHER_ORDER **tail) {
797   if (curr == *head) {
798     return;
799   }
800   if (curr == *tail) {
801     *tail = curr->prev;
802   }
803   if (curr->next != NULL) {
804     curr->next->prev = curr->prev;
805   }
806   if (curr->prev != NULL) {
807     curr->prev->next = curr->next;
808   }
809   (*head)->prev = curr;
810   curr->next = *head;
811   curr->prev = NULL;
812   *head = curr;
813 }
814 
ssl_cipher_collect_ciphers(const SSL_PROTOCOL_METHOD * ssl_method,CIPHER_ORDER * co_list,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)815 static void ssl_cipher_collect_ciphers(const SSL_PROTOCOL_METHOD *ssl_method,
816                                        CIPHER_ORDER *co_list,
817                                        CIPHER_ORDER **head_p,
818                                        CIPHER_ORDER **tail_p) {
819   /* The set of ciphers is static, but some subset may be unsupported by
820    * |ssl_method|, so the list may be smaller. */
821   size_t co_list_num = 0;
822   for (size_t i = 0; i < kCiphersLen; i++) {
823     const SSL_CIPHER *cipher = &kCiphers[i];
824     if (ssl_method->supports_cipher(cipher) &&
825         /* TLS 1.3 ciphers do not participate in this mechanism. */
826         cipher->algorithm_mkey != SSL_kGENERIC) {
827       co_list[co_list_num].cipher = cipher;
828       co_list[co_list_num].next = NULL;
829       co_list[co_list_num].prev = NULL;
830       co_list[co_list_num].active = 0;
831       co_list[co_list_num].in_group = 0;
832       co_list_num++;
833     }
834   }
835 
836   /* Prepare linked list from list entries. */
837   if (co_list_num > 0) {
838     co_list[0].prev = NULL;
839 
840     if (co_list_num > 1) {
841       co_list[0].next = &co_list[1];
842 
843       for (size_t i = 1; i < co_list_num - 1; i++) {
844         co_list[i].prev = &co_list[i - 1];
845         co_list[i].next = &co_list[i + 1];
846       }
847 
848       co_list[co_list_num - 1].prev = &co_list[co_list_num - 2];
849     }
850 
851     co_list[co_list_num - 1].next = NULL;
852 
853     *head_p = &co_list[0];
854     *tail_p = &co_list[co_list_num - 1];
855   }
856 }
857 
858 /* ssl_cipher_apply_rule applies the rule type |rule| to ciphers matching its
859  * parameters in the linked list from |*head_p| to |*tail_p|. It writes the new
860  * head and tail of the list to |*head_p| and |*tail_p|, respectively.
861  *
862  * - If |cipher_id| is non-zero, only that cipher is selected.
863  * - Otherwise, if |strength_bits| is non-negative, it selects ciphers
864  *   of that strength.
865  * - Otherwise, it selects ciphers that match each bitmasks in |alg_*| and
866  *   |min_version|. */
ssl_cipher_apply_rule(uint32_t cipher_id,uint32_t alg_mkey,uint32_t alg_auth,uint32_t alg_enc,uint32_t alg_mac,uint16_t min_version,int rule,int strength_bits,int in_group,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)867 static void ssl_cipher_apply_rule(
868     uint32_t cipher_id, uint32_t alg_mkey, uint32_t alg_auth,
869     uint32_t alg_enc, uint32_t alg_mac, uint16_t min_version, int rule,
870     int strength_bits, int in_group, CIPHER_ORDER **head_p,
871     CIPHER_ORDER **tail_p) {
872   CIPHER_ORDER *head, *tail, *curr, *next, *last;
873   const SSL_CIPHER *cp;
874   int reverse = 0;
875 
876   if (cipher_id == 0 && strength_bits == -1 && min_version == 0 &&
877       (alg_mkey == 0 || alg_auth == 0 || alg_enc == 0 || alg_mac == 0)) {
878     /* The rule matches nothing, so bail early. */
879     return;
880   }
881 
882   if (rule == CIPHER_DEL) {
883     /* needed to maintain sorting between currently deleted ciphers */
884     reverse = 1;
885   }
886 
887   head = *head_p;
888   tail = *tail_p;
889 
890   if (reverse) {
891     next = tail;
892     last = head;
893   } else {
894     next = head;
895     last = tail;
896   }
897 
898   curr = NULL;
899   for (;;) {
900     if (curr == last) {
901       break;
902     }
903 
904     curr = next;
905     if (curr == NULL) {
906       break;
907     }
908 
909     next = reverse ? curr->prev : curr->next;
910     cp = curr->cipher;
911 
912     /* Selection criteria is either a specific cipher, the value of
913      * |strength_bits|, or the algorithms used. */
914     if (cipher_id != 0) {
915       if (cipher_id != cp->id) {
916         continue;
917       }
918     } else if (strength_bits >= 0) {
919       if (strength_bits != SSL_CIPHER_get_bits(cp, NULL)) {
920         continue;
921       }
922     } else {
923       if (!(alg_mkey & cp->algorithm_mkey) ||
924           !(alg_auth & cp->algorithm_auth) ||
925           !(alg_enc & cp->algorithm_enc) ||
926           !(alg_mac & cp->algorithm_mac) ||
927           (min_version != 0 && SSL_CIPHER_get_min_version(cp) != min_version)) {
928         continue;
929       }
930     }
931 
932     /* add the cipher if it has not been added yet. */
933     if (rule == CIPHER_ADD) {
934       /* reverse == 0 */
935       if (!curr->active) {
936         ll_append_tail(&head, curr, &tail);
937         curr->active = 1;
938         curr->in_group = in_group;
939       }
940     }
941 
942     /* Move the added cipher to this location */
943     else if (rule == CIPHER_ORD) {
944       /* reverse == 0 */
945       if (curr->active) {
946         ll_append_tail(&head, curr, &tail);
947         curr->in_group = 0;
948       }
949     } else if (rule == CIPHER_DEL) {
950       /* reverse == 1 */
951       if (curr->active) {
952         /* most recently deleted ciphersuites get best positions
953          * for any future CIPHER_ADD (note that the CIPHER_DEL loop
954          * works in reverse to maintain the order) */
955         ll_append_head(&head, curr, &tail);
956         curr->active = 0;
957         curr->in_group = 0;
958       }
959     } else if (rule == CIPHER_KILL) {
960       /* reverse == 0 */
961       if (head == curr) {
962         head = curr->next;
963       } else {
964         curr->prev->next = curr->next;
965       }
966 
967       if (tail == curr) {
968         tail = curr->prev;
969       }
970       curr->active = 0;
971       if (curr->next != NULL) {
972         curr->next->prev = curr->prev;
973       }
974       if (curr->prev != NULL) {
975         curr->prev->next = curr->next;
976       }
977       curr->next = NULL;
978       curr->prev = NULL;
979     }
980   }
981 
982   *head_p = head;
983   *tail_p = tail;
984 }
985 
ssl_cipher_strength_sort(CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p)986 static int ssl_cipher_strength_sort(CIPHER_ORDER **head_p,
987                                     CIPHER_ORDER **tail_p) {
988   int max_strength_bits, i, *number_uses;
989   CIPHER_ORDER *curr;
990 
991   /* This routine sorts the ciphers with descending strength. The sorting must
992    * keep the pre-sorted sequence, so we apply the normal sorting routine as
993    * '+' movement to the end of the list. */
994   max_strength_bits = 0;
995   curr = *head_p;
996   while (curr != NULL) {
997     if (curr->active &&
998         SSL_CIPHER_get_bits(curr->cipher, NULL) > max_strength_bits) {
999       max_strength_bits = SSL_CIPHER_get_bits(curr->cipher, NULL);
1000     }
1001     curr = curr->next;
1002   }
1003 
1004   number_uses = (int *)OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
1005   if (!number_uses) {
1006     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
1007     return 0;
1008   }
1009   OPENSSL_memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
1010 
1011   /* Now find the strength_bits values actually used. */
1012   curr = *head_p;
1013   while (curr != NULL) {
1014     if (curr->active) {
1015       number_uses[SSL_CIPHER_get_bits(curr->cipher, NULL)]++;
1016     }
1017     curr = curr->next;
1018   }
1019 
1020   /* Go through the list of used strength_bits values in descending order. */
1021   for (i = max_strength_bits; i >= 0; i--) {
1022     if (number_uses[i] > 0) {
1023       ssl_cipher_apply_rule(0, 0, 0, 0, 0, 0, CIPHER_ORD, i, 0, head_p, tail_p);
1024     }
1025   }
1026 
1027   OPENSSL_free(number_uses);
1028   return 1;
1029 }
1030 
ssl_cipher_process_rulestr(const SSL_PROTOCOL_METHOD * ssl_method,const char * rule_str,CIPHER_ORDER ** head_p,CIPHER_ORDER ** tail_p,int strict)1031 static int ssl_cipher_process_rulestr(const SSL_PROTOCOL_METHOD *ssl_method,
1032                                       const char *rule_str,
1033                                       CIPHER_ORDER **head_p,
1034                                       CIPHER_ORDER **tail_p, int strict) {
1035   uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1036   uint16_t min_version;
1037   const char *l, *buf;
1038   int multi, skip_rule, rule, in_group = 0, has_group = 0;
1039   size_t j, buf_len;
1040   uint32_t cipher_id;
1041   char ch;
1042 
1043   l = rule_str;
1044   for (;;) {
1045     ch = *l;
1046 
1047     if (ch == '\0') {
1048       break; /* done */
1049     }
1050 
1051     if (in_group) {
1052       if (ch == ']') {
1053         if (*tail_p) {
1054           (*tail_p)->in_group = 0;
1055         }
1056         in_group = 0;
1057         l++;
1058         continue;
1059       }
1060 
1061       if (ch == '|') {
1062         rule = CIPHER_ADD;
1063         l++;
1064         continue;
1065       } else if (!(ch >= 'a' && ch <= 'z') && !(ch >= 'A' && ch <= 'Z') &&
1066                  !(ch >= '0' && ch <= '9')) {
1067         OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_OPERATOR_IN_GROUP);
1068         return 0;
1069       } else {
1070         rule = CIPHER_ADD;
1071       }
1072     } else if (ch == '-') {
1073       rule = CIPHER_DEL;
1074       l++;
1075     } else if (ch == '+') {
1076       rule = CIPHER_ORD;
1077       l++;
1078     } else if (ch == '!') {
1079       rule = CIPHER_KILL;
1080       l++;
1081     } else if (ch == '@') {
1082       rule = CIPHER_SPECIAL;
1083       l++;
1084     } else if (ch == '[') {
1085       assert(!in_group);
1086       in_group = 1;
1087       has_group = 1;
1088       l++;
1089       continue;
1090     } else {
1091       rule = CIPHER_ADD;
1092     }
1093 
1094     /* If preference groups are enabled, the only legal operator is +.
1095      * Otherwise the in_group bits will get mixed up. */
1096     if (has_group && rule != CIPHER_ADD) {
1097       OPENSSL_PUT_ERROR(SSL, SSL_R_MIXED_SPECIAL_OPERATOR_WITH_GROUPS);
1098       return 0;
1099     }
1100 
1101     if (ITEM_SEP(ch)) {
1102       l++;
1103       continue;
1104     }
1105 
1106     multi = 0;
1107     cipher_id = 0;
1108     alg_mkey = ~0u;
1109     alg_auth = ~0u;
1110     alg_enc = ~0u;
1111     alg_mac = ~0u;
1112     min_version = 0;
1113     skip_rule = 0;
1114 
1115     for (;;) {
1116       ch = *l;
1117       buf = l;
1118       buf_len = 0;
1119       while ((ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9') ||
1120              (ch >= 'a' && ch <= 'z') || ch == '-' || ch == '.' || ch == '_') {
1121         ch = *(++l);
1122         buf_len++;
1123       }
1124 
1125       if (buf_len == 0) {
1126         /* We hit something we cannot deal with, it is no command or separator
1127          * nor alphanumeric, so we call this an error. */
1128         OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1129         return 0;
1130       }
1131 
1132       if (rule == CIPHER_SPECIAL) {
1133         break;
1134       }
1135 
1136       /* Look for a matching exact cipher. These aren't allowed in multipart
1137        * rules. */
1138       if (!multi && ch != '+') {
1139         for (j = 0; j < kCiphersLen; j++) {
1140           const SSL_CIPHER *cipher = &kCiphers[j];
1141           if (rule_equals(cipher->name, buf, buf_len) ||
1142               rule_equals(cipher->standard_name, buf, buf_len)) {
1143             cipher_id = cipher->id;
1144             break;
1145           }
1146         }
1147       }
1148       if (cipher_id == 0) {
1149         /* If not an exact cipher, look for a matching cipher alias. */
1150         for (j = 0; j < kCipherAliasesLen; j++) {
1151           if (rule_equals(kCipherAliases[j].name, buf, buf_len)) {
1152             alg_mkey &= kCipherAliases[j].algorithm_mkey;
1153             alg_auth &= kCipherAliases[j].algorithm_auth;
1154             alg_enc &= kCipherAliases[j].algorithm_enc;
1155             alg_mac &= kCipherAliases[j].algorithm_mac;
1156 
1157             if (min_version != 0 &&
1158                 min_version != kCipherAliases[j].min_version) {
1159               skip_rule = 1;
1160             } else {
1161               min_version = kCipherAliases[j].min_version;
1162             }
1163             break;
1164           }
1165         }
1166         if (j == kCipherAliasesLen) {
1167           skip_rule = 1;
1168           if (strict) {
1169             OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1170             return 0;
1171           }
1172         }
1173       }
1174 
1175       /* Check for a multipart rule. */
1176       if (ch != '+') {
1177         break;
1178       }
1179       l++;
1180       multi = 1;
1181     }
1182 
1183     /* Ok, we have the rule, now apply it. */
1184     if (rule == CIPHER_SPECIAL) {
1185       if (buf_len != 8 || strncmp(buf, "STRENGTH", 8) != 0) {
1186         OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1187         return 0;
1188       }
1189       if (!ssl_cipher_strength_sort(head_p, tail_p)) {
1190         return 0;
1191       }
1192 
1193       /* We do not support any "multi" options together with "@", so throw away
1194        * the rest of the command, if any left, until end or ':' is found. */
1195       while (*l != '\0' && !ITEM_SEP(*l)) {
1196         l++;
1197       }
1198     } else if (!skip_rule) {
1199       ssl_cipher_apply_rule(cipher_id, alg_mkey, alg_auth, alg_enc, alg_mac,
1200                             min_version, rule, -1, in_group, head_p, tail_p);
1201     }
1202   }
1203 
1204   if (in_group) {
1205     OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_COMMAND);
1206     return 0;
1207   }
1208 
1209   return 1;
1210 }
1211 
ssl_create_cipher_list(const SSL_PROTOCOL_METHOD * ssl_method,struct ssl_cipher_preference_list_st ** out_cipher_list,const char * rule_str,int strict)1212 int ssl_create_cipher_list(
1213     const SSL_PROTOCOL_METHOD *ssl_method,
1214     struct ssl_cipher_preference_list_st **out_cipher_list,
1215     const char *rule_str, int strict) {
1216   STACK_OF(SSL_CIPHER) *cipherstack = NULL;
1217   CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
1218   uint8_t *in_group_flags = NULL;
1219   unsigned int num_in_group_flags = 0;
1220   struct ssl_cipher_preference_list_st *pref_list = NULL;
1221 
1222   /* Return with error if nothing to do. */
1223   if (rule_str == NULL || out_cipher_list == NULL) {
1224     return 0;
1225   }
1226 
1227   /* Now we have to collect the available ciphers from the compiled in ciphers.
1228    * We cannot get more than the number compiled in, so it is used for
1229    * allocation. */
1230   co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * kCiphersLen);
1231   if (co_list == NULL) {
1232     OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
1233     return 0;
1234   }
1235 
1236   ssl_cipher_collect_ciphers(ssl_method, co_list, &head, &tail);
1237 
1238   /* Now arrange all ciphers by preference:
1239    * TODO(davidben): Compute this order once and copy it. */
1240 
1241   /* Everything else being equal, prefer ECDHE_ECDSA and ECDHE_RSA over other
1242    * key exchange mechanisms */
1243   ssl_cipher_apply_rule(0, SSL_kECDHE, SSL_aECDSA, ~0u, ~0u, 0, CIPHER_ADD, -1,
1244                         0, &head, &tail);
1245   ssl_cipher_apply_rule(0, SSL_kECDHE, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0,
1246                         &head, &tail);
1247   ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0, &head,
1248                         &tail);
1249 
1250   /* Order the bulk ciphers. First the preferred AEAD ciphers. We prefer
1251    * CHACHA20 unless there is hardware support for fast and constant-time
1252    * AES_GCM. Of the two CHACHA20 variants, the new one is preferred over the
1253    * old one. */
1254   if (EVP_has_aes_hardware()) {
1255     ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0,
1256                           &head, &tail);
1257     ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0,
1258                           &head, &tail);
1259     ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
1260                           -1, 0, &head, &tail);
1261   } else {
1262     ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_CHACHA20POLY1305, ~0u, 0, CIPHER_ADD,
1263                           -1, 0, &head, &tail);
1264     ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128GCM, ~0u, 0, CIPHER_ADD, -1, 0,
1265                           &head, &tail);
1266     ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256GCM, ~0u, 0, CIPHER_ADD, -1, 0,
1267                           &head, &tail);
1268   }
1269 
1270   /* Then the legacy non-AEAD ciphers: AES_128_CBC, AES_256_CBC,
1271    * 3DES_EDE_CBC_SHA. */
1272   ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES128, ~0u, 0, CIPHER_ADD, -1, 0,
1273                         &head, &tail);
1274   ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_AES256, ~0u, 0, CIPHER_ADD, -1, 0,
1275                         &head, &tail);
1276   ssl_cipher_apply_rule(0, ~0u, ~0u, SSL_3DES, ~0u, 0, CIPHER_ADD, -1, 0, &head,
1277                         &tail);
1278 
1279   /* Temporarily enable everything else for sorting */
1280   ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_ADD, -1, 0, &head,
1281                         &tail);
1282 
1283   /* Move ciphers without forward secrecy to the end. */
1284   ssl_cipher_apply_rule(0, (SSL_kRSA | SSL_kPSK), ~0u, ~0u, ~0u, 0,
1285                         CIPHER_ORD, -1, 0, &head, &tail);
1286 
1287   /* Now disable everything (maintaining the ordering!) */
1288   ssl_cipher_apply_rule(0, ~0u, ~0u, ~0u, ~0u, 0, CIPHER_DEL, -1, 0, &head,
1289                         &tail);
1290 
1291   /* If the rule_string begins with DEFAULT, apply the default rule before
1292    * using the (possibly available) additional rules. */
1293   const char *rule_p = rule_str;
1294   if (strncmp(rule_str, "DEFAULT", 7) == 0) {
1295     if (!ssl_cipher_process_rulestr(ssl_method, SSL_DEFAULT_CIPHER_LIST, &head,
1296                                     &tail, strict)) {
1297       goto err;
1298     }
1299     rule_p += 7;
1300     if (*rule_p == ':') {
1301       rule_p++;
1302     }
1303   }
1304 
1305   if (*rule_p != '\0' &&
1306       !ssl_cipher_process_rulestr(ssl_method, rule_p, &head, &tail, strict)) {
1307     goto err;
1308   }
1309 
1310   /* Allocate new "cipherstack" for the result, return with error
1311    * if we cannot get one. */
1312   cipherstack = sk_SSL_CIPHER_new_null();
1313   if (cipherstack == NULL) {
1314     goto err;
1315   }
1316 
1317   in_group_flags = (uint8_t *)OPENSSL_malloc(kCiphersLen);
1318   if (!in_group_flags) {
1319     goto err;
1320   }
1321 
1322   /* The cipher selection for the list is done. The ciphers are added
1323    * to the resulting precedence to the STACK_OF(SSL_CIPHER). */
1324   for (curr = head; curr != NULL; curr = curr->next) {
1325     if (curr->active) {
1326       if (!sk_SSL_CIPHER_push(cipherstack, curr->cipher)) {
1327         goto err;
1328       }
1329       in_group_flags[num_in_group_flags++] = curr->in_group;
1330     }
1331   }
1332   OPENSSL_free(co_list); /* Not needed any longer */
1333   co_list = NULL;
1334 
1335   pref_list = (ssl_cipher_preference_list_st *)OPENSSL_malloc(
1336       sizeof(struct ssl_cipher_preference_list_st));
1337   if (!pref_list) {
1338     goto err;
1339   }
1340   pref_list->ciphers = cipherstack;
1341   pref_list->in_group_flags = (uint8_t *)OPENSSL_malloc(num_in_group_flags);
1342   if (!pref_list->in_group_flags) {
1343     goto err;
1344   }
1345   OPENSSL_memcpy(pref_list->in_group_flags, in_group_flags, num_in_group_flags);
1346   OPENSSL_free(in_group_flags);
1347   in_group_flags = NULL;
1348   if (*out_cipher_list != NULL) {
1349     ssl_cipher_preference_list_free(*out_cipher_list);
1350   }
1351   *out_cipher_list = pref_list;
1352   pref_list = NULL;
1353 
1354   /* Configuring an empty cipher list is an error but still updates the
1355    * output. */
1356   if (sk_SSL_CIPHER_num((*out_cipher_list)->ciphers) == 0) {
1357     OPENSSL_PUT_ERROR(SSL, SSL_R_NO_CIPHER_MATCH);
1358     return 0;
1359   }
1360 
1361   return 1;
1362 
1363 err:
1364   OPENSSL_free(co_list);
1365   OPENSSL_free(in_group_flags);
1366   sk_SSL_CIPHER_free(cipherstack);
1367   if (pref_list) {
1368     OPENSSL_free(pref_list->in_group_flags);
1369   }
1370   OPENSSL_free(pref_list);
1371   return 0;
1372 }
1373 
SSL_CIPHER_get_id(const SSL_CIPHER * cipher)1374 uint32_t SSL_CIPHER_get_id(const SSL_CIPHER *cipher) { return cipher->id; }
1375 
ssl_cipher_get_value(const SSL_CIPHER * cipher)1376 uint16_t ssl_cipher_get_value(const SSL_CIPHER *cipher) {
1377   uint32_t id = cipher->id;
1378   /* All ciphers are SSLv3. */
1379   assert((id & 0xff000000) == 0x03000000);
1380   return id & 0xffff;
1381 }
1382 
SSL_CIPHER_is_AES(const SSL_CIPHER * cipher)1383 int SSL_CIPHER_is_AES(const SSL_CIPHER *cipher) {
1384   return (cipher->algorithm_enc & SSL_AES) != 0;
1385 }
1386 
SSL_CIPHER_has_SHA1_HMAC(const SSL_CIPHER * cipher)1387 int SSL_CIPHER_has_SHA1_HMAC(const SSL_CIPHER *cipher) {
1388   return (cipher->algorithm_mac & SSL_SHA1) != 0;
1389 }
1390 
SSL_CIPHER_has_SHA256_HMAC(const SSL_CIPHER * cipher)1391 int SSL_CIPHER_has_SHA256_HMAC(const SSL_CIPHER *cipher) {
1392   return (cipher->algorithm_mac & SSL_SHA256) != 0;
1393 }
1394 
SSL_CIPHER_has_SHA384_HMAC(const SSL_CIPHER * cipher)1395 int SSL_CIPHER_has_SHA384_HMAC(const SSL_CIPHER *cipher) {
1396   return (cipher->algorithm_mac & SSL_SHA384) != 0;
1397 }
1398 
SSL_CIPHER_is_AEAD(const SSL_CIPHER * cipher)1399 int SSL_CIPHER_is_AEAD(const SSL_CIPHER *cipher) {
1400   return (cipher->algorithm_mac & SSL_AEAD) != 0;
1401 }
1402 
SSL_CIPHER_is_AESGCM(const SSL_CIPHER * cipher)1403 int SSL_CIPHER_is_AESGCM(const SSL_CIPHER *cipher) {
1404   return (cipher->algorithm_enc & (SSL_AES128GCM | SSL_AES256GCM)) != 0;
1405 }
1406 
SSL_CIPHER_is_AES128GCM(const SSL_CIPHER * cipher)1407 int SSL_CIPHER_is_AES128GCM(const SSL_CIPHER *cipher) {
1408   return (cipher->algorithm_enc & SSL_AES128GCM) != 0;
1409 }
1410 
SSL_CIPHER_is_AES128CBC(const SSL_CIPHER * cipher)1411 int SSL_CIPHER_is_AES128CBC(const SSL_CIPHER *cipher) {
1412   return (cipher->algorithm_enc & SSL_AES128) != 0;
1413 }
1414 
SSL_CIPHER_is_AES256CBC(const SSL_CIPHER * cipher)1415 int SSL_CIPHER_is_AES256CBC(const SSL_CIPHER *cipher) {
1416   return (cipher->algorithm_enc & SSL_AES256) != 0;
1417 }
1418 
SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER * cipher)1419 int SSL_CIPHER_is_CHACHA20POLY1305(const SSL_CIPHER *cipher) {
1420   return (cipher->algorithm_enc & SSL_CHACHA20POLY1305) != 0;
1421 }
1422 
SSL_CIPHER_is_NULL(const SSL_CIPHER * cipher)1423 int SSL_CIPHER_is_NULL(const SSL_CIPHER *cipher) {
1424   return (cipher->algorithm_enc & SSL_eNULL) != 0;
1425 }
1426 
SSL_CIPHER_is_block_cipher(const SSL_CIPHER * cipher)1427 int SSL_CIPHER_is_block_cipher(const SSL_CIPHER *cipher) {
1428   return (cipher->algorithm_enc & SSL_eNULL) == 0 &&
1429       cipher->algorithm_mac != SSL_AEAD;
1430 }
1431 
SSL_CIPHER_is_ECDSA(const SSL_CIPHER * cipher)1432 int SSL_CIPHER_is_ECDSA(const SSL_CIPHER *cipher) {
1433   return (cipher->algorithm_auth & SSL_aECDSA) != 0;
1434 }
1435 
SSL_CIPHER_is_ECDHE(const SSL_CIPHER * cipher)1436 int SSL_CIPHER_is_ECDHE(const SSL_CIPHER *cipher) {
1437   return (cipher->algorithm_mkey & SSL_kECDHE) != 0;
1438 }
1439 
SSL_CIPHER_is_static_RSA(const SSL_CIPHER * cipher)1440 int SSL_CIPHER_is_static_RSA(const SSL_CIPHER *cipher) {
1441   return (cipher->algorithm_mkey & SSL_kRSA) != 0;
1442 }
1443 
SSL_CIPHER_get_min_version(const SSL_CIPHER * cipher)1444 uint16_t SSL_CIPHER_get_min_version(const SSL_CIPHER *cipher) {
1445   if (cipher->algorithm_mkey == SSL_kGENERIC ||
1446       cipher->algorithm_auth == SSL_aGENERIC) {
1447     return TLS1_3_VERSION;
1448   }
1449 
1450   if (cipher->algorithm_prf != SSL_HANDSHAKE_MAC_DEFAULT) {
1451     /* Cipher suites before TLS 1.2 use the default PRF, while all those added
1452      * afterwards specify a particular hash. */
1453     return TLS1_2_VERSION;
1454   }
1455   return SSL3_VERSION;
1456 }
1457 
SSL_CIPHER_get_max_version(const SSL_CIPHER * cipher)1458 uint16_t SSL_CIPHER_get_max_version(const SSL_CIPHER *cipher) {
1459   if (cipher->algorithm_mkey == SSL_kGENERIC ||
1460       cipher->algorithm_auth == SSL_aGENERIC) {
1461     return TLS1_3_VERSION;
1462   }
1463   return TLS1_2_VERSION;
1464 }
1465 
1466 /* return the actual cipher being used */
SSL_CIPHER_get_name(const SSL_CIPHER * cipher)1467 const char *SSL_CIPHER_get_name(const SSL_CIPHER *cipher) {
1468   if (cipher != NULL) {
1469     return cipher->name;
1470   }
1471 
1472   return "(NONE)";
1473 }
1474 
SSL_CIPHER_standard_name(const SSL_CIPHER * cipher)1475 const char *SSL_CIPHER_standard_name(const SSL_CIPHER *cipher) {
1476   return cipher->standard_name;
1477 }
1478 
SSL_CIPHER_get_kx_name(const SSL_CIPHER * cipher)1479 const char *SSL_CIPHER_get_kx_name(const SSL_CIPHER *cipher) {
1480   if (cipher == NULL) {
1481     return "";
1482   }
1483 
1484   switch (cipher->algorithm_mkey) {
1485     case SSL_kRSA:
1486       return "RSA";
1487 
1488     case SSL_kECDHE:
1489       switch (cipher->algorithm_auth) {
1490         case SSL_aECDSA:
1491           return "ECDHE_ECDSA";
1492         case SSL_aRSA:
1493           return "ECDHE_RSA";
1494         case SSL_aPSK:
1495           return "ECDHE_PSK";
1496         default:
1497           assert(0);
1498           return "UNKNOWN";
1499       }
1500 
1501     case SSL_kPSK:
1502       assert(cipher->algorithm_auth == SSL_aPSK);
1503       return "PSK";
1504 
1505     case SSL_kGENERIC:
1506       assert(cipher->algorithm_auth == SSL_aGENERIC);
1507       return "GENERIC";
1508 
1509     default:
1510       assert(0);
1511       return "UNKNOWN";
1512   }
1513 }
1514 
SSL_CIPHER_get_rfc_name(const SSL_CIPHER * cipher)1515 char *SSL_CIPHER_get_rfc_name(const SSL_CIPHER *cipher) {
1516   if (cipher == NULL) {
1517     return NULL;
1518   }
1519 
1520   return OPENSSL_strdup(SSL_CIPHER_standard_name(cipher));
1521 }
1522 
SSL_CIPHER_get_bits(const SSL_CIPHER * cipher,int * out_alg_bits)1523 int SSL_CIPHER_get_bits(const SSL_CIPHER *cipher, int *out_alg_bits) {
1524   if (cipher == NULL) {
1525     return 0;
1526   }
1527 
1528   int alg_bits, strength_bits;
1529   switch (cipher->algorithm_enc) {
1530     case SSL_AES128:
1531     case SSL_AES128GCM:
1532       alg_bits = 128;
1533       strength_bits = 128;
1534       break;
1535 
1536     case SSL_AES256:
1537     case SSL_AES256GCM:
1538     case SSL_CHACHA20POLY1305:
1539       alg_bits = 256;
1540       strength_bits = 256;
1541       break;
1542 
1543     case SSL_3DES:
1544       alg_bits = 168;
1545       strength_bits = 112;
1546       break;
1547 
1548     case SSL_eNULL:
1549       alg_bits = 0;
1550       strength_bits = 0;
1551       break;
1552 
1553     default:
1554       assert(0);
1555       alg_bits = 0;
1556       strength_bits = 0;
1557   }
1558 
1559   if (out_alg_bits != NULL) {
1560     *out_alg_bits = alg_bits;
1561   }
1562   return strength_bits;
1563 }
1564 
SSL_CIPHER_description(const SSL_CIPHER * cipher,char * buf,int len)1565 const char *SSL_CIPHER_description(const SSL_CIPHER *cipher, char *buf,
1566                                    int len) {
1567   const char *kx, *au, *enc, *mac;
1568   uint32_t alg_mkey, alg_auth, alg_enc, alg_mac;
1569 
1570   alg_mkey = cipher->algorithm_mkey;
1571   alg_auth = cipher->algorithm_auth;
1572   alg_enc = cipher->algorithm_enc;
1573   alg_mac = cipher->algorithm_mac;
1574 
1575   switch (alg_mkey) {
1576     case SSL_kRSA:
1577       kx = "RSA";
1578       break;
1579 
1580     case SSL_kECDHE:
1581       kx = "ECDH";
1582       break;
1583 
1584     case SSL_kPSK:
1585       kx = "PSK";
1586       break;
1587 
1588     case SSL_kGENERIC:
1589       kx = "GENERIC";
1590       break;
1591 
1592     default:
1593       kx = "unknown";
1594   }
1595 
1596   switch (alg_auth) {
1597     case SSL_aRSA:
1598       au = "RSA";
1599       break;
1600 
1601     case SSL_aECDSA:
1602       au = "ECDSA";
1603       break;
1604 
1605     case SSL_aPSK:
1606       au = "PSK";
1607       break;
1608 
1609     case SSL_aGENERIC:
1610       au = "GENERIC";
1611       break;
1612 
1613     default:
1614       au = "unknown";
1615       break;
1616   }
1617 
1618   switch (alg_enc) {
1619     case SSL_3DES:
1620       enc = "3DES(168)";
1621       break;
1622 
1623     case SSL_AES128:
1624       enc = "AES(128)";
1625       break;
1626 
1627     case SSL_AES256:
1628       enc = "AES(256)";
1629       break;
1630 
1631     case SSL_AES128GCM:
1632       enc = "AESGCM(128)";
1633       break;
1634 
1635     case SSL_AES256GCM:
1636       enc = "AESGCM(256)";
1637       break;
1638 
1639     case SSL_CHACHA20POLY1305:
1640       enc = "ChaCha20-Poly1305";
1641       break;
1642 
1643     case SSL_eNULL:
1644       enc="None";
1645       break;
1646 
1647     default:
1648       enc = "unknown";
1649       break;
1650   }
1651 
1652   switch (alg_mac) {
1653     case SSL_SHA1:
1654       mac = "SHA1";
1655       break;
1656 
1657     case SSL_SHA256:
1658       mac = "SHA256";
1659       break;
1660 
1661     case SSL_SHA384:
1662       mac = "SHA384";
1663       break;
1664 
1665     case SSL_AEAD:
1666       mac = "AEAD";
1667       break;
1668 
1669     default:
1670       mac = "unknown";
1671       break;
1672   }
1673 
1674   if (buf == NULL) {
1675     len = 128;
1676     buf = (char *)OPENSSL_malloc(len);
1677     if (buf == NULL) {
1678       return NULL;
1679     }
1680   } else if (len < 128) {
1681     return "Buffer too small";
1682   }
1683 
1684   BIO_snprintf(buf, len, "%-23s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s\n",
1685                cipher->name, kx, au, enc, mac);
1686   return buf;
1687 }
1688 
SSL_CIPHER_get_version(const SSL_CIPHER * cipher)1689 const char *SSL_CIPHER_get_version(const SSL_CIPHER *cipher) {
1690   return "TLSv1/SSLv3";
1691 }
1692 
STACK_OF(SSL_COMP)1693 STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void) { return NULL; }
1694 
SSL_COMP_add_compression_method(int id,COMP_METHOD * cm)1695 int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm) { return 1; }
1696 
SSL_COMP_get_name(const COMP_METHOD * comp)1697 const char *SSL_COMP_get_name(const COMP_METHOD *comp) { return NULL; }
1698 
SSL_COMP_free_compression_methods(void)1699 void SSL_COMP_free_compression_methods(void) {}
1700 
ssl_cipher_auth_mask_for_key(const EVP_PKEY * key)1701 uint32_t ssl_cipher_auth_mask_for_key(const EVP_PKEY *key) {
1702   switch (EVP_PKEY_id(key)) {
1703     case EVP_PKEY_RSA:
1704       return SSL_aRSA;
1705     case EVP_PKEY_EC:
1706     case EVP_PKEY_ED25519:
1707       /* Ed25519 keys in TLS 1.2 repurpose the ECDSA ciphers. */
1708       return SSL_aECDSA;
1709     default:
1710       return 0;
1711   }
1712 }
1713 
ssl_cipher_uses_certificate_auth(const SSL_CIPHER * cipher)1714 int ssl_cipher_uses_certificate_auth(const SSL_CIPHER *cipher) {
1715   return (cipher->algorithm_auth & SSL_aCERT) != 0;
1716 }
1717 
ssl_cipher_requires_server_key_exchange(const SSL_CIPHER * cipher)1718 int ssl_cipher_requires_server_key_exchange(const SSL_CIPHER *cipher) {
1719   /* Ephemeral Diffie-Hellman key exchanges require a ServerKeyExchange. */
1720   if (cipher->algorithm_mkey & SSL_kECDHE) {
1721     return 1;
1722   }
1723 
1724   /* It is optional in all others. */
1725   return 0;
1726 }
1727 
ssl_cipher_get_record_split_len(const SSL_CIPHER * cipher)1728 size_t ssl_cipher_get_record_split_len(const SSL_CIPHER *cipher) {
1729   size_t block_size;
1730   switch (cipher->algorithm_enc) {
1731     case SSL_3DES:
1732       block_size = 8;
1733       break;
1734     case SSL_AES128:
1735     case SSL_AES256:
1736       block_size = 16;
1737       break;
1738     default:
1739       return 0;
1740   }
1741 
1742   /* All supported TLS 1.0 ciphers use SHA-1. */
1743   assert(cipher->algorithm_mac == SSL_SHA1);
1744   size_t ret = 1 + SHA_DIGEST_LENGTH;
1745   ret += block_size - (ret % block_size);
1746   return ret;
1747 }
1748