1 /* Copyright (c) 2014, Google Inc.
2 *
3 * Permission to use, copy, modify, and/or distribute this software for any
4 * purpose with or without fee is hereby granted, provided that the above
5 * copyright notice and this permission notice appear in all copies.
6 *
7 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
8 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
9 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
10 * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
11 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
12 * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
13 * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
14
15 #include <stdint.h>
16 #include <string.h>
17
18 #include <vector>
19
20 #include <gtest/gtest.h>
21
22 #include <openssl/aead.h>
23 #include <openssl/cipher.h>
24 #include <openssl/err.h>
25
26 #include "../fipsmodule/cipher/internal.h"
27 #include "../internal.h"
28 #include "../test/file_test.h"
29 #include "../test/test_util.h"
30
31
32 struct KnownAEAD {
33 const char name[40];
34 const EVP_AEAD *(*func)(void);
35 const char *test_vectors;
36 // limited_implementation indicates that tests that assume a generic AEAD
37 // interface should not be performed. For example, the key-wrap AEADs only
38 // handle inputs that are a multiple of eight bytes in length and the
39 // SSLv3/TLS AEADs have the concept of “direction”.
40 bool limited_implementation;
41 // truncated_tags is true if the AEAD supports truncating tags to arbitrary
42 // lengths.
43 bool truncated_tags;
44 // ad_len, if non-zero, is the required length of the AD.
45 size_t ad_len;
46 };
47
48 static const struct KnownAEAD kAEADs[] = {
49 {"AES_128_GCM", EVP_aead_aes_128_gcm, "aes_128_gcm_tests.txt", false, true,
50 0},
51 {"AES_128_GCM_NIST", EVP_aead_aes_128_gcm, "nist_cavp/aes_128_gcm.txt",
52 false, true, 0},
53 {"AES_256_GCM", EVP_aead_aes_256_gcm, "aes_256_gcm_tests.txt", false, true,
54 0},
55 {"AES_256_GCM_NIST", EVP_aead_aes_256_gcm, "nist_cavp/aes_256_gcm.txt",
56 false, true, 0},
57 #if !defined(OPENSSL_SMALL)
58 {"AES_128_GCM_SIV", EVP_aead_aes_128_gcm_siv, "aes_128_gcm_siv_tests.txt",
59 false, false, 0},
60 {"AES_256_GCM_SIV", EVP_aead_aes_256_gcm_siv, "aes_256_gcm_siv_tests.txt",
61 false, false, 0},
62 #endif
63 {"ChaCha20Poly1305", EVP_aead_chacha20_poly1305,
64 "chacha20_poly1305_tests.txt", false, true, 0},
65 {"AES_128_CBC_SHA1_TLS", EVP_aead_aes_128_cbc_sha1_tls,
66 "aes_128_cbc_sha1_tls_tests.txt", true, false, 11},
67 {"AES_128_CBC_SHA1_TLSImplicitIV",
68 EVP_aead_aes_128_cbc_sha1_tls_implicit_iv,
69 "aes_128_cbc_sha1_tls_implicit_iv_tests.txt", true, false, 11},
70 {"AES_128_CBC_SHA256_TLS", EVP_aead_aes_128_cbc_sha256_tls,
71 "aes_128_cbc_sha256_tls_tests.txt", true, false, 11},
72 {"AES_256_CBC_SHA1_TLS", EVP_aead_aes_256_cbc_sha1_tls,
73 "aes_256_cbc_sha1_tls_tests.txt", true, false, 11},
74 {"AES_256_CBC_SHA1_TLSImplicitIV",
75 EVP_aead_aes_256_cbc_sha1_tls_implicit_iv,
76 "aes_256_cbc_sha1_tls_implicit_iv_tests.txt", true, false, 11},
77 {"AES_256_CBC_SHA256_TLS", EVP_aead_aes_256_cbc_sha256_tls,
78 "aes_256_cbc_sha256_tls_tests.txt", true, false, 11},
79 {"AES_256_CBC_SHA384_TLS", EVP_aead_aes_256_cbc_sha384_tls,
80 "aes_256_cbc_sha384_tls_tests.txt", true, false, 11},
81 {"DES_EDE3_CBC_SHA1_TLS", EVP_aead_des_ede3_cbc_sha1_tls,
82 "des_ede3_cbc_sha1_tls_tests.txt", true, false, 11},
83 {"DES_EDE3_CBC_SHA1_TLSImplicitIV",
84 EVP_aead_des_ede3_cbc_sha1_tls_implicit_iv,
85 "des_ede3_cbc_sha1_tls_implicit_iv_tests.txt", true, false, 11},
86 {"AES_128_CBC_SHA1_SSL3", EVP_aead_aes_128_cbc_sha1_ssl3,
87 "aes_128_cbc_sha1_ssl3_tests.txt", true, false, 9},
88 {"AES_256_CBC_SHA1_SSL3", EVP_aead_aes_256_cbc_sha1_ssl3,
89 "aes_256_cbc_sha1_ssl3_tests.txt", true, false, 9},
90 {"DES_EDE3_CBC_SHA1_SSL3", EVP_aead_des_ede3_cbc_sha1_ssl3,
91 "des_ede3_cbc_sha1_ssl3_tests.txt", true, false, 9},
92 {"AES_128_CTR_HMAC_SHA256", EVP_aead_aes_128_ctr_hmac_sha256,
93 "aes_128_ctr_hmac_sha256.txt", false, true, 0},
94 {"AES_256_CTR_HMAC_SHA256", EVP_aead_aes_256_ctr_hmac_sha256,
95 "aes_256_ctr_hmac_sha256.txt", false, true, 0},
96 };
97
98 class PerAEADTest : public testing::TestWithParam<KnownAEAD> {
99 public:
aead()100 const EVP_AEAD *aead() { return GetParam().func(); }
101 };
102
103 INSTANTIATE_TEST_CASE_P(, PerAEADTest, testing::ValuesIn(kAEADs),
104 [](const testing::TestParamInfo<KnownAEAD> ¶ms)
__anon9140f0840102(const testing::TestParamInfo<KnownAEAD> ¶ms) 105 -> std::string { return params.param.name; });
106
107 // Tests an AEAD against a series of test vectors from a file, using the
108 // FileTest format. As an example, here's a valid test case:
109 //
110 // KEY: 5a19f3173586b4c42f8412f4d5a786531b3231753e9e00998aec12fda8df10e4
111 // NONCE: 978105dfce667bf4
112 // IN: 6a4583908d
113 // AD: b654574932
114 // CT: 5294265a60
115 // TAG: 1d45758621762e061368e68868e2f929
TEST_P(PerAEADTest,TestVector)116 TEST_P(PerAEADTest, TestVector) {
117 std::string test_vectors = "crypto/cipher_extra/test/";
118 test_vectors += GetParam().test_vectors;
119 FileTestGTest(test_vectors.c_str(), [&](FileTest *t) {
120 std::vector<uint8_t> key, nonce, in, ad, ct, tag;
121 ASSERT_TRUE(t->GetBytes(&key, "KEY"));
122 ASSERT_TRUE(t->GetBytes(&nonce, "NONCE"));
123 ASSERT_TRUE(t->GetBytes(&in, "IN"));
124 ASSERT_TRUE(t->GetBytes(&ad, "AD"));
125 ASSERT_TRUE(t->GetBytes(&ct, "CT"));
126 ASSERT_TRUE(t->GetBytes(&tag, "TAG"));
127 size_t tag_len = tag.size();
128 if (t->HasAttribute("TAG_LEN")) {
129 // Legacy AEADs are MAC-then-encrypt and may include padding in the TAG
130 // field. TAG_LEN contains the actual size of the digest in that case.
131 std::string tag_len_str;
132 ASSERT_TRUE(t->GetAttribute(&tag_len_str, "TAG_LEN"));
133 tag_len = strtoul(tag_len_str.c_str(), nullptr, 10);
134 ASSERT_TRUE(tag_len);
135 }
136
137 bssl::ScopedEVP_AEAD_CTX ctx;
138 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
139 ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_seal));
140
141 std::vector<uint8_t> out(in.size() + EVP_AEAD_max_overhead(aead()));
142 if (!t->HasAttribute("NO_SEAL")) {
143 size_t out_len;
144 ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), out.data(), &out_len, out.size(),
145 nonce.data(), nonce.size(), in.data(),
146 in.size(), ad.data(), ad.size()));
147 out.resize(out_len);
148
149 ASSERT_EQ(out.size(), ct.size() + tag.size());
150 EXPECT_EQ(Bytes(ct), Bytes(out.data(), ct.size()));
151 EXPECT_EQ(Bytes(tag), Bytes(out.data() + ct.size(), tag.size()));
152 } else {
153 out.resize(ct.size() + tag.size());
154 OPENSSL_memcpy(out.data(), ct.data(), ct.size());
155 OPENSSL_memcpy(out.data() + ct.size(), tag.data(), tag.size());
156 }
157
158 // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be
159 // reset after each operation.
160 ctx.Reset();
161 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
162 ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open));
163
164 std::vector<uint8_t> out2(out.size());
165 size_t out2_len;
166 int ret = EVP_AEAD_CTX_open(ctx.get(), out2.data(), &out2_len, out2.size(),
167 nonce.data(), nonce.size(), out.data(),
168 out.size(), ad.data(), ad.size());
169 if (t->HasAttribute("FAILS")) {
170 ASSERT_FALSE(ret) << "Decrypted bad data.";
171 ERR_clear_error();
172 return;
173 }
174
175 ASSERT_TRUE(ret) << "Failed to decrypt.";
176 out2.resize(out2_len);
177 EXPECT_EQ(Bytes(in), Bytes(out2));
178
179 // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be
180 // reset after each operation.
181 ctx.Reset();
182 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
183 ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open));
184
185 // Garbage at the end isn't ignored.
186 out.push_back(0);
187 out2.resize(out.size());
188 EXPECT_FALSE(EVP_AEAD_CTX_open(
189 ctx.get(), out2.data(), &out2_len, out2.size(), nonce.data(),
190 nonce.size(), out.data(), out.size(), ad.data(), ad.size()))
191 << "Decrypted bad data with trailing garbage.";
192 ERR_clear_error();
193
194 // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be
195 // reset after each operation.
196 ctx.Reset();
197 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
198 ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open));
199
200 // Verify integrity is checked.
201 out[0] ^= 0x80;
202 out.resize(out.size() - 1);
203 out2.resize(out.size());
204 EXPECT_FALSE(EVP_AEAD_CTX_open(
205 ctx.get(), out2.data(), &out2_len, out2.size(), nonce.data(),
206 nonce.size(), out.data(), out.size(), ad.data(), ad.size()))
207 << "Decrypted bad data with corrupted byte.";
208 ERR_clear_error();
209 });
210 }
211
TEST_P(PerAEADTest,TestExtraInput)212 TEST_P(PerAEADTest, TestExtraInput) {
213 const KnownAEAD &aead_config = GetParam();
214 if (!aead()->seal_scatter_supports_extra_in) {
215 return;
216 }
217
218 const std::string test_vectors =
219 "crypto/cipher_extra/test/" + std::string(aead_config.test_vectors);
220 FileTestGTest(test_vectors.c_str(), [&](FileTest *t) {
221 if (t->HasAttribute("NO_SEAL") ||
222 t->HasAttribute("FAILS")) {
223 t->SkipCurrent();
224 return;
225 }
226
227 std::vector<uint8_t> key, nonce, in, ad, ct, tag;
228 ASSERT_TRUE(t->GetBytes(&key, "KEY"));
229 ASSERT_TRUE(t->GetBytes(&nonce, "NONCE"));
230 ASSERT_TRUE(t->GetBytes(&in, "IN"));
231 ASSERT_TRUE(t->GetBytes(&ad, "AD"));
232 ASSERT_TRUE(t->GetBytes(&ct, "CT"));
233 ASSERT_TRUE(t->GetBytes(&tag, "TAG"));
234
235 bssl::ScopedEVP_AEAD_CTX ctx;
236 ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), aead(), key.data(), key.size(),
237 tag.size(), nullptr));
238 std::vector<uint8_t> out_tag(EVP_AEAD_max_overhead(aead()) + in.size());
239 std::vector<uint8_t> out(in.size());
240
241 for (size_t extra_in_size = 0; extra_in_size < in.size(); extra_in_size++) {
242 size_t tag_bytes_written;
243 SCOPED_TRACE(extra_in_size);
244 ASSERT_TRUE(EVP_AEAD_CTX_seal_scatter(
245 ctx.get(), out.data(), out_tag.data(), &tag_bytes_written,
246 out_tag.size(), nonce.data(), nonce.size(), in.data(),
247 in.size() - extra_in_size, in.data() + in.size() - extra_in_size,
248 extra_in_size, ad.data(), ad.size()));
249
250 ASSERT_EQ(tag_bytes_written, extra_in_size + tag.size());
251
252 memcpy(out.data() + in.size() - extra_in_size, out_tag.data(),
253 extra_in_size);
254
255 EXPECT_EQ(Bytes(ct), Bytes(out.data(), in.size()));
256 EXPECT_EQ(Bytes(tag), Bytes(out_tag.data() + extra_in_size,
257 tag_bytes_written - extra_in_size));
258 }
259 });
260 }
261
TEST_P(PerAEADTest,TestVectorScatterGather)262 TEST_P(PerAEADTest, TestVectorScatterGather) {
263 std::string test_vectors = "crypto/cipher_extra/test/";
264 const KnownAEAD &aead_config = GetParam();
265 test_vectors += aead_config.test_vectors;
266 FileTestGTest(test_vectors.c_str(), [&](FileTest *t) {
267 std::vector<uint8_t> key, nonce, in, ad, ct, tag;
268 ASSERT_TRUE(t->GetBytes(&key, "KEY"));
269 ASSERT_TRUE(t->GetBytes(&nonce, "NONCE"));
270 ASSERT_TRUE(t->GetBytes(&in, "IN"));
271 ASSERT_TRUE(t->GetBytes(&ad, "AD"));
272 ASSERT_TRUE(t->GetBytes(&ct, "CT"));
273 ASSERT_TRUE(t->GetBytes(&tag, "TAG"));
274 size_t tag_len = tag.size();
275 if (t->HasAttribute("TAG_LEN")) {
276 // Legacy AEADs are MAC-then-encrypt and may include padding in the TAG
277 // field. TAG_LEN contains the actual size of the digest in that case.
278 std::string tag_len_str;
279 ASSERT_TRUE(t->GetAttribute(&tag_len_str, "TAG_LEN"));
280 tag_len = strtoul(tag_len_str.c_str(), nullptr, 10);
281 ASSERT_TRUE(tag_len);
282 }
283
284 bssl::ScopedEVP_AEAD_CTX ctx;
285 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
286 ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_seal));
287
288 std::vector<uint8_t> out(in.size());
289 std::vector<uint8_t> out_tag(EVP_AEAD_max_overhead(aead()));
290 if (!t->HasAttribute("NO_SEAL")) {
291 size_t out_tag_len;
292 ASSERT_TRUE(EVP_AEAD_CTX_seal_scatter(
293 ctx.get(), out.data(), out_tag.data(), &out_tag_len, out_tag.size(),
294 nonce.data(), nonce.size(), in.data(), in.size(), nullptr, 0,
295 ad.data(), ad.size()));
296 out_tag.resize(out_tag_len);
297
298 ASSERT_EQ(out.size(), ct.size());
299 ASSERT_EQ(out_tag.size(), tag.size());
300 EXPECT_EQ(Bytes(ct), Bytes(out.data(), ct.size()));
301 EXPECT_EQ(Bytes(tag), Bytes(out_tag.data(), tag.size()));
302 } else {
303 out.resize(ct.size());
304 out_tag.resize(tag.size());
305 OPENSSL_memcpy(out.data(), ct.data(), ct.size());
306 OPENSSL_memcpy(out_tag.data(), tag.data(), tag.size());
307 }
308
309 // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be
310 // reset after each operation.
311 ctx.Reset();
312 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
313 ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open));
314
315 std::vector<uint8_t> out2(out.size());
316 int ret = EVP_AEAD_CTX_open_gather(
317 ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(),
318 out.size(), out_tag.data(), out_tag.size(), ad.data(), ad.size());
319
320 // Skip decryption for AEADs that don't implement open_gather().
321 if (!ret) {
322 int err = ERR_peek_error();
323 if (ERR_GET_LIB(err) == ERR_LIB_CIPHER &&
324 ERR_GET_REASON(err) == CIPHER_R_CTRL_NOT_IMPLEMENTED) {
325 t->SkipCurrent();
326 return;
327 }
328 }
329
330 if (t->HasAttribute("FAILS")) {
331 ASSERT_FALSE(ret) << "Decrypted bad data";
332 ERR_clear_error();
333 return;
334 }
335
336 ASSERT_TRUE(ret) << "Failed to decrypt: "
337 << ERR_reason_error_string(ERR_get_error());
338 EXPECT_EQ(Bytes(in), Bytes(out2));
339
340 // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be
341 // reset after each operation.
342 ctx.Reset();
343 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
344 ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open));
345
346 // Garbage at the end isn't ignored.
347 out_tag.push_back(0);
348 out2.resize(out.size());
349 EXPECT_FALSE(EVP_AEAD_CTX_open_gather(
350 ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(),
351 out.size(), out_tag.data(), out_tag.size(), ad.data(), ad.size()))
352 << "Decrypted bad data with trailing garbage.";
353 ERR_clear_error();
354
355 // The "stateful" AEADs for implementing pre-AEAD cipher suites need to be
356 // reset after each operation.
357 ctx.Reset();
358 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
359 ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open));
360
361 // Verify integrity is checked.
362 out_tag[0] ^= 0x80;
363 out_tag.resize(out_tag.size() - 1);
364 out2.resize(out.size());
365 EXPECT_FALSE(EVP_AEAD_CTX_open_gather(
366 ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(),
367 out.size(), out_tag.data(), out_tag.size(), ad.data(), ad.size()))
368 << "Decrypted bad data with corrupted byte.";
369 ERR_clear_error();
370
371 ctx.Reset();
372 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
373 ctx.get(), aead(), key.data(), key.size(), tag_len, evp_aead_open));
374
375 // Check edge case for tag length.
376 EXPECT_FALSE(EVP_AEAD_CTX_open_gather(
377 ctx.get(), out2.data(), nonce.data(), nonce.size(), out.data(),
378 out.size(), out_tag.data(), 0, ad.data(), ad.size()))
379 << "Decrypted bad data with corrupted byte.";
380 ERR_clear_error();
381 });
382 }
383
TEST_P(PerAEADTest,CleanupAfterInitFailure)384 TEST_P(PerAEADTest, CleanupAfterInitFailure) {
385 uint8_t key[EVP_AEAD_MAX_KEY_LENGTH];
386 OPENSSL_memset(key, 0, sizeof(key));
387 const size_t key_len = EVP_AEAD_key_length(aead());
388 ASSERT_GE(sizeof(key), key_len);
389
390 EVP_AEAD_CTX ctx;
391 ASSERT_FALSE(EVP_AEAD_CTX_init(
392 &ctx, aead(), key, key_len,
393 9999 /* a silly tag length to trigger an error */, NULL /* ENGINE */));
394 ERR_clear_error();
395
396 /* Running a second, failed _init should not cause a memory leak. */
397 ASSERT_FALSE(EVP_AEAD_CTX_init(
398 &ctx, aead(), key, key_len,
399 9999 /* a silly tag length to trigger an error */, NULL /* ENGINE */));
400 ERR_clear_error();
401
402 /* Calling _cleanup on an |EVP_AEAD_CTX| after a failed _init should be a
403 * no-op. */
404 EVP_AEAD_CTX_cleanup(&ctx);
405 }
406
TEST_P(PerAEADTest,TruncatedTags)407 TEST_P(PerAEADTest, TruncatedTags) {
408 if (!GetParam().truncated_tags) {
409 return;
410 }
411
412 uint8_t key[EVP_AEAD_MAX_KEY_LENGTH];
413 OPENSSL_memset(key, 0, sizeof(key));
414 const size_t key_len = EVP_AEAD_key_length(aead());
415 ASSERT_GE(sizeof(key), key_len);
416
417 uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
418 OPENSSL_memset(nonce, 0, sizeof(nonce));
419 const size_t nonce_len = EVP_AEAD_nonce_length(aead());
420 ASSERT_GE(sizeof(nonce), nonce_len);
421
422 bssl::ScopedEVP_AEAD_CTX ctx;
423 ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), aead(), key, key_len,
424 1 /* one byte tag */, NULL /* ENGINE */));
425
426 const uint8_t plaintext[1] = {'A'};
427
428 uint8_t ciphertext[128];
429 size_t ciphertext_len;
430 constexpr uint8_t kSentinel = 42;
431 OPENSSL_memset(ciphertext, kSentinel, sizeof(ciphertext));
432
433 ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), ciphertext, &ciphertext_len,
434 sizeof(ciphertext), nonce, nonce_len, plaintext,
435 sizeof(plaintext), nullptr /* ad */, 0));
436
437 for (size_t i = ciphertext_len; i < sizeof(ciphertext); i++) {
438 // Sealing must not write past where it said it did.
439 EXPECT_EQ(kSentinel, ciphertext[i])
440 << "Sealing wrote off the end of the buffer.";
441 }
442
443 const size_t overhead_used = ciphertext_len - sizeof(plaintext);
444 const size_t expected_overhead =
445 1 + EVP_AEAD_max_overhead(aead()) - EVP_AEAD_max_tag_len(aead());
446 EXPECT_EQ(overhead_used, expected_overhead)
447 << "AEAD is probably ignoring request to truncate tags.";
448
449 uint8_t plaintext2[sizeof(plaintext) + 16];
450 OPENSSL_memset(plaintext2, kSentinel, sizeof(plaintext2));
451
452 size_t plaintext2_len;
453 ASSERT_TRUE(EVP_AEAD_CTX_open(
454 ctx.get(), plaintext2, &plaintext2_len, sizeof(plaintext2), nonce,
455 nonce_len, ciphertext, ciphertext_len, nullptr /* ad */, 0))
456 << "Opening with truncated tag didn't work.";
457
458 for (size_t i = plaintext2_len; i < sizeof(plaintext2); i++) {
459 // Likewise, opening should also stay within bounds.
460 EXPECT_EQ(kSentinel, plaintext2[i])
461 << "Opening wrote off the end of the buffer.";
462 }
463
464 EXPECT_EQ(Bytes(plaintext), Bytes(plaintext2, plaintext2_len));
465 }
466
TEST_P(PerAEADTest,AliasedBuffers)467 TEST_P(PerAEADTest, AliasedBuffers) {
468 if (GetParam().limited_implementation) {
469 return;
470 }
471
472 const size_t key_len = EVP_AEAD_key_length(aead());
473 const size_t nonce_len = EVP_AEAD_nonce_length(aead());
474 const size_t max_overhead = EVP_AEAD_max_overhead(aead());
475
476 std::vector<uint8_t> key(key_len, 'a');
477 bssl::ScopedEVP_AEAD_CTX ctx;
478 ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), aead(), key.data(), key_len,
479 EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr));
480
481 static const uint8_t kPlaintext[260] =
482 "testing123456testing123456testing123456testing123456testing123456testing"
483 "123456testing123456testing123456testing123456testing123456testing123456t"
484 "esting123456testing123456testing123456testing123456testing123456testing1"
485 "23456testing123456testing123456testing12345";
486 const std::vector<size_t> offsets = {
487 0, 1, 2, 8, 15, 16, 17, 31, 32, 33, 63,
488 64, 65, 95, 96, 97, 127, 128, 129, 255, 256, 257,
489 };
490
491 std::vector<uint8_t> nonce(nonce_len, 'b');
492 std::vector<uint8_t> valid_encryption(sizeof(kPlaintext) + max_overhead);
493 size_t valid_encryption_len;
494 ASSERT_TRUE(EVP_AEAD_CTX_seal(
495 ctx.get(), valid_encryption.data(), &valid_encryption_len,
496 sizeof(kPlaintext) + max_overhead, nonce.data(), nonce_len, kPlaintext,
497 sizeof(kPlaintext), nullptr, 0))
498 << "EVP_AEAD_CTX_seal failed with disjoint buffers.";
499
500 // Test with out != in which we expect to fail.
501 std::vector<uint8_t> buffer(2 + valid_encryption_len);
502 uint8_t *in = buffer.data() + 1;
503 uint8_t *out1 = buffer.data();
504 uint8_t *out2 = buffer.data() + 2;
505
506 OPENSSL_memcpy(in, kPlaintext, sizeof(kPlaintext));
507 size_t out_len;
508 EXPECT_FALSE(EVP_AEAD_CTX_seal(
509 ctx.get(), out1 /* in - 1 */, &out_len, sizeof(kPlaintext) + max_overhead,
510 nonce.data(), nonce_len, in, sizeof(kPlaintext), nullptr, 0));
511 EXPECT_FALSE(EVP_AEAD_CTX_seal(
512 ctx.get(), out2 /* in + 1 */, &out_len, sizeof(kPlaintext) + max_overhead,
513 nonce.data(), nonce_len, in, sizeof(kPlaintext), nullptr, 0));
514 ERR_clear_error();
515
516 OPENSSL_memcpy(in, valid_encryption.data(), valid_encryption_len);
517 EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), out1 /* in - 1 */, &out_len,
518 valid_encryption_len, nonce.data(), nonce_len,
519 in, valid_encryption_len, nullptr, 0));
520 EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), out2 /* in + 1 */, &out_len,
521 valid_encryption_len, nonce.data(), nonce_len,
522 in, valid_encryption_len, nullptr, 0));
523 ERR_clear_error();
524
525 // Test with out == in, which we expect to work.
526 OPENSSL_memcpy(in, kPlaintext, sizeof(kPlaintext));
527
528 ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), in, &out_len,
529 sizeof(kPlaintext) + max_overhead, nonce.data(),
530 nonce_len, in, sizeof(kPlaintext), nullptr, 0));
531 EXPECT_EQ(Bytes(valid_encryption.data(), valid_encryption_len),
532 Bytes(in, out_len));
533
534 OPENSSL_memcpy(in, valid_encryption.data(), valid_encryption_len);
535 ASSERT_TRUE(EVP_AEAD_CTX_open(ctx.get(), in, &out_len, valid_encryption_len,
536 nonce.data(), nonce_len, in,
537 valid_encryption_len, nullptr, 0));
538 EXPECT_EQ(Bytes(kPlaintext), Bytes(in, out_len));
539 }
540
TEST_P(PerAEADTest,UnalignedInput)541 TEST_P(PerAEADTest, UnalignedInput) {
542 alignas(64) uint8_t key[EVP_AEAD_MAX_KEY_LENGTH + 1];
543 alignas(64) uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH + 1];
544 alignas(64) uint8_t plaintext[32 + 1];
545 alignas(64) uint8_t ad[32 + 1];
546 OPENSSL_memset(key, 'K', sizeof(key));
547 OPENSSL_memset(nonce, 'N', sizeof(nonce));
548 OPENSSL_memset(plaintext, 'P', sizeof(plaintext));
549 OPENSSL_memset(ad, 'A', sizeof(ad));
550 const size_t key_len = EVP_AEAD_key_length(aead());
551 ASSERT_GE(sizeof(key) - 1, key_len);
552 const size_t nonce_len = EVP_AEAD_nonce_length(aead());
553 ASSERT_GE(sizeof(nonce) - 1, nonce_len);
554 const size_t ad_len =
555 GetParam().ad_len != 0 ? GetParam().ad_len : sizeof(ad) - 1;
556 ASSERT_GE(sizeof(ad) - 1, ad_len);
557
558 // Encrypt some input.
559 bssl::ScopedEVP_AEAD_CTX ctx;
560 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
561 ctx.get(), aead(), key + 1, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH,
562 evp_aead_seal));
563 alignas(64) uint8_t ciphertext[sizeof(plaintext) + EVP_AEAD_MAX_OVERHEAD];
564 size_t ciphertext_len;
565 ASSERT_TRUE(EVP_AEAD_CTX_seal(ctx.get(), ciphertext + 1, &ciphertext_len,
566 sizeof(ciphertext) - 1, nonce + 1, nonce_len,
567 plaintext + 1, sizeof(plaintext) - 1, ad + 1,
568 ad_len));
569
570 // It must successfully decrypt.
571 alignas(64) uint8_t out[sizeof(ciphertext)];
572 ctx.Reset();
573 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(
574 ctx.get(), aead(), key + 1, key_len, EVP_AEAD_DEFAULT_TAG_LENGTH,
575 evp_aead_open));
576 size_t out_len;
577 ASSERT_TRUE(EVP_AEAD_CTX_open(ctx.get(), out + 1, &out_len, sizeof(out) - 1,
578 nonce + 1, nonce_len, ciphertext + 1,
579 ciphertext_len, ad + 1, ad_len));
580 EXPECT_EQ(Bytes(plaintext + 1, sizeof(plaintext) - 1),
581 Bytes(out + 1, out_len));
582 }
583
TEST_P(PerAEADTest,Overflow)584 TEST_P(PerAEADTest, Overflow) {
585 alignas(64) uint8_t key[EVP_AEAD_MAX_KEY_LENGTH];
586 OPENSSL_memset(key, 'K', sizeof(key));
587
588 bssl::ScopedEVP_AEAD_CTX ctx;
589 const size_t max_tag_len = EVP_AEAD_max_tag_len(aead());
590 ASSERT_TRUE(EVP_AEAD_CTX_init_with_direction(ctx.get(), aead(), key,
591 EVP_AEAD_key_length(aead()),
592 max_tag_len, evp_aead_seal));
593
594 uint8_t plaintext[1] = {0};
595 uint8_t ciphertext[1024] = {0};
596 size_t ciphertext_len;
597 // The AEAD must not overflow when calculating the ciphertext length.
598 ASSERT_FALSE(EVP_AEAD_CTX_seal(
599 ctx.get(), ciphertext, &ciphertext_len, sizeof(ciphertext), nullptr, 0,
600 plaintext, std::numeric_limits<size_t>::max() - max_tag_len + 1, nullptr,
601 0));
602 ERR_clear_error();
603
604 // (Can't test the scatter interface because it'll attempt to zero the output
605 // buffer on error and the primary output buffer is implicitly the same size
606 // as the input.)
607 }
608
609 // Test that EVP_aead_aes_128_gcm and EVP_aead_aes_256_gcm reject empty nonces.
610 // AES-GCM is not defined for those.
TEST(AEADTest,AESGCMEmptyNonce)611 TEST(AEADTest, AESGCMEmptyNonce) {
612 static const uint8_t kZeros[32] = {0};
613
614 // Test AES-128-GCM.
615 uint8_t buf[16];
616 size_t len;
617 bssl::ScopedEVP_AEAD_CTX ctx;
618 ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), EVP_aead_aes_128_gcm(), kZeros, 16,
619 EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr));
620
621 EXPECT_FALSE(EVP_AEAD_CTX_seal(ctx.get(), buf, &len, sizeof(buf),
622 nullptr /* nonce */, 0, nullptr /* in */, 0,
623 nullptr /* ad */, 0));
624 uint32_t err = ERR_get_error();
625 EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err));
626 EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err));
627
628 EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), buf, &len, sizeof(buf),
629 nullptr /* nonce */, 0, kZeros /* in */,
630 sizeof(kZeros), nullptr /* ad */, 0));
631 err = ERR_get_error();
632 EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err));
633 EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err));
634
635 // Test AES-256-GCM.
636 ctx.Reset();
637 ASSERT_TRUE(EVP_AEAD_CTX_init(ctx.get(), EVP_aead_aes_256_gcm(), kZeros, 32,
638 EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr));
639
640 EXPECT_FALSE(EVP_AEAD_CTX_seal(ctx.get(), buf, &len, sizeof(buf),
641 nullptr /* nonce */, 0, nullptr /* in */, 0,
642 nullptr /* ad */, 0));
643 err = ERR_get_error();
644 EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err));
645 EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err));
646
647 EXPECT_FALSE(EVP_AEAD_CTX_open(ctx.get(), buf, &len, sizeof(buf),
648 nullptr /* nonce */, 0, kZeros /* in */,
649 sizeof(kZeros), nullptr /* ad */, 0));
650 err = ERR_get_error();
651 EXPECT_EQ(ERR_LIB_CIPHER, ERR_GET_LIB(err));
652 EXPECT_EQ(CIPHER_R_INVALID_NONCE_SIZE, ERR_GET_REASON(err));
653 }
654