• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #ifndef _BTRFS_CTREE_H_
2 #define _BTRFS_CTREE_H_
3 
4 /*
5  * This header contains the structure definitions and constants used
6  * by file system objects that can be retrieved using
7  * the BTRFS_IOC_SEARCH_TREE ioctl.  That means basically anything that
8  * is needed to describe a leaf node's key or item contents.
9  */
10 
11 /* holds pointers to all of the tree roots */
12 #define BTRFS_ROOT_TREE_OBJECTID 1ULL
13 
14 /* stores information about which extents are in use, and reference counts */
15 #define BTRFS_EXTENT_TREE_OBJECTID 2ULL
16 
17 /*
18  * chunk tree stores translations from logical -> physical block numbering
19  * the super block points to the chunk tree
20  */
21 #define BTRFS_CHUNK_TREE_OBJECTID 3ULL
22 
23 /*
24  * stores information about which areas of a given device are in use.
25  * one per device.  The tree of tree roots points to the device tree
26  */
27 #define BTRFS_DEV_TREE_OBJECTID 4ULL
28 
29 /* one per subvolume, storing files and directories */
30 #define BTRFS_FS_TREE_OBJECTID 5ULL
31 
32 /* directory objectid inside the root tree */
33 #define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
34 
35 /* holds checksums of all the data extents */
36 #define BTRFS_CSUM_TREE_OBJECTID 7ULL
37 
38 /* holds quota configuration and tracking */
39 #define BTRFS_QUOTA_TREE_OBJECTID 8ULL
40 
41 /* for storing items that use the BTRFS_UUID_KEY* types */
42 #define BTRFS_UUID_TREE_OBJECTID 9ULL
43 
44 /* tracks free space in block groups. */
45 #define BTRFS_FREE_SPACE_TREE_OBJECTID 10ULL
46 
47 /* device stats in the device tree */
48 #define BTRFS_DEV_STATS_OBJECTID 0ULL
49 
50 /* for storing balance parameters in the root tree */
51 #define BTRFS_BALANCE_OBJECTID -4ULL
52 
53 /* orhpan objectid for tracking unlinked/truncated files */
54 #define BTRFS_ORPHAN_OBJECTID -5ULL
55 
56 /* does write ahead logging to speed up fsyncs */
57 #define BTRFS_TREE_LOG_OBJECTID -6ULL
58 #define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
59 
60 /* for space balancing */
61 #define BTRFS_TREE_RELOC_OBJECTID -8ULL
62 #define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
63 
64 /*
65  * extent checksums all have this objectid
66  * this allows them to share the logging tree
67  * for fsyncs
68  */
69 #define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
70 
71 /* For storing free space cache */
72 #define BTRFS_FREE_SPACE_OBJECTID -11ULL
73 
74 /*
75  * The inode number assigned to the special inode for storing
76  * free ino cache
77  */
78 #define BTRFS_FREE_INO_OBJECTID -12ULL
79 
80 /* dummy objectid represents multiple objectids */
81 #define BTRFS_MULTIPLE_OBJECTIDS -255ULL
82 
83 /*
84  * All files have objectids in this range.
85  */
86 #define BTRFS_FIRST_FREE_OBJECTID 256ULL
87 #define BTRFS_LAST_FREE_OBJECTID -256ULL
88 #define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
89 
90 
91 /*
92  * the device items go into the chunk tree.  The key is in the form
93  * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
94  */
95 #define BTRFS_DEV_ITEMS_OBJECTID 1ULL
96 
97 #define BTRFS_BTREE_INODE_OBJECTID 1
98 
99 #define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
100 
101 #define BTRFS_DEV_REPLACE_DEVID 0ULL
102 
103 /*
104  * inode items have the data typically returned from stat and store other
105  * info about object characteristics.  There is one for every file and dir in
106  * the FS
107  */
108 #define BTRFS_INODE_ITEM_KEY		1
109 #define BTRFS_INODE_REF_KEY		12
110 #define BTRFS_INODE_EXTREF_KEY		13
111 #define BTRFS_XATTR_ITEM_KEY		24
112 #define BTRFS_ORPHAN_ITEM_KEY		48
113 /* reserve 2-15 close to the inode for later flexibility */
114 
115 /*
116  * dir items are the name -> inode pointers in a directory.  There is one
117  * for every name in a directory.
118  */
119 #define BTRFS_DIR_LOG_ITEM_KEY  60
120 #define BTRFS_DIR_LOG_INDEX_KEY 72
121 #define BTRFS_DIR_ITEM_KEY	84
122 #define BTRFS_DIR_INDEX_KEY	96
123 /*
124  * extent data is for file data
125  */
126 #define BTRFS_EXTENT_DATA_KEY	108
127 
128 /*
129  * extent csums are stored in a separate tree and hold csums for
130  * an entire extent on disk.
131  */
132 #define BTRFS_EXTENT_CSUM_KEY	128
133 
134 /*
135  * root items point to tree roots.  They are typically in the root
136  * tree used by the super block to find all the other trees
137  */
138 #define BTRFS_ROOT_ITEM_KEY	132
139 
140 /*
141  * root backrefs tie subvols and snapshots to the directory entries that
142  * reference them
143  */
144 #define BTRFS_ROOT_BACKREF_KEY	144
145 
146 /*
147  * root refs make a fast index for listing all of the snapshots and
148  * subvolumes referenced by a given root.  They point directly to the
149  * directory item in the root that references the subvol
150  */
151 #define BTRFS_ROOT_REF_KEY	156
152 
153 /*
154  * extent items are in the extent map tree.  These record which blocks
155  * are used, and how many references there are to each block
156  */
157 #define BTRFS_EXTENT_ITEM_KEY	168
158 
159 /*
160  * The same as the BTRFS_EXTENT_ITEM_KEY, except it's metadata we already know
161  * the length, so we save the level in key->offset instead of the length.
162  */
163 #define BTRFS_METADATA_ITEM_KEY	169
164 
165 #define BTRFS_TREE_BLOCK_REF_KEY	176
166 
167 #define BTRFS_EXTENT_DATA_REF_KEY	178
168 
169 #define BTRFS_EXTENT_REF_V0_KEY		180
170 
171 #define BTRFS_SHARED_BLOCK_REF_KEY	182
172 
173 #define BTRFS_SHARED_DATA_REF_KEY	184
174 
175 /*
176  * block groups give us hints into the extent allocation trees.  Which
177  * blocks are free etc etc
178  */
179 #define BTRFS_BLOCK_GROUP_ITEM_KEY 192
180 
181 /*
182  * Every block group is represented in the free space tree by a free space info
183  * item, which stores some accounting information. It is keyed on
184  * (block_group_start, FREE_SPACE_INFO, block_group_length).
185  */
186 #define BTRFS_FREE_SPACE_INFO_KEY 198
187 
188 /*
189  * A free space extent tracks an extent of space that is free in a block group.
190  * It is keyed on (start, FREE_SPACE_EXTENT, length).
191  */
192 #define BTRFS_FREE_SPACE_EXTENT_KEY 199
193 
194 /*
195  * When a block group becomes very fragmented, we convert it to use bitmaps
196  * instead of extents. A free space bitmap is keyed on
197  * (start, FREE_SPACE_BITMAP, length); the corresponding item is a bitmap with
198  * (length / sectorsize) bits.
199  */
200 #define BTRFS_FREE_SPACE_BITMAP_KEY 200
201 
202 #define BTRFS_DEV_EXTENT_KEY	204
203 #define BTRFS_DEV_ITEM_KEY	216
204 #define BTRFS_CHUNK_ITEM_KEY	228
205 
206 /*
207  * Records the overall state of the qgroups.
208  * There's only one instance of this key present,
209  * (0, BTRFS_QGROUP_STATUS_KEY, 0)
210  */
211 #define BTRFS_QGROUP_STATUS_KEY         240
212 /*
213  * Records the currently used space of the qgroup.
214  * One key per qgroup, (0, BTRFS_QGROUP_INFO_KEY, qgroupid).
215  */
216 #define BTRFS_QGROUP_INFO_KEY           242
217 /*
218  * Contains the user configured limits for the qgroup.
219  * One key per qgroup, (0, BTRFS_QGROUP_LIMIT_KEY, qgroupid).
220  */
221 #define BTRFS_QGROUP_LIMIT_KEY          244
222 /*
223  * Records the child-parent relationship of qgroups. For
224  * each relation, 2 keys are present:
225  * (childid, BTRFS_QGROUP_RELATION_KEY, parentid)
226  * (parentid, BTRFS_QGROUP_RELATION_KEY, childid)
227  */
228 #define BTRFS_QGROUP_RELATION_KEY       246
229 
230 /*
231  * Obsolete name, see BTRFS_TEMPORARY_ITEM_KEY.
232  */
233 #define BTRFS_BALANCE_ITEM_KEY	248
234 
235 /*
236  * The key type for tree items that are stored persistently, but do not need to
237  * exist for extended period of time. The items can exist in any tree.
238  *
239  * [subtype, BTRFS_TEMPORARY_ITEM_KEY, data]
240  *
241  * Existing items:
242  *
243  * - balance status item
244  *   (BTRFS_BALANCE_OBJECTID, BTRFS_TEMPORARY_ITEM_KEY, 0)
245  */
246 #define BTRFS_TEMPORARY_ITEM_KEY	248
247 
248 /*
249  * Obsolete name, see BTRFS_PERSISTENT_ITEM_KEY
250  */
251 #define BTRFS_DEV_STATS_KEY		249
252 
253 /*
254  * The key type for tree items that are stored persistently and usually exist
255  * for a long period, eg. filesystem lifetime. The item kinds can be status
256  * information, stats or preference values. The item can exist in any tree.
257  *
258  * [subtype, BTRFS_PERSISTENT_ITEM_KEY, data]
259  *
260  * Existing items:
261  *
262  * - device statistics, store IO stats in the device tree, one key for all
263  *   stats
264  *   (BTRFS_DEV_STATS_OBJECTID, BTRFS_DEV_STATS_KEY, 0)
265  */
266 #define BTRFS_PERSISTENT_ITEM_KEY	249
267 
268 /*
269  * Persistantly stores the device replace state in the device tree.
270  * The key is built like this: (0, BTRFS_DEV_REPLACE_KEY, 0).
271  */
272 #define BTRFS_DEV_REPLACE_KEY	250
273 
274 /*
275  * Stores items that allow to quickly map UUIDs to something else.
276  * These items are part of the filesystem UUID tree.
277  * The key is built like this:
278  * (UUID_upper_64_bits, BTRFS_UUID_KEY*, UUID_lower_64_bits).
279  */
280 #if BTRFS_UUID_SIZE != 16
281 #error "UUID items require BTRFS_UUID_SIZE == 16!"
282 #endif
283 #define BTRFS_UUID_KEY_SUBVOL	251	/* for UUIDs assigned to subvols */
284 #define BTRFS_UUID_KEY_RECEIVED_SUBVOL	252	/* for UUIDs assigned to
285 						 * received subvols */
286 
287 /*
288  * string items are for debugging.  They just store a short string of
289  * data in the FS
290  */
291 #define BTRFS_STRING_ITEM_KEY	253
292 
293 
294 
295 /* 32 bytes in various csum fields */
296 #define BTRFS_CSUM_SIZE 32
297 
298 /* csum types */
299 #define BTRFS_CSUM_TYPE_CRC32	0
300 
301 /*
302  * flags definitions for directory entry item type
303  *
304  * Used by:
305  * struct btrfs_dir_item.type
306  */
307 #define BTRFS_FT_UNKNOWN	0
308 #define BTRFS_FT_REG_FILE	1
309 #define BTRFS_FT_DIR		2
310 #define BTRFS_FT_CHRDEV		3
311 #define BTRFS_FT_BLKDEV		4
312 #define BTRFS_FT_FIFO		5
313 #define BTRFS_FT_SOCK		6
314 #define BTRFS_FT_SYMLINK	7
315 #define BTRFS_FT_XATTR		8
316 #define BTRFS_FT_MAX		9
317 
318 /*
319  * The key defines the order in the tree, and so it also defines (optimal)
320  * block layout.
321  *
322  * objectid corresponds to the inode number.
323  *
324  * type tells us things about the object, and is a kind of stream selector.
325  * so for a given inode, keys with type of 1 might refer to the inode data,
326  * type of 2 may point to file data in the btree and type == 3 may point to
327  * extents.
328  *
329  * offset is the starting byte offset for this key in the stream.
330  *
331  * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
332  * in cpu native order.  Otherwise they are identical and their sizes
333  * should be the same (ie both packed)
334  */
335 struct btrfs_disk_key {
336 	__le64 objectid;
337 	__u8 type;
338 	__le64 offset;
339 } __attribute__ ((__packed__));
340 
341 struct btrfs_key {
342 	__u64 objectid;
343 	__u8 type;
344 	__u64 offset;
345 } __attribute__ ((__packed__));
346 
347 struct btrfs_dev_item {
348 	/* the internal btrfs device id */
349 	__le64 devid;
350 
351 	/* size of the device */
352 	__le64 total_bytes;
353 
354 	/* bytes used */
355 	__le64 bytes_used;
356 
357 	/* optimal io alignment for this device */
358 	__le32 io_align;
359 
360 	/* optimal io width for this device */
361 	__le32 io_width;
362 
363 	/* minimal io size for this device */
364 	__le32 sector_size;
365 
366 	/* type and info about this device */
367 	__le64 type;
368 
369 	/* expected generation for this device */
370 	__le64 generation;
371 
372 	/*
373 	 * starting byte of this partition on the device,
374 	 * to allow for stripe alignment in the future
375 	 */
376 	__le64 start_offset;
377 
378 	/* grouping information for allocation decisions */
379 	__le32 dev_group;
380 
381 	/* seek speed 0-100 where 100 is fastest */
382 	__u8 seek_speed;
383 
384 	/* bandwidth 0-100 where 100 is fastest */
385 	__u8 bandwidth;
386 
387 	/* btrfs generated uuid for this device */
388 	__u8 uuid[BTRFS_UUID_SIZE];
389 
390 	/* uuid of FS who owns this device */
391 	__u8 fsid[BTRFS_UUID_SIZE];
392 } __attribute__ ((__packed__));
393 
394 struct btrfs_stripe {
395 	__le64 devid;
396 	__le64 offset;
397 	__u8 dev_uuid[BTRFS_UUID_SIZE];
398 } __attribute__ ((__packed__));
399 
400 struct btrfs_chunk {
401 	/* size of this chunk in bytes */
402 	__le64 length;
403 
404 	/* objectid of the root referencing this chunk */
405 	__le64 owner;
406 
407 	__le64 stripe_len;
408 	__le64 type;
409 
410 	/* optimal io alignment for this chunk */
411 	__le32 io_align;
412 
413 	/* optimal io width for this chunk */
414 	__le32 io_width;
415 
416 	/* minimal io size for this chunk */
417 	__le32 sector_size;
418 
419 	/* 2^16 stripes is quite a lot, a second limit is the size of a single
420 	 * item in the btree
421 	 */
422 	__le16 num_stripes;
423 
424 	/* sub stripes only matter for raid10 */
425 	__le16 sub_stripes;
426 	struct btrfs_stripe stripe;
427 	/* additional stripes go here */
428 } __attribute__ ((__packed__));
429 
430 #define BTRFS_FREE_SPACE_EXTENT	1
431 #define BTRFS_FREE_SPACE_BITMAP	2
432 
433 struct btrfs_free_space_entry {
434 	__le64 offset;
435 	__le64 bytes;
436 	__u8 type;
437 } __attribute__ ((__packed__));
438 
439 struct btrfs_free_space_header {
440 	struct btrfs_disk_key location;
441 	__le64 generation;
442 	__le64 num_entries;
443 	__le64 num_bitmaps;
444 } __attribute__ ((__packed__));
445 
446 #define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
447 #define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
448 
449 /* Super block flags */
450 /* Errors detected */
451 #define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
452 
453 #define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
454 #define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
455 
456 
457 /*
458  * items in the extent btree are used to record the objectid of the
459  * owner of the block and the number of references
460  */
461 
462 struct btrfs_extent_item {
463 	__le64 refs;
464 	__le64 generation;
465 	__le64 flags;
466 } __attribute__ ((__packed__));
467 
468 struct btrfs_extent_item_v0 {
469 	__le32 refs;
470 } __attribute__ ((__packed__));
471 
472 
473 #define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
474 #define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
475 
476 /* following flags only apply to tree blocks */
477 
478 /* use full backrefs for extent pointers in the block */
479 #define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
480 
481 /*
482  * this flag is only used internally by scrub and may be changed at any time
483  * it is only declared here to avoid collisions
484  */
485 #define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
486 
487 struct btrfs_tree_block_info {
488 	struct btrfs_disk_key key;
489 	__u8 level;
490 } __attribute__ ((__packed__));
491 
492 struct btrfs_extent_data_ref {
493 	__le64 root;
494 	__le64 objectid;
495 	__le64 offset;
496 	__le32 count;
497 } __attribute__ ((__packed__));
498 
499 struct btrfs_shared_data_ref {
500 	__le32 count;
501 } __attribute__ ((__packed__));
502 
503 struct btrfs_extent_inline_ref {
504 	__u8 type;
505 	__le64 offset;
506 } __attribute__ ((__packed__));
507 
508 /* old style backrefs item */
509 struct btrfs_extent_ref_v0 {
510 	__le64 root;
511 	__le64 generation;
512 	__le64 objectid;
513 	__le32 count;
514 } __attribute__ ((__packed__));
515 
516 
517 /* dev extents record free space on individual devices.  The owner
518  * field points back to the chunk allocation mapping tree that allocated
519  * the extent.  The chunk tree uuid field is a way to double check the owner
520  */
521 struct btrfs_dev_extent {
522 	__le64 chunk_tree;
523 	__le64 chunk_objectid;
524 	__le64 chunk_offset;
525 	__le64 length;
526 	__u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
527 } __attribute__ ((__packed__));
528 
529 struct btrfs_inode_ref {
530 	__le64 index;
531 	__le16 name_len;
532 	/* name goes here */
533 } __attribute__ ((__packed__));
534 
535 struct btrfs_inode_extref {
536 	__le64 parent_objectid;
537 	__le64 index;
538 	__le16 name_len;
539 	__u8   name[0];
540 	/* name goes here */
541 } __attribute__ ((__packed__));
542 
543 struct btrfs_timespec {
544 	__le64 sec;
545 	__le32 nsec;
546 } __attribute__ ((__packed__));
547 
548 struct btrfs_inode_item {
549 	/* nfs style generation number */
550 	__le64 generation;
551 	/* transid that last touched this inode */
552 	__le64 transid;
553 	__le64 size;
554 	__le64 nbytes;
555 	__le64 block_group;
556 	__le32 nlink;
557 	__le32 uid;
558 	__le32 gid;
559 	__le32 mode;
560 	__le64 rdev;
561 	__le64 flags;
562 
563 	/* modification sequence number for NFS */
564 	__le64 sequence;
565 
566 	/*
567 	 * a little future expansion, for more than this we can
568 	 * just grow the inode item and version it
569 	 */
570 	__le64 reserved[4];
571 	struct btrfs_timespec atime;
572 	struct btrfs_timespec ctime;
573 	struct btrfs_timespec mtime;
574 	struct btrfs_timespec otime;
575 } __attribute__ ((__packed__));
576 
577 struct btrfs_dir_log_item {
578 	__le64 end;
579 } __attribute__ ((__packed__));
580 
581 struct btrfs_dir_item {
582 	struct btrfs_disk_key location;
583 	__le64 transid;
584 	__le16 data_len;
585 	__le16 name_len;
586 	__u8 type;
587 } __attribute__ ((__packed__));
588 
589 #define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
590 
591 /*
592  * Internal in-memory flag that a subvolume has been marked for deletion but
593  * still visible as a directory
594  */
595 #define BTRFS_ROOT_SUBVOL_DEAD		(1ULL << 48)
596 
597 struct btrfs_root_item {
598 	struct btrfs_inode_item inode;
599 	__le64 generation;
600 	__le64 root_dirid;
601 	__le64 bytenr;
602 	__le64 byte_limit;
603 	__le64 bytes_used;
604 	__le64 last_snapshot;
605 	__le64 flags;
606 	__le32 refs;
607 	struct btrfs_disk_key drop_progress;
608 	__u8 drop_level;
609 	__u8 level;
610 
611 	/*
612 	 * The following fields appear after subvol_uuids+subvol_times
613 	 * were introduced.
614 	 */
615 
616 	/*
617 	 * This generation number is used to test if the new fields are valid
618 	 * and up to date while reading the root item. Every time the root item
619 	 * is written out, the "generation" field is copied into this field. If
620 	 * anyone ever mounted the fs with an older kernel, we will have
621 	 * mismatching generation values here and thus must invalidate the
622 	 * new fields. See btrfs_update_root and btrfs_find_last_root for
623 	 * details.
624 	 * the offset of generation_v2 is also used as the start for the memset
625 	 * when invalidating the fields.
626 	 */
627 	__le64 generation_v2;
628 	__u8 uuid[BTRFS_UUID_SIZE];
629 	__u8 parent_uuid[BTRFS_UUID_SIZE];
630 	__u8 received_uuid[BTRFS_UUID_SIZE];
631 	__le64 ctransid; /* updated when an inode changes */
632 	__le64 otransid; /* trans when created */
633 	__le64 stransid; /* trans when sent. non-zero for received subvol */
634 	__le64 rtransid; /* trans when received. non-zero for received subvol */
635 	struct btrfs_timespec ctime;
636 	struct btrfs_timespec otime;
637 	struct btrfs_timespec stime;
638 	struct btrfs_timespec rtime;
639 	__le64 reserved[8]; /* for future */
640 } __attribute__ ((__packed__));
641 
642 /*
643  * this is used for both forward and backward root refs
644  */
645 struct btrfs_root_ref {
646 	__le64 dirid;
647 	__le64 sequence;
648 	__le16 name_len;
649 } __attribute__ ((__packed__));
650 
651 struct btrfs_disk_balance_args {
652 	/*
653 	 * profiles to operate on, single is denoted by
654 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
655 	 */
656 	__le64 profiles;
657 
658 	/*
659 	 * usage filter
660 	 * BTRFS_BALANCE_ARGS_USAGE with a single value means '0..N'
661 	 * BTRFS_BALANCE_ARGS_USAGE_RANGE - range syntax, min..max
662 	 */
663 	union {
664 		__le64 usage;
665 		struct {
666 			__le32 usage_min;
667 			__le32 usage_max;
668 		};
669 	};
670 
671 	/* devid filter */
672 	__le64 devid;
673 
674 	/* devid subset filter [pstart..pend) */
675 	__le64 pstart;
676 	__le64 pend;
677 
678 	/* btrfs virtual address space subset filter [vstart..vend) */
679 	__le64 vstart;
680 	__le64 vend;
681 
682 	/*
683 	 * profile to convert to, single is denoted by
684 	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
685 	 */
686 	__le64 target;
687 
688 	/* BTRFS_BALANCE_ARGS_* */
689 	__le64 flags;
690 
691 	/*
692 	 * BTRFS_BALANCE_ARGS_LIMIT with value 'limit'
693 	 * BTRFS_BALANCE_ARGS_LIMIT_RANGE - the extend version can use minimum
694 	 * and maximum
695 	 */
696 	union {
697 		__le64 limit;
698 		struct {
699 			__le32 limit_min;
700 			__le32 limit_max;
701 		};
702 	};
703 
704 	/*
705 	 * Process chunks that cross stripes_min..stripes_max devices,
706 	 * BTRFS_BALANCE_ARGS_STRIPES_RANGE
707 	 */
708 	__le32 stripes_min;
709 	__le32 stripes_max;
710 
711 	__le64 unused[6];
712 } __attribute__ ((__packed__));
713 
714 /*
715  * store balance parameters to disk so that balance can be properly
716  * resumed after crash or unmount
717  */
718 struct btrfs_balance_item {
719 	/* BTRFS_BALANCE_* */
720 	__le64 flags;
721 
722 	struct btrfs_disk_balance_args data;
723 	struct btrfs_disk_balance_args meta;
724 	struct btrfs_disk_balance_args sys;
725 
726 	__le64 unused[4];
727 } __attribute__ ((__packed__));
728 
729 #define BTRFS_FILE_EXTENT_INLINE 0
730 #define BTRFS_FILE_EXTENT_REG 1
731 #define BTRFS_FILE_EXTENT_PREALLOC 2
732 
733 struct btrfs_file_extent_item {
734 	/*
735 	 * transaction id that created this extent
736 	 */
737 	__le64 generation;
738 	/*
739 	 * max number of bytes to hold this extent in ram
740 	 * when we split a compressed extent we can't know how big
741 	 * each of the resulting pieces will be.  So, this is
742 	 * an upper limit on the size of the extent in ram instead of
743 	 * an exact limit.
744 	 */
745 	__le64 ram_bytes;
746 
747 	/*
748 	 * 32 bits for the various ways we might encode the data,
749 	 * including compression and encryption.  If any of these
750 	 * are set to something a given disk format doesn't understand
751 	 * it is treated like an incompat flag for reading and writing,
752 	 * but not for stat.
753 	 */
754 	__u8 compression;
755 	__u8 encryption;
756 	__le16 other_encoding; /* spare for later use */
757 
758 	/* are we inline data or a real extent? */
759 	__u8 type;
760 
761 	/*
762 	 * disk space consumed by the extent, checksum blocks are included
763 	 * in these numbers
764 	 *
765 	 * At this offset in the structure, the inline extent data start.
766 	 */
767 	__le64 disk_bytenr;
768 	__le64 disk_num_bytes;
769 	/*
770 	 * the logical offset in file blocks (no csums)
771 	 * this extent record is for.  This allows a file extent to point
772 	 * into the middle of an existing extent on disk, sharing it
773 	 * between two snapshots (useful if some bytes in the middle of the
774 	 * extent have changed
775 	 */
776 	__le64 offset;
777 	/*
778 	 * the logical number of file blocks (no csums included).  This
779 	 * always reflects the size uncompressed and without encoding.
780 	 */
781 	__le64 num_bytes;
782 
783 } __attribute__ ((__packed__));
784 
785 struct btrfs_csum_item {
786 	__u8 csum;
787 } __attribute__ ((__packed__));
788 
789 struct btrfs_dev_stats_item {
790 	/*
791 	 * grow this item struct at the end for future enhancements and keep
792 	 * the existing values unchanged
793 	 */
794 	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
795 } __attribute__ ((__packed__));
796 
797 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_ALWAYS	0
798 #define BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID	1
799 #define BTRFS_DEV_REPLACE_ITEM_STATE_NEVER_STARTED	0
800 #define BTRFS_DEV_REPLACE_ITEM_STATE_STARTED		1
801 #define BTRFS_DEV_REPLACE_ITEM_STATE_SUSPENDED		2
802 #define BTRFS_DEV_REPLACE_ITEM_STATE_FINISHED		3
803 #define BTRFS_DEV_REPLACE_ITEM_STATE_CANCELED		4
804 
805 struct btrfs_dev_replace_item {
806 	/*
807 	 * grow this item struct at the end for future enhancements and keep
808 	 * the existing values unchanged
809 	 */
810 	__le64 src_devid;
811 	__le64 cursor_left;
812 	__le64 cursor_right;
813 	__le64 cont_reading_from_srcdev_mode;
814 
815 	__le64 replace_state;
816 	__le64 time_started;
817 	__le64 time_stopped;
818 	__le64 num_write_errors;
819 	__le64 num_uncorrectable_read_errors;
820 } __attribute__ ((__packed__));
821 
822 /* different types of block groups (and chunks) */
823 #define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
824 #define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
825 #define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
826 #define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
827 #define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
828 #define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
829 #define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
830 #define BTRFS_BLOCK_GROUP_RAID5         (1ULL << 7)
831 #define BTRFS_BLOCK_GROUP_RAID6         (1ULL << 8)
832 #define BTRFS_BLOCK_GROUP_RESERVED	(BTRFS_AVAIL_ALLOC_BIT_SINGLE | \
833 					 BTRFS_SPACE_INFO_GLOBAL_RSV)
834 
835 enum btrfs_raid_types {
836 	BTRFS_RAID_RAID10,
837 	BTRFS_RAID_RAID1,
838 	BTRFS_RAID_DUP,
839 	BTRFS_RAID_RAID0,
840 	BTRFS_RAID_SINGLE,
841 	BTRFS_RAID_RAID5,
842 	BTRFS_RAID_RAID6,
843 	BTRFS_NR_RAID_TYPES
844 };
845 
846 #define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
847 					 BTRFS_BLOCK_GROUP_SYSTEM |  \
848 					 BTRFS_BLOCK_GROUP_METADATA)
849 
850 #define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
851 					 BTRFS_BLOCK_GROUP_RAID1 |   \
852 					 BTRFS_BLOCK_GROUP_RAID5 |   \
853 					 BTRFS_BLOCK_GROUP_RAID6 |   \
854 					 BTRFS_BLOCK_GROUP_DUP |     \
855 					 BTRFS_BLOCK_GROUP_RAID10)
856 #define BTRFS_BLOCK_GROUP_RAID56_MASK	(BTRFS_BLOCK_GROUP_RAID5 |   \
857 					 BTRFS_BLOCK_GROUP_RAID6)
858 
859 /*
860  * We need a bit for restriper to be able to tell when chunks of type
861  * SINGLE are available.  This "extended" profile format is used in
862  * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
863  * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
864  * to avoid remappings between two formats in future.
865  */
866 #define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
867 
868 /*
869  * A fake block group type that is used to communicate global block reserve
870  * size to userspace via the SPACE_INFO ioctl.
871  */
872 #define BTRFS_SPACE_INFO_GLOBAL_RSV	(1ULL << 49)
873 
874 #define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
875 					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
876 
chunk_to_extended(__u64 flags)877 static inline __u64 chunk_to_extended(__u64 flags)
878 {
879 	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
880 		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
881 
882 	return flags;
883 }
extended_to_chunk(__u64 flags)884 static inline __u64 extended_to_chunk(__u64 flags)
885 {
886 	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
887 }
888 
889 struct btrfs_block_group_item {
890 	__le64 used;
891 	__le64 chunk_objectid;
892 	__le64 flags;
893 } __attribute__ ((__packed__));
894 
895 struct btrfs_free_space_info {
896 	__le32 extent_count;
897 	__le32 flags;
898 } __attribute__ ((__packed__));
899 
900 #define BTRFS_FREE_SPACE_USING_BITMAPS (1ULL << 0)
901 
902 #define BTRFS_QGROUP_LEVEL_SHIFT		48
btrfs_qgroup_level(__u64 qgroupid)903 static inline __u64 btrfs_qgroup_level(__u64 qgroupid)
904 {
905 	return qgroupid >> BTRFS_QGROUP_LEVEL_SHIFT;
906 }
907 
908 /*
909  * is subvolume quota turned on?
910  */
911 #define BTRFS_QGROUP_STATUS_FLAG_ON		(1ULL << 0)
912 /*
913  * RESCAN is set during the initialization phase
914  */
915 #define BTRFS_QGROUP_STATUS_FLAG_RESCAN		(1ULL << 1)
916 /*
917  * Some qgroup entries are known to be out of date,
918  * either because the configuration has changed in a way that
919  * makes a rescan necessary, or because the fs has been mounted
920  * with a non-qgroup-aware version.
921  * Turning qouta off and on again makes it inconsistent, too.
922  */
923 #define BTRFS_QGROUP_STATUS_FLAG_INCONSISTENT	(1ULL << 2)
924 
925 #define BTRFS_QGROUP_STATUS_VERSION        1
926 
927 struct btrfs_qgroup_status_item {
928 	__le64 version;
929 	/*
930 	 * the generation is updated during every commit. As older
931 	 * versions of btrfs are not aware of qgroups, it will be
932 	 * possible to detect inconsistencies by checking the
933 	 * generation on mount time
934 	 */
935 	__le64 generation;
936 
937 	/* flag definitions see above */
938 	__le64 flags;
939 
940 	/*
941 	 * only used during scanning to record the progress
942 	 * of the scan. It contains a logical address
943 	 */
944 	__le64 rescan;
945 } __attribute__ ((__packed__));
946 
947 struct btrfs_qgroup_info_item {
948 	__le64 generation;
949 	__le64 rfer;
950 	__le64 rfer_cmpr;
951 	__le64 excl;
952 	__le64 excl_cmpr;
953 } __attribute__ ((__packed__));
954 
955 struct btrfs_qgroup_limit_item {
956 	/*
957 	 * only updated when any of the other values change
958 	 */
959 	__le64 flags;
960 	__le64 max_rfer;
961 	__le64 max_excl;
962 	__le64 rsv_rfer;
963 	__le64 rsv_excl;
964 } __attribute__ ((__packed__));
965 
966 #endif /* _BTRFS_CTREE_H_ */
967