• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2014, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 //   * Redistributions of source code must retain the above copyright notice,
8 //     this list of conditions and the following disclaimer.
9 //   * Redistributions in binary form must reproduce the above copyright notice,
10 //     this list of conditions and the following disclaimer in the documentation
11 //     and/or other materials provided with the distribution.
12 //   * Neither the name of ARM Limited nor the names of its contributors may be
13 //     used to endorse or promote products derived from this software without
14 //     specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 
27 #ifndef VIXL_AARCH64_TEST_UTILS_AARCH64_H_
28 #define VIXL_AARCH64_TEST_UTILS_AARCH64_H_
29 
30 #include "test-runner.h"
31 
32 #include "aarch64/cpu-aarch64.h"
33 #include "aarch64/disasm-aarch64.h"
34 #include "aarch64/macro-assembler-aarch64.h"
35 #include "aarch64/simulator-aarch64.h"
36 
37 namespace vixl {
38 namespace aarch64 {
39 
40 // Signalling and quiet NaNs in double format, constructed such that the bottom
41 // 32 bits look like a signalling or quiet NaN (as appropriate) when interpreted
42 // as a float. These values are not architecturally significant, but they're
43 // useful in tests for initialising registers.
44 extern const double kFP64SignallingNaN;
45 extern const double kFP64QuietNaN;
46 
47 // Signalling and quiet NaNs in float format.
48 extern const float kFP32SignallingNaN;
49 extern const float kFP32QuietNaN;
50 
51 // Structure representing Q registers in a RegisterDump.
52 struct vec128_t {
53   uint64_t l;
54   uint64_t h;
55 };
56 
57 // RegisterDump: Object allowing integer, floating point and flags registers
58 // to be saved to itself for future reference.
59 class RegisterDump {
60  public:
RegisterDump()61   RegisterDump() : completed_(false) {
62     VIXL_ASSERT(sizeof(dump_.d_[0]) == kDRegSizeInBytes);
63     VIXL_ASSERT(sizeof(dump_.s_[0]) == kSRegSizeInBytes);
64     VIXL_ASSERT(sizeof(dump_.d_[0]) == kXRegSizeInBytes);
65     VIXL_ASSERT(sizeof(dump_.s_[0]) == kWRegSizeInBytes);
66     VIXL_ASSERT(sizeof(dump_.x_[0]) == kXRegSizeInBytes);
67     VIXL_ASSERT(sizeof(dump_.w_[0]) == kWRegSizeInBytes);
68     VIXL_ASSERT(sizeof(dump_.q_[0]) == kQRegSizeInBytes);
69   }
70 
71   // The Dump method generates code to store a snapshot of the register values.
72   // It needs to be able to use the stack temporarily, and requires that the
73   // current stack pointer is sp, and is properly aligned.
74   //
75   // The dumping code is generated though the given MacroAssembler. No registers
76   // are corrupted in the process, but the stack is used briefly. The flags will
77   // be corrupted during this call.
78   void Dump(MacroAssembler* assm);
79 
80   // Register accessors.
wreg(unsigned code)81   inline int32_t wreg(unsigned code) const {
82     if (code == kSPRegInternalCode) {
83       return wspreg();
84     }
85     VIXL_ASSERT(RegAliasesMatch(code));
86     return dump_.w_[code];
87   }
88 
xreg(unsigned code)89   inline int64_t xreg(unsigned code) const {
90     if (code == kSPRegInternalCode) {
91       return spreg();
92     }
93     VIXL_ASSERT(RegAliasesMatch(code));
94     return dump_.x_[code];
95   }
96 
97   // FPRegister accessors.
sreg_bits(unsigned code)98   inline uint32_t sreg_bits(unsigned code) const {
99     VIXL_ASSERT(FPRegAliasesMatch(code));
100     return dump_.s_[code];
101   }
102 
sreg(unsigned code)103   inline float sreg(unsigned code) const {
104     return RawbitsToFloat(sreg_bits(code));
105   }
106 
dreg_bits(unsigned code)107   inline uint64_t dreg_bits(unsigned code) const {
108     VIXL_ASSERT(FPRegAliasesMatch(code));
109     return dump_.d_[code];
110   }
111 
dreg(unsigned code)112   inline double dreg(unsigned code) const {
113     return RawbitsToDouble(dreg_bits(code));
114   }
115 
qreg(unsigned code)116   inline vec128_t qreg(unsigned code) const { return dump_.q_[code]; }
117 
118   // Stack pointer accessors.
spreg()119   inline int64_t spreg() const {
120     VIXL_ASSERT(SPRegAliasesMatch());
121     return dump_.sp_;
122   }
123 
wspreg()124   inline int32_t wspreg() const {
125     VIXL_ASSERT(SPRegAliasesMatch());
126     return static_cast<int32_t>(dump_.wsp_);
127   }
128 
129   // Flags accessors.
flags_nzcv()130   inline uint32_t flags_nzcv() const {
131     VIXL_ASSERT(IsComplete());
132     VIXL_ASSERT((dump_.flags_ & ~Flags_mask) == 0);
133     return dump_.flags_ & Flags_mask;
134   }
135 
IsComplete()136   inline bool IsComplete() const { return completed_; }
137 
138  private:
139   // Indicate whether the dump operation has been completed.
140   bool completed_;
141 
142   // Check that the lower 32 bits of x<code> exactly match the 32 bits of
143   // w<code>. A failure of this test most likely represents a failure in the
144   // ::Dump method, or a failure in the simulator.
RegAliasesMatch(unsigned code)145   bool RegAliasesMatch(unsigned code) const {
146     VIXL_ASSERT(IsComplete());
147     VIXL_ASSERT(code < kNumberOfRegisters);
148     return ((dump_.x_[code] & kWRegMask) == dump_.w_[code]);
149   }
150 
151   // As RegAliasesMatch, but for the stack pointer.
SPRegAliasesMatch()152   bool SPRegAliasesMatch() const {
153     VIXL_ASSERT(IsComplete());
154     return ((dump_.sp_ & kWRegMask) == dump_.wsp_);
155   }
156 
157   // As RegAliasesMatch, but for floating-point registers.
FPRegAliasesMatch(unsigned code)158   bool FPRegAliasesMatch(unsigned code) const {
159     VIXL_ASSERT(IsComplete());
160     VIXL_ASSERT(code < kNumberOfFPRegisters);
161     return (dump_.d_[code] & kSRegMask) == dump_.s_[code];
162   }
163 
164   // Store all the dumped elements in a simple struct so the implementation can
165   // use offsetof to quickly find the correct field.
166   struct dump_t {
167     // Core registers.
168     uint64_t x_[kNumberOfRegisters];
169     uint32_t w_[kNumberOfRegisters];
170 
171     // Floating-point registers, as raw bits.
172     uint64_t d_[kNumberOfFPRegisters];
173     uint32_t s_[kNumberOfFPRegisters];
174 
175     // Vector registers.
176     vec128_t q_[kNumberOfVRegisters];
177 
178     // The stack pointer.
179     uint64_t sp_;
180     uint64_t wsp_;
181 
182     // NZCV flags, stored in bits 28 to 31.
183     // bit[31] : Negative
184     // bit[30] : Zero
185     // bit[29] : Carry
186     // bit[28] : oVerflow
187     uint64_t flags_;
188   } dump_;
189 };
190 
191 // Some of these methods don't use the RegisterDump argument, but they have to
192 // accept them so that they can overload those that take register arguments.
193 bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result);
194 bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result);
195 
196 bool EqualFP32(float expected, const RegisterDump*, float result);
197 bool EqualFP64(double expected, const RegisterDump*, double result);
198 
199 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg);
200 bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg);
201 bool Equal64(uint64_t expected,
202              const RegisterDump* core,
203              const VRegister& vreg);
204 
205 bool EqualFP32(float expected,
206                const RegisterDump* core,
207                const FPRegister& fpreg);
208 bool EqualFP64(double expected,
209                const RegisterDump* core,
210                const FPRegister& fpreg);
211 
212 bool Equal64(const Register& reg0,
213              const RegisterDump* core,
214              const Register& reg1);
215 bool Equal128(uint64_t expected_h,
216               uint64_t expected_l,
217               const RegisterDump* core,
218               const VRegister& reg);
219 
220 bool EqualNzcv(uint32_t expected, uint32_t result);
221 
222 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b);
223 
224 // Populate the w, x and r arrays with registers from the 'allowed' mask. The
225 // r array will be populated with <reg_size>-sized registers,
226 //
227 // This allows for tests which use large, parameterized blocks of registers
228 // (such as the push and pop tests), but where certain registers must be
229 // avoided as they are used for other purposes.
230 //
231 // Any of w, x, or r can be NULL if they are not required.
232 //
233 // The return value is a RegList indicating which registers were allocated.
234 RegList PopulateRegisterArray(Register* w,
235                               Register* x,
236                               Register* r,
237                               int reg_size,
238                               int reg_count,
239                               RegList allowed);
240 
241 // As PopulateRegisterArray, but for floating-point registers.
242 RegList PopulateFPRegisterArray(FPRegister* s,
243                                 FPRegister* d,
244                                 FPRegister* v,
245                                 int reg_size,
246                                 int reg_count,
247                                 RegList allowed);
248 
249 // Ovewrite the contents of the specified registers. This enables tests to
250 // check that register contents are written in cases where it's likely that the
251 // correct outcome could already be stored in the register.
252 //
253 // This always overwrites X-sized registers. If tests are operating on W
254 // registers, a subsequent write into an aliased W register should clear the
255 // top word anyway, so clobbering the full X registers should make tests more
256 // rigorous.
257 void Clobber(MacroAssembler* masm,
258              RegList reg_list,
259              uint64_t const value = 0xfedcba9876543210);
260 
261 // As Clobber, but for FP registers.
262 void ClobberFP(MacroAssembler* masm,
263                RegList reg_list,
264                double const value = kFP64SignallingNaN);
265 
266 // As Clobber, but for a CPURegList with either FP or integer registers. When
267 // using this method, the clobber value is always the default for the basic
268 // Clobber or ClobberFP functions.
269 void Clobber(MacroAssembler* masm, CPURegList reg_list);
270 
271 }  // namespace aarch64
272 }  // namespace vixl
273 
274 #endif  // VIXL_AARCH64_TEST_UTILS_AARCH64_H_
275