1 /*
2 * Stack-less Just-In-Time compiler
3 *
4 * Copyright 2013-2013 Tilera Corporation(jiwang@tilera.com). All rights reserved.
5 * Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without modification, are
8 * permitted provided that the following conditions are met:
9 *
10 * 1. Redistributions of source code must retain the above copyright notice, this list of
11 * conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright notice, this list
14 * of conditions and the following disclaimer in the documentation and/or other materials
15 * provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
18 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
20 * SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
23 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
24 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
25 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27
28 /* TileGX architecture. */
29 /* Contributed by Tilera Corporation. */
30 #include "sljitNativeTILEGX-encoder.c"
31
32 #define SIMM_8BIT_MAX (0x7f)
33 #define SIMM_8BIT_MIN (-0x80)
34 #define SIMM_16BIT_MAX (0x7fff)
35 #define SIMM_16BIT_MIN (-0x8000)
36 #define SIMM_17BIT_MAX (0xffff)
37 #define SIMM_17BIT_MIN (-0x10000)
38 #define SIMM_32BIT_MAX (0x7fffffff)
39 #define SIMM_32BIT_MIN (-0x7fffffff - 1)
40 #define SIMM_48BIT_MAX (0x7fffffff0000L)
41 #define SIMM_48BIT_MIN (-0x800000000000L)
42 #define IMM16(imm) ((imm) & 0xffff)
43
44 #define UIMM_16BIT_MAX (0xffff)
45
46 #define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
47 #define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
48 #define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
49 #define ADDR_TMP (SLJIT_NUMBER_OF_REGISTERS + 5)
50 #define PIC_ADDR_REG TMP_REG2
51
52 static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 6] = {
53 63, 0, 1, 2, 3, 4, 30, 31, 32, 33, 34, 54, 5, 16, 6, 7
54 };
55
56 #define SLJIT_LOCALS_REG_mapped 54
57 #define TMP_REG1_mapped 5
58 #define TMP_REG2_mapped 16
59 #define TMP_REG3_mapped 6
60 #define ADDR_TMP_mapped 7
61
62 /* Flags are keept in volatile registers. */
63 #define EQUAL_FLAG 8
64 /* And carry flag as well. */
65 #define ULESS_FLAG 9
66 #define UGREATER_FLAG 10
67 #define LESS_FLAG 11
68 #define GREATER_FLAG 12
69 #define OVERFLOW_FLAG 13
70
71 #define ZERO 63
72 #define RA 55
73 #define TMP_EREG1 14
74 #define TMP_EREG2 15
75
76 #define LOAD_DATA 0x01
77 #define WORD_DATA 0x00
78 #define BYTE_DATA 0x02
79 #define HALF_DATA 0x04
80 #define INT_DATA 0x06
81 #define SIGNED_DATA 0x08
82 #define DOUBLE_DATA 0x10
83
84 /* Separates integer and floating point registers */
85 #define GPR_REG 0xf
86
87 #define MEM_MASK 0x1f
88
89 #define WRITE_BACK 0x00020
90 #define ARG_TEST 0x00040
91 #define ALT_KEEP_CACHE 0x00080
92 #define CUMULATIVE_OP 0x00100
93 #define LOGICAL_OP 0x00200
94 #define IMM_OP 0x00400
95 #define SRC2_IMM 0x00800
96
97 #define UNUSED_DEST 0x01000
98 #define REG_DEST 0x02000
99 #define REG1_SOURCE 0x04000
100 #define REG2_SOURCE 0x08000
101 #define SLOW_SRC1 0x10000
102 #define SLOW_SRC2 0x20000
103 #define SLOW_DEST 0x40000
104
105 /* Only these flags are set. UNUSED_DEST is not set when no flags should be set.
106 */
107 #define CHECK_FLAGS(list) (!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
108
sljit_get_platform_name(void)109 SLJIT_API_FUNC_ATTRIBUTE const char *sljit_get_platform_name(void)
110 {
111 return "TileGX" SLJIT_CPUINFO;
112 }
113
114 /* Length of an instruction word */
115 typedef sljit_uw sljit_ins;
116
117 struct jit_instr {
118 const struct tilegx_opcode* opcode;
119 tilegx_pipeline pipe;
120 unsigned long input_registers;
121 unsigned long output_registers;
122 int operand_value[4];
123 int line;
124 };
125
126 /* Opcode Helper Macros */
127 #define TILEGX_X_MODE 0
128
129 #define X_MODE create_Mode(TILEGX_X_MODE)
130
131 #define FNOP_X0 \
132 create_Opcode_X0(RRR_0_OPCODE_X0) | \
133 create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
134 create_UnaryOpcodeExtension_X0(FNOP_UNARY_OPCODE_X0)
135
136 #define FNOP_X1 \
137 create_Opcode_X1(RRR_0_OPCODE_X1) | \
138 create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
139 create_UnaryOpcodeExtension_X1(FNOP_UNARY_OPCODE_X1)
140
141 #define NOP \
142 create_Mode(TILEGX_X_MODE) | FNOP_X0 | FNOP_X1
143
144 #define ANOP_X0 \
145 create_Opcode_X0(RRR_0_OPCODE_X0) | \
146 create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
147 create_UnaryOpcodeExtension_X0(NOP_UNARY_OPCODE_X0)
148
149 #define BPT create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
150 create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
151 create_UnaryOpcodeExtension_X1(ILL_UNARY_OPCODE_X1) | \
152 create_Dest_X1(0x1C) | create_SrcA_X1(0x25) | ANOP_X0
153
154 #define ADD_X1 \
155 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
156 create_RRROpcodeExtension_X1(ADD_RRR_0_OPCODE_X1) | FNOP_X0
157
158 #define ADDI_X1 \
159 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
160 create_Imm8OpcodeExtension_X1(ADDI_IMM8_OPCODE_X1) | FNOP_X0
161
162 #define SUB_X1 \
163 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
164 create_RRROpcodeExtension_X1(SUB_RRR_0_OPCODE_X1) | FNOP_X0
165
166 #define NOR_X1 \
167 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
168 create_RRROpcodeExtension_X1(NOR_RRR_0_OPCODE_X1) | FNOP_X0
169
170 #define OR_X1 \
171 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
172 create_RRROpcodeExtension_X1(OR_RRR_0_OPCODE_X1) | FNOP_X0
173
174 #define AND_X1 \
175 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
176 create_RRROpcodeExtension_X1(AND_RRR_0_OPCODE_X1) | FNOP_X0
177
178 #define XOR_X1 \
179 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
180 create_RRROpcodeExtension_X1(XOR_RRR_0_OPCODE_X1) | FNOP_X0
181
182 #define CMOVNEZ_X0 \
183 create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
184 create_RRROpcodeExtension_X0(CMOVNEZ_RRR_0_OPCODE_X0) | FNOP_X1
185
186 #define CMOVEQZ_X0 \
187 create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
188 create_RRROpcodeExtension_X0(CMOVEQZ_RRR_0_OPCODE_X0) | FNOP_X1
189
190 #define ADDLI_X1 \
191 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(ADDLI_OPCODE_X1) | FNOP_X0
192
193 #define V4INT_L_X1 \
194 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
195 create_RRROpcodeExtension_X1(V4INT_L_RRR_0_OPCODE_X1) | FNOP_X0
196
197 #define BFEXTU_X0 \
198 create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
199 create_BFOpcodeExtension_X0(BFEXTU_BF_OPCODE_X0) | FNOP_X1
200
201 #define BFEXTS_X0 \
202 create_Mode(TILEGX_X_MODE) | create_Opcode_X0(BF_OPCODE_X0) | \
203 create_BFOpcodeExtension_X0(BFEXTS_BF_OPCODE_X0) | FNOP_X1
204
205 #define SHL16INSLI_X1 \
206 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHL16INSLI_OPCODE_X1) | FNOP_X0
207
208 #define ST_X1 \
209 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
210 create_RRROpcodeExtension_X1(ST_RRR_0_OPCODE_X1) | create_Dest_X1(0x0) | FNOP_X0
211
212 #define LD_X1 \
213 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
214 create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
215 create_UnaryOpcodeExtension_X1(LD_UNARY_OPCODE_X1) | FNOP_X0
216
217 #define JR_X1 \
218 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
219 create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
220 create_UnaryOpcodeExtension_X1(JR_UNARY_OPCODE_X1) | FNOP_X0
221
222 #define JALR_X1 \
223 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
224 create_RRROpcodeExtension_X1(UNARY_RRR_0_OPCODE_X1) | \
225 create_UnaryOpcodeExtension_X1(JALR_UNARY_OPCODE_X1) | FNOP_X0
226
227 #define CLZ_X0 \
228 create_Mode(TILEGX_X_MODE) | create_Opcode_X0(RRR_0_OPCODE_X0) | \
229 create_RRROpcodeExtension_X0(UNARY_RRR_0_OPCODE_X0) | \
230 create_UnaryOpcodeExtension_X0(CNTLZ_UNARY_OPCODE_X0) | FNOP_X1
231
232 #define CMPLTUI_X1 \
233 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
234 create_Imm8OpcodeExtension_X1(CMPLTUI_IMM8_OPCODE_X1) | FNOP_X0
235
236 #define CMPLTU_X1 \
237 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
238 create_RRROpcodeExtension_X1(CMPLTU_RRR_0_OPCODE_X1) | FNOP_X0
239
240 #define CMPLTS_X1 \
241 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
242 create_RRROpcodeExtension_X1(CMPLTS_RRR_0_OPCODE_X1) | FNOP_X0
243
244 #define XORI_X1 \
245 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
246 create_Imm8OpcodeExtension_X1(XORI_IMM8_OPCODE_X1) | FNOP_X0
247
248 #define ORI_X1 \
249 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
250 create_Imm8OpcodeExtension_X1(ORI_IMM8_OPCODE_X1) | FNOP_X0
251
252 #define ANDI_X1 \
253 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(IMM8_OPCODE_X1) | \
254 create_Imm8OpcodeExtension_X1(ANDI_IMM8_OPCODE_X1) | FNOP_X0
255
256 #define SHLI_X1 \
257 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
258 create_ShiftOpcodeExtension_X1(SHLI_SHIFT_OPCODE_X1) | FNOP_X0
259
260 #define SHL_X1 \
261 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
262 create_RRROpcodeExtension_X1(SHL_RRR_0_OPCODE_X1) | FNOP_X0
263
264 #define SHRSI_X1 \
265 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
266 create_ShiftOpcodeExtension_X1(SHRSI_SHIFT_OPCODE_X1) | FNOP_X0
267
268 #define SHRS_X1 \
269 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
270 create_RRROpcodeExtension_X1(SHRS_RRR_0_OPCODE_X1) | FNOP_X0
271
272 #define SHRUI_X1 \
273 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(SHIFT_OPCODE_X1) | \
274 create_ShiftOpcodeExtension_X1(SHRUI_SHIFT_OPCODE_X1) | FNOP_X0
275
276 #define SHRU_X1 \
277 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(RRR_0_OPCODE_X1) | \
278 create_RRROpcodeExtension_X1(SHRU_RRR_0_OPCODE_X1) | FNOP_X0
279
280 #define BEQZ_X1 \
281 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
282 create_BrType_X1(BEQZ_BRANCH_OPCODE_X1) | FNOP_X0
283
284 #define BNEZ_X1 \
285 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(BRANCH_OPCODE_X1) | \
286 create_BrType_X1(BNEZ_BRANCH_OPCODE_X1) | FNOP_X0
287
288 #define J_X1 \
289 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
290 create_JumpOpcodeExtension_X1(J_JUMP_OPCODE_X1) | FNOP_X0
291
292 #define JAL_X1 \
293 create_Mode(TILEGX_X_MODE) | create_Opcode_X1(JUMP_OPCODE_X1) | \
294 create_JumpOpcodeExtension_X1(JAL_JUMP_OPCODE_X1) | FNOP_X0
295
296 #define DEST_X0(x) create_Dest_X0(x)
297 #define SRCA_X0(x) create_SrcA_X0(x)
298 #define SRCB_X0(x) create_SrcB_X0(x)
299 #define DEST_X1(x) create_Dest_X1(x)
300 #define SRCA_X1(x) create_SrcA_X1(x)
301 #define SRCB_X1(x) create_SrcB_X1(x)
302 #define IMM16_X1(x) create_Imm16_X1(x)
303 #define IMM8_X1(x) create_Imm8_X1(x)
304 #define BFSTART_X0(x) create_BFStart_X0(x)
305 #define BFEND_X0(x) create_BFEnd_X0(x)
306 #define SHIFTIMM_X1(x) create_ShAmt_X1(x)
307 #define JOFF_X1(x) create_JumpOff_X1(x)
308 #define BOFF_X1(x) create_BrOff_X1(x)
309
310 static const tilegx_mnemonic data_transfer_insts[16] = {
311 /* u w s */ TILEGX_OPC_ST /* st */,
312 /* u w l */ TILEGX_OPC_LD /* ld */,
313 /* u b s */ TILEGX_OPC_ST1 /* st1 */,
314 /* u b l */ TILEGX_OPC_LD1U /* ld1u */,
315 /* u h s */ TILEGX_OPC_ST2 /* st2 */,
316 /* u h l */ TILEGX_OPC_LD2U /* ld2u */,
317 /* u i s */ TILEGX_OPC_ST4 /* st4 */,
318 /* u i l */ TILEGX_OPC_LD4U /* ld4u */,
319 /* s w s */ TILEGX_OPC_ST /* st */,
320 /* s w l */ TILEGX_OPC_LD /* ld */,
321 /* s b s */ TILEGX_OPC_ST1 /* st1 */,
322 /* s b l */ TILEGX_OPC_LD1S /* ld1s */,
323 /* s h s */ TILEGX_OPC_ST2 /* st2 */,
324 /* s h l */ TILEGX_OPC_LD2S /* ld2s */,
325 /* s i s */ TILEGX_OPC_ST4 /* st4 */,
326 /* s i l */ TILEGX_OPC_LD4S /* ld4s */,
327 };
328
329 #ifdef TILEGX_JIT_DEBUG
push_inst_debug(struct sljit_compiler * compiler,sljit_ins ins,int line)330 static sljit_s32 push_inst_debug(struct sljit_compiler *compiler, sljit_ins ins, int line)
331 {
332 sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
333 FAIL_IF(!ptr);
334 *ptr = ins;
335 compiler->size++;
336 printf("|%04d|S0|:\t\t", line);
337 print_insn_tilegx(ptr);
338 return SLJIT_SUCCESS;
339 }
340
push_inst_nodebug(struct sljit_compiler * compiler,sljit_ins ins)341 static sljit_s32 push_inst_nodebug(struct sljit_compiler *compiler, sljit_ins ins)
342 {
343 sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
344 FAIL_IF(!ptr);
345 *ptr = ins;
346 compiler->size++;
347 return SLJIT_SUCCESS;
348 }
349
350 #define push_inst(a, b) push_inst_debug(a, b, __LINE__)
351 #else
push_inst(struct sljit_compiler * compiler,sljit_ins ins)352 static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins)
353 {
354 sljit_ins *ptr = (sljit_ins *)ensure_buf(compiler, sizeof(sljit_ins));
355 FAIL_IF(!ptr);
356 *ptr = ins;
357 compiler->size++;
358 return SLJIT_SUCCESS;
359 }
360 #endif
361
362 #define BUNDLE_FORMAT_MASK(p0, p1, p2) \
363 ((p0) | ((p1) << 8) | ((p2) << 16))
364
365 #define BUNDLE_FORMAT(p0, p1, p2) \
366 { \
367 { \
368 (tilegx_pipeline)(p0), \
369 (tilegx_pipeline)(p1), \
370 (tilegx_pipeline)(p2) \
371 }, \
372 BUNDLE_FORMAT_MASK(1 << (p0), 1 << (p1), (1 << (p2))) \
373 }
374
375 #define NO_PIPELINE TILEGX_NUM_PIPELINE_ENCODINGS
376
377 #define tilegx_is_x_pipeline(p) ((int)(p) <= (int)TILEGX_PIPELINE_X1)
378
379 #define PI(encoding) \
380 push_inst(compiler, encoding)
381
382 #define PB3(opcode, dst, srca, srcb) \
383 push_3_buffer(compiler, opcode, dst, srca, srcb, __LINE__)
384
385 #define PB2(opcode, dst, src) \
386 push_2_buffer(compiler, opcode, dst, src, __LINE__)
387
388 #define JR(reg) \
389 push_jr_buffer(compiler, TILEGX_OPC_JR, reg, __LINE__)
390
391 #define ADD(dst, srca, srcb) \
392 push_3_buffer(compiler, TILEGX_OPC_ADD, dst, srca, srcb, __LINE__)
393
394 #define SUB(dst, srca, srcb) \
395 push_3_buffer(compiler, TILEGX_OPC_SUB, dst, srca, srcb, __LINE__)
396
397 #define MUL(dst, srca, srcb) \
398 push_3_buffer(compiler, TILEGX_OPC_MULX, dst, srca, srcb, __LINE__)
399
400 #define NOR(dst, srca, srcb) \
401 push_3_buffer(compiler, TILEGX_OPC_NOR, dst, srca, srcb, __LINE__)
402
403 #define OR(dst, srca, srcb) \
404 push_3_buffer(compiler, TILEGX_OPC_OR, dst, srca, srcb, __LINE__)
405
406 #define XOR(dst, srca, srcb) \
407 push_3_buffer(compiler, TILEGX_OPC_XOR, dst, srca, srcb, __LINE__)
408
409 #define AND(dst, srca, srcb) \
410 push_3_buffer(compiler, TILEGX_OPC_AND, dst, srca, srcb, __LINE__)
411
412 #define CLZ(dst, src) \
413 push_2_buffer(compiler, TILEGX_OPC_CLZ, dst, src, __LINE__)
414
415 #define SHLI(dst, srca, srcb) \
416 push_3_buffer(compiler, TILEGX_OPC_SHLI, dst, srca, srcb, __LINE__)
417
418 #define SHRUI(dst, srca, imm) \
419 push_3_buffer(compiler, TILEGX_OPC_SHRUI, dst, srca, imm, __LINE__)
420
421 #define XORI(dst, srca, imm) \
422 push_3_buffer(compiler, TILEGX_OPC_XORI, dst, srca, imm, __LINE__)
423
424 #define ORI(dst, srca, imm) \
425 push_3_buffer(compiler, TILEGX_OPC_ORI, dst, srca, imm, __LINE__)
426
427 #define CMPLTU(dst, srca, srcb) \
428 push_3_buffer(compiler, TILEGX_OPC_CMPLTU, dst, srca, srcb, __LINE__)
429
430 #define CMPLTS(dst, srca, srcb) \
431 push_3_buffer(compiler, TILEGX_OPC_CMPLTS, dst, srca, srcb, __LINE__)
432
433 #define CMPLTUI(dst, srca, imm) \
434 push_3_buffer(compiler, TILEGX_OPC_CMPLTUI, dst, srca, imm, __LINE__)
435
436 #define CMOVNEZ(dst, srca, srcb) \
437 push_3_buffer(compiler, TILEGX_OPC_CMOVNEZ, dst, srca, srcb, __LINE__)
438
439 #define CMOVEQZ(dst, srca, srcb) \
440 push_3_buffer(compiler, TILEGX_OPC_CMOVEQZ, dst, srca, srcb, __LINE__)
441
442 #define ADDLI(dst, srca, srcb) \
443 push_3_buffer(compiler, TILEGX_OPC_ADDLI, dst, srca, srcb, __LINE__)
444
445 #define SHL16INSLI(dst, srca, srcb) \
446 push_3_buffer(compiler, TILEGX_OPC_SHL16INSLI, dst, srca, srcb, __LINE__)
447
448 #define LD_ADD(dst, addr, adjust) \
449 push_3_buffer(compiler, TILEGX_OPC_LD_ADD, dst, addr, adjust, __LINE__)
450
451 #define ST_ADD(src, addr, adjust) \
452 push_3_buffer(compiler, TILEGX_OPC_ST_ADD, src, addr, adjust, __LINE__)
453
454 #define LD(dst, addr) \
455 push_2_buffer(compiler, TILEGX_OPC_LD, dst, addr, __LINE__)
456
457 #define BFEXTU(dst, src, start, end) \
458 push_4_buffer(compiler, TILEGX_OPC_BFEXTU, dst, src, start, end, __LINE__)
459
460 #define BFEXTS(dst, src, start, end) \
461 push_4_buffer(compiler, TILEGX_OPC_BFEXTS, dst, src, start, end, __LINE__)
462
463 #define ADD_SOLO(dest, srca, srcb) \
464 push_inst(compiler, ADD_X1 | DEST_X1(dest) | SRCA_X1(srca) | SRCB_X1(srcb))
465
466 #define ADDI_SOLO(dest, srca, imm) \
467 push_inst(compiler, ADDI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM8_X1(imm))
468
469 #define ADDLI_SOLO(dest, srca, imm) \
470 push_inst(compiler, ADDLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
471
472 #define SHL16INSLI_SOLO(dest, srca, imm) \
473 push_inst(compiler, SHL16INSLI_X1 | DEST_X1(dest) | SRCA_X1(srca) | IMM16_X1(imm))
474
475 #define JALR_SOLO(reg) \
476 push_inst(compiler, JALR_X1 | SRCA_X1(reg))
477
478 #define JR_SOLO(reg) \
479 push_inst(compiler, JR_X1 | SRCA_X1(reg))
480
481 struct Format {
482 /* Mapping of bundle issue slot to assigned pipe. */
483 tilegx_pipeline pipe[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
484
485 /* Mask of pipes used by this bundle. */
486 unsigned int pipe_mask;
487 };
488
489 const struct Format formats[] =
490 {
491 /* In Y format we must always have something in Y2, since it has
492 * no fnop, so this conveys that Y2 must always be used. */
493 BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, NO_PIPELINE),
494 BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, NO_PIPELINE),
495 BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, NO_PIPELINE),
496 BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, NO_PIPELINE),
497
498 /* Y format has three instructions. */
499 BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2),
500 BUNDLE_FORMAT(TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1),
501 BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y2),
502 BUNDLE_FORMAT(TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0),
503 BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y0, TILEGX_PIPELINE_Y1),
504 BUNDLE_FORMAT(TILEGX_PIPELINE_Y2, TILEGX_PIPELINE_Y1, TILEGX_PIPELINE_Y0),
505
506 /* X format has only two instructions. */
507 BUNDLE_FORMAT(TILEGX_PIPELINE_X0, TILEGX_PIPELINE_X1, NO_PIPELINE),
508 BUNDLE_FORMAT(TILEGX_PIPELINE_X1, TILEGX_PIPELINE_X0, NO_PIPELINE)
509 };
510
511
512 struct jit_instr inst_buf[TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE];
513 unsigned long inst_buf_index;
514
get_any_valid_pipe(const struct tilegx_opcode * opcode)515 tilegx_pipeline get_any_valid_pipe(const struct tilegx_opcode* opcode)
516 {
517 /* FIXME: tile: we could pregenerate this. */
518 int pipe;
519 for (pipe = 0; ((opcode->pipes & (1 << pipe)) == 0 && pipe < TILEGX_NUM_PIPELINE_ENCODINGS); pipe++)
520 ;
521 return (tilegx_pipeline)(pipe);
522 }
523
insert_nop(tilegx_mnemonic opc,int line)524 void insert_nop(tilegx_mnemonic opc, int line)
525 {
526 const struct tilegx_opcode* opcode = NULL;
527
528 memmove(&inst_buf[1], &inst_buf[0], inst_buf_index * sizeof inst_buf[0]);
529
530 opcode = &tilegx_opcodes[opc];
531 inst_buf[0].opcode = opcode;
532 inst_buf[0].pipe = get_any_valid_pipe(opcode);
533 inst_buf[0].input_registers = 0;
534 inst_buf[0].output_registers = 0;
535 inst_buf[0].line = line;
536 ++inst_buf_index;
537 }
538
compute_format()539 const struct Format* compute_format()
540 {
541 unsigned int compatible_pipes = BUNDLE_FORMAT_MASK(
542 inst_buf[0].opcode->pipes,
543 inst_buf[1].opcode->pipes,
544 (inst_buf_index == 3 ? inst_buf[2].opcode->pipes : (1 << NO_PIPELINE)));
545
546 const struct Format* match = NULL;
547 const struct Format *b = NULL;
548 unsigned int i;
549 for (i = 0; i < sizeof formats / sizeof formats[0]; i++) {
550 b = &formats[i];
551 if ((b->pipe_mask & compatible_pipes) == b->pipe_mask) {
552 match = b;
553 break;
554 }
555 }
556
557 return match;
558 }
559
assign_pipes()560 sljit_s32 assign_pipes()
561 {
562 unsigned long output_registers = 0;
563 unsigned int i = 0;
564
565 if (inst_buf_index == 1) {
566 tilegx_mnemonic opc = inst_buf[0].opcode->can_bundle
567 ? TILEGX_OPC_FNOP : TILEGX_OPC_NOP;
568 insert_nop(opc, __LINE__);
569 }
570
571 const struct Format* match = compute_format();
572
573 if (match == NULL)
574 return -1;
575
576 for (i = 0; i < inst_buf_index; i++) {
577
578 if ((i > 0) && ((inst_buf[i].input_registers & output_registers) != 0))
579 return -1;
580
581 if ((i > 0) && ((inst_buf[i].output_registers & output_registers) != 0))
582 return -1;
583
584 /* Don't include Rzero in the match set, to avoid triggering
585 needlessly on 'prefetch' instrs. */
586
587 output_registers |= inst_buf[i].output_registers & 0xFFFFFFFFFFFFFFL;
588
589 inst_buf[i].pipe = match->pipe[i];
590 }
591
592 /* If only 2 instrs, and in Y-mode, insert a nop. */
593 if (inst_buf_index == 2 && !tilegx_is_x_pipeline(match->pipe[0])) {
594 insert_nop(TILEGX_OPC_FNOP, __LINE__);
595
596 /* Select the yet unassigned pipe. */
597 tilegx_pipeline pipe = (tilegx_pipeline)(((TILEGX_PIPELINE_Y0
598 + TILEGX_PIPELINE_Y1 + TILEGX_PIPELINE_Y2)
599 - (inst_buf[1].pipe + inst_buf[2].pipe)));
600
601 inst_buf[0].pipe = pipe;
602 }
603
604 return 0;
605 }
606
get_bundle_bit(struct jit_instr * inst)607 tilegx_bundle_bits get_bundle_bit(struct jit_instr *inst)
608 {
609 int i, val;
610 const struct tilegx_opcode* opcode = inst->opcode;
611 tilegx_bundle_bits bits = opcode->fixed_bit_values[inst->pipe];
612
613 const struct tilegx_operand* operand = NULL;
614 for (i = 0; i < opcode->num_operands; i++) {
615 operand = &tilegx_operands[opcode->operands[inst->pipe][i]];
616 val = inst->operand_value[i];
617
618 bits |= operand->insert(val);
619 }
620
621 return bits;
622 }
623
update_buffer(struct sljit_compiler * compiler)624 static sljit_s32 update_buffer(struct sljit_compiler *compiler)
625 {
626 int i;
627 int orig_index = inst_buf_index;
628 struct jit_instr inst0 = inst_buf[0];
629 struct jit_instr inst1 = inst_buf[1];
630 struct jit_instr inst2 = inst_buf[2];
631 tilegx_bundle_bits bits = 0;
632
633 /* If the bundle is valid as is, perform the encoding and return 1. */
634 if (assign_pipes() == 0) {
635 for (i = 0; i < inst_buf_index; i++) {
636 bits |= get_bundle_bit(inst_buf + i);
637 #ifdef TILEGX_JIT_DEBUG
638 printf("|%04d", inst_buf[i].line);
639 #endif
640 }
641 #ifdef TILEGX_JIT_DEBUG
642 if (inst_buf_index == 3)
643 printf("|M0|:\t");
644 else
645 printf("|M0|:\t\t");
646 print_insn_tilegx(&bits);
647 #endif
648
649 inst_buf_index = 0;
650
651 #ifdef TILEGX_JIT_DEBUG
652 return push_inst_nodebug(compiler, bits);
653 #else
654 return push_inst(compiler, bits);
655 #endif
656 }
657
658 /* If the bundle is invalid, split it in two. First encode the first two
659 (or possibly 1) instructions, and then the last, separately. Note that
660 assign_pipes may have re-ordered the instrs (by inserting no-ops in
661 lower slots) so we need to reset them. */
662
663 inst_buf_index = orig_index - 1;
664 inst_buf[0] = inst0;
665 inst_buf[1] = inst1;
666 inst_buf[2] = inst2;
667 if (assign_pipes() == 0) {
668 for (i = 0; i < inst_buf_index; i++) {
669 bits |= get_bundle_bit(inst_buf + i);
670 #ifdef TILEGX_JIT_DEBUG
671 printf("|%04d", inst_buf[i].line);
672 #endif
673 }
674
675 #ifdef TILEGX_JIT_DEBUG
676 if (inst_buf_index == 3)
677 printf("|M1|:\t");
678 else
679 printf("|M1|:\t\t");
680 print_insn_tilegx(&bits);
681 #endif
682
683 if ((orig_index - 1) == 2) {
684 inst_buf[0] = inst2;
685 inst_buf_index = 1;
686 } else if ((orig_index - 1) == 1) {
687 inst_buf[0] = inst1;
688 inst_buf_index = 1;
689 } else
690 SLJIT_ASSERT_STOP();
691
692 #ifdef TILEGX_JIT_DEBUG
693 return push_inst_nodebug(compiler, bits);
694 #else
695 return push_inst(compiler, bits);
696 #endif
697 } else {
698 /* We had 3 instrs of which the first 2 can't live in the same bundle.
699 Split those two. Note that we don't try to then combine the second
700 and third instr into a single bundle. First instruction: */
701 inst_buf_index = 1;
702 inst_buf[0] = inst0;
703 inst_buf[1] = inst1;
704 inst_buf[2] = inst2;
705 if (assign_pipes() == 0) {
706 for (i = 0; i < inst_buf_index; i++) {
707 bits |= get_bundle_bit(inst_buf + i);
708 #ifdef TILEGX_JIT_DEBUG
709 printf("|%04d", inst_buf[i].line);
710 #endif
711 }
712
713 #ifdef TILEGX_JIT_DEBUG
714 if (inst_buf_index == 3)
715 printf("|M2|:\t");
716 else
717 printf("|M2|:\t\t");
718 print_insn_tilegx(&bits);
719 #endif
720
721 inst_buf[0] = inst1;
722 inst_buf[1] = inst2;
723 inst_buf_index = orig_index - 1;
724 #ifdef TILEGX_JIT_DEBUG
725 return push_inst_nodebug(compiler, bits);
726 #else
727 return push_inst(compiler, bits);
728 #endif
729 } else
730 SLJIT_ASSERT_STOP();
731 }
732
733 SLJIT_ASSERT_STOP();
734 }
735
flush_buffer(struct sljit_compiler * compiler)736 static sljit_s32 flush_buffer(struct sljit_compiler *compiler)
737 {
738 while (inst_buf_index != 0) {
739 FAIL_IF(update_buffer(compiler));
740 }
741 return SLJIT_SUCCESS;
742 }
743
push_4_buffer(struct sljit_compiler * compiler,tilegx_mnemonic opc,int op0,int op1,int op2,int op3,int line)744 static sljit_s32 push_4_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int op3, int line)
745 {
746 if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
747 FAIL_IF(update_buffer(compiler));
748
749 const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
750 inst_buf[inst_buf_index].opcode = opcode;
751 inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
752 inst_buf[inst_buf_index].operand_value[0] = op0;
753 inst_buf[inst_buf_index].operand_value[1] = op1;
754 inst_buf[inst_buf_index].operand_value[2] = op2;
755 inst_buf[inst_buf_index].operand_value[3] = op3;
756 inst_buf[inst_buf_index].input_registers = 1L << op1;
757 inst_buf[inst_buf_index].output_registers = 1L << op0;
758 inst_buf[inst_buf_index].line = line;
759 inst_buf_index++;
760
761 return SLJIT_SUCCESS;
762 }
763
push_3_buffer(struct sljit_compiler * compiler,tilegx_mnemonic opc,int op0,int op1,int op2,int line)764 static sljit_s32 push_3_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int op2, int line)
765 {
766 if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
767 FAIL_IF(update_buffer(compiler));
768
769 const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
770 inst_buf[inst_buf_index].opcode = opcode;
771 inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
772 inst_buf[inst_buf_index].operand_value[0] = op0;
773 inst_buf[inst_buf_index].operand_value[1] = op1;
774 inst_buf[inst_buf_index].operand_value[2] = op2;
775 inst_buf[inst_buf_index].line = line;
776
777 switch (opc) {
778 case TILEGX_OPC_ST_ADD:
779 inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
780 inst_buf[inst_buf_index].output_registers = 1L << op0;
781 break;
782 case TILEGX_OPC_LD_ADD:
783 inst_buf[inst_buf_index].input_registers = 1L << op1;
784 inst_buf[inst_buf_index].output_registers = (1L << op0) | (1L << op1);
785 break;
786 case TILEGX_OPC_ADD:
787 case TILEGX_OPC_AND:
788 case TILEGX_OPC_SUB:
789 case TILEGX_OPC_MULX:
790 case TILEGX_OPC_OR:
791 case TILEGX_OPC_XOR:
792 case TILEGX_OPC_NOR:
793 case TILEGX_OPC_SHL:
794 case TILEGX_OPC_SHRU:
795 case TILEGX_OPC_SHRS:
796 case TILEGX_OPC_CMPLTU:
797 case TILEGX_OPC_CMPLTS:
798 case TILEGX_OPC_CMOVEQZ:
799 case TILEGX_OPC_CMOVNEZ:
800 inst_buf[inst_buf_index].input_registers = (1L << op1) | (1L << op2);
801 inst_buf[inst_buf_index].output_registers = 1L << op0;
802 break;
803 case TILEGX_OPC_ADDLI:
804 case TILEGX_OPC_XORI:
805 case TILEGX_OPC_ORI:
806 case TILEGX_OPC_SHLI:
807 case TILEGX_OPC_SHRUI:
808 case TILEGX_OPC_SHRSI:
809 case TILEGX_OPC_SHL16INSLI:
810 case TILEGX_OPC_CMPLTUI:
811 case TILEGX_OPC_CMPLTSI:
812 inst_buf[inst_buf_index].input_registers = 1L << op1;
813 inst_buf[inst_buf_index].output_registers = 1L << op0;
814 break;
815 default:
816 printf("unrecoginzed opc: %s\n", opcode->name);
817 SLJIT_ASSERT_STOP();
818 }
819
820 inst_buf_index++;
821
822 return SLJIT_SUCCESS;
823 }
824
push_2_buffer(struct sljit_compiler * compiler,tilegx_mnemonic opc,int op0,int op1,int line)825 static sljit_s32 push_2_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int op1, int line)
826 {
827 if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
828 FAIL_IF(update_buffer(compiler));
829
830 const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
831 inst_buf[inst_buf_index].opcode = opcode;
832 inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
833 inst_buf[inst_buf_index].operand_value[0] = op0;
834 inst_buf[inst_buf_index].operand_value[1] = op1;
835 inst_buf[inst_buf_index].line = line;
836
837 switch (opc) {
838 case TILEGX_OPC_BEQZ:
839 case TILEGX_OPC_BNEZ:
840 inst_buf[inst_buf_index].input_registers = 1L << op0;
841 break;
842 case TILEGX_OPC_ST:
843 case TILEGX_OPC_ST1:
844 case TILEGX_OPC_ST2:
845 case TILEGX_OPC_ST4:
846 inst_buf[inst_buf_index].input_registers = (1L << op0) | (1L << op1);
847 inst_buf[inst_buf_index].output_registers = 0;
848 break;
849 case TILEGX_OPC_CLZ:
850 case TILEGX_OPC_LD:
851 case TILEGX_OPC_LD1U:
852 case TILEGX_OPC_LD1S:
853 case TILEGX_OPC_LD2U:
854 case TILEGX_OPC_LD2S:
855 case TILEGX_OPC_LD4U:
856 case TILEGX_OPC_LD4S:
857 inst_buf[inst_buf_index].input_registers = 1L << op1;
858 inst_buf[inst_buf_index].output_registers = 1L << op0;
859 break;
860 default:
861 printf("unrecoginzed opc: %s\n", opcode->name);
862 SLJIT_ASSERT_STOP();
863 }
864
865 inst_buf_index++;
866
867 return SLJIT_SUCCESS;
868 }
869
push_0_buffer(struct sljit_compiler * compiler,tilegx_mnemonic opc,int line)870 static sljit_s32 push_0_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int line)
871 {
872 if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
873 FAIL_IF(update_buffer(compiler));
874
875 const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
876 inst_buf[inst_buf_index].opcode = opcode;
877 inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
878 inst_buf[inst_buf_index].input_registers = 0;
879 inst_buf[inst_buf_index].output_registers = 0;
880 inst_buf[inst_buf_index].line = line;
881 inst_buf_index++;
882
883 return SLJIT_SUCCESS;
884 }
885
push_jr_buffer(struct sljit_compiler * compiler,tilegx_mnemonic opc,int op0,int line)886 static sljit_s32 push_jr_buffer(struct sljit_compiler *compiler, tilegx_mnemonic opc, int op0, int line)
887 {
888 if (inst_buf_index == TILEGX_MAX_INSTRUCTIONS_PER_BUNDLE)
889 FAIL_IF(update_buffer(compiler));
890
891 const struct tilegx_opcode* opcode = &tilegx_opcodes[opc];
892 inst_buf[inst_buf_index].opcode = opcode;
893 inst_buf[inst_buf_index].pipe = get_any_valid_pipe(opcode);
894 inst_buf[inst_buf_index].operand_value[0] = op0;
895 inst_buf[inst_buf_index].input_registers = 1L << op0;
896 inst_buf[inst_buf_index].output_registers = 0;
897 inst_buf[inst_buf_index].line = line;
898 inst_buf_index++;
899
900 return flush_buffer(compiler);
901 }
902
detect_jump_type(struct sljit_jump * jump,sljit_ins * code_ptr,sljit_ins * code)903 static SLJIT_INLINE sljit_ins * detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
904 {
905 sljit_sw diff;
906 sljit_uw target_addr;
907 sljit_ins *inst;
908
909 if (jump->flags & SLJIT_REWRITABLE_JUMP)
910 return code_ptr;
911
912 if (jump->flags & JUMP_ADDR)
913 target_addr = jump->u.target;
914 else {
915 SLJIT_ASSERT(jump->flags & JUMP_LABEL);
916 target_addr = (sljit_uw)(code + jump->u.label->size);
917 }
918
919 inst = (sljit_ins *)jump->addr;
920 if (jump->flags & IS_COND)
921 inst--;
922
923 diff = ((sljit_sw) target_addr - (sljit_sw) inst) >> 3;
924 if (diff <= SIMM_17BIT_MAX && diff >= SIMM_17BIT_MIN) {
925 jump->flags |= PATCH_B;
926
927 if (!(jump->flags & IS_COND)) {
928 if (jump->flags & IS_JAL) {
929 jump->flags &= ~(PATCH_B);
930 jump->flags |= PATCH_J;
931 inst[0] = JAL_X1;
932
933 #ifdef TILEGX_JIT_DEBUG
934 printf("[runtime relocate]%04d:\t", __LINE__);
935 print_insn_tilegx(inst);
936 #endif
937 } else {
938 inst[0] = BEQZ_X1 | SRCA_X1(ZERO);
939
940 #ifdef TILEGX_JIT_DEBUG
941 printf("[runtime relocate]%04d:\t", __LINE__);
942 print_insn_tilegx(inst);
943 #endif
944 }
945
946 return inst;
947 }
948
949 inst[0] = inst[0] ^ (0x7L << 55);
950
951 #ifdef TILEGX_JIT_DEBUG
952 printf("[runtime relocate]%04d:\t", __LINE__);
953 print_insn_tilegx(inst);
954 #endif
955 jump->addr -= sizeof(sljit_ins);
956 return inst;
957 }
958
959 if (jump->flags & IS_COND) {
960 if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
961 jump->flags |= PATCH_J;
962 inst[0] = (inst[0] & ~(BOFF_X1(-1))) | BOFF_X1(2);
963 inst[1] = J_X1;
964 return inst + 1;
965 }
966
967 return code_ptr;
968 }
969
970 if ((target_addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL)) {
971 jump->flags |= PATCH_J;
972
973 if (jump->flags & IS_JAL) {
974 inst[0] = JAL_X1;
975
976 #ifdef TILEGX_JIT_DEBUG
977 printf("[runtime relocate]%04d:\t", __LINE__);
978 print_insn_tilegx(inst);
979 #endif
980
981 } else {
982 inst[0] = J_X1;
983
984 #ifdef TILEGX_JIT_DEBUG
985 printf("[runtime relocate]%04d:\t", __LINE__);
986 print_insn_tilegx(inst);
987 #endif
988 }
989
990 return inst;
991 }
992
993 return code_ptr;
994 }
995
sljit_generate_code(struct sljit_compiler * compiler)996 SLJIT_API_FUNC_ATTRIBUTE void * sljit_generate_code(struct sljit_compiler *compiler)
997 {
998 struct sljit_memory_fragment *buf;
999 sljit_ins *code;
1000 sljit_ins *code_ptr;
1001 sljit_ins *buf_ptr;
1002 sljit_ins *buf_end;
1003 sljit_uw word_count;
1004 sljit_uw addr;
1005
1006 struct sljit_label *label;
1007 struct sljit_jump *jump;
1008 struct sljit_const *const_;
1009
1010 CHECK_ERROR_PTR();
1011 CHECK_PTR(check_sljit_generate_code(compiler));
1012 reverse_buf(compiler);
1013
1014 code = (sljit_ins *)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
1015 PTR_FAIL_WITH_EXEC_IF(code);
1016 buf = compiler->buf;
1017
1018 code_ptr = code;
1019 word_count = 0;
1020 label = compiler->labels;
1021 jump = compiler->jumps;
1022 const_ = compiler->consts;
1023 do {
1024 buf_ptr = (sljit_ins *)buf->memory;
1025 buf_end = buf_ptr + (buf->used_size >> 3);
1026 do {
1027 *code_ptr = *buf_ptr++;
1028 SLJIT_ASSERT(!label || label->size >= word_count);
1029 SLJIT_ASSERT(!jump || jump->addr >= word_count);
1030 SLJIT_ASSERT(!const_ || const_->addr >= word_count);
1031 /* These structures are ordered by their address. */
1032 if (label && label->size == word_count) {
1033 /* Just recording the address. */
1034 label->addr = (sljit_uw) code_ptr;
1035 label->size = code_ptr - code;
1036 label = label->next;
1037 }
1038
1039 if (jump && jump->addr == word_count) {
1040 if (jump->flags & IS_JAL)
1041 jump->addr = (sljit_uw)(code_ptr - 4);
1042 else
1043 jump->addr = (sljit_uw)(code_ptr - 3);
1044
1045 code_ptr = detect_jump_type(jump, code_ptr, code);
1046 jump = jump->next;
1047 }
1048
1049 if (const_ && const_->addr == word_count) {
1050 /* Just recording the address. */
1051 const_->addr = (sljit_uw) code_ptr;
1052 const_ = const_->next;
1053 }
1054
1055 code_ptr++;
1056 word_count++;
1057 } while (buf_ptr < buf_end);
1058
1059 buf = buf->next;
1060 } while (buf);
1061
1062 if (label && label->size == word_count) {
1063 label->addr = (sljit_uw) code_ptr;
1064 label->size = code_ptr - code;
1065 label = label->next;
1066 }
1067
1068 SLJIT_ASSERT(!label);
1069 SLJIT_ASSERT(!jump);
1070 SLJIT_ASSERT(!const_);
1071 SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
1072
1073 jump = compiler->jumps;
1074 while (jump) {
1075 do {
1076 addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
1077 buf_ptr = (sljit_ins *)jump->addr;
1078
1079 if (jump->flags & PATCH_B) {
1080 addr = (sljit_sw)(addr - (jump->addr)) >> 3;
1081 SLJIT_ASSERT((sljit_sw) addr <= SIMM_17BIT_MAX && (sljit_sw) addr >= SIMM_17BIT_MIN);
1082 buf_ptr[0] = (buf_ptr[0] & ~(BOFF_X1(-1))) | BOFF_X1(addr);
1083
1084 #ifdef TILEGX_JIT_DEBUG
1085 printf("[runtime relocate]%04d:\t", __LINE__);
1086 print_insn_tilegx(buf_ptr);
1087 #endif
1088 break;
1089 }
1090
1091 if (jump->flags & PATCH_J) {
1092 SLJIT_ASSERT((addr & ~0x3FFFFFFFL) == ((jump->addr + sizeof(sljit_ins)) & ~0x3FFFFFFFL));
1093 addr = (sljit_sw)(addr - (jump->addr)) >> 3;
1094 buf_ptr[0] = (buf_ptr[0] & ~(JOFF_X1(-1))) | JOFF_X1(addr);
1095
1096 #ifdef TILEGX_JIT_DEBUG
1097 printf("[runtime relocate]%04d:\t", __LINE__);
1098 print_insn_tilegx(buf_ptr);
1099 #endif
1100 break;
1101 }
1102
1103 SLJIT_ASSERT(!(jump->flags & IS_JAL));
1104
1105 /* Set the fields of immediate loads. */
1106 buf_ptr[0] = (buf_ptr[0] & ~(0xFFFFL << 43)) | (((addr >> 32) & 0xFFFFL) << 43);
1107 buf_ptr[1] = (buf_ptr[1] & ~(0xFFFFL << 43)) | (((addr >> 16) & 0xFFFFL) << 43);
1108 buf_ptr[2] = (buf_ptr[2] & ~(0xFFFFL << 43)) | ((addr & 0xFFFFL) << 43);
1109 } while (0);
1110
1111 jump = jump->next;
1112 }
1113
1114 compiler->error = SLJIT_ERR_COMPILED;
1115 compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
1116 SLJIT_CACHE_FLUSH(code, code_ptr);
1117 return code;
1118 }
1119
load_immediate(struct sljit_compiler * compiler,sljit_s32 dst_ar,sljit_sw imm)1120 static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm)
1121 {
1122
1123 if (imm <= SIMM_16BIT_MAX && imm >= SIMM_16BIT_MIN)
1124 return ADDLI(dst_ar, ZERO, imm);
1125
1126 if (imm <= SIMM_32BIT_MAX && imm >= SIMM_32BIT_MIN) {
1127 FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 16));
1128 return SHL16INSLI(dst_ar, dst_ar, imm);
1129 }
1130
1131 if (imm <= SIMM_48BIT_MAX && imm >= SIMM_48BIT_MIN) {
1132 FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
1133 FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1134 return SHL16INSLI(dst_ar, dst_ar, imm);
1135 }
1136
1137 FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 48));
1138 FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 32));
1139 FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1140 return SHL16INSLI(dst_ar, dst_ar, imm);
1141 }
1142
emit_const(struct sljit_compiler * compiler,sljit_s32 dst_ar,sljit_sw imm,int flush)1143 static sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
1144 {
1145 /* Should *not* be optimized as load_immediate, as pcre relocation
1146 mechanism will match this fixed 4-instruction pattern. */
1147 if (flush) {
1148 FAIL_IF(ADDLI_SOLO(dst_ar, ZERO, imm >> 32));
1149 FAIL_IF(SHL16INSLI_SOLO(dst_ar, dst_ar, imm >> 16));
1150 return SHL16INSLI_SOLO(dst_ar, dst_ar, imm);
1151 }
1152
1153 FAIL_IF(ADDLI(dst_ar, ZERO, imm >> 32));
1154 FAIL_IF(SHL16INSLI(dst_ar, dst_ar, imm >> 16));
1155 return SHL16INSLI(dst_ar, dst_ar, imm);
1156 }
1157
emit_const_64(struct sljit_compiler * compiler,sljit_s32 dst_ar,sljit_sw imm,int flush)1158 static sljit_s32 emit_const_64(struct sljit_compiler *compiler, sljit_s32 dst_ar, sljit_sw imm, int flush)
1159 {
1160 /* Should *not* be optimized as load_immediate, as pcre relocation
1161 mechanism will match this fixed 4-instruction pattern. */
1162 if (flush) {
1163 FAIL_IF(ADDLI_SOLO(reg_map[dst_ar], ZERO, imm >> 48));
1164 FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
1165 FAIL_IF(SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
1166 return SHL16INSLI_SOLO(reg_map[dst_ar], reg_map[dst_ar], imm);
1167 }
1168
1169 FAIL_IF(ADDLI(reg_map[dst_ar], ZERO, imm >> 48));
1170 FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 32));
1171 FAIL_IF(SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm >> 16));
1172 return SHL16INSLI(reg_map[dst_ar], reg_map[dst_ar], imm);
1173 }
1174
sljit_emit_enter(struct sljit_compiler * compiler,sljit_s32 options,sljit_s32 args,sljit_s32 scratches,sljit_s32 saveds,sljit_s32 fscratches,sljit_s32 fsaveds,sljit_s32 local_size)1175 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
1176 sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
1177 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
1178 {
1179 sljit_ins base;
1180 sljit_s32 i, tmp;
1181
1182 CHECK_ERROR();
1183 CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
1184 set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
1185
1186 local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
1187 local_size = (local_size + 7) & ~7;
1188 compiler->local_size = local_size;
1189
1190 if (local_size <= SIMM_16BIT_MAX) {
1191 /* Frequent case. */
1192 FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, -local_size));
1193 base = SLJIT_LOCALS_REG_mapped;
1194 } else {
1195 FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
1196 FAIL_IF(ADD(TMP_REG2_mapped, SLJIT_LOCALS_REG_mapped, ZERO));
1197 FAIL_IF(SUB(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
1198 base = TMP_REG2_mapped;
1199 local_size = 0;
1200 }
1201
1202 /* Save the return address. */
1203 FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
1204 FAIL_IF(ST_ADD(ADDR_TMP_mapped, RA, -8));
1205
1206 /* Save the S registers. */
1207 tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
1208 for (i = SLJIT_S0; i >= tmp; i--) {
1209 FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
1210 }
1211
1212 /* Save the R registers that need to be reserved. */
1213 for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
1214 FAIL_IF(ST_ADD(ADDR_TMP_mapped, reg_map[i], -8));
1215 }
1216
1217 /* Move the arguments to S registers. */
1218 for (i = 0; i < args; i++) {
1219 FAIL_IF(ADD(reg_map[SLJIT_S0 - i], i, ZERO));
1220 }
1221
1222 return SLJIT_SUCCESS;
1223 }
1224
sljit_set_context(struct sljit_compiler * compiler,sljit_s32 options,sljit_s32 args,sljit_s32 scratches,sljit_s32 saveds,sljit_s32 fscratches,sljit_s32 fsaveds,sljit_s32 local_size)1225 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
1226 sljit_s32 options, sljit_s32 args, sljit_s32 scratches, sljit_s32 saveds,
1227 sljit_s32 fscratches, sljit_s32 fsaveds, sljit_s32 local_size)
1228 {
1229 CHECK_ERROR();
1230 CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
1231 set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
1232
1233 local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1);
1234 compiler->local_size = (local_size + 7) & ~7;
1235
1236 return SLJIT_SUCCESS;
1237 }
1238
sljit_emit_return(struct sljit_compiler * compiler,sljit_s32 op,sljit_s32 src,sljit_sw srcw)1239 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 src, sljit_sw srcw)
1240 {
1241 sljit_s32 local_size;
1242 sljit_ins base;
1243 sljit_s32 i, tmp;
1244 sljit_s32 saveds;
1245
1246 CHECK_ERROR();
1247 CHECK(check_sljit_emit_return(compiler, op, src, srcw));
1248
1249 FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
1250
1251 local_size = compiler->local_size;
1252 if (local_size <= SIMM_16BIT_MAX)
1253 base = SLJIT_LOCALS_REG_mapped;
1254 else {
1255 FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, local_size));
1256 FAIL_IF(ADD(TMP_REG1_mapped, SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped));
1257 base = TMP_REG1_mapped;
1258 local_size = 0;
1259 }
1260
1261 /* Restore the return address. */
1262 FAIL_IF(ADDLI(ADDR_TMP_mapped, base, local_size - 8));
1263 FAIL_IF(LD_ADD(RA, ADDR_TMP_mapped, -8));
1264
1265 /* Restore the S registers. */
1266 saveds = compiler->saveds;
1267 tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
1268 for (i = SLJIT_S0; i >= tmp; i--) {
1269 FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
1270 }
1271
1272 /* Restore the R registers that need to be reserved. */
1273 for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
1274 FAIL_IF(LD_ADD(reg_map[i], ADDR_TMP_mapped, -8));
1275 }
1276
1277 if (compiler->local_size <= SIMM_16BIT_MAX)
1278 FAIL_IF(ADDLI(SLJIT_LOCALS_REG_mapped, SLJIT_LOCALS_REG_mapped, compiler->local_size));
1279 else
1280 FAIL_IF(ADD(SLJIT_LOCALS_REG_mapped, TMP_REG1_mapped, ZERO));
1281
1282 return JR(RA);
1283 }
1284
1285 /* reg_ar is an absoulute register! */
1286
1287 /* Can perform an operation using at most 1 instruction. */
getput_arg_fast(struct sljit_compiler * compiler,sljit_s32 flags,sljit_s32 reg_ar,sljit_s32 arg,sljit_sw argw)1288 static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
1289 {
1290 SLJIT_ASSERT(arg & SLJIT_MEM);
1291
1292 if ((!(flags & WRITE_BACK) || !(arg & REG_MASK))
1293 && !(arg & OFFS_REG_MASK) && argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1294 /* Works for both absoulte and relative addresses. */
1295 if (SLJIT_UNLIKELY(flags & ARG_TEST))
1296 return 1;
1297
1298 FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[arg & REG_MASK], argw));
1299
1300 if (flags & LOAD_DATA)
1301 FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
1302 else
1303 FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
1304
1305 return -1;
1306 }
1307
1308 return 0;
1309 }
1310
1311 /* See getput_arg below.
1312 Note: can_cache is called only for binary operators. Those
1313 operators always uses word arguments without write back. */
can_cache(sljit_s32 arg,sljit_sw argw,sljit_s32 next_arg,sljit_sw next_argw)1314 static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
1315 {
1316 SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
1317
1318 /* Simple operation except for updates. */
1319 if (arg & OFFS_REG_MASK) {
1320 argw &= 0x3;
1321 next_argw &= 0x3;
1322 if (argw && argw == next_argw
1323 && (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
1324 return 1;
1325 return 0;
1326 }
1327
1328 if (arg == next_arg) {
1329 if (((next_argw - argw) <= SIMM_16BIT_MAX
1330 && (next_argw - argw) >= SIMM_16BIT_MIN))
1331 return 1;
1332
1333 return 0;
1334 }
1335
1336 return 0;
1337 }
1338
1339 /* Emit the necessary instructions. See can_cache above. */
getput_arg(struct sljit_compiler * compiler,sljit_s32 flags,sljit_s32 reg_ar,sljit_s32 arg,sljit_sw argw,sljit_s32 next_arg,sljit_sw next_argw)1340 static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
1341 {
1342 sljit_s32 tmp_ar, base;
1343
1344 SLJIT_ASSERT(arg & SLJIT_MEM);
1345 if (!(next_arg & SLJIT_MEM)) {
1346 next_arg = 0;
1347 next_argw = 0;
1348 }
1349
1350 if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
1351 tmp_ar = reg_ar;
1352 else
1353 tmp_ar = TMP_REG1_mapped;
1354
1355 base = arg & REG_MASK;
1356
1357 if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
1358 argw &= 0x3;
1359
1360 if ((flags & WRITE_BACK) && reg_ar == reg_map[base]) {
1361 SLJIT_ASSERT(!(flags & LOAD_DATA) && reg_map[TMP_REG1] != reg_ar);
1362 FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
1363 reg_ar = TMP_REG1_mapped;
1364 }
1365
1366 /* Using the cache. */
1367 if (argw == compiler->cache_argw) {
1368 if (!(flags & WRITE_BACK)) {
1369 if (arg == compiler->cache_arg) {
1370 if (flags & LOAD_DATA)
1371 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1372 else
1373 return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1374 }
1375
1376 if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
1377 if (arg == next_arg && argw == (next_argw & 0x3)) {
1378 compiler->cache_arg = arg;
1379 compiler->cache_argw = argw;
1380 FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], TMP_REG3_mapped));
1381 if (flags & LOAD_DATA)
1382 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1383 else
1384 return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1385 }
1386
1387 FAIL_IF(ADD(tmp_ar, reg_map[base], TMP_REG3_mapped));
1388 if (flags & LOAD_DATA)
1389 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1390 else
1391 return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1392 }
1393 } else {
1394 if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
1395 FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1396 if (flags & LOAD_DATA)
1397 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1398 else
1399 return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1400 }
1401 }
1402 }
1403
1404 if (SLJIT_UNLIKELY(argw)) {
1405 compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
1406 compiler->cache_argw = argw;
1407 FAIL_IF(SHLI(TMP_REG3_mapped, reg_map[OFFS_REG(arg)], argw));
1408 }
1409
1410 if (!(flags & WRITE_BACK)) {
1411 if (arg == next_arg && argw == (next_argw & 0x3)) {
1412 compiler->cache_arg = arg;
1413 compiler->cache_argw = argw;
1414 FAIL_IF(ADD(TMP_REG3_mapped, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1415 tmp_ar = TMP_REG3_mapped;
1416 } else
1417 FAIL_IF(ADD(tmp_ar, reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1418
1419 if (flags & LOAD_DATA)
1420 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1421 else
1422 return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1423 }
1424
1425 FAIL_IF(ADD(reg_map[base], reg_map[base], reg_map[!argw ? OFFS_REG(arg) : TMP_REG3]));
1426
1427 if (flags & LOAD_DATA)
1428 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1429 else
1430 return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1431 }
1432
1433 if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
1434 /* Update only applies if a base register exists. */
1435 if (reg_ar == reg_map[base]) {
1436 SLJIT_ASSERT(!(flags & LOAD_DATA) && TMP_REG1_mapped != reg_ar);
1437 if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1438 FAIL_IF(ADDLI(ADDR_TMP_mapped, reg_map[base], argw));
1439 if (flags & LOAD_DATA)
1440 FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, ADDR_TMP_mapped));
1441 else
1442 FAIL_IF(PB2(data_transfer_insts[flags & MEM_MASK], ADDR_TMP_mapped, reg_ar));
1443
1444 if (argw)
1445 return ADDLI(reg_map[base], reg_map[base], argw);
1446
1447 return SLJIT_SUCCESS;
1448 }
1449
1450 FAIL_IF(ADD(TMP_REG1_mapped, reg_ar, ZERO));
1451 reg_ar = TMP_REG1_mapped;
1452 }
1453
1454 if (argw <= SIMM_16BIT_MAX && argw >= SIMM_16BIT_MIN) {
1455 if (argw)
1456 FAIL_IF(ADDLI(reg_map[base], reg_map[base], argw));
1457 } else {
1458 if (compiler->cache_arg == SLJIT_MEM
1459 && argw - compiler->cache_argw <= SIMM_16BIT_MAX
1460 && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1461 if (argw != compiler->cache_argw) {
1462 FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1463 compiler->cache_argw = argw;
1464 }
1465
1466 FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1467 } else {
1468 compiler->cache_arg = SLJIT_MEM;
1469 compiler->cache_argw = argw;
1470 FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
1471 FAIL_IF(ADD(reg_map[base], reg_map[base], TMP_REG3_mapped));
1472 }
1473 }
1474
1475 if (flags & LOAD_DATA)
1476 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, reg_map[base]);
1477 else
1478 return PB2(data_transfer_insts[flags & MEM_MASK], reg_map[base], reg_ar);
1479 }
1480
1481 if (compiler->cache_arg == arg
1482 && argw - compiler->cache_argw <= SIMM_16BIT_MAX
1483 && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1484 if (argw != compiler->cache_argw) {
1485 FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1486 compiler->cache_argw = argw;
1487 }
1488
1489 if (flags & LOAD_DATA)
1490 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1491 else
1492 return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1493 }
1494
1495 if (compiler->cache_arg == SLJIT_MEM
1496 && argw - compiler->cache_argw <= SIMM_16BIT_MAX
1497 && argw - compiler->cache_argw >= SIMM_16BIT_MIN) {
1498 if (argw != compiler->cache_argw)
1499 FAIL_IF(ADDLI(TMP_REG3_mapped, TMP_REG3_mapped, argw - compiler->cache_argw));
1500 } else {
1501 compiler->cache_arg = SLJIT_MEM;
1502 FAIL_IF(load_immediate(compiler, TMP_REG3_mapped, argw));
1503 }
1504
1505 compiler->cache_argw = argw;
1506
1507 if (!base) {
1508 if (flags & LOAD_DATA)
1509 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1510 else
1511 return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1512 }
1513
1514 if (arg == next_arg
1515 && next_argw - argw <= SIMM_16BIT_MAX
1516 && next_argw - argw >= SIMM_16BIT_MIN) {
1517 compiler->cache_arg = arg;
1518 FAIL_IF(ADD(TMP_REG3_mapped, TMP_REG3_mapped, reg_map[base]));
1519 if (flags & LOAD_DATA)
1520 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, TMP_REG3_mapped);
1521 else
1522 return PB2(data_transfer_insts[flags & MEM_MASK], TMP_REG3_mapped, reg_ar);
1523 }
1524
1525 FAIL_IF(ADD(tmp_ar, TMP_REG3_mapped, reg_map[base]));
1526
1527 if (flags & LOAD_DATA)
1528 return PB2(data_transfer_insts[flags & MEM_MASK], reg_ar, tmp_ar);
1529 else
1530 return PB2(data_transfer_insts[flags & MEM_MASK], tmp_ar, reg_ar);
1531 }
1532
emit_op_mem(struct sljit_compiler * compiler,sljit_s32 flags,sljit_s32 reg_ar,sljit_s32 arg,sljit_sw argw)1533 static SLJIT_INLINE sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg_ar, sljit_s32 arg, sljit_sw argw)
1534 {
1535 if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
1536 return compiler->error;
1537
1538 compiler->cache_arg = 0;
1539 compiler->cache_argw = 0;
1540 return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
1541 }
1542
emit_op_mem2(struct sljit_compiler * compiler,sljit_s32 flags,sljit_s32 reg,sljit_s32 arg1,sljit_sw arg1w,sljit_s32 arg2,sljit_sw arg2w)1543 static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w)
1544 {
1545 if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
1546 return compiler->error;
1547 return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
1548 }
1549
sljit_emit_fast_enter(struct sljit_compiler * compiler,sljit_s32 dst,sljit_sw dstw)1550 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
1551 {
1552 CHECK_ERROR();
1553 CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
1554 ADJUST_LOCAL_OFFSET(dst, dstw);
1555
1556 /* For UNUSED dst. Uncommon, but possible. */
1557 if (dst == SLJIT_UNUSED)
1558 return SLJIT_SUCCESS;
1559
1560 if (FAST_IS_REG(dst))
1561 return ADD(reg_map[dst], RA, ZERO);
1562
1563 /* Memory. */
1564 return emit_op_mem(compiler, WORD_DATA, RA, dst, dstw);
1565 }
1566
sljit_emit_fast_return(struct sljit_compiler * compiler,sljit_s32 src,sljit_sw srcw)1567 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_s32 src, sljit_sw srcw)
1568 {
1569 CHECK_ERROR();
1570 CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
1571 ADJUST_LOCAL_OFFSET(src, srcw);
1572
1573 if (FAST_IS_REG(src))
1574 FAIL_IF(ADD(RA, reg_map[src], ZERO));
1575
1576 else if (src & SLJIT_MEM)
1577 FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RA, src, srcw));
1578
1579 else if (src & SLJIT_IMM)
1580 FAIL_IF(load_immediate(compiler, RA, srcw));
1581
1582 return JR(RA);
1583 }
1584
emit_single_op(struct sljit_compiler * compiler,sljit_s32 op,sljit_s32 flags,sljit_s32 dst,sljit_s32 src1,sljit_sw src2)1585 static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_s32 src1, sljit_sw src2)
1586 {
1587 sljit_s32 overflow_ra = 0;
1588
1589 switch (GET_OPCODE(op)) {
1590 case SLJIT_MOV:
1591 case SLJIT_MOV_P:
1592 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1593 if (dst != src2)
1594 return ADD(reg_map[dst], reg_map[src2], ZERO);
1595 return SLJIT_SUCCESS;
1596
1597 case SLJIT_MOV_U32:
1598 case SLJIT_MOV_S32:
1599 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1600 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1601 if (op == SLJIT_MOV_S32)
1602 return BFEXTS(reg_map[dst], reg_map[src2], 0, 31);
1603
1604 return BFEXTU(reg_map[dst], reg_map[src2], 0, 31);
1605 } else if (dst != src2) {
1606 SLJIT_ASSERT(src2 == 0);
1607 return ADD(reg_map[dst], reg_map[src2], ZERO);
1608 }
1609
1610 return SLJIT_SUCCESS;
1611
1612 case SLJIT_MOV_U8:
1613 case SLJIT_MOV_S8:
1614 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1615 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1616 if (op == SLJIT_MOV_S8)
1617 return BFEXTS(reg_map[dst], reg_map[src2], 0, 7);
1618
1619 return BFEXTU(reg_map[dst], reg_map[src2], 0, 7);
1620 } else if (dst != src2) {
1621 SLJIT_ASSERT(src2 == 0);
1622 return ADD(reg_map[dst], reg_map[src2], ZERO);
1623 }
1624
1625 return SLJIT_SUCCESS;
1626
1627 case SLJIT_MOV_U16:
1628 case SLJIT_MOV_S16:
1629 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1630 if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE)) {
1631 if (op == SLJIT_MOV_S16)
1632 return BFEXTS(reg_map[dst], reg_map[src2], 0, 15);
1633
1634 return BFEXTU(reg_map[dst], reg_map[src2], 0, 15);
1635 } else if (dst != src2) {
1636 SLJIT_ASSERT(src2 == 0);
1637 return ADD(reg_map[dst], reg_map[src2], ZERO);
1638 }
1639
1640 return SLJIT_SUCCESS;
1641
1642 case SLJIT_NOT:
1643 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1644 if (op & SLJIT_SET_E)
1645 FAIL_IF(NOR(EQUAL_FLAG, reg_map[src2], reg_map[src2]));
1646 if (CHECK_FLAGS(SLJIT_SET_E))
1647 FAIL_IF(NOR(reg_map[dst], reg_map[src2], reg_map[src2]));
1648
1649 return SLJIT_SUCCESS;
1650
1651 case SLJIT_CLZ:
1652 SLJIT_ASSERT(src1 == TMP_REG1 && !(flags & SRC2_IMM));
1653 if (op & SLJIT_SET_E)
1654 FAIL_IF(CLZ(EQUAL_FLAG, reg_map[src2]));
1655 if (CHECK_FLAGS(SLJIT_SET_E))
1656 FAIL_IF(CLZ(reg_map[dst], reg_map[src2]));
1657
1658 return SLJIT_SUCCESS;
1659
1660 case SLJIT_ADD:
1661 if (flags & SRC2_IMM) {
1662 if (op & SLJIT_SET_O) {
1663 FAIL_IF(SHRUI(TMP_EREG1, reg_map[src1], 63));
1664 if (src2 < 0)
1665 FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
1666 }
1667
1668 if (op & SLJIT_SET_E)
1669 FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], src2));
1670
1671 if (op & SLJIT_SET_C) {
1672 if (src2 >= 0)
1673 FAIL_IF(ORI(ULESS_FLAG ,reg_map[src1], src2));
1674 else {
1675 FAIL_IF(ADDLI(ULESS_FLAG ,ZERO, src2));
1676 FAIL_IF(OR(ULESS_FLAG,reg_map[src1],ULESS_FLAG));
1677 }
1678 }
1679
1680 /* dst may be the same as src1 or src2. */
1681 if (CHECK_FLAGS(SLJIT_SET_E))
1682 FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
1683
1684 if (op & SLJIT_SET_O) {
1685 FAIL_IF(SHRUI(OVERFLOW_FLAG, reg_map[dst], 63));
1686
1687 if (src2 < 0)
1688 FAIL_IF(XORI(OVERFLOW_FLAG, OVERFLOW_FLAG, 1));
1689 }
1690 } else {
1691 if (op & SLJIT_SET_O) {
1692 FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1693 FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
1694
1695 if (src1 != dst)
1696 overflow_ra = reg_map[src1];
1697 else if (src2 != dst)
1698 overflow_ra = reg_map[src2];
1699 else {
1700 /* Rare ocasion. */
1701 FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1702 overflow_ra = TMP_EREG2;
1703 }
1704 }
1705
1706 if (op & SLJIT_SET_E)
1707 FAIL_IF(ADD(EQUAL_FLAG ,reg_map[src1], reg_map[src2]));
1708
1709 if (op & SLJIT_SET_C)
1710 FAIL_IF(OR(ULESS_FLAG,reg_map[src1], reg_map[src2]));
1711
1712 /* dst may be the same as src1 or src2. */
1713 if (CHECK_FLAGS(SLJIT_SET_E))
1714 FAIL_IF(ADD(reg_map[dst],reg_map[src1], reg_map[src2]));
1715
1716 if (op & SLJIT_SET_O) {
1717 FAIL_IF(XOR(OVERFLOW_FLAG,reg_map[dst], overflow_ra));
1718 FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
1719 }
1720 }
1721
1722 /* a + b >= a | b (otherwise, the carry should be set to 1). */
1723 if (op & SLJIT_SET_C)
1724 FAIL_IF(CMPLTU(ULESS_FLAG ,reg_map[dst] ,ULESS_FLAG));
1725
1726 if (op & SLJIT_SET_O)
1727 return CMOVNEZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
1728
1729 return SLJIT_SUCCESS;
1730
1731 case SLJIT_ADDC:
1732 if (flags & SRC2_IMM) {
1733 if (op & SLJIT_SET_C) {
1734 if (src2 >= 0)
1735 FAIL_IF(ORI(TMP_EREG1, reg_map[src1], src2));
1736 else {
1737 FAIL_IF(ADDLI(TMP_EREG1, ZERO, src2));
1738 FAIL_IF(OR(TMP_EREG1, reg_map[src1], TMP_EREG1));
1739 }
1740 }
1741
1742 FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], src2));
1743
1744 } else {
1745 if (op & SLJIT_SET_C)
1746 FAIL_IF(OR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1747
1748 /* dst may be the same as src1 or src2. */
1749 FAIL_IF(ADD(reg_map[dst], reg_map[src1], reg_map[src2]));
1750 }
1751
1752 if (op & SLJIT_SET_C)
1753 FAIL_IF(CMPLTU(TMP_EREG1, reg_map[dst], TMP_EREG1));
1754
1755 FAIL_IF(ADD(reg_map[dst], reg_map[dst], ULESS_FLAG));
1756
1757 if (!(op & SLJIT_SET_C))
1758 return SLJIT_SUCCESS;
1759
1760 /* Set TMP_EREG2 (dst == 0) && (ULESS_FLAG == 1). */
1761 FAIL_IF(CMPLTUI(TMP_EREG2, reg_map[dst], 1));
1762 FAIL_IF(AND(TMP_EREG2, TMP_EREG2, ULESS_FLAG));
1763 /* Set carry flag. */
1764 return OR(ULESS_FLAG, TMP_EREG2, TMP_EREG1);
1765
1766 case SLJIT_SUB:
1767 if ((flags & SRC2_IMM) && ((op & (SLJIT_SET_U | SLJIT_SET_S)) || src2 == SIMM_16BIT_MIN)) {
1768 FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
1769 src2 = TMP_REG2;
1770 flags &= ~SRC2_IMM;
1771 }
1772
1773 if (flags & SRC2_IMM) {
1774 if (op & SLJIT_SET_O) {
1775 FAIL_IF(SHRUI(TMP_EREG1,reg_map[src1], 63));
1776
1777 if (src2 < 0)
1778 FAIL_IF(XORI(TMP_EREG1, TMP_EREG1, 1));
1779
1780 if (src1 != dst)
1781 overflow_ra = reg_map[src1];
1782 else {
1783 /* Rare ocasion. */
1784 FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1785 overflow_ra = TMP_EREG2;
1786 }
1787 }
1788
1789 if (op & SLJIT_SET_E)
1790 FAIL_IF(ADDLI(EQUAL_FLAG, reg_map[src1], -src2));
1791
1792 if (op & SLJIT_SET_C) {
1793 FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2));
1794 FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], ADDR_TMP_mapped));
1795 }
1796
1797 /* dst may be the same as src1 or src2. */
1798 if (CHECK_FLAGS(SLJIT_SET_E))
1799 FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
1800
1801 } else {
1802
1803 if (op & SLJIT_SET_O) {
1804 FAIL_IF(XOR(TMP_EREG1, reg_map[src1], reg_map[src2]));
1805 FAIL_IF(SHRUI(TMP_EREG1, TMP_EREG1, 63));
1806
1807 if (src1 != dst)
1808 overflow_ra = reg_map[src1];
1809 else {
1810 /* Rare ocasion. */
1811 FAIL_IF(ADD(TMP_EREG2, reg_map[src1], ZERO));
1812 overflow_ra = TMP_EREG2;
1813 }
1814 }
1815
1816 if (op & SLJIT_SET_E)
1817 FAIL_IF(SUB(EQUAL_FLAG, reg_map[src1], reg_map[src2]));
1818
1819 if (op & (SLJIT_SET_U | SLJIT_SET_C))
1820 FAIL_IF(CMPLTU(ULESS_FLAG, reg_map[src1], reg_map[src2]));
1821
1822 if (op & SLJIT_SET_U)
1823 FAIL_IF(CMPLTU(UGREATER_FLAG, reg_map[src2], reg_map[src1]));
1824
1825 if (op & SLJIT_SET_S) {
1826 FAIL_IF(CMPLTS(LESS_FLAG ,reg_map[src1] ,reg_map[src2]));
1827 FAIL_IF(CMPLTS(GREATER_FLAG ,reg_map[src2] ,reg_map[src1]));
1828 }
1829
1830 /* dst may be the same as src1 or src2. */
1831 if (CHECK_FLAGS(SLJIT_SET_E | SLJIT_SET_U | SLJIT_SET_S | SLJIT_SET_C))
1832 FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
1833 }
1834
1835 if (op & SLJIT_SET_O) {
1836 FAIL_IF(XOR(OVERFLOW_FLAG, reg_map[dst], overflow_ra));
1837 FAIL_IF(SHRUI(OVERFLOW_FLAG, OVERFLOW_FLAG, 63));
1838 return CMOVEQZ(OVERFLOW_FLAG, TMP_EREG1, ZERO);
1839 }
1840
1841 return SLJIT_SUCCESS;
1842
1843 case SLJIT_SUBC:
1844 if ((flags & SRC2_IMM) && src2 == SIMM_16BIT_MIN) {
1845 FAIL_IF(ADDLI(TMP_REG2_mapped, ZERO, src2));
1846 src2 = TMP_REG2;
1847 flags &= ~SRC2_IMM;
1848 }
1849
1850 if (flags & SRC2_IMM) {
1851 if (op & SLJIT_SET_C) {
1852 FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, -src2));
1853 FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], ADDR_TMP_mapped));
1854 }
1855
1856 /* dst may be the same as src1 or src2. */
1857 FAIL_IF(ADDLI(reg_map[dst], reg_map[src1], -src2));
1858
1859 } else {
1860 if (op & SLJIT_SET_C)
1861 FAIL_IF(CMPLTU(TMP_EREG1, reg_map[src1], reg_map[src2]));
1862 /* dst may be the same as src1 or src2. */
1863 FAIL_IF(SUB(reg_map[dst], reg_map[src1], reg_map[src2]));
1864 }
1865
1866 if (op & SLJIT_SET_C)
1867 FAIL_IF(CMOVEQZ(TMP_EREG1, reg_map[dst], ULESS_FLAG));
1868
1869 FAIL_IF(SUB(reg_map[dst], reg_map[dst], ULESS_FLAG));
1870
1871 if (op & SLJIT_SET_C)
1872 FAIL_IF(ADD(ULESS_FLAG, TMP_EREG1, ZERO));
1873
1874 return SLJIT_SUCCESS;
1875
1876 case SLJIT_MUL:
1877 if (flags & SRC2_IMM) {
1878 FAIL_IF(load_immediate(compiler, TMP_REG2_mapped, src2));
1879 src2 = TMP_REG2;
1880 flags &= ~SRC2_IMM;
1881 }
1882
1883 FAIL_IF(MUL(reg_map[dst], reg_map[src1], reg_map[src2]));
1884
1885 return SLJIT_SUCCESS;
1886
1887 #define EMIT_LOGICAL(op_imm, op_norm) \
1888 if (flags & SRC2_IMM) { \
1889 FAIL_IF(load_immediate(compiler, ADDR_TMP_mapped, src2)); \
1890 if (op & SLJIT_SET_E) \
1891 FAIL_IF(push_3_buffer( \
1892 compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1893 ADDR_TMP_mapped, __LINE__)); \
1894 if (CHECK_FLAGS(SLJIT_SET_E)) \
1895 FAIL_IF(push_3_buffer( \
1896 compiler, op_norm, reg_map[dst], reg_map[src1], \
1897 ADDR_TMP_mapped, __LINE__)); \
1898 } else { \
1899 if (op & SLJIT_SET_E) \
1900 FAIL_IF(push_3_buffer( \
1901 compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1902 reg_map[src2], __LINE__)); \
1903 if (CHECK_FLAGS(SLJIT_SET_E)) \
1904 FAIL_IF(push_3_buffer( \
1905 compiler, op_norm, reg_map[dst], reg_map[src1], \
1906 reg_map[src2], __LINE__)); \
1907 }
1908
1909 case SLJIT_AND:
1910 EMIT_LOGICAL(TILEGX_OPC_ANDI, TILEGX_OPC_AND);
1911 return SLJIT_SUCCESS;
1912
1913 case SLJIT_OR:
1914 EMIT_LOGICAL(TILEGX_OPC_ORI, TILEGX_OPC_OR);
1915 return SLJIT_SUCCESS;
1916
1917 case SLJIT_XOR:
1918 EMIT_LOGICAL(TILEGX_OPC_XORI, TILEGX_OPC_XOR);
1919 return SLJIT_SUCCESS;
1920
1921 #define EMIT_SHIFT(op_imm, op_norm) \
1922 if (flags & SRC2_IMM) { \
1923 if (op & SLJIT_SET_E) \
1924 FAIL_IF(push_3_buffer( \
1925 compiler, op_imm, EQUAL_FLAG, reg_map[src1], \
1926 src2 & 0x3F, __LINE__)); \
1927 if (CHECK_FLAGS(SLJIT_SET_E)) \
1928 FAIL_IF(push_3_buffer( \
1929 compiler, op_imm, reg_map[dst], reg_map[src1], \
1930 src2 & 0x3F, __LINE__)); \
1931 } else { \
1932 if (op & SLJIT_SET_E) \
1933 FAIL_IF(push_3_buffer( \
1934 compiler, op_norm, EQUAL_FLAG, reg_map[src1], \
1935 reg_map[src2], __LINE__)); \
1936 if (CHECK_FLAGS(SLJIT_SET_E)) \
1937 FAIL_IF(push_3_buffer( \
1938 compiler, op_norm, reg_map[dst], reg_map[src1], \
1939 reg_map[src2], __LINE__)); \
1940 }
1941
1942 case SLJIT_SHL:
1943 EMIT_SHIFT(TILEGX_OPC_SHLI, TILEGX_OPC_SHL);
1944 return SLJIT_SUCCESS;
1945
1946 case SLJIT_LSHR:
1947 EMIT_SHIFT(TILEGX_OPC_SHRUI, TILEGX_OPC_SHRU);
1948 return SLJIT_SUCCESS;
1949
1950 case SLJIT_ASHR:
1951 EMIT_SHIFT(TILEGX_OPC_SHRSI, TILEGX_OPC_SHRS);
1952 return SLJIT_SUCCESS;
1953 }
1954
1955 SLJIT_ASSERT_STOP();
1956 return SLJIT_SUCCESS;
1957 }
1958
emit_op(struct sljit_compiler * compiler,sljit_s32 op,sljit_s32 flags,sljit_s32 dst,sljit_sw dstw,sljit_s32 src1,sljit_sw src1w,sljit_s32 src2,sljit_sw src2w)1959 static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
1960 {
1961 /* arg1 goes to TMP_REG1 or src reg.
1962 arg2 goes to TMP_REG2, imm or src reg.
1963 TMP_REG3 can be used for caching.
1964 result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
1965 sljit_s32 dst_r = TMP_REG2;
1966 sljit_s32 src1_r;
1967 sljit_sw src2_r = 0;
1968 sljit_s32 sugg_src2_r = TMP_REG2;
1969
1970 if (!(flags & ALT_KEEP_CACHE)) {
1971 compiler->cache_arg = 0;
1972 compiler->cache_argw = 0;
1973 }
1974
1975 if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
1976 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32 && !(src2 & SLJIT_MEM))
1977 return SLJIT_SUCCESS;
1978 if (GET_FLAGS(op))
1979 flags |= UNUSED_DEST;
1980 } else if (FAST_IS_REG(dst)) {
1981 dst_r = dst;
1982 flags |= REG_DEST;
1983 if (op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
1984 sugg_src2_r = dst_r;
1985 } else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1_mapped, dst, dstw))
1986 flags |= SLOW_DEST;
1987
1988 if (flags & IMM_OP) {
1989 if ((src2 & SLJIT_IMM) && src2w) {
1990 if ((!(flags & LOGICAL_OP)
1991 && (src2w <= SIMM_16BIT_MAX && src2w >= SIMM_16BIT_MIN))
1992 || ((flags & LOGICAL_OP) && !(src2w & ~UIMM_16BIT_MAX))) {
1993 flags |= SRC2_IMM;
1994 src2_r = src2w;
1995 }
1996 }
1997
1998 if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
1999 if ((!(flags & LOGICAL_OP)
2000 && (src1w <= SIMM_16BIT_MAX && src1w >= SIMM_16BIT_MIN))
2001 || ((flags & LOGICAL_OP) && !(src1w & ~UIMM_16BIT_MAX))) {
2002 flags |= SRC2_IMM;
2003 src2_r = src1w;
2004
2005 /* And swap arguments. */
2006 src1 = src2;
2007 src1w = src2w;
2008 src2 = SLJIT_IMM;
2009 /* src2w = src2_r unneeded. */
2010 }
2011 }
2012 }
2013
2014 /* Source 1. */
2015 if (FAST_IS_REG(src1)) {
2016 src1_r = src1;
2017 flags |= REG1_SOURCE;
2018 } else if (src1 & SLJIT_IMM) {
2019 if (src1w) {
2020 FAIL_IF(load_immediate(compiler, TMP_REG1_mapped, src1w));
2021 src1_r = TMP_REG1;
2022 } else
2023 src1_r = 0;
2024 } else {
2025 if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w))
2026 FAIL_IF(compiler->error);
2027 else
2028 flags |= SLOW_SRC1;
2029 src1_r = TMP_REG1;
2030 }
2031
2032 /* Source 2. */
2033 if (FAST_IS_REG(src2)) {
2034 src2_r = src2;
2035 flags |= REG2_SOURCE;
2036 if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_S32)
2037 dst_r = src2_r;
2038 } else if (src2 & SLJIT_IMM) {
2039 if (!(flags & SRC2_IMM)) {
2040 if (src2w) {
2041 FAIL_IF(load_immediate(compiler, reg_map[sugg_src2_r], src2w));
2042 src2_r = sugg_src2_r;
2043 } else {
2044 src2_r = 0;
2045 if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_S32) && (dst & SLJIT_MEM))
2046 dst_r = 0;
2047 }
2048 }
2049 } else {
2050 if (getput_arg_fast(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w))
2051 FAIL_IF(compiler->error);
2052 else
2053 flags |= SLOW_SRC2;
2054 src2_r = sugg_src2_r;
2055 }
2056
2057 if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
2058 SLJIT_ASSERT(src2_r == TMP_REG2);
2059 if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
2060 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, src1, src1w));
2061 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
2062 } else {
2063 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, src2, src2w));
2064 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2_mapped, src2, src2w, dst, dstw));
2065 }
2066 } else if (flags & SLOW_SRC1)
2067 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1_mapped, src1, src1w, dst, dstw));
2068 else if (flags & SLOW_SRC2)
2069 FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, reg_map[sugg_src2_r], src2, src2w, dst, dstw));
2070
2071 FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
2072
2073 if (dst & SLJIT_MEM) {
2074 if (!(flags & SLOW_DEST)) {
2075 getput_arg_fast(compiler, flags, reg_map[dst_r], dst, dstw);
2076 return compiler->error;
2077 }
2078
2079 return getput_arg(compiler, flags, reg_map[dst_r], dst, dstw, 0, 0);
2080 }
2081
2082 return SLJIT_SUCCESS;
2083 }
2084
sljit_emit_op_flags(struct sljit_compiler * compiler,sljit_s32 op,sljit_s32 dst,sljit_sw dstw,sljit_s32 src,sljit_sw srcw,sljit_s32 type)2085 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw, sljit_s32 type)
2086 {
2087 sljit_s32 sugg_dst_ar, dst_ar;
2088 sljit_s32 flags = GET_ALL_FLAGS(op);
2089 sljit_s32 mem_type = (op & SLJIT_I32_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;
2090
2091 CHECK_ERROR();
2092 CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
2093 ADJUST_LOCAL_OFFSET(dst, dstw);
2094
2095 if (dst == SLJIT_UNUSED)
2096 return SLJIT_SUCCESS;
2097
2098 op = GET_OPCODE(op);
2099 if (op == SLJIT_MOV_S32 || op == SLJIT_MOV_U32)
2100 mem_type = INT_DATA | SIGNED_DATA;
2101 sugg_dst_ar = reg_map[(op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2];
2102
2103 compiler->cache_arg = 0;
2104 compiler->cache_argw = 0;
2105 if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
2106 ADJUST_LOCAL_OFFSET(src, srcw);
2107 FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1_mapped, src, srcw, dst, dstw));
2108 src = TMP_REG1;
2109 srcw = 0;
2110 }
2111
2112 switch (type & 0xff) {
2113 case SLJIT_EQUAL:
2114 case SLJIT_NOT_EQUAL:
2115 FAIL_IF(CMPLTUI(sugg_dst_ar, EQUAL_FLAG, 1));
2116 dst_ar = sugg_dst_ar;
2117 break;
2118 case SLJIT_LESS:
2119 case SLJIT_GREATER_EQUAL:
2120 dst_ar = ULESS_FLAG;
2121 break;
2122 case SLJIT_GREATER:
2123 case SLJIT_LESS_EQUAL:
2124 dst_ar = UGREATER_FLAG;
2125 break;
2126 case SLJIT_SIG_LESS:
2127 case SLJIT_SIG_GREATER_EQUAL:
2128 dst_ar = LESS_FLAG;
2129 break;
2130 case SLJIT_SIG_GREATER:
2131 case SLJIT_SIG_LESS_EQUAL:
2132 dst_ar = GREATER_FLAG;
2133 break;
2134 case SLJIT_OVERFLOW:
2135 case SLJIT_NOT_OVERFLOW:
2136 dst_ar = OVERFLOW_FLAG;
2137 break;
2138 case SLJIT_MUL_OVERFLOW:
2139 case SLJIT_MUL_NOT_OVERFLOW:
2140 FAIL_IF(CMPLTUI(sugg_dst_ar, OVERFLOW_FLAG, 1));
2141 dst_ar = sugg_dst_ar;
2142 type ^= 0x1; /* Flip type bit for the XORI below. */
2143 break;
2144
2145 default:
2146 SLJIT_ASSERT_STOP();
2147 dst_ar = sugg_dst_ar;
2148 break;
2149 }
2150
2151 if (type & 0x1) {
2152 FAIL_IF(XORI(sugg_dst_ar, dst_ar, 1));
2153 dst_ar = sugg_dst_ar;
2154 }
2155
2156 if (op >= SLJIT_ADD) {
2157 if (TMP_REG2_mapped != dst_ar)
2158 FAIL_IF(ADD(TMP_REG2_mapped, dst_ar, ZERO));
2159 return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
2160 }
2161
2162 if (dst & SLJIT_MEM)
2163 return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw);
2164
2165 if (sugg_dst_ar != dst_ar)
2166 return ADD(sugg_dst_ar, dst_ar, ZERO);
2167
2168 return SLJIT_SUCCESS;
2169 }
2170
sljit_emit_op0(struct sljit_compiler * compiler,sljit_s32 op)2171 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op) {
2172 CHECK_ERROR();
2173 CHECK(check_sljit_emit_op0(compiler, op));
2174
2175 op = GET_OPCODE(op);
2176 switch (op) {
2177 case SLJIT_NOP:
2178 return push_0_buffer(compiler, TILEGX_OPC_FNOP, __LINE__);
2179
2180 case SLJIT_BREAKPOINT:
2181 return PI(BPT);
2182
2183 case SLJIT_LMUL_UW:
2184 case SLJIT_LMUL_SW:
2185 case SLJIT_DIVMOD_UW:
2186 case SLJIT_DIVMOD_SW:
2187 case SLJIT_DIV_UW:
2188 case SLJIT_DIV_SW:
2189 SLJIT_ASSERT_STOP();
2190 }
2191
2192 return SLJIT_SUCCESS;
2193 }
2194
sljit_emit_op1(struct sljit_compiler * compiler,sljit_s32 op,sljit_s32 dst,sljit_sw dstw,sljit_s32 src,sljit_sw srcw)2195 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
2196 {
2197 CHECK_ERROR();
2198 CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
2199 ADJUST_LOCAL_OFFSET(dst, dstw);
2200 ADJUST_LOCAL_OFFSET(src, srcw);
2201
2202 switch (GET_OPCODE(op)) {
2203 case SLJIT_MOV:
2204 case SLJIT_MOV_P:
2205 return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2206
2207 case SLJIT_MOV_U32:
2208 return emit_op(compiler, SLJIT_MOV_U32, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2209
2210 case SLJIT_MOV_S32:
2211 return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2212
2213 case SLJIT_MOV_U8:
2214 return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);
2215
2216 case SLJIT_MOV_S8:
2217 return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);
2218
2219 case SLJIT_MOV_U16:
2220 return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);
2221
2222 case SLJIT_MOV_S16:
2223 return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);
2224
2225 case SLJIT_MOVU:
2226 case SLJIT_MOVU_P:
2227 return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2228
2229 case SLJIT_MOVU_U32:
2230 return emit_op(compiler, SLJIT_MOV_U32, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2231
2232 case SLJIT_MOVU_S32:
2233 return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
2234
2235 case SLJIT_MOVU_U8:
2236 return emit_op(compiler, SLJIT_MOV_U8, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u8) srcw : srcw);
2237
2238 case SLJIT_MOVU_S8:
2239 return emit_op(compiler, SLJIT_MOV_S8, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s8) srcw : srcw);
2240
2241 case SLJIT_MOVU_U16:
2242 return emit_op(compiler, SLJIT_MOV_U16, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_u16) srcw : srcw);
2243
2244 case SLJIT_MOVU_S16:
2245 return emit_op(compiler, SLJIT_MOV_S16, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_s16) srcw : srcw);
2246
2247 case SLJIT_NOT:
2248 return emit_op(compiler, op, 0, dst, dstw, TMP_REG1, 0, src, srcw);
2249
2250 case SLJIT_NEG:
2251 return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
2252
2253 case SLJIT_CLZ:
2254 return emit_op(compiler, op, (op & SLJIT_I32_OP) ? INT_DATA : WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
2255 }
2256
2257 return SLJIT_SUCCESS;
2258 }
2259
sljit_emit_op2(struct sljit_compiler * compiler,sljit_s32 op,sljit_s32 dst,sljit_sw dstw,sljit_s32 src1,sljit_sw src1w,sljit_s32 src2,sljit_sw src2w)2260 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
2261 {
2262 CHECK_ERROR();
2263 CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
2264 ADJUST_LOCAL_OFFSET(dst, dstw);
2265 ADJUST_LOCAL_OFFSET(src1, src1w);
2266 ADJUST_LOCAL_OFFSET(src2, src2w);
2267
2268 switch (GET_OPCODE(op)) {
2269 case SLJIT_ADD:
2270 case SLJIT_ADDC:
2271 return emit_op(compiler, op, CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2272
2273 case SLJIT_SUB:
2274 case SLJIT_SUBC:
2275 return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2276
2277 case SLJIT_MUL:
2278 return emit_op(compiler, op, CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
2279
2280 case SLJIT_AND:
2281 case SLJIT_OR:
2282 case SLJIT_XOR:
2283 return emit_op(compiler, op, CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2284
2285 case SLJIT_SHL:
2286 case SLJIT_LSHR:
2287 case SLJIT_ASHR:
2288 if (src2 & SLJIT_IMM)
2289 src2w &= 0x3f;
2290 if (op & SLJIT_I32_OP)
2291 src2w &= 0x1f;
2292
2293 return emit_op(compiler, op, IMM_OP, dst, dstw, src1, src1w, src2, src2w);
2294 }
2295
2296 return SLJIT_SUCCESS;
2297 }
2298
sljit_emit_label(struct sljit_compiler * compiler)2299 SLJIT_API_FUNC_ATTRIBUTE struct sljit_label * sljit_emit_label(struct sljit_compiler *compiler)
2300 {
2301 struct sljit_label *label;
2302
2303 flush_buffer(compiler);
2304
2305 CHECK_ERROR_PTR();
2306 CHECK_PTR(check_sljit_emit_label(compiler));
2307
2308 if (compiler->last_label && compiler->last_label->size == compiler->size)
2309 return compiler->last_label;
2310
2311 label = (struct sljit_label *)ensure_abuf(compiler, sizeof(struct sljit_label));
2312 PTR_FAIL_IF(!label);
2313 set_label(label, compiler);
2314 return label;
2315 }
2316
sljit_emit_ijump(struct sljit_compiler * compiler,sljit_s32 type,sljit_s32 src,sljit_sw srcw)2317 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
2318 {
2319 sljit_s32 src_r = TMP_REG2;
2320 struct sljit_jump *jump = NULL;
2321
2322 flush_buffer(compiler);
2323
2324 CHECK_ERROR();
2325 CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
2326 ADJUST_LOCAL_OFFSET(src, srcw);
2327
2328 if (FAST_IS_REG(src)) {
2329 if (reg_map[src] != 0)
2330 src_r = src;
2331 else
2332 FAIL_IF(ADD_SOLO(TMP_REG2_mapped, reg_map[src], ZERO));
2333 }
2334
2335 if (type >= SLJIT_CALL0) {
2336 SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
2337 if (src & (SLJIT_IMM | SLJIT_MEM)) {
2338 if (src & SLJIT_IMM)
2339 FAIL_IF(emit_const(compiler, reg_map[PIC_ADDR_REG], srcw, 1));
2340 else {
2341 SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
2342 FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2343 }
2344
2345 FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
2346
2347 FAIL_IF(ADDI_SOLO(54, 54, -16));
2348
2349 FAIL_IF(JALR_SOLO(reg_map[PIC_ADDR_REG]));
2350
2351 return ADDI_SOLO(54, 54, 16);
2352 }
2353
2354 /* Register input. */
2355 if (type >= SLJIT_CALL1)
2356 FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
2357
2358 FAIL_IF(ADD_SOLO(reg_map[PIC_ADDR_REG], reg_map[src_r], ZERO));
2359
2360 FAIL_IF(ADDI_SOLO(54, 54, -16));
2361
2362 FAIL_IF(JALR_SOLO(reg_map[src_r]));
2363
2364 return ADDI_SOLO(54, 54, 16);
2365 }
2366
2367 if (src & SLJIT_IMM) {
2368 jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
2369 FAIL_IF(!jump);
2370 set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
2371 jump->u.target = srcw;
2372 FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
2373
2374 if (type >= SLJIT_FAST_CALL) {
2375 FAIL_IF(ADD_SOLO(ZERO, ZERO, ZERO));
2376 jump->addr = compiler->size;
2377 FAIL_IF(JR_SOLO(reg_map[src_r]));
2378 } else {
2379 jump->addr = compiler->size;
2380 FAIL_IF(JR_SOLO(reg_map[src_r]));
2381 }
2382
2383 return SLJIT_SUCCESS;
2384
2385 } else if (src & SLJIT_MEM) {
2386 FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
2387 flush_buffer(compiler);
2388 }
2389
2390 FAIL_IF(JR_SOLO(reg_map[src_r]));
2391
2392 if (jump)
2393 jump->addr = compiler->size;
2394
2395 return SLJIT_SUCCESS;
2396 }
2397
2398 #define BR_Z(src) \
2399 inst = BEQZ_X1 | SRCA_X1(src); \
2400 flags = IS_COND;
2401
2402 #define BR_NZ(src) \
2403 inst = BNEZ_X1 | SRCA_X1(src); \
2404 flags = IS_COND;
2405
sljit_emit_jump(struct sljit_compiler * compiler,sljit_s32 type)2406 SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump * sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
2407 {
2408 struct sljit_jump *jump;
2409 sljit_ins inst;
2410 sljit_s32 flags = 0;
2411
2412 flush_buffer(compiler);
2413
2414 CHECK_ERROR_PTR();
2415 CHECK_PTR(check_sljit_emit_jump(compiler, type));
2416
2417 jump = (struct sljit_jump *)ensure_abuf(compiler, sizeof(struct sljit_jump));
2418 PTR_FAIL_IF(!jump);
2419 set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
2420 type &= 0xff;
2421
2422 switch (type) {
2423 case SLJIT_EQUAL:
2424 BR_NZ(EQUAL_FLAG);
2425 break;
2426 case SLJIT_NOT_EQUAL:
2427 BR_Z(EQUAL_FLAG);
2428 break;
2429 case SLJIT_LESS:
2430 BR_Z(ULESS_FLAG);
2431 break;
2432 case SLJIT_GREATER_EQUAL:
2433 BR_NZ(ULESS_FLAG);
2434 break;
2435 case SLJIT_GREATER:
2436 BR_Z(UGREATER_FLAG);
2437 break;
2438 case SLJIT_LESS_EQUAL:
2439 BR_NZ(UGREATER_FLAG);
2440 break;
2441 case SLJIT_SIG_LESS:
2442 BR_Z(LESS_FLAG);
2443 break;
2444 case SLJIT_SIG_GREATER_EQUAL:
2445 BR_NZ(LESS_FLAG);
2446 break;
2447 case SLJIT_SIG_GREATER:
2448 BR_Z(GREATER_FLAG);
2449 break;
2450 case SLJIT_SIG_LESS_EQUAL:
2451 BR_NZ(GREATER_FLAG);
2452 break;
2453 case SLJIT_OVERFLOW:
2454 case SLJIT_MUL_OVERFLOW:
2455 BR_Z(OVERFLOW_FLAG);
2456 break;
2457 case SLJIT_NOT_OVERFLOW:
2458 case SLJIT_MUL_NOT_OVERFLOW:
2459 BR_NZ(OVERFLOW_FLAG);
2460 break;
2461 default:
2462 /* Not conditional branch. */
2463 inst = 0;
2464 break;
2465 }
2466
2467 jump->flags |= flags;
2468
2469 if (inst) {
2470 inst = inst | ((type <= SLJIT_JUMP) ? BOFF_X1(5) : BOFF_X1(6));
2471 PTR_FAIL_IF(PI(inst));
2472 }
2473
2474 PTR_FAIL_IF(emit_const(compiler, TMP_REG2_mapped, 0, 1));
2475 if (type <= SLJIT_JUMP) {
2476 jump->addr = compiler->size;
2477 PTR_FAIL_IF(JR_SOLO(TMP_REG2_mapped));
2478 } else {
2479 SLJIT_ASSERT(reg_map[PIC_ADDR_REG] == 16 && PIC_ADDR_REG == TMP_REG2);
2480 /* Cannot be optimized out if type is >= CALL0. */
2481 jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? SLJIT_REWRITABLE_JUMP : 0);
2482 PTR_FAIL_IF(ADD_SOLO(0, reg_map[SLJIT_R0], ZERO));
2483 jump->addr = compiler->size;
2484 PTR_FAIL_IF(JALR_SOLO(TMP_REG2_mapped));
2485 }
2486
2487 return jump;
2488 }
2489
sljit_is_fpu_available(void)2490 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_is_fpu_available(void)
2491 {
2492 return 0;
2493 }
2494
sljit_emit_fop1(struct sljit_compiler * compiler,sljit_s32 op,sljit_s32 dst,sljit_sw dstw,sljit_s32 src,sljit_sw srcw)2495 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src, sljit_sw srcw)
2496 {
2497 SLJIT_ASSERT_STOP();
2498 }
2499
sljit_emit_fop2(struct sljit_compiler * compiler,sljit_s32 op,sljit_s32 dst,sljit_sw dstw,sljit_s32 src1,sljit_sw src1w,sljit_s32 src2,sljit_sw src2w)2500 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 dst, sljit_sw dstw, sljit_s32 src1, sljit_sw src1w, sljit_s32 src2, sljit_sw src2w)
2501 {
2502 SLJIT_ASSERT_STOP();
2503 }
2504
sljit_emit_const(struct sljit_compiler * compiler,sljit_s32 dst,sljit_sw dstw,sljit_sw init_value)2505 SLJIT_API_FUNC_ATTRIBUTE struct sljit_const * sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
2506 {
2507 struct sljit_const *const_;
2508 sljit_s32 reg;
2509
2510 flush_buffer(compiler);
2511
2512 CHECK_ERROR_PTR();
2513 CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
2514 ADJUST_LOCAL_OFFSET(dst, dstw);
2515
2516 const_ = (struct sljit_const *)ensure_abuf(compiler, sizeof(struct sljit_const));
2517 PTR_FAIL_IF(!const_);
2518 set_const(const_, compiler);
2519
2520 reg = FAST_IS_REG(dst) ? dst : TMP_REG2;
2521
2522 PTR_FAIL_IF(emit_const_64(compiler, reg, init_value, 1));
2523
2524 if (dst & SLJIT_MEM)
2525 PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
2526 return const_;
2527 }
2528
sljit_set_jump_addr(sljit_uw addr,sljit_uw new_addr)2529 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_addr)
2530 {
2531 sljit_ins *inst = (sljit_ins *)addr;
2532
2533 inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_addr >> 32) & 0xffff) << 43);
2534 inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_addr >> 16) & 0xffff) << 43);
2535 inst[2] = (inst[2] & ~(0xFFFFL << 43)) | ((new_addr & 0xffff) << 43);
2536 SLJIT_CACHE_FLUSH(inst, inst + 3);
2537 }
2538
sljit_set_const(sljit_uw addr,sljit_sw new_constant)2539 SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant)
2540 {
2541 sljit_ins *inst = (sljit_ins *)addr;
2542
2543 inst[0] = (inst[0] & ~(0xFFFFL << 43)) | (((new_constant >> 48) & 0xFFFFL) << 43);
2544 inst[1] = (inst[1] & ~(0xFFFFL << 43)) | (((new_constant >> 32) & 0xFFFFL) << 43);
2545 inst[2] = (inst[2] & ~(0xFFFFL << 43)) | (((new_constant >> 16) & 0xFFFFL) << 43);
2546 inst[3] = (inst[3] & ~(0xFFFFL << 43)) | ((new_constant & 0xFFFFL) << 43);
2547 SLJIT_CACHE_FLUSH(inst, inst + 4);
2548 }
2549
sljit_get_register_index(sljit_s32 reg)2550 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 reg)
2551 {
2552 CHECK_REG_INDEX(check_sljit_get_register_index(reg));
2553 return reg_map[reg];
2554 }
2555
sljit_emit_op_custom(struct sljit_compiler * compiler,void * instruction,sljit_s32 size)2556 SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
2557 void *instruction, sljit_s32 size)
2558 {
2559 CHECK_ERROR();
2560 CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
2561 return SLJIT_ERR_UNSUPPORTED;
2562 }
2563
2564