• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Mesa 3-D graphics library
3  *
4  * Copyright (C) 1999-2007  Brian Paul   All Rights Reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included
14  * in all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
17  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  */
24 
25 
26 /*
27  * Antialiased Triangle rasterizers
28  */
29 
30 
31 #include "main/glheader.h"
32 #include "main/context.h"
33 #include "main/macros.h"
34 #include "main/imports.h"
35 #include "main/state.h"
36 #include "s_aatriangle.h"
37 #include "s_context.h"
38 #include "s_span.h"
39 
40 
41 /*
42  * Compute coefficients of a plane using the X,Y coords of the v0, v1, v2
43  * vertices and the given Z values.
44  * A point (x,y,z) lies on plane iff a*x+b*y+c*z+d = 0.
45  */
46 static inline void
compute_plane(const GLfloat v0[],const GLfloat v1[],const GLfloat v2[],GLfloat z0,GLfloat z1,GLfloat z2,GLfloat plane[4])47 compute_plane(const GLfloat v0[], const GLfloat v1[], const GLfloat v2[],
48               GLfloat z0, GLfloat z1, GLfloat z2, GLfloat plane[4])
49 {
50    const GLfloat px = v1[0] - v0[0];
51    const GLfloat py = v1[1] - v0[1];
52    const GLfloat pz = z1 - z0;
53 
54    const GLfloat qx = v2[0] - v0[0];
55    const GLfloat qy = v2[1] - v0[1];
56    const GLfloat qz = z2 - z0;
57 
58    /* Crossproduct "(a,b,c):= dv1 x dv2" is orthogonal to plane. */
59    const GLfloat a = py * qz - pz * qy;
60    const GLfloat b = pz * qx - px * qz;
61    const GLfloat c = px * qy - py * qx;
62    /* Point on the plane = "r*(a,b,c) + w", with fixed "r" depending
63       on the distance of plane from origin and arbitrary "w" parallel
64       to the plane. */
65    /* The scalar product "(r*(a,b,c)+w)*(a,b,c)" is "r*(a^2+b^2+c^2)",
66       which is equal to "-d" below. */
67    const GLfloat d = -(a * v0[0] + b * v0[1] + c * z0);
68 
69    plane[0] = a;
70    plane[1] = b;
71    plane[2] = c;
72    plane[3] = d;
73 }
74 
75 
76 /*
77  * Compute coefficients of a plane with a constant Z value.
78  */
79 static inline void
constant_plane(GLfloat value,GLfloat plane[4])80 constant_plane(GLfloat value, GLfloat plane[4])
81 {
82    plane[0] = 0.0;
83    plane[1] = 0.0;
84    plane[2] = -1.0;
85    plane[3] = value;
86 }
87 
88 #define CONSTANT_PLANE(VALUE, PLANE)	\
89 do {					\
90    PLANE[0] = 0.0F;			\
91    PLANE[1] = 0.0F;			\
92    PLANE[2] = -1.0F;			\
93    PLANE[3] = VALUE;			\
94 } while (0)
95 
96 
97 
98 /*
99  * Solve plane equation for Z at (X,Y).
100  */
101 static inline GLfloat
solve_plane(GLfloat x,GLfloat y,const GLfloat plane[4])102 solve_plane(GLfloat x, GLfloat y, const GLfloat plane[4])
103 {
104    assert(plane[2] != 0.0F);
105    return (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
106 }
107 
108 
109 #define SOLVE_PLANE(X, Y, PLANE) \
110    ((PLANE[3] + PLANE[0] * (X) + PLANE[1] * (Y)) / -PLANE[2])
111 
112 
113 /*
114  * Solve plane and return clamped GLchan value.
115  */
116 static inline GLchan
solve_plane_chan(GLfloat x,GLfloat y,const GLfloat plane[4])117 solve_plane_chan(GLfloat x, GLfloat y, const GLfloat plane[4])
118 {
119    const GLfloat z = (plane[3] + plane[0] * x + plane[1] * y) / -plane[2];
120 #if CHAN_TYPE == GL_FLOAT
121    return CLAMP(z, 0.0F, CHAN_MAXF);
122 #else
123    if (z < 0)
124       return 0;
125    else if (z > CHAN_MAX)
126       return CHAN_MAX;
127    return (GLchan) IROUND_POS(z);
128 #endif
129 }
130 
131 
132 static inline GLfloat
plane_dx(const GLfloat plane[4])133 plane_dx(const GLfloat plane[4])
134 {
135    return -plane[0] / plane[2];
136 }
137 
138 static inline GLfloat
plane_dy(const GLfloat plane[4])139 plane_dy(const GLfloat plane[4])
140 {
141    return -plane[1] / plane[2];
142 }
143 
144 
145 
146 /*
147  * Compute how much (area) of the given pixel is inside the triangle.
148  * Vertices MUST be specified in counter-clockwise order.
149  * Return:  coverage in [0, 1].
150  */
151 static GLfloat
compute_coveragef(const GLfloat v0[3],const GLfloat v1[3],const GLfloat v2[3],GLint winx,GLint winy)152 compute_coveragef(const GLfloat v0[3], const GLfloat v1[3],
153                   const GLfloat v2[3], GLint winx, GLint winy)
154 {
155    /* Given a position [0,3]x[0,3] return the sub-pixel sample position.
156     * Contributed by Ray Tice.
157     *
158     * Jitter sample positions -
159     * - average should be .5 in x & y for each column
160     * - each of the 16 rows and columns should be used once
161     * - the rectangle formed by the first four points
162     *   should contain the other points
163     * - the distrubition should be fairly even in any given direction
164     *
165     * The pattern drawn below isn't optimal, but it's better than a regular
166     * grid.  In the drawing, the center of each subpixel is surrounded by
167     * four dots.  The "x" marks the jittered position relative to the
168     * subpixel center.
169     */
170 #define POS(a, b) (0.5+a*4+b)/16
171    static const GLfloat samples[16][2] = {
172       /* start with the four corners */
173       { POS(0, 2), POS(0, 0) },
174       { POS(3, 3), POS(0, 2) },
175       { POS(0, 0), POS(3, 1) },
176       { POS(3, 1), POS(3, 3) },
177       /* continue with interior samples */
178       { POS(1, 1), POS(0, 1) },
179       { POS(2, 0), POS(0, 3) },
180       { POS(0, 3), POS(1, 3) },
181       { POS(1, 2), POS(1, 0) },
182       { POS(2, 3), POS(1, 2) },
183       { POS(3, 2), POS(1, 1) },
184       { POS(0, 1), POS(2, 2) },
185       { POS(1, 0), POS(2, 1) },
186       { POS(2, 1), POS(2, 3) },
187       { POS(3, 0), POS(2, 0) },
188       { POS(1, 3), POS(3, 0) },
189       { POS(2, 2), POS(3, 2) }
190    };
191 
192    const GLfloat x = (GLfloat) winx;
193    const GLfloat y = (GLfloat) winy;
194    const GLfloat dx0 = v1[0] - v0[0];
195    const GLfloat dy0 = v1[1] - v0[1];
196    const GLfloat dx1 = v2[0] - v1[0];
197    const GLfloat dy1 = v2[1] - v1[1];
198    const GLfloat dx2 = v0[0] - v2[0];
199    const GLfloat dy2 = v0[1] - v2[1];
200    GLint stop = 4, i;
201    GLfloat insideCount = 16.0F;
202 
203    assert(dx0 * dy1 - dx1 * dy0 >= 0.0); /* area >= 0.0 */
204 
205    for (i = 0; i < stop; i++) {
206       const GLfloat sx = x + samples[i][0];
207       const GLfloat sy = y + samples[i][1];
208       /* cross product determines if sample is inside or outside each edge */
209       GLfloat cross = (dx0 * (sy - v0[1]) - dy0 * (sx - v0[0]));
210       /* Check if the sample is exactly on an edge.  If so, let cross be a
211        * positive or negative value depending on the direction of the edge.
212        */
213       if (cross == 0.0F)
214          cross = dx0 + dy0;
215       if (cross < 0.0F) {
216          /* sample point is outside first edge */
217          insideCount -= 1.0F;
218          stop = 16;
219       }
220       else {
221          /* sample point is inside first edge */
222          cross = (dx1 * (sy - v1[1]) - dy1 * (sx - v1[0]));
223          if (cross == 0.0F)
224             cross = dx1 + dy1;
225          if (cross < 0.0F) {
226             /* sample point is outside second edge */
227             insideCount -= 1.0F;
228             stop = 16;
229          }
230          else {
231             /* sample point is inside first and second edges */
232             cross = (dx2 * (sy - v2[1]) -  dy2 * (sx - v2[0]));
233             if (cross == 0.0F)
234                cross = dx2 + dy2;
235             if (cross < 0.0F) {
236                /* sample point is outside third edge */
237                insideCount -= 1.0F;
238                stop = 16;
239             }
240          }
241       }
242    }
243    if (stop == 4)
244       return 1.0F;
245    else
246       return insideCount * (1.0F / 16.0F);
247 }
248 
249 
250 
251 static void
rgba_aa_tri(struct gl_context * ctx,const SWvertex * v0,const SWvertex * v1,const SWvertex * v2)252 rgba_aa_tri(struct gl_context *ctx,
253 	    const SWvertex *v0,
254 	    const SWvertex *v1,
255 	    const SWvertex *v2)
256 {
257 #define DO_Z
258 #include "s_aatritemp.h"
259 }
260 
261 
262 static void
general_aa_tri(struct gl_context * ctx,const SWvertex * v0,const SWvertex * v1,const SWvertex * v2)263 general_aa_tri(struct gl_context *ctx,
264                const SWvertex *v0,
265                const SWvertex *v1,
266                const SWvertex *v2)
267 {
268 #define DO_Z
269 #define DO_ATTRIBS
270 #include "s_aatritemp.h"
271 }
272 
273 
274 
275 /*
276  * Examine GL state and set swrast->Triangle to an
277  * appropriate antialiased triangle rasterizer function.
278  */
279 void
_swrast_set_aa_triangle_function(struct gl_context * ctx)280 _swrast_set_aa_triangle_function(struct gl_context *ctx)
281 {
282    SWcontext *swrast = SWRAST_CONTEXT(ctx);
283 
284    assert(ctx->Polygon.SmoothFlag);
285 
286    if (ctx->Texture._EnabledCoordUnits != 0
287        || _swrast_use_fragment_program(ctx)
288        || swrast->_FogEnabled
289        || _mesa_need_secondary_color(ctx)) {
290       SWRAST_CONTEXT(ctx)->Triangle = general_aa_tri;
291    }
292    else {
293       SWRAST_CONTEXT(ctx)->Triangle = rgba_aa_tri;
294    }
295 
296    assert(SWRAST_CONTEXT(ctx)->Triangle);
297 }
298