• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include "test/jemalloc_test.h"
2 
3 static const uint64_t smoothstep_tab[] = {
4 #define	STEP(step, h, x, y) \
5 	h,
6 	SMOOTHSTEP
7 #undef STEP
8 };
9 
TEST_BEGIN(test_smoothstep_integral)10 TEST_BEGIN(test_smoothstep_integral)
11 {
12 	uint64_t sum, min, max;
13 	unsigned i;
14 
15 	/*
16 	 * The integral of smoothstep in the [0..1] range equals 1/2.  Verify
17 	 * that the fixed point representation's integral is no more than
18 	 * rounding error distant from 1/2.  Regarding rounding, each table
19 	 * element is rounded down to the nearest fixed point value, so the
20 	 * integral may be off by as much as SMOOTHSTEP_NSTEPS ulps.
21 	 */
22 	sum = 0;
23 	for (i = 0; i < SMOOTHSTEP_NSTEPS; i++)
24 		sum += smoothstep_tab[i];
25 
26 	max = (KQU(1) << (SMOOTHSTEP_BFP-1)) * (SMOOTHSTEP_NSTEPS+1);
27 	min = max - SMOOTHSTEP_NSTEPS;
28 
29 	assert_u64_ge(sum, min,
30 	    "Integral too small, even accounting for truncation");
31 	assert_u64_le(sum, max, "Integral exceeds 1/2");
32 	if (false) {
33 		malloc_printf("%"FMTu64" ulps under 1/2 (limit %d)\n",
34 		    max - sum, SMOOTHSTEP_NSTEPS);
35 	}
36 }
37 TEST_END
38 
TEST_BEGIN(test_smoothstep_monotonic)39 TEST_BEGIN(test_smoothstep_monotonic)
40 {
41 	uint64_t prev_h;
42 	unsigned i;
43 
44 	/*
45 	 * The smoothstep function is monotonic in [0..1], i.e. its slope is
46 	 * non-negative.  In practice we want to parametrize table generation
47 	 * such that piecewise slope is greater than zero, but do not require
48 	 * that here.
49 	 */
50 	prev_h = 0;
51 	for (i = 0; i < SMOOTHSTEP_NSTEPS; i++) {
52 		uint64_t h = smoothstep_tab[i];
53 		assert_u64_ge(h, prev_h, "Piecewise non-monotonic, i=%u", i);
54 		prev_h = h;
55 	}
56 	assert_u64_eq(smoothstep_tab[SMOOTHSTEP_NSTEPS-1],
57 	    (KQU(1) << SMOOTHSTEP_BFP), "Last step must equal 1");
58 }
59 TEST_END
60 
TEST_BEGIN(test_smoothstep_slope)61 TEST_BEGIN(test_smoothstep_slope)
62 {
63 	uint64_t prev_h, prev_delta;
64 	unsigned i;
65 
66 	/*
67 	 * The smoothstep slope strictly increases until x=0.5, and then
68 	 * strictly decreases until x=1.0.  Verify the slightly weaker
69 	 * requirement of monotonicity, so that inadequate table precision does
70 	 * not cause false test failures.
71 	 */
72 	prev_h = 0;
73 	prev_delta = 0;
74 	for (i = 0; i < SMOOTHSTEP_NSTEPS / 2 + SMOOTHSTEP_NSTEPS % 2; i++) {
75 		uint64_t h = smoothstep_tab[i];
76 		uint64_t delta = h - prev_h;
77 		assert_u64_ge(delta, prev_delta,
78 		    "Slope must monotonically increase in 0.0 <= x <= 0.5, "
79 		    "i=%u", i);
80 		prev_h = h;
81 		prev_delta = delta;
82 	}
83 
84 	prev_h = KQU(1) << SMOOTHSTEP_BFP;
85 	prev_delta = 0;
86 	for (i = SMOOTHSTEP_NSTEPS-1; i >= SMOOTHSTEP_NSTEPS / 2; i--) {
87 		uint64_t h = smoothstep_tab[i];
88 		uint64_t delta = prev_h - h;
89 		assert_u64_ge(delta, prev_delta,
90 		    "Slope must monotonically decrease in 0.5 <= x <= 1.0, "
91 		    "i=%u", i);
92 		prev_h = h;
93 		prev_delta = delta;
94 	}
95 }
96 TEST_END
97 
98 int
main(void)99 main(void)
100 {
101 
102 	return (test(
103 	    test_smoothstep_integral,
104 	    test_smoothstep_monotonic,
105 	    test_smoothstep_slope));
106 }
107