1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Author: Jyrki Alakuijala (jyrki@google.com)
11 //
12 // Entropy encoding (Huffman) for webp lossless.
13
14 #include <assert.h>
15 #include <stdlib.h>
16 #include <string.h>
17 #include "./huffman_encode_utils.h"
18 #include "./utils.h"
19 #include "../webp/format_constants.h"
20
21 // -----------------------------------------------------------------------------
22 // Util function to optimize the symbol map for RLE coding
23
24 // Heuristics for selecting the stride ranges to collapse.
ValuesShouldBeCollapsedToStrideAverage(int a,int b)25 static int ValuesShouldBeCollapsedToStrideAverage(int a, int b) {
26 return abs(a - b) < 4;
27 }
28
29 // Change the population counts in a way that the consequent
30 // Huffman tree compression, especially its RLE-part, give smaller output.
OptimizeHuffmanForRle(int length,uint8_t * const good_for_rle,uint32_t * const counts)31 static void OptimizeHuffmanForRle(int length, uint8_t* const good_for_rle,
32 uint32_t* const counts) {
33 // 1) Let's make the Huffman code more compatible with rle encoding.
34 int i;
35 for (; length >= 0; --length) {
36 if (length == 0) {
37 return; // All zeros.
38 }
39 if (counts[length - 1] != 0) {
40 // Now counts[0..length - 1] does not have trailing zeros.
41 break;
42 }
43 }
44 // 2) Let's mark all population counts that already can be encoded
45 // with an rle code.
46 {
47 // Let's not spoil any of the existing good rle codes.
48 // Mark any seq of 0's that is longer as 5 as a good_for_rle.
49 // Mark any seq of non-0's that is longer as 7 as a good_for_rle.
50 uint32_t symbol = counts[0];
51 int stride = 0;
52 for (i = 0; i < length + 1; ++i) {
53 if (i == length || counts[i] != symbol) {
54 if ((symbol == 0 && stride >= 5) ||
55 (symbol != 0 && stride >= 7)) {
56 int k;
57 for (k = 0; k < stride; ++k) {
58 good_for_rle[i - k - 1] = 1;
59 }
60 }
61 stride = 1;
62 if (i != length) {
63 symbol = counts[i];
64 }
65 } else {
66 ++stride;
67 }
68 }
69 }
70 // 3) Let's replace those population counts that lead to more rle codes.
71 {
72 uint32_t stride = 0;
73 uint32_t limit = counts[0];
74 uint32_t sum = 0;
75 for (i = 0; i < length + 1; ++i) {
76 if (i == length || good_for_rle[i] ||
77 (i != 0 && good_for_rle[i - 1]) ||
78 !ValuesShouldBeCollapsedToStrideAverage(counts[i], limit)) {
79 if (stride >= 4 || (stride >= 3 && sum == 0)) {
80 uint32_t k;
81 // The stride must end, collapse what we have, if we have enough (4).
82 uint32_t count = (sum + stride / 2) / stride;
83 if (count < 1) {
84 count = 1;
85 }
86 if (sum == 0) {
87 // Don't make an all zeros stride to be upgraded to ones.
88 count = 0;
89 }
90 for (k = 0; k < stride; ++k) {
91 // We don't want to change value at counts[i],
92 // that is already belonging to the next stride. Thus - 1.
93 counts[i - k - 1] = count;
94 }
95 }
96 stride = 0;
97 sum = 0;
98 if (i < length - 3) {
99 // All interesting strides have a count of at least 4,
100 // at least when non-zeros.
101 limit = (counts[i] + counts[i + 1] +
102 counts[i + 2] + counts[i + 3] + 2) / 4;
103 } else if (i < length) {
104 limit = counts[i];
105 } else {
106 limit = 0;
107 }
108 }
109 ++stride;
110 if (i != length) {
111 sum += counts[i];
112 if (stride >= 4) {
113 limit = (sum + stride / 2) / stride;
114 }
115 }
116 }
117 }
118 }
119
120 // A comparer function for two Huffman trees: sorts first by 'total count'
121 // (more comes first), and then by 'value' (more comes first).
CompareHuffmanTrees(const void * ptr1,const void * ptr2)122 static int CompareHuffmanTrees(const void* ptr1, const void* ptr2) {
123 const HuffmanTree* const t1 = (const HuffmanTree*)ptr1;
124 const HuffmanTree* const t2 = (const HuffmanTree*)ptr2;
125 if (t1->total_count_ > t2->total_count_) {
126 return -1;
127 } else if (t1->total_count_ < t2->total_count_) {
128 return 1;
129 } else {
130 assert(t1->value_ != t2->value_);
131 return (t1->value_ < t2->value_) ? -1 : 1;
132 }
133 }
134
SetBitDepths(const HuffmanTree * const tree,const HuffmanTree * const pool,uint8_t * const bit_depths,int level)135 static void SetBitDepths(const HuffmanTree* const tree,
136 const HuffmanTree* const pool,
137 uint8_t* const bit_depths, int level) {
138 if (tree->pool_index_left_ >= 0) {
139 SetBitDepths(&pool[tree->pool_index_left_], pool, bit_depths, level + 1);
140 SetBitDepths(&pool[tree->pool_index_right_], pool, bit_depths, level + 1);
141 } else {
142 bit_depths[tree->value_] = level;
143 }
144 }
145
146 // Create an optimal Huffman tree.
147 //
148 // (data,length): population counts.
149 // tree_limit: maximum bit depth (inclusive) of the codes.
150 // bit_depths[]: how many bits are used for the symbol.
151 //
152 // Returns 0 when an error has occurred.
153 //
154 // The catch here is that the tree cannot be arbitrarily deep
155 //
156 // count_limit is the value that is to be faked as the minimum value
157 // and this minimum value is raised until the tree matches the
158 // maximum length requirement.
159 //
160 // This algorithm is not of excellent performance for very long data blocks,
161 // especially when population counts are longer than 2**tree_limit, but
162 // we are not planning to use this with extremely long blocks.
163 //
164 // See http://en.wikipedia.org/wiki/Huffman_coding
GenerateOptimalTree(const uint32_t * const histogram,int histogram_size,HuffmanTree * tree,int tree_depth_limit,uint8_t * const bit_depths)165 static void GenerateOptimalTree(const uint32_t* const histogram,
166 int histogram_size,
167 HuffmanTree* tree, int tree_depth_limit,
168 uint8_t* const bit_depths) {
169 uint32_t count_min;
170 HuffmanTree* tree_pool;
171 int tree_size_orig = 0;
172 int i;
173
174 for (i = 0; i < histogram_size; ++i) {
175 if (histogram[i] != 0) {
176 ++tree_size_orig;
177 }
178 }
179
180 if (tree_size_orig == 0) { // pretty optimal already!
181 return;
182 }
183
184 tree_pool = tree + tree_size_orig;
185
186 // For block sizes with less than 64k symbols we never need to do a
187 // second iteration of this loop.
188 // If we actually start running inside this loop a lot, we would perhaps
189 // be better off with the Katajainen algorithm.
190 assert(tree_size_orig <= (1 << (tree_depth_limit - 1)));
191 for (count_min = 1; ; count_min *= 2) {
192 int tree_size = tree_size_orig;
193 // We need to pack the Huffman tree in tree_depth_limit bits.
194 // So, we try by faking histogram entries to be at least 'count_min'.
195 int idx = 0;
196 int j;
197 for (j = 0; j < histogram_size; ++j) {
198 if (histogram[j] != 0) {
199 const uint32_t count =
200 (histogram[j] < count_min) ? count_min : histogram[j];
201 tree[idx].total_count_ = count;
202 tree[idx].value_ = j;
203 tree[idx].pool_index_left_ = -1;
204 tree[idx].pool_index_right_ = -1;
205 ++idx;
206 }
207 }
208
209 // Build the Huffman tree.
210 qsort(tree, tree_size, sizeof(*tree), CompareHuffmanTrees);
211
212 if (tree_size > 1) { // Normal case.
213 int tree_pool_size = 0;
214 while (tree_size > 1) { // Finish when we have only one root.
215 uint32_t count;
216 tree_pool[tree_pool_size++] = tree[tree_size - 1];
217 tree_pool[tree_pool_size++] = tree[tree_size - 2];
218 count = tree_pool[tree_pool_size - 1].total_count_ +
219 tree_pool[tree_pool_size - 2].total_count_;
220 tree_size -= 2;
221 {
222 // Search for the insertion point.
223 int k;
224 for (k = 0; k < tree_size; ++k) {
225 if (tree[k].total_count_ <= count) {
226 break;
227 }
228 }
229 memmove(tree + (k + 1), tree + k, (tree_size - k) * sizeof(*tree));
230 tree[k].total_count_ = count;
231 tree[k].value_ = -1;
232
233 tree[k].pool_index_left_ = tree_pool_size - 1;
234 tree[k].pool_index_right_ = tree_pool_size - 2;
235 tree_size = tree_size + 1;
236 }
237 }
238 SetBitDepths(&tree[0], tree_pool, bit_depths, 0);
239 } else if (tree_size == 1) { // Trivial case: only one element.
240 bit_depths[tree[0].value_] = 1;
241 }
242
243 {
244 // Test if this Huffman tree satisfies our 'tree_depth_limit' criteria.
245 int max_depth = bit_depths[0];
246 for (j = 1; j < histogram_size; ++j) {
247 if (max_depth < bit_depths[j]) {
248 max_depth = bit_depths[j];
249 }
250 }
251 if (max_depth <= tree_depth_limit) {
252 break;
253 }
254 }
255 }
256 }
257
258 // -----------------------------------------------------------------------------
259 // Coding of the Huffman tree values
260
CodeRepeatedValues(int repetitions,HuffmanTreeToken * tokens,int value,int prev_value)261 static HuffmanTreeToken* CodeRepeatedValues(int repetitions,
262 HuffmanTreeToken* tokens,
263 int value, int prev_value) {
264 assert(value <= MAX_ALLOWED_CODE_LENGTH);
265 if (value != prev_value) {
266 tokens->code = value;
267 tokens->extra_bits = 0;
268 ++tokens;
269 --repetitions;
270 }
271 while (repetitions >= 1) {
272 if (repetitions < 3) {
273 int i;
274 for (i = 0; i < repetitions; ++i) {
275 tokens->code = value;
276 tokens->extra_bits = 0;
277 ++tokens;
278 }
279 break;
280 } else if (repetitions < 7) {
281 tokens->code = 16;
282 tokens->extra_bits = repetitions - 3;
283 ++tokens;
284 break;
285 } else {
286 tokens->code = 16;
287 tokens->extra_bits = 3;
288 ++tokens;
289 repetitions -= 6;
290 }
291 }
292 return tokens;
293 }
294
CodeRepeatedZeros(int repetitions,HuffmanTreeToken * tokens)295 static HuffmanTreeToken* CodeRepeatedZeros(int repetitions,
296 HuffmanTreeToken* tokens) {
297 while (repetitions >= 1) {
298 if (repetitions < 3) {
299 int i;
300 for (i = 0; i < repetitions; ++i) {
301 tokens->code = 0; // 0-value
302 tokens->extra_bits = 0;
303 ++tokens;
304 }
305 break;
306 } else if (repetitions < 11) {
307 tokens->code = 17;
308 tokens->extra_bits = repetitions - 3;
309 ++tokens;
310 break;
311 } else if (repetitions < 139) {
312 tokens->code = 18;
313 tokens->extra_bits = repetitions - 11;
314 ++tokens;
315 break;
316 } else {
317 tokens->code = 18;
318 tokens->extra_bits = 0x7f; // 138 repeated 0s
319 ++tokens;
320 repetitions -= 138;
321 }
322 }
323 return tokens;
324 }
325
VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode * const tree,HuffmanTreeToken * tokens,int max_tokens)326 int VP8LCreateCompressedHuffmanTree(const HuffmanTreeCode* const tree,
327 HuffmanTreeToken* tokens, int max_tokens) {
328 HuffmanTreeToken* const starting_token = tokens;
329 HuffmanTreeToken* const ending_token = tokens + max_tokens;
330 const int depth_size = tree->num_symbols;
331 int prev_value = 8; // 8 is the initial value for rle.
332 int i = 0;
333 assert(tokens != NULL);
334 while (i < depth_size) {
335 const int value = tree->code_lengths[i];
336 int k = i + 1;
337 int runs;
338 while (k < depth_size && tree->code_lengths[k] == value) ++k;
339 runs = k - i;
340 if (value == 0) {
341 tokens = CodeRepeatedZeros(runs, tokens);
342 } else {
343 tokens = CodeRepeatedValues(runs, tokens, value, prev_value);
344 prev_value = value;
345 }
346 i += runs;
347 assert(tokens <= ending_token);
348 }
349 (void)ending_token; // suppress 'unused variable' warning
350 return (int)(tokens - starting_token);
351 }
352
353 // -----------------------------------------------------------------------------
354
355 // Pre-reversed 4-bit values.
356 static const uint8_t kReversedBits[16] = {
357 0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
358 0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
359 };
360
ReverseBits(int num_bits,uint32_t bits)361 static uint32_t ReverseBits(int num_bits, uint32_t bits) {
362 uint32_t retval = 0;
363 int i = 0;
364 while (i < num_bits) {
365 i += 4;
366 retval |= kReversedBits[bits & 0xf] << (MAX_ALLOWED_CODE_LENGTH + 1 - i);
367 bits >>= 4;
368 }
369 retval >>= (MAX_ALLOWED_CODE_LENGTH + 1 - num_bits);
370 return retval;
371 }
372
373 // Get the actual bit values for a tree of bit depths.
ConvertBitDepthsToSymbols(HuffmanTreeCode * const tree)374 static void ConvertBitDepthsToSymbols(HuffmanTreeCode* const tree) {
375 // 0 bit-depth means that the symbol does not exist.
376 int i;
377 int len;
378 uint32_t next_code[MAX_ALLOWED_CODE_LENGTH + 1];
379 int depth_count[MAX_ALLOWED_CODE_LENGTH + 1] = { 0 };
380
381 assert(tree != NULL);
382 len = tree->num_symbols;
383 for (i = 0; i < len; ++i) {
384 const int code_length = tree->code_lengths[i];
385 assert(code_length <= MAX_ALLOWED_CODE_LENGTH);
386 ++depth_count[code_length];
387 }
388 depth_count[0] = 0; // ignore unused symbol
389 next_code[0] = 0;
390 {
391 uint32_t code = 0;
392 for (i = 1; i <= MAX_ALLOWED_CODE_LENGTH; ++i) {
393 code = (code + depth_count[i - 1]) << 1;
394 next_code[i] = code;
395 }
396 }
397 for (i = 0; i < len; ++i) {
398 const int code_length = tree->code_lengths[i];
399 tree->codes[i] = ReverseBits(code_length, next_code[code_length]++);
400 }
401 }
402
403 // -----------------------------------------------------------------------------
404 // Main entry point
405
VP8LCreateHuffmanTree(uint32_t * const histogram,int tree_depth_limit,uint8_t * const buf_rle,HuffmanTree * const huff_tree,HuffmanTreeCode * const huff_code)406 void VP8LCreateHuffmanTree(uint32_t* const histogram, int tree_depth_limit,
407 uint8_t* const buf_rle,
408 HuffmanTree* const huff_tree,
409 HuffmanTreeCode* const huff_code) {
410 const int num_symbols = huff_code->num_symbols;
411 memset(buf_rle, 0, num_symbols * sizeof(*buf_rle));
412 OptimizeHuffmanForRle(num_symbols, buf_rle, histogram);
413 GenerateOptimalTree(histogram, num_symbols, huff_tree, tree_depth_limit,
414 huff_code->code_lengths);
415 // Create the actual bit codes for the bit lengths.
416 ConvertBitDepthsToSymbols(huff_code);
417 }
418