1 //===- llvm/unittest/IR/InstructionsTest.cpp - Instructions unit tests ----===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/IR/Instructions.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/Analysis/ValueTracking.h"
13 #include "llvm/IR/BasicBlock.h"
14 #include "llvm/IR/Constants.h"
15 #include "llvm/IR/DataLayout.h"
16 #include "llvm/IR/DerivedTypes.h"
17 #include "llvm/IR/Function.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/Operator.h"
23 #include "gtest/gtest.h"
24 #include <memory>
25
26 namespace llvm {
27 namespace {
28
TEST(InstructionsTest,ReturnInst)29 TEST(InstructionsTest, ReturnInst) {
30 LLVMContext C;
31
32 // test for PR6589
33 const ReturnInst* r0 = ReturnInst::Create(C);
34 EXPECT_EQ(r0->getNumOperands(), 0U);
35 EXPECT_EQ(r0->op_begin(), r0->op_end());
36
37 IntegerType* Int1 = IntegerType::get(C, 1);
38 Constant* One = ConstantInt::get(Int1, 1, true);
39 const ReturnInst* r1 = ReturnInst::Create(C, One);
40 EXPECT_EQ(1U, r1->getNumOperands());
41 User::const_op_iterator b(r1->op_begin());
42 EXPECT_NE(r1->op_end(), b);
43 EXPECT_EQ(One, *b);
44 EXPECT_EQ(One, r1->getOperand(0));
45 ++b;
46 EXPECT_EQ(r1->op_end(), b);
47
48 // clean up
49 delete r0;
50 delete r1;
51 }
52
53 // Test fixture that provides a module and a single function within it. Useful
54 // for tests that need to refer to the function in some way.
55 class ModuleWithFunctionTest : public testing::Test {
56 protected:
ModuleWithFunctionTest()57 ModuleWithFunctionTest() : M(new Module("MyModule", Ctx)) {
58 FArgTypes.push_back(Type::getInt8Ty(Ctx));
59 FArgTypes.push_back(Type::getInt32Ty(Ctx));
60 FArgTypes.push_back(Type::getInt64Ty(Ctx));
61 FunctionType *FTy =
62 FunctionType::get(Type::getVoidTy(Ctx), FArgTypes, false);
63 F = Function::Create(FTy, Function::ExternalLinkage, "", M.get());
64 }
65
66 LLVMContext Ctx;
67 std::unique_ptr<Module> M;
68 SmallVector<Type *, 3> FArgTypes;
69 Function *F;
70 };
71
TEST_F(ModuleWithFunctionTest,CallInst)72 TEST_F(ModuleWithFunctionTest, CallInst) {
73 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
74 ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
75 ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
76 std::unique_ptr<CallInst> Call(CallInst::Create(F, Args));
77
78 // Make sure iteration over a call's arguments works as expected.
79 unsigned Idx = 0;
80 for (Value *Arg : Call->arg_operands()) {
81 EXPECT_EQ(FArgTypes[Idx], Arg->getType());
82 EXPECT_EQ(Call->getArgOperand(Idx)->getType(), Arg->getType());
83 Idx++;
84 }
85 }
86
TEST_F(ModuleWithFunctionTest,InvokeInst)87 TEST_F(ModuleWithFunctionTest, InvokeInst) {
88 BasicBlock *BB1 = BasicBlock::Create(Ctx, "", F);
89 BasicBlock *BB2 = BasicBlock::Create(Ctx, "", F);
90
91 Value *Args[] = {ConstantInt::get(Type::getInt8Ty(Ctx), 20),
92 ConstantInt::get(Type::getInt32Ty(Ctx), 9999),
93 ConstantInt::get(Type::getInt64Ty(Ctx), 42)};
94 std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(F, BB1, BB2, Args));
95
96 // Make sure iteration over invoke's arguments works as expected.
97 unsigned Idx = 0;
98 for (Value *Arg : Invoke->arg_operands()) {
99 EXPECT_EQ(FArgTypes[Idx], Arg->getType());
100 EXPECT_EQ(Invoke->getArgOperand(Idx)->getType(), Arg->getType());
101 Idx++;
102 }
103 }
104
TEST(InstructionsTest,BranchInst)105 TEST(InstructionsTest, BranchInst) {
106 LLVMContext C;
107
108 // Make a BasicBlocks
109 BasicBlock* bb0 = BasicBlock::Create(C);
110 BasicBlock* bb1 = BasicBlock::Create(C);
111
112 // Mandatory BranchInst
113 const BranchInst* b0 = BranchInst::Create(bb0);
114
115 EXPECT_TRUE(b0->isUnconditional());
116 EXPECT_FALSE(b0->isConditional());
117 EXPECT_EQ(1U, b0->getNumSuccessors());
118
119 // check num operands
120 EXPECT_EQ(1U, b0->getNumOperands());
121
122 EXPECT_NE(b0->op_begin(), b0->op_end());
123 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
124
125 EXPECT_EQ(b0->op_end(), std::next(b0->op_begin()));
126
127 IntegerType* Int1 = IntegerType::get(C, 1);
128 Constant* One = ConstantInt::get(Int1, 1, true);
129
130 // Conditional BranchInst
131 BranchInst* b1 = BranchInst::Create(bb0, bb1, One);
132
133 EXPECT_FALSE(b1->isUnconditional());
134 EXPECT_TRUE(b1->isConditional());
135 EXPECT_EQ(2U, b1->getNumSuccessors());
136
137 // check num operands
138 EXPECT_EQ(3U, b1->getNumOperands());
139
140 User::const_op_iterator b(b1->op_begin());
141
142 // check COND
143 EXPECT_NE(b, b1->op_end());
144 EXPECT_EQ(One, *b);
145 EXPECT_EQ(One, b1->getOperand(0));
146 EXPECT_EQ(One, b1->getCondition());
147 ++b;
148
149 // check ELSE
150 EXPECT_EQ(bb1, *b);
151 EXPECT_EQ(bb1, b1->getOperand(1));
152 EXPECT_EQ(bb1, b1->getSuccessor(1));
153 ++b;
154
155 // check THEN
156 EXPECT_EQ(bb0, *b);
157 EXPECT_EQ(bb0, b1->getOperand(2));
158 EXPECT_EQ(bb0, b1->getSuccessor(0));
159 ++b;
160
161 EXPECT_EQ(b1->op_end(), b);
162
163 // clean up
164 delete b0;
165 delete b1;
166
167 delete bb0;
168 delete bb1;
169 }
170
TEST(InstructionsTest,CastInst)171 TEST(InstructionsTest, CastInst) {
172 LLVMContext C;
173
174 Type *Int8Ty = Type::getInt8Ty(C);
175 Type *Int16Ty = Type::getInt16Ty(C);
176 Type *Int32Ty = Type::getInt32Ty(C);
177 Type *Int64Ty = Type::getInt64Ty(C);
178 Type *V8x8Ty = VectorType::get(Int8Ty, 8);
179 Type *V8x64Ty = VectorType::get(Int64Ty, 8);
180 Type *X86MMXTy = Type::getX86_MMXTy(C);
181
182 Type *HalfTy = Type::getHalfTy(C);
183 Type *FloatTy = Type::getFloatTy(C);
184 Type *DoubleTy = Type::getDoubleTy(C);
185
186 Type *V2Int32Ty = VectorType::get(Int32Ty, 2);
187 Type *V2Int64Ty = VectorType::get(Int64Ty, 2);
188 Type *V4Int16Ty = VectorType::get(Int16Ty, 4);
189
190 Type *Int32PtrTy = PointerType::get(Int32Ty, 0);
191 Type *Int64PtrTy = PointerType::get(Int64Ty, 0);
192
193 Type *Int32PtrAS1Ty = PointerType::get(Int32Ty, 1);
194 Type *Int64PtrAS1Ty = PointerType::get(Int64Ty, 1);
195
196 Type *V2Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 2);
197 Type *V2Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 2);
198 Type *V4Int32PtrAS1Ty = VectorType::get(Int32PtrAS1Ty, 4);
199 Type *V4Int64PtrAS1Ty = VectorType::get(Int64PtrAS1Ty, 4);
200
201 Type *V2Int64PtrTy = VectorType::get(Int64PtrTy, 2);
202 Type *V2Int32PtrTy = VectorType::get(Int32PtrTy, 2);
203 Type *V4Int32PtrTy = VectorType::get(Int32PtrTy, 4);
204
205 const Constant* c8 = Constant::getNullValue(V8x8Ty);
206 const Constant* c64 = Constant::getNullValue(V8x64Ty);
207
208 const Constant *v2ptr32 = Constant::getNullValue(V2Int32PtrTy);
209
210 EXPECT_TRUE(CastInst::isCastable(V8x8Ty, X86MMXTy));
211 EXPECT_TRUE(CastInst::isCastable(X86MMXTy, V8x8Ty));
212 EXPECT_FALSE(CastInst::isCastable(Int64Ty, X86MMXTy));
213 EXPECT_TRUE(CastInst::isCastable(V8x64Ty, V8x8Ty));
214 EXPECT_TRUE(CastInst::isCastable(V8x8Ty, V8x64Ty));
215 EXPECT_EQ(CastInst::Trunc, CastInst::getCastOpcode(c64, true, V8x8Ty, true));
216 EXPECT_EQ(CastInst::SExt, CastInst::getCastOpcode(c8, true, V8x64Ty, true));
217
218 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, X86MMXTy));
219 EXPECT_FALSE(CastInst::isBitCastable(X86MMXTy, V8x8Ty));
220 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, X86MMXTy));
221 EXPECT_FALSE(CastInst::isBitCastable(V8x64Ty, V8x8Ty));
222 EXPECT_FALSE(CastInst::isBitCastable(V8x8Ty, V8x64Ty));
223
224 // Check address space casts are rejected since we don't know the sizes here
225 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, Int32PtrAS1Ty));
226 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrAS1Ty, Int32PtrTy));
227 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, V2Int32PtrAS1Ty));
228 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
229 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V2Int64PtrAS1Ty));
230 EXPECT_TRUE(CastInst::isCastable(V2Int32PtrAS1Ty, V2Int32PtrTy));
231 EXPECT_EQ(CastInst::AddrSpaceCast, CastInst::getCastOpcode(v2ptr32, true,
232 V2Int32PtrAS1Ty,
233 true));
234
235 // Test mismatched number of elements for pointers
236 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int64PtrAS1Ty));
237 EXPECT_FALSE(CastInst::isBitCastable(V4Int64PtrAS1Ty, V2Int32PtrAS1Ty));
238 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrAS1Ty, V4Int32PtrAS1Ty));
239 EXPECT_FALSE(CastInst::isBitCastable(Int32PtrTy, V2Int32PtrTy));
240 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int32PtrTy));
241
242 EXPECT_TRUE(CastInst::isBitCastable(Int32PtrTy, Int64PtrTy));
243 EXPECT_FALSE(CastInst::isBitCastable(DoubleTy, FloatTy));
244 EXPECT_FALSE(CastInst::isBitCastable(FloatTy, DoubleTy));
245 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
246 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, FloatTy));
247 EXPECT_TRUE(CastInst::isBitCastable(FloatTy, Int32Ty));
248 EXPECT_TRUE(CastInst::isBitCastable(Int16Ty, HalfTy));
249 EXPECT_TRUE(CastInst::isBitCastable(Int32Ty, FloatTy));
250 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, Int64Ty));
251
252 EXPECT_TRUE(CastInst::isBitCastable(V2Int32Ty, V4Int16Ty));
253 EXPECT_FALSE(CastInst::isBitCastable(Int32Ty, Int64Ty));
254 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, Int32Ty));
255
256 EXPECT_FALSE(CastInst::isBitCastable(V2Int32PtrTy, Int64Ty));
257 EXPECT_FALSE(CastInst::isBitCastable(Int64Ty, V2Int32PtrTy));
258 EXPECT_TRUE(CastInst::isBitCastable(V2Int64PtrTy, V2Int32PtrTy));
259 EXPECT_TRUE(CastInst::isBitCastable(V2Int32PtrTy, V2Int64PtrTy));
260 EXPECT_FALSE(CastInst::isBitCastable(V2Int32Ty, V2Int64Ty));
261 EXPECT_FALSE(CastInst::isBitCastable(V2Int64Ty, V2Int32Ty));
262
263
264 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
265 Constant::getNullValue(V4Int32PtrTy),
266 V2Int32PtrTy));
267 EXPECT_FALSE(CastInst::castIsValid(Instruction::BitCast,
268 Constant::getNullValue(V2Int32PtrTy),
269 V4Int32PtrTy));
270
271 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
272 Constant::getNullValue(V4Int32PtrAS1Ty),
273 V2Int32PtrTy));
274 EXPECT_FALSE(CastInst::castIsValid(Instruction::AddrSpaceCast,
275 Constant::getNullValue(V2Int32PtrTy),
276 V4Int32PtrAS1Ty));
277
278
279 // Check that assertion is not hit when creating a cast with a vector of
280 // pointers
281 // First form
282 BasicBlock *BB = BasicBlock::Create(C);
283 Constant *NullV2I32Ptr = Constant::getNullValue(V2Int32PtrTy);
284 auto Inst1 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty, "foo", BB);
285
286 // Second form
287 auto Inst2 = CastInst::CreatePointerCast(NullV2I32Ptr, V2Int32Ty);
288
289 delete Inst2;
290 Inst1->eraseFromParent();
291 delete BB;
292 }
293
TEST(InstructionsTest,VectorGep)294 TEST(InstructionsTest, VectorGep) {
295 LLVMContext C;
296
297 // Type Definitions
298 Type *I8Ty = IntegerType::get(C, 8);
299 Type *I32Ty = IntegerType::get(C, 32);
300 PointerType *Ptri8Ty = PointerType::get(I8Ty, 0);
301 PointerType *Ptri32Ty = PointerType::get(I32Ty, 0);
302
303 VectorType *V2xi8PTy = VectorType::get(Ptri8Ty, 2);
304 VectorType *V2xi32PTy = VectorType::get(Ptri32Ty, 2);
305
306 // Test different aspects of the vector-of-pointers type
307 // and GEPs which use this type.
308 ConstantInt *Ci32a = ConstantInt::get(C, APInt(32, 1492));
309 ConstantInt *Ci32b = ConstantInt::get(C, APInt(32, 1948));
310 std::vector<Constant*> ConstVa(2, Ci32a);
311 std::vector<Constant*> ConstVb(2, Ci32b);
312 Constant *C2xi32a = ConstantVector::get(ConstVa);
313 Constant *C2xi32b = ConstantVector::get(ConstVb);
314
315 CastInst *PtrVecA = new IntToPtrInst(C2xi32a, V2xi32PTy);
316 CastInst *PtrVecB = new IntToPtrInst(C2xi32b, V2xi32PTy);
317
318 ICmpInst *ICmp0 = new ICmpInst(ICmpInst::ICMP_SGT, PtrVecA, PtrVecB);
319 ICmpInst *ICmp1 = new ICmpInst(ICmpInst::ICMP_ULT, PtrVecA, PtrVecB);
320 EXPECT_NE(ICmp0, ICmp1); // suppress warning.
321
322 BasicBlock* BB0 = BasicBlock::Create(C);
323 // Test InsertAtEnd ICmpInst constructor.
324 ICmpInst *ICmp2 = new ICmpInst(*BB0, ICmpInst::ICMP_SGE, PtrVecA, PtrVecB);
325 EXPECT_NE(ICmp0, ICmp2); // suppress warning.
326
327 GetElementPtrInst *Gep0 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32a);
328 GetElementPtrInst *Gep1 = GetElementPtrInst::Create(I32Ty, PtrVecA, C2xi32b);
329 GetElementPtrInst *Gep2 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32a);
330 GetElementPtrInst *Gep3 = GetElementPtrInst::Create(I32Ty, PtrVecB, C2xi32b);
331
332 CastInst *BTC0 = new BitCastInst(Gep0, V2xi8PTy);
333 CastInst *BTC1 = new BitCastInst(Gep1, V2xi8PTy);
334 CastInst *BTC2 = new BitCastInst(Gep2, V2xi8PTy);
335 CastInst *BTC3 = new BitCastInst(Gep3, V2xi8PTy);
336
337 Value *S0 = BTC0->stripPointerCasts();
338 Value *S1 = BTC1->stripPointerCasts();
339 Value *S2 = BTC2->stripPointerCasts();
340 Value *S3 = BTC3->stripPointerCasts();
341
342 EXPECT_NE(S0, Gep0);
343 EXPECT_NE(S1, Gep1);
344 EXPECT_NE(S2, Gep2);
345 EXPECT_NE(S3, Gep3);
346
347 int64_t Offset;
348 DataLayout TD("e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f3"
349 "2:32:32-f64:64:64-v64:64:64-v128:128:128-a:0:64-s:64:64-f80"
350 ":128:128-n8:16:32:64-S128");
351 // Make sure we don't crash
352 GetPointerBaseWithConstantOffset(Gep0, Offset, TD);
353 GetPointerBaseWithConstantOffset(Gep1, Offset, TD);
354 GetPointerBaseWithConstantOffset(Gep2, Offset, TD);
355 GetPointerBaseWithConstantOffset(Gep3, Offset, TD);
356
357 // Gep of Geps
358 GetElementPtrInst *GepII0 = GetElementPtrInst::Create(I32Ty, Gep0, C2xi32b);
359 GetElementPtrInst *GepII1 = GetElementPtrInst::Create(I32Ty, Gep1, C2xi32a);
360 GetElementPtrInst *GepII2 = GetElementPtrInst::Create(I32Ty, Gep2, C2xi32b);
361 GetElementPtrInst *GepII3 = GetElementPtrInst::Create(I32Ty, Gep3, C2xi32a);
362
363 EXPECT_EQ(GepII0->getNumIndices(), 1u);
364 EXPECT_EQ(GepII1->getNumIndices(), 1u);
365 EXPECT_EQ(GepII2->getNumIndices(), 1u);
366 EXPECT_EQ(GepII3->getNumIndices(), 1u);
367
368 EXPECT_FALSE(GepII0->hasAllZeroIndices());
369 EXPECT_FALSE(GepII1->hasAllZeroIndices());
370 EXPECT_FALSE(GepII2->hasAllZeroIndices());
371 EXPECT_FALSE(GepII3->hasAllZeroIndices());
372
373 delete GepII0;
374 delete GepII1;
375 delete GepII2;
376 delete GepII3;
377
378 delete BTC0;
379 delete BTC1;
380 delete BTC2;
381 delete BTC3;
382
383 delete Gep0;
384 delete Gep1;
385 delete Gep2;
386 delete Gep3;
387
388 ICmp2->eraseFromParent();
389 delete BB0;
390
391 delete ICmp0;
392 delete ICmp1;
393 delete PtrVecA;
394 delete PtrVecB;
395 }
396
TEST(InstructionsTest,FPMathOperator)397 TEST(InstructionsTest, FPMathOperator) {
398 LLVMContext Context;
399 IRBuilder<> Builder(Context);
400 MDBuilder MDHelper(Context);
401 Instruction *I = Builder.CreatePHI(Builder.getDoubleTy(), 0);
402 MDNode *MD1 = MDHelper.createFPMath(1.0);
403 Value *V1 = Builder.CreateFAdd(I, I, "", MD1);
404 EXPECT_TRUE(isa<FPMathOperator>(V1));
405 FPMathOperator *O1 = cast<FPMathOperator>(V1);
406 EXPECT_EQ(O1->getFPAccuracy(), 1.0);
407 delete V1;
408 delete I;
409 }
410
411
TEST(InstructionsTest,isEliminableCastPair)412 TEST(InstructionsTest, isEliminableCastPair) {
413 LLVMContext C;
414
415 Type* Int16Ty = Type::getInt16Ty(C);
416 Type* Int32Ty = Type::getInt32Ty(C);
417 Type* Int64Ty = Type::getInt64Ty(C);
418 Type* Int64PtrTy = Type::getInt64PtrTy(C);
419
420 // Source and destination pointers have same size -> bitcast.
421 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
422 CastInst::IntToPtr,
423 Int64PtrTy, Int64Ty, Int64PtrTy,
424 Int32Ty, nullptr, Int32Ty),
425 CastInst::BitCast);
426
427 // Source and destination have unknown sizes, but the same address space and
428 // the intermediate int is the maximum pointer size -> bitcast
429 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
430 CastInst::IntToPtr,
431 Int64PtrTy, Int64Ty, Int64PtrTy,
432 nullptr, nullptr, nullptr),
433 CastInst::BitCast);
434
435 // Source and destination have unknown sizes, but the same address space and
436 // the intermediate int is not the maximum pointer size -> nothing
437 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::PtrToInt,
438 CastInst::IntToPtr,
439 Int64PtrTy, Int32Ty, Int64PtrTy,
440 nullptr, nullptr, nullptr),
441 0U);
442
443 // Middle pointer big enough -> bitcast.
444 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
445 CastInst::PtrToInt,
446 Int64Ty, Int64PtrTy, Int64Ty,
447 nullptr, Int64Ty, nullptr),
448 CastInst::BitCast);
449
450 // Middle pointer too small -> fail.
451 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
452 CastInst::PtrToInt,
453 Int64Ty, Int64PtrTy, Int64Ty,
454 nullptr, Int32Ty, nullptr),
455 0U);
456
457 // Test that we don't eliminate bitcasts between different address spaces,
458 // or if we don't have available pointer size information.
459 DataLayout DL("e-p:32:32:32-p1:16:16:16-p2:64:64:64-i1:8:8-i8:8:8-i16:16:16"
460 "-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64"
461 "-v128:128:128-a:0:64-s:64:64-f80:128:128-n8:16:32:64-S128");
462
463 Type* Int64PtrTyAS1 = Type::getInt64PtrTy(C, 1);
464 Type* Int64PtrTyAS2 = Type::getInt64PtrTy(C, 2);
465
466 IntegerType *Int16SizePtr = DL.getIntPtrType(C, 1);
467 IntegerType *Int64SizePtr = DL.getIntPtrType(C, 2);
468
469 // Cannot simplify inttoptr, addrspacecast
470 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
471 CastInst::AddrSpaceCast,
472 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS2,
473 nullptr, Int16SizePtr, Int64SizePtr),
474 0U);
475
476 // Cannot simplify addrspacecast, ptrtoint
477 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::AddrSpaceCast,
478 CastInst::PtrToInt,
479 Int64PtrTyAS1, Int64PtrTyAS2, Int16Ty,
480 Int64SizePtr, Int16SizePtr, nullptr),
481 0U);
482
483 // Pass since the bitcast address spaces are the same
484 EXPECT_EQ(CastInst::isEliminableCastPair(CastInst::IntToPtr,
485 CastInst::BitCast,
486 Int16Ty, Int64PtrTyAS1, Int64PtrTyAS1,
487 nullptr, nullptr, nullptr),
488 CastInst::IntToPtr);
489
490 }
491
TEST(InstructionsTest,CloneCall)492 TEST(InstructionsTest, CloneCall) {
493 LLVMContext C;
494 Type *Int32Ty = Type::getInt32Ty(C);
495 Type *ArgTys[] = {Int32Ty, Int32Ty, Int32Ty};
496 Type *FnTy = FunctionType::get(Int32Ty, ArgTys, /*isVarArg=*/false);
497 Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
498 Value *Args[] = {
499 ConstantInt::get(Int32Ty, 1),
500 ConstantInt::get(Int32Ty, 2),
501 ConstantInt::get(Int32Ty, 3)
502 };
503 std::unique_ptr<CallInst> Call(CallInst::Create(Callee, Args, "result"));
504
505 // Test cloning the tail call kind.
506 CallInst::TailCallKind Kinds[] = {CallInst::TCK_None, CallInst::TCK_Tail,
507 CallInst::TCK_MustTail};
508 for (CallInst::TailCallKind TCK : Kinds) {
509 Call->setTailCallKind(TCK);
510 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
511 EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
512 }
513 Call->setTailCallKind(CallInst::TCK_None);
514
515 // Test cloning an attribute.
516 {
517 AttrBuilder AB;
518 AB.addAttribute(Attribute::ReadOnly);
519 Call->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB));
520 std::unique_ptr<CallInst> Clone(cast<CallInst>(Call->clone()));
521 EXPECT_TRUE(Clone->onlyReadsMemory());
522 }
523 }
524
TEST(InstructionsTest,AlterCallBundles)525 TEST(InstructionsTest, AlterCallBundles) {
526 LLVMContext C;
527 Type *Int32Ty = Type::getInt32Ty(C);
528 Type *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
529 Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
530 Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
531 OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
532 std::unique_ptr<CallInst> Call(
533 CallInst::Create(Callee, Args, OldBundle, "result"));
534 Call->setTailCallKind(CallInst::TailCallKind::TCK_NoTail);
535 AttrBuilder AB;
536 AB.addAttribute(Attribute::Cold);
537 Call->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB));
538 Call->setDebugLoc(DebugLoc(MDNode::get(C, None)));
539
540 OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
541 std::unique_ptr<CallInst> Clone(CallInst::Create(Call.get(), NewBundle));
542 EXPECT_EQ(Call->getNumArgOperands(), Clone->getNumArgOperands());
543 EXPECT_EQ(Call->getArgOperand(0), Clone->getArgOperand(0));
544 EXPECT_EQ(Call->getCallingConv(), Clone->getCallingConv());
545 EXPECT_EQ(Call->getTailCallKind(), Clone->getTailCallKind());
546 EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
547 EXPECT_EQ(Call->getDebugLoc(), Clone->getDebugLoc());
548 EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
549 EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
550 }
551
TEST(InstructionsTest,AlterInvokeBundles)552 TEST(InstructionsTest, AlterInvokeBundles) {
553 LLVMContext C;
554 Type *Int32Ty = Type::getInt32Ty(C);
555 Type *FnTy = FunctionType::get(Int32Ty, Int32Ty, /*isVarArg=*/false);
556 Value *Callee = Constant::getNullValue(FnTy->getPointerTo());
557 Value *Args[] = {ConstantInt::get(Int32Ty, 42)};
558 std::unique_ptr<BasicBlock> NormalDest(BasicBlock::Create(C));
559 std::unique_ptr<BasicBlock> UnwindDest(BasicBlock::Create(C));
560 OperandBundleDef OldBundle("before", UndefValue::get(Int32Ty));
561 std::unique_ptr<InvokeInst> Invoke(InvokeInst::Create(
562 Callee, NormalDest.get(), UnwindDest.get(), Args, OldBundle, "result"));
563 AttrBuilder AB;
564 AB.addAttribute(Attribute::Cold);
565 Invoke->setAttributes(AttributeSet::get(C, AttributeSet::FunctionIndex, AB));
566 Invoke->setDebugLoc(DebugLoc(MDNode::get(C, None)));
567
568 OperandBundleDef NewBundle("after", ConstantInt::get(Int32Ty, 7));
569 std::unique_ptr<InvokeInst> Clone(
570 InvokeInst::Create(Invoke.get(), NewBundle));
571 EXPECT_EQ(Invoke->getNormalDest(), Clone->getNormalDest());
572 EXPECT_EQ(Invoke->getUnwindDest(), Clone->getUnwindDest());
573 EXPECT_EQ(Invoke->getNumArgOperands(), Clone->getNumArgOperands());
574 EXPECT_EQ(Invoke->getArgOperand(0), Clone->getArgOperand(0));
575 EXPECT_EQ(Invoke->getCallingConv(), Clone->getCallingConv());
576 EXPECT_TRUE(Clone->hasFnAttr(Attribute::AttrKind::Cold));
577 EXPECT_EQ(Invoke->getDebugLoc(), Clone->getDebugLoc());
578 EXPECT_EQ(Clone->getNumOperandBundles(), 1U);
579 EXPECT_TRUE(Clone->getOperandBundle("after").hasValue());
580 }
581
582 } // end anonymous namespace
583 } // end namespace llvm
584