1 //===- subzero/src/IceOperand.h - High-level operands -----------*- C++ -*-===//
2 //
3 // The Subzero Code Generator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief Declares the Operand class and its target-independent subclasses.
12 ///
13 /// The main classes are Variable, which represents an LLVM variable that is
14 /// either register- or stack-allocated, and the Constant hierarchy, which
15 /// represents integer, floating-point, and/or symbolic constants.
16 ///
17 //===----------------------------------------------------------------------===//
18
19 #ifndef SUBZERO_SRC_ICEOPERAND_H
20 #define SUBZERO_SRC_ICEOPERAND_H
21
22 #include "IceDefs.h"
23 #include "IceCfg.h"
24 #include "IceGlobalContext.h"
25 #include "IceStringPool.h"
26 #include "IceTypes.h"
27
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/Format.h"
30
31 #include <limits>
32 #include <type_traits>
33
34 namespace Ice {
35
36 class Operand {
37 Operand() = delete;
38 Operand(const Operand &) = delete;
39 Operand &operator=(const Operand &) = delete;
40
41 public:
42 static constexpr size_t MaxTargetKinds = 10;
43 enum OperandKind {
44 kConst_Base,
45 kConstInteger32,
46 kConstInteger64,
47 kConstFloat,
48 kConstDouble,
49 kConstRelocatable,
50 kConstUndef,
51 kConst_Target, // leave space for target-specific constant kinds
52 kConst_Max = kConst_Target + MaxTargetKinds,
53 kVariable,
54 kVariable64On32,
55 kVariableVecOn32,
56 kVariableBoolean,
57 kVariable_Target, // leave space for target-specific variable kinds
58 kVariable_Max = kVariable_Target + MaxTargetKinds,
59 // Target-specific operand classes use kTarget as the starting point for
60 // their Kind enum space. Note that the value-spaces are shared across
61 // targets. To avoid confusion over the definition of shared values, an
62 // object specific to one target should never be passed to a different
63 // target.
64 kTarget,
65 kTarget_Max = std::numeric_limits<uint8_t>::max(),
66 };
67 static_assert(kTarget <= kTarget_Max, "Must not be above max.");
getKind()68 OperandKind getKind() const { return Kind; }
getType()69 Type getType() const { return Ty; }
70
71 /// Every Operand keeps an array of the Variables referenced in the operand.
72 /// This is so that the liveness operations can get quick access to the
73 /// variables of interest, without having to dig so far into the operand.
getNumVars()74 SizeT getNumVars() const { return NumVars; }
getVar(SizeT I)75 Variable *getVar(SizeT I) const {
76 assert(I < getNumVars());
77 return Vars[I];
78 }
79 virtual void emit(const Cfg *Func) const = 0;
80
81 /// \name Dumping functions.
82 /// @{
83
84 /// The dump(Func,Str) implementation must be sure to handle the situation
85 /// where Func==nullptr.
86 virtual void dump(const Cfg *Func, Ostream &Str) const = 0;
dump(const Cfg * Func)87 void dump(const Cfg *Func) const {
88 if (!BuildDefs::dump())
89 return;
90 assert(Func);
91 dump(Func, Func->getContext()->getStrDump());
92 }
dump(Ostream & Str)93 void dump(Ostream &Str) const {
94 if (BuildDefs::dump())
95 dump(nullptr, Str);
96 }
97 /// @}
98
99 virtual ~Operand() = default;
100
asBoolean()101 virtual Variable *asBoolean() { return nullptr; }
102
hashValue()103 virtual SizeT hashValue() const {
104 llvm::report_fatal_error("Tried to hash unsupported operand type : " +
105 std::to_string(Kind));
106 return 0;
107 }
108
109 protected:
Operand(OperandKind Kind,Type Ty)110 Operand(OperandKind Kind, Type Ty) : Ty(Ty), Kind(Kind) {
111 // It is undefined behavior to have a larger value in the enum
112 assert(Kind <= kTarget_Max);
113 }
114
115 const Type Ty;
116 const OperandKind Kind;
117 /// Vars and NumVars are initialized by the derived class.
118 SizeT NumVars = 0;
119 Variable **Vars = nullptr;
120 };
121
122 template <class StreamType>
123 inline StreamType &operator<<(StreamType &Str, const Operand &Op) {
124 Op.dump(Str);
125 return Str;
126 }
127
128 /// Constant is the abstract base class for constants. All constants are
129 /// allocated from a global arena and are pooled.
130 class Constant : public Operand {
131 Constant() = delete;
132 Constant(const Constant &) = delete;
133 Constant &operator=(const Constant &) = delete;
134
135 public:
136 // Declare the lookup counter to take minimal space in a non-DUMP build.
137 using CounterType =
138 std::conditional<BuildDefs::dump(), uint64_t, uint8_t>::type;
emit(const Cfg * Func)139 void emit(const Cfg *Func) const override { emit(Func->getTarget()); }
140 virtual void emit(TargetLowering *Target) const = 0;
141
classof(const Operand * Operand)142 static bool classof(const Operand *Operand) {
143 OperandKind Kind = Operand->getKind();
144 return Kind >= kConst_Base && Kind <= kConst_Max;
145 }
146
getLabelName()147 const GlobalString getLabelName() const { return LabelName; }
148
149 /// Judge if this given immediate should be randomized or pooled By default
150 /// should return false, only constant integers should truly go through this
151 /// method.
shouldBeRandomizedOrPooled()152 virtual bool shouldBeRandomizedOrPooled() const { return false; }
153
getShouldBePooled()154 bool getShouldBePooled() const { return ShouldBePooled; }
155
156 // This should be thread-safe because the constant pool lock is acquired
157 // before the method is invoked.
updateLookupCount()158 void updateLookupCount() {
159 if (!BuildDefs::dump())
160 return;
161 ++LookupCount;
162 }
getLookupCount()163 CounterType getLookupCount() const { return LookupCount; }
hashValue()164 SizeT hashValue() const override { return 0; }
165
166 protected:
Constant(OperandKind Kind,Type Ty)167 Constant(OperandKind Kind, Type Ty) : Operand(Kind, Ty) {
168 Vars = nullptr;
169 NumVars = 0;
170 }
171 /// Set the ShouldBePooled field to the proper value after the object is fully
172 /// initialized.
173 void initShouldBePooled();
174 GlobalString LabelName;
175 /// Whether we should pool this constant. Usually Float/Double and pooled
176 /// Integers should be flagged true. Ideally this field would be const, but
177 /// it needs to be initialized only after the subclass is fully constructed.
178 bool ShouldBePooled = false;
179 /// Note: If ShouldBePooled is ever removed from the base class, we will want
180 /// to completely disable LookupCount in a non-DUMP build to save space.
181 CounterType LookupCount = 0;
182 };
183
184 /// ConstantPrimitive<> wraps a primitive type.
185 template <typename T, Operand::OperandKind K>
186 class ConstantPrimitive : public Constant {
187 ConstantPrimitive() = delete;
188 ConstantPrimitive(const ConstantPrimitive &) = delete;
189 ConstantPrimitive &operator=(const ConstantPrimitive &) = delete;
190
191 public:
192 using PrimType = T;
193
create(GlobalContext * Ctx,Type Ty,PrimType Value)194 static ConstantPrimitive *create(GlobalContext *Ctx, Type Ty,
195 PrimType Value) {
196 auto *Const =
197 new (Ctx->allocate<ConstantPrimitive>()) ConstantPrimitive(Ty, Value);
198 Const->initShouldBePooled();
199 if (Const->getShouldBePooled())
200 Const->initName(Ctx);
201 return Const;
202 }
getValue()203 PrimType getValue() const { return Value; }
204 using Constant::emit;
205 void emit(TargetLowering *Target) const final;
206 using Constant::dump;
dump(const Cfg *,Ostream & Str)207 void dump(const Cfg *, Ostream &Str) const override {
208 if (BuildDefs::dump())
209 Str << getValue();
210 }
211
classof(const Operand * Operand)212 static bool classof(const Operand *Operand) {
213 return Operand->getKind() == K;
214 }
215
hashValue()216 SizeT hashValue() const override { return std::hash<PrimType>()(Value); }
217
shouldBeRandomizedOrPooled()218 virtual bool shouldBeRandomizedOrPooled() const override { return false; }
219
220 private:
ConstantPrimitive(Type Ty,PrimType Value)221 ConstantPrimitive(Type Ty, PrimType Value) : Constant(K, Ty), Value(Value) {}
222
initName(GlobalContext * Ctx)223 void initName(GlobalContext *Ctx) {
224 std::string Buffer;
225 llvm::raw_string_ostream Str(Buffer);
226 constexpr bool IsCompact = !BuildDefs::dump();
227 if (IsCompact) {
228 switch (getType()) {
229 case IceType_f32:
230 Str << "$F";
231 break;
232 case IceType_f64:
233 Str << "$D";
234 break;
235 default:
236 // For constant pooling diversification
237 Str << ".L$" << getType() << "$";
238 break;
239 }
240 } else {
241 Str << ".L$" << getType() << "$";
242 }
243 // Print hex characters byte by byte, starting from the most significant
244 // byte. NOTE: This ordering assumes Subzero runs on a little-endian
245 // platform. That means the possibility of different label names depending
246 // on the endian-ness of the platform where Subzero runs.
247 for (unsigned i = 0; i < sizeof(Value); ++i) {
248 constexpr unsigned HexWidthChars = 2;
249 unsigned Offset = sizeof(Value) - 1 - i;
250 Str << llvm::format_hex_no_prefix(
251 *(Offset + (const unsigned char *)&Value), HexWidthChars);
252 }
253 // For a floating-point value in DecorateAsm mode, also append the value in
254 // human-readable sprintf form, changing '+' to 'p' and '-' to 'm' to
255 // maintain valid asm labels.
256 if (BuildDefs::dump() && std::is_floating_point<PrimType>::value &&
257 getFlags().getDecorateAsm()) {
258 char Buf[30];
259 snprintf(Buf, llvm::array_lengthof(Buf), "$%g", (double)Value);
260 for (unsigned i = 0; i < llvm::array_lengthof(Buf) && Buf[i]; ++i) {
261 if (Buf[i] == '-')
262 Buf[i] = 'm';
263 else if (Buf[i] == '+')
264 Buf[i] = 'p';
265 }
266 Str << Buf;
267 }
268 LabelName = GlobalString::createWithString(Ctx, Str.str());
269 }
270
271 const PrimType Value;
272 };
273
274 using ConstantInteger32 = ConstantPrimitive<int32_t, Operand::kConstInteger32>;
275 using ConstantInteger64 = ConstantPrimitive<int64_t, Operand::kConstInteger64>;
276 using ConstantFloat = ConstantPrimitive<float, Operand::kConstFloat>;
277 using ConstantDouble = ConstantPrimitive<double, Operand::kConstDouble>;
278
279 template <>
dump(const Cfg *,Ostream & Str)280 inline void ConstantInteger32::dump(const Cfg *, Ostream &Str) const {
281 if (!BuildDefs::dump())
282 return;
283 if (getType() == IceType_i1)
284 Str << (getValue() ? "true" : "false");
285 else
286 Str << static_cast<int32_t>(getValue());
287 }
288
289 // =========== Immediate Randomization and Pooling routines ==============
290 // Specialization of the template member function for ConstantInteger32
291 // TODO(stichnot): try to move this specialization into a target-specific file.
shouldBeRandomizedOrPooled()292 template <> inline bool ConstantInteger32::shouldBeRandomizedOrPooled() const {
293 uint32_t Threshold = getFlags().getRandomizeAndPoolImmediatesThreshold();
294 if (getFlags().getRandomizeAndPoolImmediatesOption() == RPI_None)
295 return false;
296 if (getType() != IceType_i32 && getType() != IceType_i16 &&
297 getType() != IceType_i8)
298 return false;
299 // The Following checks if the signed representation of Value is between
300 // -Threshold/2 and +Threshold/2
301 bool largerThanThreshold = Threshold / 2 + Value >= Threshold;
302 return largerThanThreshold;
303 }
304
305 template <>
dump(const Cfg *,Ostream & Str)306 inline void ConstantInteger64::dump(const Cfg *, Ostream &Str) const {
307 if (!BuildDefs::dump())
308 return;
309 assert(getType() == IceType_i64);
310 Str << static_cast<int64_t>(getValue());
311 }
312
313 /// RelocOffset allows symbolic references in ConstantRelocatables' offsets,
314 /// e.g., 8 + LabelOffset, where label offset is the location (code or data)
315 /// of a Label that is only determinable during ELF emission.
316 class RelocOffset final {
317 RelocOffset(const RelocOffset &) = delete;
318 RelocOffset &operator=(const RelocOffset &) = delete;
319
320 public:
create(T * AllocOwner)321 template <typename T> static RelocOffset *create(T *AllocOwner) {
322 return new (AllocOwner->template allocate<RelocOffset>()) RelocOffset();
323 }
324
create(GlobalContext * Ctx,RelocOffsetT Value)325 static RelocOffset *create(GlobalContext *Ctx, RelocOffsetT Value) {
326 return new (Ctx->allocate<RelocOffset>()) RelocOffset(Value);
327 }
328
setSubtract(bool Value)329 void setSubtract(bool Value) { Subtract = Value; }
hasOffset()330 bool hasOffset() const { return HasOffset; }
331
getOffset()332 RelocOffsetT getOffset() const {
333 assert(HasOffset);
334 return Offset;
335 }
336
setOffset(const RelocOffsetT Value)337 void setOffset(const RelocOffsetT Value) {
338 assert(!HasOffset);
339 if (Subtract) {
340 assert(Value != std::numeric_limits<RelocOffsetT>::lowest());
341 Offset = -Value;
342 } else {
343 Offset = Value;
344 }
345 HasOffset = true;
346 }
347
348 private:
349 RelocOffset() = default;
RelocOffset(RelocOffsetT Offset)350 explicit RelocOffset(RelocOffsetT Offset) { setOffset(Offset); }
351
352 bool Subtract = false;
353 bool HasOffset = false;
354 RelocOffsetT Offset;
355 };
356
357 /// RelocatableTuple bundles the parameters that are used to construct an
358 /// ConstantRelocatable. It is done this way so that ConstantRelocatable can fit
359 /// into the global constant pool template mechanism.
360 class RelocatableTuple {
361 RelocatableTuple() = delete;
362 RelocatableTuple &operator=(const RelocatableTuple &) = delete;
363
364 public:
RelocatableTuple(const RelocOffsetT Offset,const RelocOffsetArray & OffsetExpr,GlobalString Name)365 RelocatableTuple(const RelocOffsetT Offset,
366 const RelocOffsetArray &OffsetExpr, GlobalString Name)
367 : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name) {}
368
RelocatableTuple(const RelocOffsetT Offset,const RelocOffsetArray & OffsetExpr,GlobalString Name,const std::string & EmitString)369 RelocatableTuple(const RelocOffsetT Offset,
370 const RelocOffsetArray &OffsetExpr, GlobalString Name,
371 const std::string &EmitString)
372 : Offset(Offset), OffsetExpr(OffsetExpr), Name(Name),
373 EmitString(EmitString) {}
374
375 RelocatableTuple(const RelocatableTuple &) = default;
376
377 const RelocOffsetT Offset;
378 const RelocOffsetArray OffsetExpr;
379 const GlobalString Name;
380 const std::string EmitString;
381 };
382
383 bool operator==(const RelocatableTuple &A, const RelocatableTuple &B);
384
385 /// ConstantRelocatable represents a symbolic constant combined with a fixed
386 /// offset.
387 class ConstantRelocatable : public Constant {
388 ConstantRelocatable() = delete;
389 ConstantRelocatable(const ConstantRelocatable &) = delete;
390 ConstantRelocatable &operator=(const ConstantRelocatable &) = delete;
391
392 public:
393 template <typename T>
create(T * AllocOwner,Type Ty,const RelocatableTuple & Tuple)394 static ConstantRelocatable *create(T *AllocOwner, Type Ty,
395 const RelocatableTuple &Tuple) {
396 return new (AllocOwner->template allocate<ConstantRelocatable>())
397 ConstantRelocatable(Ty, Tuple.Offset, Tuple.OffsetExpr, Tuple.Name,
398 Tuple.EmitString);
399 }
400
getOffset()401 RelocOffsetT getOffset() const {
402 RelocOffsetT Ret = Offset;
403 for (const auto *const OffsetReloc : OffsetExpr) {
404 Ret += OffsetReloc->getOffset();
405 }
406 return Ret;
407 }
408
getEmitString()409 const std::string &getEmitString() const { return EmitString; }
410
getName()411 GlobalString getName() const { return Name; }
412 using Constant::emit;
413 void emit(TargetLowering *Target) const final;
414 void emitWithoutPrefix(const TargetLowering *Target,
415 const char *Suffix = "") const;
416 using Constant::dump;
417 void dump(const Cfg *Func, Ostream &Str) const override;
418
classof(const Operand * Operand)419 static bool classof(const Operand *Operand) {
420 OperandKind Kind = Operand->getKind();
421 return Kind == kConstRelocatable;
422 }
423
424 private:
ConstantRelocatable(Type Ty,const RelocOffsetT Offset,const RelocOffsetArray & OffsetExpr,GlobalString Name,const std::string & EmitString)425 ConstantRelocatable(Type Ty, const RelocOffsetT Offset,
426 const RelocOffsetArray &OffsetExpr, GlobalString Name,
427 const std::string &EmitString)
428 : Constant(kConstRelocatable, Ty), Offset(Offset), OffsetExpr(OffsetExpr),
429 Name(Name), EmitString(EmitString) {}
430
431 const RelocOffsetT Offset; /// fixed, known offset to add
432 const RelocOffsetArray OffsetExpr; /// fixed, unknown offset to add
433 const GlobalString Name; /// optional for debug/dump
434 const std::string EmitString; /// optional for textual emission
435 };
436
437 /// ConstantUndef represents an unspecified bit pattern. Although it is legal to
438 /// lower ConstantUndef to any value, backends should try to make code
439 /// generation deterministic by lowering ConstantUndefs to 0.
440 class ConstantUndef : public Constant {
441 ConstantUndef() = delete;
442 ConstantUndef(const ConstantUndef &) = delete;
443 ConstantUndef &operator=(const ConstantUndef &) = delete;
444
445 public:
create(GlobalContext * Ctx,Type Ty)446 static ConstantUndef *create(GlobalContext *Ctx, Type Ty) {
447 return new (Ctx->allocate<ConstantUndef>()) ConstantUndef(Ty);
448 }
449
450 using Constant::emit;
451 void emit(TargetLowering *Target) const final;
452 using Constant::dump;
dump(const Cfg *,Ostream & Str)453 void dump(const Cfg *, Ostream &Str) const override {
454 if (BuildDefs::dump())
455 Str << "undef";
456 }
457
classof(const Operand * Operand)458 static bool classof(const Operand *Operand) {
459 return Operand->getKind() == kConstUndef;
460 }
461
462 private:
ConstantUndef(Type Ty)463 ConstantUndef(Type Ty) : Constant(kConstUndef, Ty) {}
464 };
465
466 /// RegNumT is for holding target-specific register numbers, plus the sentinel
467 /// value if no register is assigned. Its public ctor allows direct use of enum
468 /// values, such as RegNumT(Reg_eax), but not things like RegNumT(Reg_eax+1).
469 /// This is to try to prevent inappropriate assumptions about enum ordering. If
470 /// needed, the fromInt() method can be used, such as when a RegNumT is based
471 /// on a bitvector index.
472 class RegNumT {
473 public:
474 using BaseType = uint32_t;
475 RegNumT() = default;
476 RegNumT(const RegNumT &) = default;
477 template <typename AnyEnum>
478 RegNumT(AnyEnum Value,
479 typename std::enable_if<std::is_enum<AnyEnum>::value, int>::type = 0)
Value(Value)480 : Value(Value) {
481 validate(Value);
482 }
483 RegNumT &operator=(const RegNumT &) = default;
484 operator unsigned() const { return Value; }
485 /// Asserts that the register is valid, i.e. not NoRegisterValue. Note that
486 /// the ctor already does the target-specific limit check.
assertIsValid()487 void assertIsValid() const { assert(Value != NoRegisterValue); }
fromInt(BaseType Value)488 static RegNumT fromInt(BaseType Value) { return RegNumT(Value); }
489 /// Marks cases that inappropriately add/subtract RegNumT values, and
490 /// therefore need to be fixed because they make assumptions about register
491 /// enum value ordering. TODO(stichnot): Remove fixme() as soon as all
492 /// current uses are fixed/removed.
fixme(BaseType Value)493 static RegNumT fixme(BaseType Value) { return RegNumT(Value); }
494 /// The target's staticInit() method should call setLimit() to register the
495 /// upper bound of allowable values.
setLimit(BaseType Value)496 static void setLimit(BaseType Value) {
497 // Make sure it's only called once.
498 assert(Limit == 0);
499 assert(Value != 0);
500 Limit = Value;
501 }
502 // Define NoRegisterValue as an enum value so that it can be used as an
503 // argument for the public ctor if desired.
504 enum : BaseType { NoRegisterValue = std::numeric_limits<BaseType>::max() };
505
hasValue()506 bool hasValue() const { return Value != NoRegisterValue; }
hasNoValue()507 bool hasNoValue() const { return !hasValue(); }
508
509 private:
510 BaseType Value = NoRegisterValue;
511 static BaseType Limit;
512 /// Private ctor called only by fromInt() and fixme().
RegNumT(BaseType Value)513 RegNumT(BaseType Value) : Value(Value) { validate(Value); }
514 /// The ctor calls this to validate against the target-supplied limit.
validate(BaseType Value)515 static void validate(BaseType Value) {
516 (void)Value;
517 assert(Value == NoRegisterValue || Value < Limit);
518 }
519 /// Disallow operators that inappropriately make assumptions about register
520 /// enum value ordering.
521 bool operator<(const RegNumT &) = delete;
522 bool operator<=(const RegNumT &) = delete;
523 bool operator>(const RegNumT &) = delete;
524 bool operator>=(const RegNumT &) = delete;
525 };
526
527 /// RegNumBVIter wraps SmallBitVector so that instead of this pattern:
528 ///
529 /// for (int i = V.find_first(); i != -1; i = V.find_next(i)) {
530 /// RegNumT RegNum = RegNumT::fromInt(i);
531 /// ...
532 /// }
533 ///
534 /// this cleaner pattern can be used:
535 ///
536 /// for (RegNumT RegNum : RegNumBVIter(V)) {
537 /// ...
538 /// }
539 template <class B> class RegNumBVIterImpl {
540 using T = B;
541 static constexpr int Sentinel = -1;
542 RegNumBVIterImpl() = delete;
543
544 public:
545 class Iterator {
546 Iterator() = delete;
547 Iterator &operator=(const Iterator &) = delete;
548
549 public:
Iterator(const T & V)550 explicit Iterator(const T &V) : V(V), Current(V.find_first()) {}
Iterator(const T & V,int Value)551 Iterator(const T &V, int Value) : V(V), Current(Value) {}
552 Iterator(const Iterator &) = default;
553 RegNumT operator*() {
554 assert(Current != Sentinel);
555 return RegNumT::fromInt(Current);
556 }
557 Iterator &operator++() {
558 assert(Current != Sentinel);
559 Current = V.find_next(Current);
560 return *this;
561 }
562 bool operator!=(Iterator &Other) { return Current != Other.Current; }
563
564 private:
565 const T &V;
566 int Current;
567 };
568
569 RegNumBVIterImpl(const RegNumBVIterImpl &) = default;
570 RegNumBVIterImpl &operator=(const RegNumBVIterImpl &) = delete;
RegNumBVIterImpl(const T & V)571 explicit RegNumBVIterImpl(const T &V) : V(V) {}
begin()572 Iterator begin() { return Iterator(V); }
end()573 Iterator end() { return Iterator(V, Sentinel); }
574
575 private:
576 const T &V;
577 };
578
RegNumBVIter(const B & BV)579 template <class B> RegNumBVIterImpl<B> RegNumBVIter(const B &BV) {
580 return RegNumBVIterImpl<B>(BV);
581 }
582
583 /// RegWeight is a wrapper for a uint32_t weight value, with a special value
584 /// that represents infinite weight, and an addWeight() method that ensures that
585 /// W+infinity=infinity.
586 class RegWeight {
587 public:
588 using BaseType = uint32_t;
589 RegWeight() = default;
RegWeight(BaseType Weight)590 explicit RegWeight(BaseType Weight) : Weight(Weight) {}
591 RegWeight(const RegWeight &) = default;
592 RegWeight &operator=(const RegWeight &) = default;
593 constexpr static BaseType Inf = ~0; /// Force regalloc to give a register
594 constexpr static BaseType Zero = 0; /// Force regalloc NOT to give a register
595 constexpr static BaseType Max = Inf - 1; /// Max natural weight.
addWeight(BaseType Delta)596 void addWeight(BaseType Delta) {
597 if (Delta == Inf)
598 Weight = Inf;
599 else if (Weight != Inf)
600 if (Utils::add_overflow(Weight, Delta, &Weight) || Weight == Inf)
601 Weight = Max;
602 }
addWeight(const RegWeight & Other)603 void addWeight(const RegWeight &Other) { addWeight(Other.Weight); }
setWeight(BaseType Val)604 void setWeight(BaseType Val) { Weight = Val; }
getWeight()605 BaseType getWeight() const { return Weight; }
606
607 private:
608 BaseType Weight = 0;
609 };
610 Ostream &operator<<(Ostream &Str, const RegWeight &W);
611 bool operator<(const RegWeight &A, const RegWeight &B);
612 bool operator<=(const RegWeight &A, const RegWeight &B);
613 bool operator==(const RegWeight &A, const RegWeight &B);
614
615 /// LiveRange is a set of instruction number intervals representing a variable's
616 /// live range. Generally there is one interval per basic block where the
617 /// variable is live, but adjacent intervals get coalesced into a single
618 /// interval.
619 class LiveRange {
620 public:
621 using RangeElementType = std::pair<InstNumberT, InstNumberT>;
622 /// RangeType is arena-allocated from the Cfg's allocator.
623 using RangeType = CfgVector<RangeElementType>;
624 LiveRange() = default;
625 /// Special constructor for building a kill set. The advantage is that we can
626 /// reserve the right amount of space in advance.
LiveRange(const CfgVector<InstNumberT> & Kills)627 explicit LiveRange(const CfgVector<InstNumberT> &Kills) {
628 Range.reserve(Kills.size());
629 for (InstNumberT I : Kills)
630 addSegment(I, I);
631 }
632 LiveRange(const LiveRange &) = default;
633 LiveRange &operator=(const LiveRange &) = default;
634
reset()635 void reset() {
636 Range.clear();
637 untrim();
638 }
639 void addSegment(InstNumberT Start, InstNumberT End, CfgNode *Node = nullptr);
640 void addSegment(RangeElementType Segment, CfgNode *Node = nullptr) {
641 addSegment(Segment.first, Segment.second, Node);
642 }
643
644 bool endsBefore(const LiveRange &Other) const;
645 bool overlaps(const LiveRange &Other, bool UseTrimmed = false) const;
646 bool overlapsInst(InstNumberT OtherBegin, bool UseTrimmed = false) const;
647 bool containsValue(InstNumberT Value, bool IsDest) const;
isEmpty()648 bool isEmpty() const { return Range.empty(); }
getStart()649 InstNumberT getStart() const {
650 return Range.empty() ? -1 : Range.begin()->first;
651 }
getEnd()652 InstNumberT getEnd() const {
653 return Range.empty() ? -1 : Range.rbegin()->second;
654 }
655
untrim()656 void untrim() { TrimmedBegin = Range.begin(); }
657 void trim(InstNumberT Lower);
658
659 void dump(Ostream &Str) const;
660
getNumSegments()661 SizeT getNumSegments() const { return Range.size(); }
662
getSegments()663 const RangeType &getSegments() const { return Range; }
getNodeForSegment(InstNumberT Begin)664 CfgNode *getNodeForSegment(InstNumberT Begin) {
665 auto Iter = NodeMap.find(Begin);
666 assert(Iter != NodeMap.end());
667 return Iter->second;
668 }
669
670 private:
671 RangeType Range;
672 CfgUnorderedMap<InstNumberT, CfgNode *> NodeMap;
673 /// TrimmedBegin is an optimization for the overlaps() computation. Since the
674 /// linear-scan algorithm always calls it as overlaps(Cur) and Cur advances
675 /// monotonically according to live range start, we can optimize overlaps() by
676 /// ignoring all segments that end before the start of Cur's range. The
677 /// linear-scan code enables this by calling trim() on the ranges of interest
678 /// as Cur advances. Note that linear-scan also has to initialize TrimmedBegin
679 /// at the beginning by calling untrim().
680 RangeType::const_iterator TrimmedBegin;
681 };
682
683 Ostream &operator<<(Ostream &Str, const LiveRange &L);
684
685 /// Variable represents an operand that is register-allocated or
686 /// stack-allocated. If it is register-allocated, it will ultimately have a
687 /// valid RegNum field.
688 class Variable : public Operand {
689 Variable() = delete;
690 Variable(const Variable &) = delete;
691 Variable &operator=(const Variable &) = delete;
692
693 enum RegRequirement : uint8_t {
694 RR_MayHaveRegister,
695 RR_MustHaveRegister,
696 RR_MustNotHaveRegister,
697 };
698
699 public:
create(Cfg * Func,Type Ty,SizeT Index)700 static Variable *create(Cfg *Func, Type Ty, SizeT Index) {
701 return new (Func->allocate<Variable>())
702 Variable(Func, kVariable, Ty, Index);
703 }
704
getIndex()705 SizeT getIndex() const { return Number; }
getName()706 std::string getName() const {
707 if (Name.hasStdString())
708 return Name.toString();
709 return "__" + std::to_string(getIndex());
710 }
setName(const Cfg * Func,const std::string & NewName)711 virtual void setName(const Cfg *Func, const std::string &NewName) {
712 if (NewName.empty())
713 return;
714 Name = VariableString::createWithString(Func, NewName);
715 }
716
getIsArg()717 bool getIsArg() const { return IsArgument; }
718 virtual void setIsArg(bool Val = true) { IsArgument = Val; }
getIsImplicitArg()719 bool getIsImplicitArg() const { return IsImplicitArgument; }
720 void setIsImplicitArg(bool Val = true) { IsImplicitArgument = Val; }
721
setIgnoreLiveness()722 void setIgnoreLiveness() { IgnoreLiveness = true; }
getIgnoreLiveness()723 bool getIgnoreLiveness() const {
724 return IgnoreLiveness || IsRematerializable;
725 }
726
727 /// Returns true if the variable either has a definite stack offset, or has
728 /// the UndeterminedStackOffset such that it is guaranteed to have a definite
729 /// stack offset at emission time.
hasStackOffset()730 bool hasStackOffset() const { return StackOffset != InvalidStackOffset; }
731 /// Returns true if the variable has a stack offset that is known at this
732 /// time.
hasKnownStackOffset()733 bool hasKnownStackOffset() const {
734 return StackOffset != InvalidStackOffset &&
735 StackOffset != UndeterminedStackOffset;
736 }
getStackOffset()737 int32_t getStackOffset() const {
738 assert(hasKnownStackOffset());
739 return StackOffset;
740 }
setStackOffset(int32_t Offset)741 void setStackOffset(int32_t Offset) { StackOffset = Offset; }
742 /// Set a "placeholder" stack offset before its actual offset has been
743 /// determined.
setHasStackOffset()744 void setHasStackOffset() {
745 if (!hasStackOffset())
746 StackOffset = UndeterminedStackOffset;
747 }
748 /// Returns the variable's stack offset in symbolic form, to improve
749 /// readability in DecorateAsm mode.
getSymbolicStackOffset()750 std::string getSymbolicStackOffset() const {
751 if (!BuildDefs::dump())
752 return "";
753 return ".L$lv$" + getName();
754 }
755
hasReg()756 bool hasReg() const { return getRegNum().hasValue(); }
getRegNum()757 RegNumT getRegNum() const { return RegNum; }
setRegNum(RegNumT NewRegNum)758 void setRegNum(RegNumT NewRegNum) {
759 // Regnum shouldn't be set more than once.
760 assert(!hasReg() || RegNum == NewRegNum);
761 RegNum = NewRegNum;
762 }
hasRegTmp()763 bool hasRegTmp() const { return getRegNumTmp().hasValue(); }
getRegNumTmp()764 RegNumT getRegNumTmp() const { return RegNumTmp; }
setRegNumTmp(RegNumT NewRegNum)765 void setRegNumTmp(RegNumT NewRegNum) { RegNumTmp = NewRegNum; }
766
767 RegWeight getWeight(const Cfg *Func) const;
768
setMustHaveReg()769 void setMustHaveReg() { RegRequirement = RR_MustHaveRegister; }
mustHaveReg()770 bool mustHaveReg() const { return RegRequirement == RR_MustHaveRegister; }
setMustNotHaveReg()771 void setMustNotHaveReg() { RegRequirement = RR_MustNotHaveRegister; }
mustNotHaveReg()772 bool mustNotHaveReg() const {
773 return RegRequirement == RR_MustNotHaveRegister;
774 }
mayHaveReg()775 bool mayHaveReg() const { return RegRequirement == RR_MayHaveRegister; }
setRematerializable(RegNumT NewRegNum,int32_t NewOffset)776 void setRematerializable(RegNumT NewRegNum, int32_t NewOffset) {
777 IsRematerializable = true;
778 setRegNum(NewRegNum);
779 setStackOffset(NewOffset);
780 setMustHaveReg();
781 }
isRematerializable()782 bool isRematerializable() const { return IsRematerializable; }
783
setRegClass(uint8_t RC)784 void setRegClass(uint8_t RC) { RegisterClass = static_cast<RegClass>(RC); }
getRegClass()785 RegClass getRegClass() const { return RegisterClass; }
786
getLiveRange()787 LiveRange &getLiveRange() { return Live; }
getLiveRange()788 const LiveRange &getLiveRange() const { return Live; }
setLiveRange(const LiveRange & Range)789 void setLiveRange(const LiveRange &Range) { Live = Range; }
resetLiveRange()790 void resetLiveRange() { Live.reset(); }
791 void addLiveRange(InstNumberT Start, InstNumberT End,
792 CfgNode *Node = nullptr) {
793 assert(!getIgnoreLiveness());
794 Live.addSegment(Start, End, Node);
795 }
trimLiveRange(InstNumberT Start)796 void trimLiveRange(InstNumberT Start) { Live.trim(Start); }
untrimLiveRange()797 void untrimLiveRange() { Live.untrim(); }
rangeEndsBefore(const Variable * Other)798 bool rangeEndsBefore(const Variable *Other) const {
799 return Live.endsBefore(Other->Live);
800 }
rangeOverlaps(const Variable * Other)801 bool rangeOverlaps(const Variable *Other) const {
802 constexpr bool UseTrimmed = true;
803 return Live.overlaps(Other->Live, UseTrimmed);
804 }
rangeOverlapsStart(const Variable * Other)805 bool rangeOverlapsStart(const Variable *Other) const {
806 constexpr bool UseTrimmed = true;
807 return Live.overlapsInst(Other->Live.getStart(), UseTrimmed);
808 }
809
810 /// Creates a temporary copy of the variable with a different type. Used
811 /// primarily for syntactic correctness of textual assembly emission. Note
812 /// that only basic information is copied, in particular not IsArgument,
813 /// IsImplicitArgument, IgnoreLiveness, RegNumTmp, Live, LoVar, HiVar,
814 /// VarsReal. If NewRegNum.hasValue(), then that register assignment is made
815 /// instead of copying the existing assignment.
816 const Variable *asType(const Cfg *Func, Type Ty, RegNumT NewRegNum) const;
817
818 void emit(const Cfg *Func) const override;
819 using Operand::dump;
820 void dump(const Cfg *Func, Ostream &Str) const override;
821
822 /// Return reg num of base register, if different from stack/frame register.
getBaseRegNum()823 virtual RegNumT getBaseRegNum() const { return RegNumT(); }
824
825 /// Access the LinkedTo field.
setLinkedTo(Variable * Var)826 void setLinkedTo(Variable *Var) { LinkedTo = Var; }
getLinkedTo()827 Variable *getLinkedTo() const { return LinkedTo; }
828 /// Follow the LinkedTo chain up to the furthest ancestor.
getLinkedToRoot()829 Variable *getLinkedToRoot() const {
830 Variable *Root = LinkedTo;
831 if (Root == nullptr)
832 return nullptr;
833 while (Root->LinkedTo != nullptr)
834 Root = Root->LinkedTo;
835 return Root;
836 }
837 /// Follow the LinkedTo chain up to the furthest stack-allocated ancestor.
838 /// This is only certain to be accurate after register allocation and stack
839 /// slot assignment have completed.
getLinkedToStackRoot()840 Variable *getLinkedToStackRoot() const {
841 Variable *FurthestStackVar = nullptr;
842 for (Variable *Root = LinkedTo; Root != nullptr; Root = Root->LinkedTo) {
843 if (!Root->hasReg() && Root->hasStackOffset()) {
844 FurthestStackVar = Root;
845 }
846 }
847 return FurthestStackVar;
848 }
849
classof(const Operand * Operand)850 static bool classof(const Operand *Operand) {
851 OperandKind Kind = Operand->getKind();
852 return Kind >= kVariable && Kind <= kVariable_Max;
853 }
854
hashValue()855 SizeT hashValue() const override { return std::hash<SizeT>()(getIndex()); }
856
857 protected:
Variable(const Cfg * Func,OperandKind K,Type Ty,SizeT Index)858 Variable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index)
859 : Operand(K, Ty), Number(Index),
860 Name(VariableString::createWithoutString(Func)),
861 RegisterClass(static_cast<RegClass>(Ty)) {
862 Vars = VarsReal;
863 Vars[0] = this;
864 NumVars = 1;
865 }
866 /// Number is unique across all variables, and is used as a (bit)vector index
867 /// for liveness analysis.
868 const SizeT Number;
869 VariableString Name;
870 bool IsArgument = false;
871 bool IsImplicitArgument = false;
872 /// IgnoreLiveness means that the variable should be ignored when constructing
873 /// and validating live ranges. This is usually reserved for the stack
874 /// pointer and other physical registers specifically referenced by name.
875 bool IgnoreLiveness = false;
876 // If IsRematerializable, RegNum keeps track of which register (stack or frame
877 // pointer), and StackOffset is the known offset from that register.
878 bool IsRematerializable = false;
879 RegRequirement RegRequirement = RR_MayHaveRegister;
880 RegClass RegisterClass;
881 /// RegNum is the allocated register, (as long as RegNum.hasValue() is true).
882 RegNumT RegNum;
883 /// RegNumTmp is the tentative assignment during register allocation.
884 RegNumT RegNumTmp;
885 static constexpr int32_t InvalidStackOffset =
886 std::numeric_limits<int32_t>::min();
887 static constexpr int32_t UndeterminedStackOffset =
888 1 + std::numeric_limits<int32_t>::min();
889 /// StackOffset is the canonical location on stack (only if
890 /// RegNum.hasNoValue() || IsArgument).
891 int32_t StackOffset = InvalidStackOffset;
892 LiveRange Live;
893 /// VarsReal (and Operand::Vars) are set up such that Vars[0] == this.
894 Variable *VarsReal[1];
895 /// This Variable may be "linked" to another Variable, such that if neither
896 /// Variable gets a register, they are guaranteed to share a stack location.
897 Variable *LinkedTo = nullptr;
898 };
899
900 // Variable64On32 represents a 64-bit variable on a 32-bit architecture. In
901 // this situation the variable must be split into a low and a high word.
902 class Variable64On32 : public Variable {
903 Variable64On32() = delete;
904 Variable64On32(const Variable64On32 &) = delete;
905 Variable64On32 &operator=(const Variable64On32 &) = delete;
906
907 public:
create(Cfg * Func,Type Ty,SizeT Index)908 static Variable64On32 *create(Cfg *Func, Type Ty, SizeT Index) {
909 return new (Func->allocate<Variable64On32>())
910 Variable64On32(Func, kVariable64On32, Ty, Index);
911 }
912
setName(const Cfg * Func,const std::string & NewName)913 void setName(const Cfg *Func, const std::string &NewName) override {
914 Variable::setName(Func, NewName);
915 if (LoVar && HiVar) {
916 LoVar->setName(Func, getName() + "__lo");
917 HiVar->setName(Func, getName() + "__hi");
918 }
919 }
920
921 void setIsArg(bool Val = true) override {
922 Variable::setIsArg(Val);
923 if (LoVar && HiVar) {
924 LoVar->setIsArg(Val);
925 HiVar->setIsArg(Val);
926 }
927 }
928
getLo()929 Variable *getLo() const {
930 assert(LoVar != nullptr);
931 return LoVar;
932 }
getHi()933 Variable *getHi() const {
934 assert(HiVar != nullptr);
935 return HiVar;
936 }
937
initHiLo(Cfg * Func)938 void initHiLo(Cfg *Func) {
939 assert(LoVar == nullptr);
940 assert(HiVar == nullptr);
941 LoVar = Func->makeVariable(IceType_i32);
942 HiVar = Func->makeVariable(IceType_i32);
943 LoVar->setIsArg(getIsArg());
944 HiVar->setIsArg(getIsArg());
945 if (BuildDefs::dump()) {
946 LoVar->setName(Func, getName() + "__lo");
947 HiVar->setName(Func, getName() + "__hi");
948 }
949 }
950
classof(const Operand * Operand)951 static bool classof(const Operand *Operand) {
952 OperandKind Kind = Operand->getKind();
953 return Kind == kVariable64On32;
954 }
955
956 protected:
Variable64On32(const Cfg * Func,OperandKind K,Type Ty,SizeT Index)957 Variable64On32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index)
958 : Variable(Func, K, Ty, Index) {
959 assert(typeWidthInBytes(Ty) == 8);
960 }
961
962 Variable *LoVar = nullptr;
963 Variable *HiVar = nullptr;
964 };
965
966 // VariableVecOn32 represents a 128-bit vector variable on a 32-bit
967 // architecture. In this case the variable must be split into 4 containers.
968 class VariableVecOn32 : public Variable {
969 VariableVecOn32() = delete;
970 VariableVecOn32(const VariableVecOn32 &) = delete;
971 VariableVecOn32 &operator=(const VariableVecOn32 &) = delete;
972
973 public:
create(Cfg * Func,Type Ty,SizeT Index)974 static VariableVecOn32 *create(Cfg *Func, Type Ty, SizeT Index) {
975 return new (Func->allocate<VariableVecOn32>())
976 VariableVecOn32(Func, kVariableVecOn32, Ty, Index);
977 }
978
setName(const Cfg * Func,const std::string & NewName)979 void setName(const Cfg *Func, const std::string &NewName) override {
980 Variable::setName(Func, NewName);
981 if (!Containers.empty()) {
982 for (SizeT i = 0; i < ContainersPerVector; ++i) {
983 Containers[i]->setName(Func, getName() + "__cont" + std::to_string(i));
984 }
985 }
986 }
987
988 void setIsArg(bool Val = true) override {
989 Variable::setIsArg(Val);
990 for (Variable *Var : Containers) {
991 Var->setIsArg(getIsArg());
992 }
993 }
994
getContainers()995 const VarList &getContainers() const { return Containers; }
996
initVecElement(Cfg * Func)997 void initVecElement(Cfg *Func) {
998 for (SizeT i = 0; i < ContainersPerVector; ++i) {
999 Variable *Var = Func->makeVariable(IceType_i32);
1000 Var->setIsArg(getIsArg());
1001 if (BuildDefs::dump()) {
1002 Var->setName(Func, getName() + "__cont" + std::to_string(i));
1003 }
1004 Containers.push_back(Var);
1005 }
1006 }
1007
classof(const Operand * Operand)1008 static bool classof(const Operand *Operand) {
1009 OperandKind Kind = Operand->getKind();
1010 return Kind == kVariableVecOn32;
1011 }
1012
1013 // A 128-bit vector value is mapped onto 4 32-bit register values.
1014 static constexpr SizeT ContainersPerVector = 4;
1015
1016 protected:
VariableVecOn32(const Cfg * Func,OperandKind K,Type Ty,SizeT Index)1017 VariableVecOn32(const Cfg *Func, OperandKind K, Type Ty, SizeT Index)
1018 : Variable(Func, K, Ty, Index) {
1019 assert(typeWidthInBytes(Ty) ==
1020 ContainersPerVector * typeWidthInBytes(IceType_i32));
1021 }
1022
1023 VarList Containers;
1024 };
1025
1026 enum MetadataKind {
1027 VMK_Uses, /// Track only uses, not defs
1028 VMK_SingleDefs, /// Track uses+defs, but only record single def
1029 VMK_All /// Track uses+defs, including full def list
1030 };
1031 using InstDefList = CfgVector<const Inst *>;
1032
1033 /// VariableTracking tracks the metadata for a single variable. It is
1034 /// only meant to be used internally by VariablesMetadata.
1035 class VariableTracking {
1036 public:
1037 enum MultiDefState {
1038 // TODO(stichnot): Consider using just a simple counter.
1039 MDS_Unknown,
1040 MDS_SingleDef,
1041 MDS_MultiDefSingleBlock,
1042 MDS_MultiDefMultiBlock
1043 };
1044 enum MultiBlockState {
1045 MBS_Unknown, // Not yet initialized, so be conservative
1046 MBS_NoUses, // Known to have no uses
1047 MBS_SingleBlock, // All uses in are in a single block
1048 MBS_MultiBlock // Several uses across several blocks
1049 };
1050 VariableTracking() = default;
1051 VariableTracking(const VariableTracking &) = default;
1052 VariableTracking &operator=(const VariableTracking &) = default;
VariableTracking(MultiBlockState MultiBlock)1053 VariableTracking(MultiBlockState MultiBlock) : MultiBlock(MultiBlock) {}
getMultiDef()1054 MultiDefState getMultiDef() const { return MultiDef; }
getMultiBlock()1055 MultiBlockState getMultiBlock() const { return MultiBlock; }
1056 const Inst *getFirstDefinitionSingleBlock() const;
1057 const Inst *getSingleDefinition() const;
1058 const Inst *getFirstDefinition() const;
getLatterDefinitions()1059 const InstDefList &getLatterDefinitions() const { return Definitions; }
getNode()1060 CfgNode *getNode() const { return SingleUseNode; }
getUseWeight()1061 RegWeight getUseWeight() const { return UseWeight; }
1062 void markUse(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node,
1063 bool IsImplicit);
1064 void markDef(MetadataKind TrackingKind, const Inst *Instr, CfgNode *Node);
1065
1066 private:
1067 MultiDefState MultiDef = MDS_Unknown;
1068 MultiBlockState MultiBlock = MBS_Unknown;
1069 CfgNode *SingleUseNode = nullptr;
1070 CfgNode *SingleDefNode = nullptr;
1071 /// All definitions of the variable are collected in Definitions[] (except for
1072 /// the earliest definition), in increasing order of instruction number.
1073 InstDefList Definitions; /// Only used if Kind==VMK_All
1074 const Inst *FirstOrSingleDefinition = nullptr;
1075 RegWeight UseWeight;
1076 };
1077
1078 /// VariablesMetadata analyzes and summarizes the metadata for the complete set
1079 /// of Variables.
1080 class VariablesMetadata {
1081 VariablesMetadata() = delete;
1082 VariablesMetadata(const VariablesMetadata &) = delete;
1083 VariablesMetadata &operator=(const VariablesMetadata &) = delete;
1084
1085 public:
VariablesMetadata(const Cfg * Func)1086 explicit VariablesMetadata(const Cfg *Func) : Func(Func) {}
1087 /// Initialize the state by traversing all instructions/variables in the CFG.
1088 void init(MetadataKind TrackingKind);
1089 /// Add a single node. This is called by init(), and can be called
1090 /// incrementally from elsewhere, e.g. after edge-splitting.
1091 void addNode(CfgNode *Node);
getKind()1092 MetadataKind getKind() const { return Kind; }
1093 /// Returns whether the given Variable is tracked in this object. It should
1094 /// only return false if changes were made to the CFG after running init(), in
1095 /// which case the state is stale and the results shouldn't be trusted (but it
1096 /// may be OK e.g. for dumping).
isTracked(const Variable * Var)1097 bool isTracked(const Variable *Var) const {
1098 return Var->getIndex() < Metadata.size();
1099 }
1100
1101 /// Returns whether the given Variable has multiple definitions.
1102 bool isMultiDef(const Variable *Var) const;
1103 /// Returns the first definition instruction of the given Variable. This is
1104 /// only valid for variables whose definitions are all within the same block,
1105 /// e.g. T after the lowered sequence "T=B; T+=C; A=T", for which
1106 /// getFirstDefinitionSingleBlock(T) would return the "T=B" instruction. For
1107 /// variables with definitions span multiple blocks, nullptr is returned.
1108 const Inst *getFirstDefinitionSingleBlock(const Variable *Var) const;
1109 /// Returns the definition instruction of the given Variable, when the
1110 /// variable has exactly one definition. Otherwise, nullptr is returned.
1111 const Inst *getSingleDefinition(const Variable *Var) const;
1112 /// getFirstDefinition() and getLatterDefinitions() are used together to
1113 /// return the complete set of instructions that define the given Variable,
1114 /// regardless of whether the definitions are within the same block (in
1115 /// contrast to getFirstDefinitionSingleBlock).
1116 const Inst *getFirstDefinition(const Variable *Var) const;
1117 const InstDefList &getLatterDefinitions(const Variable *Var) const;
1118
1119 /// Returns whether the given Variable is live across multiple blocks. Mainly,
1120 /// this is used to partition Variables into single-block versus multi-block
1121 /// sets for leveraging sparsity in liveness analysis, and for implementing
1122 /// simple stack slot coalescing. As a special case, function arguments are
1123 /// always considered multi-block because they are live coming into the entry
1124 /// block.
1125 bool isMultiBlock(const Variable *Var) const;
1126 bool isSingleBlock(const Variable *Var) const;
1127 /// Returns the node that the given Variable is used in, assuming
1128 /// isMultiBlock() returns false. Otherwise, nullptr is returned.
1129 CfgNode *getLocalUseNode(const Variable *Var) const;
1130
1131 /// Returns the total use weight computed as the sum of uses multiplied by a
1132 /// loop nest depth factor for each use.
1133 RegWeight getUseWeight(const Variable *Var) const;
1134
1135 private:
1136 const Cfg *Func;
1137 MetadataKind Kind;
1138 CfgVector<VariableTracking> Metadata;
1139 static const InstDefList *NoDefinitions;
1140 };
1141
1142 /// BooleanVariable represents a variable that was the zero-extended result of a
1143 /// comparison. It maintains a pointer to its original i1 source so that the
1144 /// WASM frontend can avoid adding needless comparisons.
1145 class BooleanVariable : public Variable {
1146 BooleanVariable() = delete;
1147 BooleanVariable(const BooleanVariable &) = delete;
1148 BooleanVariable &operator=(const BooleanVariable &) = delete;
1149
BooleanVariable(const Cfg * Func,OperandKind K,Type Ty,SizeT Index)1150 BooleanVariable(const Cfg *Func, OperandKind K, Type Ty, SizeT Index)
1151 : Variable(Func, K, Ty, Index) {}
1152
1153 public:
create(Cfg * Func,Type Ty,SizeT Index)1154 static BooleanVariable *create(Cfg *Func, Type Ty, SizeT Index) {
1155 return new (Func->allocate<BooleanVariable>())
1156 BooleanVariable(Func, kVariable, Ty, Index);
1157 }
1158
asBoolean()1159 virtual Variable *asBoolean() { return BoolSource; }
1160
setBoolSource(Variable * Src)1161 void setBoolSource(Variable *Src) { BoolSource = Src; }
1162
classof(const Operand * Operand)1163 static bool classof(const Operand *Operand) {
1164 return Operand->getKind() == kVariableBoolean;
1165 }
1166
1167 private:
1168 Variable *BoolSource = nullptr;
1169 };
1170
1171 } // end of namespace Ice
1172
1173 #endif // SUBZERO_SRC_ICEOPERAND_H
1174