• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Implement gradient smoothing: we replace a current alpha value by its
11 // surrounding average if it's close enough (that is: the change will be less
12 // than the minimum distance between two quantized level).
13 // We use sliding window for computing the 2d moving average.
14 //
15 // Author: Skal (pascal.massimino@gmail.com)
16 
17 #include "./quant_levels_dec_utils.h"
18 
19 #include <string.h>   // for memset
20 
21 #include "./utils.h"
22 
23 // #define USE_DITHERING   // uncomment to enable ordered dithering (not vital)
24 
25 #define FIX 16     // fix-point precision for averaging
26 #define LFIX 2     // extra precision for look-up table
27 #define LUT_SIZE ((1 << (8 + LFIX)) - 1)  // look-up table size
28 
29 #if defined(USE_DITHERING)
30 
31 #define DFIX 4           // extra precision for ordered dithering
32 #define DSIZE 4          // dithering size (must be a power of two)
33 // cf. http://en.wikipedia.org/wiki/Ordered_dithering
34 static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
35   {  0,  8,  2, 10 },     // coefficients are in DFIX fixed-point precision
36   { 12,  4, 14,  6 },
37   {  3, 11,  1,  9 },
38   { 15,  7, 13,  5 }
39 };
40 
41 #else
42 #define DFIX 0
43 #endif
44 
45 typedef struct {
46   int width_, height_;  // dimension
47   int stride_;          // stride in bytes
48   int row_;             // current input row being processed
49   uint8_t* src_;        // input pointer
50   uint8_t* dst_;        // output pointer
51 
52   int radius_;          // filter radius (=delay)
53   int scale_;           // normalization factor, in FIX bits precision
54 
55   void* mem_;           // all memory
56 
57   // various scratch buffers
58   uint16_t* start_;
59   uint16_t* cur_;
60   uint16_t* end_;
61   uint16_t* top_;
62   uint16_t* average_;
63 
64   // input levels distribution
65   int num_levels_;       // number of quantized levels
66   int min_, max_;        // min and max level values
67   int min_level_dist_;   // smallest distance between two consecutive levels
68 
69   int16_t* correction_;  // size = 1 + 2*LUT_SIZE  -> ~4k memory
70 } SmoothParams;
71 
72 //------------------------------------------------------------------------------
73 
74 #define CLIP_MASK (int)(~0U << (8 + DFIX))
clip_8b(int v)75 static WEBP_INLINE uint8_t clip_8b(int v) {
76   return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
77 }
78 
79 // vertical accumulation
VFilter(SmoothParams * const p)80 static void VFilter(SmoothParams* const p) {
81   const uint8_t* src = p->src_;
82   const int w = p->width_;
83   uint16_t* const cur = p->cur_;
84   const uint16_t* const top = p->top_;
85   uint16_t* const out = p->end_;
86   uint16_t sum = 0;               // all arithmetic is modulo 16bit
87   int x;
88 
89   for (x = 0; x < w; ++x) {
90     uint16_t new_value;
91     sum += src[x];
92     new_value = top[x] + sum;
93     out[x] = new_value - cur[x];  // vertical sum of 'r' pixels.
94     cur[x] = new_value;
95   }
96   // move input pointers one row down
97   p->top_ = p->cur_;
98   p->cur_ += w;
99   if (p->cur_ == p->end_) p->cur_ = p->start_;  // roll-over
100   // We replicate edges, as it's somewhat easier as a boundary condition.
101   // That's why we don't update the 'src' pointer on top/bottom area:
102   if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
103     p->src_ += p->stride_;
104   }
105 }
106 
107 // horizontal accumulation. We use mirror replication of missing pixels, as it's
108 // a little easier to implement (surprisingly).
HFilter(SmoothParams * const p)109 static void HFilter(SmoothParams* const p) {
110   const uint16_t* const in = p->end_;
111   uint16_t* const out = p->average_;
112   const uint32_t scale = p->scale_;
113   const int w = p->width_;
114   const int r = p->radius_;
115 
116   int x;
117   for (x = 0; x <= r; ++x) {   // left mirroring
118     const uint16_t delta = in[x + r - 1] + in[r - x];
119     out[x] = (delta * scale) >> FIX;
120   }
121   for (; x < w - r; ++x) {     // bulk middle run
122     const uint16_t delta = in[x + r] - in[x - r - 1];
123     out[x] = (delta * scale) >> FIX;
124   }
125   for (; x < w; ++x) {         // right mirroring
126     const uint16_t delta =
127         2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
128     out[x] = (delta * scale) >> FIX;
129   }
130 }
131 
132 // emit one filtered output row
ApplyFilter(SmoothParams * const p)133 static void ApplyFilter(SmoothParams* const p) {
134   const uint16_t* const average = p->average_;
135   const int w = p->width_;
136   const int16_t* const correction = p->correction_;
137 #if defined(USE_DITHERING)
138   const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
139 #endif
140   uint8_t* const dst = p->dst_;
141   int x;
142   for (x = 0; x < w; ++x) {
143     const int v = dst[x];
144     if (v < p->max_ && v > p->min_) {
145       const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
146 #if defined(USE_DITHERING)
147       dst[x] = clip_8b(c + dither[x % DSIZE]);
148 #else
149       dst[x] = clip_8b(c);
150 #endif
151     }
152   }
153   p->dst_ += p->stride_;  // advance output pointer
154 }
155 
156 //------------------------------------------------------------------------------
157 // Initialize correction table
158 
InitCorrectionLUT(int16_t * const lut,int min_dist)159 static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
160   // The correction curve is:
161   //   f(x) = x for x <= threshold2
162   //   f(x) = 0 for x >= threshold1
163   // and a linear interpolation for range x=[threshold2, threshold1]
164   // (along with f(-x) = -f(x) symmetry).
165   // Note that: threshold2 = 3/4 * threshold1
166   const int threshold1 = min_dist << LFIX;
167   const int threshold2 = (3 * threshold1) >> 2;
168   const int max_threshold = threshold2 << DFIX;
169   const int delta = threshold1 - threshold2;
170   int i;
171   for (i = 1; i <= LUT_SIZE; ++i) {
172     int c = (i <= threshold2) ? (i << DFIX)
173           : (i < threshold1) ? max_threshold * (threshold1 - i) / delta
174           : 0;
175     c >>= LFIX;
176     lut[+i] = +c;
177     lut[-i] = -c;
178   }
179   lut[0] = 0;
180 }
181 
CountLevels(SmoothParams * const p)182 static void CountLevels(SmoothParams* const p) {
183   int i, j, last_level;
184   uint8_t used_levels[256] = { 0 };
185   const uint8_t* data = p->src_;
186   p->min_ = 255;
187   p->max_ = 0;
188   for (j = 0; j < p->height_; ++j) {
189     for (i = 0; i < p->width_; ++i) {
190       const int v = data[i];
191       if (v < p->min_) p->min_ = v;
192       if (v > p->max_) p->max_ = v;
193       used_levels[v] = 1;
194     }
195     data += p->stride_;
196   }
197   // Compute the mininum distance between two non-zero levels.
198   p->min_level_dist_ = p->max_ - p->min_;
199   last_level = -1;
200   for (i = 0; i < 256; ++i) {
201     if (used_levels[i]) {
202       ++p->num_levels_;
203       if (last_level >= 0) {
204         const int level_dist = i - last_level;
205         if (level_dist < p->min_level_dist_) {
206           p->min_level_dist_ = level_dist;
207         }
208       }
209       last_level = i;
210     }
211   }
212 }
213 
214 // Initialize all params.
InitParams(uint8_t * const data,int width,int height,int stride,int radius,SmoothParams * const p)215 static int InitParams(uint8_t* const data, int width, int height, int stride,
216                       int radius, SmoothParams* const p) {
217   const int R = 2 * radius + 1;  // total size of the kernel
218 
219   const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
220   const size_t size_m =  width * sizeof(*p->average_);
221   const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
222   const size_t total_size = size_scratch_m + size_m + size_lut;
223   uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
224 
225   if (mem == NULL) return 0;
226   p->mem_ = (void*)mem;
227 
228   p->start_ = (uint16_t*)mem;
229   p->cur_ = p->start_;
230   p->end_ = p->start_ + R * width;
231   p->top_ = p->end_ - width;
232   memset(p->top_, 0, width * sizeof(*p->top_));
233   mem += size_scratch_m;
234 
235   p->average_ = (uint16_t*)mem;
236   mem += size_m;
237 
238   p->width_ = width;
239   p->height_ = height;
240   p->stride_ = stride;
241   p->src_ = data;
242   p->dst_ = data;
243   p->radius_ = radius;
244   p->scale_ = (1 << (FIX + LFIX)) / (R * R);  // normalization constant
245   p->row_ = -radius;
246 
247   // analyze the input distribution so we can best-fit the threshold
248   CountLevels(p);
249 
250   // correction table
251   p->correction_ = ((int16_t*)mem) + LUT_SIZE;
252   InitCorrectionLUT(p->correction_, p->min_level_dist_);
253 
254   return 1;
255 }
256 
CleanupParams(SmoothParams * const p)257 static void CleanupParams(SmoothParams* const p) {
258   WebPSafeFree(p->mem_);
259 }
260 
WebPDequantizeLevels(uint8_t * const data,int width,int height,int stride,int strength)261 int WebPDequantizeLevels(uint8_t* const data, int width, int height, int stride,
262                          int strength) {
263   const int radius = 4 * strength / 100;
264   if (strength < 0 || strength > 100) return 0;
265   if (data == NULL || width <= 0 || height <= 0) return 0;  // bad params
266   if (radius > 0) {
267     SmoothParams p;
268     memset(&p, 0, sizeof(p));
269     if (!InitParams(data, width, height, stride, radius, &p)) return 0;
270     if (p.num_levels_ > 2) {
271       for (; p.row_ < p.height_; ++p.row_) {
272         VFilter(&p);  // accumulate average of input
273         // Need to wait few rows in order to prime the filter,
274         // before emitting some output.
275         if (p.row_ >= p.radius_) {
276           HFilter(&p);
277           ApplyFilter(&p);
278         }
279       }
280     }
281     CleanupParams(&p);
282   }
283   return 1;
284 }
285