1 // Copyright 2013 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Implement gradient smoothing: we replace a current alpha value by its
11 // surrounding average if it's close enough (that is: the change will be less
12 // than the minimum distance between two quantized level).
13 // We use sliding window for computing the 2d moving average.
14 //
15 // Author: Skal (pascal.massimino@gmail.com)
16
17 #include "./quant_levels_dec_utils.h"
18
19 #include <string.h> // for memset
20
21 #include "./utils.h"
22
23 // #define USE_DITHERING // uncomment to enable ordered dithering (not vital)
24
25 #define FIX 16 // fix-point precision for averaging
26 #define LFIX 2 // extra precision for look-up table
27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size
28
29 #if defined(USE_DITHERING)
30
31 #define DFIX 4 // extra precision for ordered dithering
32 #define DSIZE 4 // dithering size (must be a power of two)
33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering
34 static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
35 { 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision
36 { 12, 4, 14, 6 },
37 { 3, 11, 1, 9 },
38 { 15, 7, 13, 5 }
39 };
40
41 #else
42 #define DFIX 0
43 #endif
44
45 typedef struct {
46 int width_, height_; // dimension
47 int stride_; // stride in bytes
48 int row_; // current input row being processed
49 uint8_t* src_; // input pointer
50 uint8_t* dst_; // output pointer
51
52 int radius_; // filter radius (=delay)
53 int scale_; // normalization factor, in FIX bits precision
54
55 void* mem_; // all memory
56
57 // various scratch buffers
58 uint16_t* start_;
59 uint16_t* cur_;
60 uint16_t* end_;
61 uint16_t* top_;
62 uint16_t* average_;
63
64 // input levels distribution
65 int num_levels_; // number of quantized levels
66 int min_, max_; // min and max level values
67 int min_level_dist_; // smallest distance between two consecutive levels
68
69 int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory
70 } SmoothParams;
71
72 //------------------------------------------------------------------------------
73
74 #define CLIP_MASK (int)(~0U << (8 + DFIX))
clip_8b(int v)75 static WEBP_INLINE uint8_t clip_8b(int v) {
76 return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
77 }
78
79 // vertical accumulation
VFilter(SmoothParams * const p)80 static void VFilter(SmoothParams* const p) {
81 const uint8_t* src = p->src_;
82 const int w = p->width_;
83 uint16_t* const cur = p->cur_;
84 const uint16_t* const top = p->top_;
85 uint16_t* const out = p->end_;
86 uint16_t sum = 0; // all arithmetic is modulo 16bit
87 int x;
88
89 for (x = 0; x < w; ++x) {
90 uint16_t new_value;
91 sum += src[x];
92 new_value = top[x] + sum;
93 out[x] = new_value - cur[x]; // vertical sum of 'r' pixels.
94 cur[x] = new_value;
95 }
96 // move input pointers one row down
97 p->top_ = p->cur_;
98 p->cur_ += w;
99 if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over
100 // We replicate edges, as it's somewhat easier as a boundary condition.
101 // That's why we don't update the 'src' pointer on top/bottom area:
102 if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
103 p->src_ += p->stride_;
104 }
105 }
106
107 // horizontal accumulation. We use mirror replication of missing pixels, as it's
108 // a little easier to implement (surprisingly).
HFilter(SmoothParams * const p)109 static void HFilter(SmoothParams* const p) {
110 const uint16_t* const in = p->end_;
111 uint16_t* const out = p->average_;
112 const uint32_t scale = p->scale_;
113 const int w = p->width_;
114 const int r = p->radius_;
115
116 int x;
117 for (x = 0; x <= r; ++x) { // left mirroring
118 const uint16_t delta = in[x + r - 1] + in[r - x];
119 out[x] = (delta * scale) >> FIX;
120 }
121 for (; x < w - r; ++x) { // bulk middle run
122 const uint16_t delta = in[x + r] - in[x - r - 1];
123 out[x] = (delta * scale) >> FIX;
124 }
125 for (; x < w; ++x) { // right mirroring
126 const uint16_t delta =
127 2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
128 out[x] = (delta * scale) >> FIX;
129 }
130 }
131
132 // emit one filtered output row
ApplyFilter(SmoothParams * const p)133 static void ApplyFilter(SmoothParams* const p) {
134 const uint16_t* const average = p->average_;
135 const int w = p->width_;
136 const int16_t* const correction = p->correction_;
137 #if defined(USE_DITHERING)
138 const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
139 #endif
140 uint8_t* const dst = p->dst_;
141 int x;
142 for (x = 0; x < w; ++x) {
143 const int v = dst[x];
144 if (v < p->max_ && v > p->min_) {
145 const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
146 #if defined(USE_DITHERING)
147 dst[x] = clip_8b(c + dither[x % DSIZE]);
148 #else
149 dst[x] = clip_8b(c);
150 #endif
151 }
152 }
153 p->dst_ += p->stride_; // advance output pointer
154 }
155
156 //------------------------------------------------------------------------------
157 // Initialize correction table
158
InitCorrectionLUT(int16_t * const lut,int min_dist)159 static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
160 // The correction curve is:
161 // f(x) = x for x <= threshold2
162 // f(x) = 0 for x >= threshold1
163 // and a linear interpolation for range x=[threshold2, threshold1]
164 // (along with f(-x) = -f(x) symmetry).
165 // Note that: threshold2 = 3/4 * threshold1
166 const int threshold1 = min_dist << LFIX;
167 const int threshold2 = (3 * threshold1) >> 2;
168 const int max_threshold = threshold2 << DFIX;
169 const int delta = threshold1 - threshold2;
170 int i;
171 for (i = 1; i <= LUT_SIZE; ++i) {
172 int c = (i <= threshold2) ? (i << DFIX)
173 : (i < threshold1) ? max_threshold * (threshold1 - i) / delta
174 : 0;
175 c >>= LFIX;
176 lut[+i] = +c;
177 lut[-i] = -c;
178 }
179 lut[0] = 0;
180 }
181
CountLevels(SmoothParams * const p)182 static void CountLevels(SmoothParams* const p) {
183 int i, j, last_level;
184 uint8_t used_levels[256] = { 0 };
185 const uint8_t* data = p->src_;
186 p->min_ = 255;
187 p->max_ = 0;
188 for (j = 0; j < p->height_; ++j) {
189 for (i = 0; i < p->width_; ++i) {
190 const int v = data[i];
191 if (v < p->min_) p->min_ = v;
192 if (v > p->max_) p->max_ = v;
193 used_levels[v] = 1;
194 }
195 data += p->stride_;
196 }
197 // Compute the mininum distance between two non-zero levels.
198 p->min_level_dist_ = p->max_ - p->min_;
199 last_level = -1;
200 for (i = 0; i < 256; ++i) {
201 if (used_levels[i]) {
202 ++p->num_levels_;
203 if (last_level >= 0) {
204 const int level_dist = i - last_level;
205 if (level_dist < p->min_level_dist_) {
206 p->min_level_dist_ = level_dist;
207 }
208 }
209 last_level = i;
210 }
211 }
212 }
213
214 // Initialize all params.
InitParams(uint8_t * const data,int width,int height,int stride,int radius,SmoothParams * const p)215 static int InitParams(uint8_t* const data, int width, int height, int stride,
216 int radius, SmoothParams* const p) {
217 const int R = 2 * radius + 1; // total size of the kernel
218
219 const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
220 const size_t size_m = width * sizeof(*p->average_);
221 const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
222 const size_t total_size = size_scratch_m + size_m + size_lut;
223 uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
224
225 if (mem == NULL) return 0;
226 p->mem_ = (void*)mem;
227
228 p->start_ = (uint16_t*)mem;
229 p->cur_ = p->start_;
230 p->end_ = p->start_ + R * width;
231 p->top_ = p->end_ - width;
232 memset(p->top_, 0, width * sizeof(*p->top_));
233 mem += size_scratch_m;
234
235 p->average_ = (uint16_t*)mem;
236 mem += size_m;
237
238 p->width_ = width;
239 p->height_ = height;
240 p->stride_ = stride;
241 p->src_ = data;
242 p->dst_ = data;
243 p->radius_ = radius;
244 p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant
245 p->row_ = -radius;
246
247 // analyze the input distribution so we can best-fit the threshold
248 CountLevels(p);
249
250 // correction table
251 p->correction_ = ((int16_t*)mem) + LUT_SIZE;
252 InitCorrectionLUT(p->correction_, p->min_level_dist_);
253
254 return 1;
255 }
256
CleanupParams(SmoothParams * const p)257 static void CleanupParams(SmoothParams* const p) {
258 WebPSafeFree(p->mem_);
259 }
260
WebPDequantizeLevels(uint8_t * const data,int width,int height,int stride,int strength)261 int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
262 int strength) {
263 const int radius = 4 * strength / 100;
264 if (strength < 0 || strength > 100) return 0;
265 if (data == NULL || width <= 0 || height <= 0) return 0; // bad params
266 if (radius > 0) {
267 SmoothParams p;
268 memset(&p, 0, sizeof(p));
269 if (!InitParams(data, width, height, stride, radius, &p)) return 0;
270 if (p.num_levels_ > 2) {
271 for (; p.row_ < p.height_; ++p.row_) {
272 VFilter(&p); // accumulate average of input
273 // Need to wait few rows in order to prime the filter,
274 // before emitting some output.
275 if (p.row_ >= p.radius_) {
276 HFilter(&p);
277 ApplyFilter(&p);
278 }
279 }
280 }
281 CleanupParams(&p);
282 }
283 return 1;
284 }
285