1 //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of AddressSanitizer, an address sanity checker.
11 // Details of the algorithm:
12 // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/ADT/StringExtras.h"
24 #include "llvm/ADT/Triple.h"
25 #include "llvm/Analysis/MemoryBuiltins.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/DIBuilder.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/InstVisitor.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/MC/MCSectionMachO.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/DataTypes.h"
44 #include "llvm/Support/Debug.h"
45 #include "llvm/Support/Endian.h"
46 #include "llvm/Support/SwapByteOrder.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include "llvm/Transforms/Instrumentation.h"
49 #include "llvm/Transforms/Scalar.h"
50 #include "llvm/Transforms/Utils/ASanStackFrameLayout.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Cloning.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include "llvm/Transforms/Utils/ModuleUtils.h"
55 #include "llvm/Transforms/Utils/PromoteMemToReg.h"
56 #include <algorithm>
57 #include <string>
58 #include <system_error>
59
60 using namespace llvm;
61
62 #define DEBUG_TYPE "asan"
63
64 static const uint64_t kDefaultShadowScale = 3;
65 static const uint64_t kDefaultShadowOffset32 = 1ULL << 29;
66 static const uint64_t kDefaultShadowOffset64 = 1ULL << 44;
67 static const uint64_t kIOSShadowOffset32 = 1ULL << 30;
68 static const uint64_t kIOSShadowOffset64 = 0x120200000;
69 static const uint64_t kIOSSimShadowOffset32 = 1ULL << 30;
70 static const uint64_t kIOSSimShadowOffset64 = kDefaultShadowOffset64;
71 static const uint64_t kSmallX86_64ShadowOffset = 0x7FFF8000; // < 2G.
72 static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000;
73 static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41;
74 static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52;
75 static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000;
76 static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37;
77 static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36;
78 static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30;
79 static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46;
80 static const uint64_t kWindowsShadowOffset32 = 3ULL << 28;
81 // TODO(wwchrome): Experimental for asan Win64, may change.
82 static const uint64_t kWindowsShadowOffset64 = 0x1ULL << 45; // 32TB.
83
84 static const size_t kMinStackMallocSize = 1 << 6; // 64B
85 static const size_t kMaxStackMallocSize = 1 << 16; // 64K
86 static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3;
87 static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E;
88
89 static const char *const kAsanModuleCtorName = "asan.module_ctor";
90 static const char *const kAsanModuleDtorName = "asan.module_dtor";
91 static const uint64_t kAsanCtorAndDtorPriority = 1;
92 static const char *const kAsanReportErrorTemplate = "__asan_report_";
93 static const char *const kAsanRegisterGlobalsName = "__asan_register_globals";
94 static const char *const kAsanUnregisterGlobalsName =
95 "__asan_unregister_globals";
96 static const char *const kAsanRegisterImageGlobalsName =
97 "__asan_register_image_globals";
98 static const char *const kAsanUnregisterImageGlobalsName =
99 "__asan_unregister_image_globals";
100 static const char *const kAsanPoisonGlobalsName = "__asan_before_dynamic_init";
101 static const char *const kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init";
102 static const char *const kAsanInitName = "__asan_init";
103 static const char *const kAsanVersionCheckName =
104 "__asan_version_mismatch_check_v8";
105 static const char *const kAsanPtrCmp = "__sanitizer_ptr_cmp";
106 static const char *const kAsanPtrSub = "__sanitizer_ptr_sub";
107 static const char *const kAsanHandleNoReturnName = "__asan_handle_no_return";
108 static const int kMaxAsanStackMallocSizeClass = 10;
109 static const char *const kAsanStackMallocNameTemplate = "__asan_stack_malloc_";
110 static const char *const kAsanStackFreeNameTemplate = "__asan_stack_free_";
111 static const char *const kAsanGenPrefix = "__asan_gen_";
112 static const char *const kODRGenPrefix = "__odr_asan_gen_";
113 static const char *const kSanCovGenPrefix = "__sancov_gen_";
114 static const char *const kAsanPoisonStackMemoryName =
115 "__asan_poison_stack_memory";
116 static const char *const kAsanUnpoisonStackMemoryName =
117 "__asan_unpoison_stack_memory";
118 static const char *const kAsanGlobalsRegisteredFlagName =
119 "__asan_globals_registered";
120
121 static const char *const kAsanOptionDetectUseAfterReturn =
122 "__asan_option_detect_stack_use_after_return";
123
124 static const char *const kAsanAllocaPoison = "__asan_alloca_poison";
125 static const char *const kAsanAllocasUnpoison = "__asan_allocas_unpoison";
126
127 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
128 static const size_t kNumberOfAccessSizes = 5;
129
130 static const unsigned kAllocaRzSize = 32;
131
132 // Command-line flags.
133 static cl::opt<bool> ClEnableKasan(
134 "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"),
135 cl::Hidden, cl::init(false));
136 static cl::opt<bool> ClRecover(
137 "asan-recover",
138 cl::desc("Enable recovery mode (continue-after-error)."),
139 cl::Hidden, cl::init(false));
140
141 // This flag may need to be replaced with -f[no-]asan-reads.
142 static cl::opt<bool> ClInstrumentReads("asan-instrument-reads",
143 cl::desc("instrument read instructions"),
144 cl::Hidden, cl::init(true));
145 static cl::opt<bool> ClInstrumentWrites(
146 "asan-instrument-writes", cl::desc("instrument write instructions"),
147 cl::Hidden, cl::init(true));
148 static cl::opt<bool> ClInstrumentAtomics(
149 "asan-instrument-atomics",
150 cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden,
151 cl::init(true));
152 static cl::opt<bool> ClAlwaysSlowPath(
153 "asan-always-slow-path",
154 cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden,
155 cl::init(false));
156 // This flag limits the number of instructions to be instrumented
157 // in any given BB. Normally, this should be set to unlimited (INT_MAX),
158 // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary
159 // set it to 10000.
160 static cl::opt<int> ClMaxInsnsToInstrumentPerBB(
161 "asan-max-ins-per-bb", cl::init(10000),
162 cl::desc("maximal number of instructions to instrument in any given BB"),
163 cl::Hidden);
164 // This flag may need to be replaced with -f[no]asan-stack.
165 static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"),
166 cl::Hidden, cl::init(true));
167 static cl::opt<bool> ClUseAfterReturn("asan-use-after-return",
168 cl::desc("Check stack-use-after-return"),
169 cl::Hidden, cl::init(true));
170 static cl::opt<bool> ClUseAfterScope("asan-use-after-scope",
171 cl::desc("Check stack-use-after-scope"),
172 cl::Hidden, cl::init(false));
173 // This flag may need to be replaced with -f[no]asan-globals.
174 static cl::opt<bool> ClGlobals("asan-globals",
175 cl::desc("Handle global objects"), cl::Hidden,
176 cl::init(true));
177 static cl::opt<bool> ClInitializers("asan-initialization-order",
178 cl::desc("Handle C++ initializer order"),
179 cl::Hidden, cl::init(true));
180 static cl::opt<bool> ClInvalidPointerPairs(
181 "asan-detect-invalid-pointer-pair",
182 cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden,
183 cl::init(false));
184 static cl::opt<unsigned> ClRealignStack(
185 "asan-realign-stack",
186 cl::desc("Realign stack to the value of this flag (power of two)"),
187 cl::Hidden, cl::init(32));
188 static cl::opt<int> ClInstrumentationWithCallsThreshold(
189 "asan-instrumentation-with-call-threshold",
190 cl::desc(
191 "If the function being instrumented contains more than "
192 "this number of memory accesses, use callbacks instead of "
193 "inline checks (-1 means never use callbacks)."),
194 cl::Hidden, cl::init(7000));
195 static cl::opt<std::string> ClMemoryAccessCallbackPrefix(
196 "asan-memory-access-callback-prefix",
197 cl::desc("Prefix for memory access callbacks"), cl::Hidden,
198 cl::init("__asan_"));
199 static cl::opt<bool> ClInstrumentAllocas("asan-instrument-allocas",
200 cl::desc("instrument dynamic allocas"),
201 cl::Hidden, cl::init(true));
202 static cl::opt<bool> ClSkipPromotableAllocas(
203 "asan-skip-promotable-allocas",
204 cl::desc("Do not instrument promotable allocas"), cl::Hidden,
205 cl::init(true));
206
207 // These flags allow to change the shadow mapping.
208 // The shadow mapping looks like
209 // Shadow = (Mem >> scale) + offset
210 static cl::opt<int> ClMappingScale("asan-mapping-scale",
211 cl::desc("scale of asan shadow mapping"),
212 cl::Hidden, cl::init(0));
213 static cl::opt<unsigned long long> ClMappingOffset(
214 "asan-mapping-offset",
215 cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), cl::Hidden,
216 cl::init(0));
217
218 // Optimization flags. Not user visible, used mostly for testing
219 // and benchmarking the tool.
220 static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"),
221 cl::Hidden, cl::init(true));
222 static cl::opt<bool> ClOptSameTemp(
223 "asan-opt-same-temp", cl::desc("Instrument the same temp just once"),
224 cl::Hidden, cl::init(true));
225 static cl::opt<bool> ClOptGlobals("asan-opt-globals",
226 cl::desc("Don't instrument scalar globals"),
227 cl::Hidden, cl::init(true));
228 static cl::opt<bool> ClOptStack(
229 "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"),
230 cl::Hidden, cl::init(false));
231
232 static cl::opt<bool> ClDynamicAllocaStack(
233 "asan-stack-dynamic-alloca",
234 cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden,
235 cl::init(true));
236
237 static cl::opt<uint32_t> ClForceExperiment(
238 "asan-force-experiment",
239 cl::desc("Force optimization experiment (for testing)"), cl::Hidden,
240 cl::init(0));
241
242 static cl::opt<bool>
243 ClUsePrivateAliasForGlobals("asan-use-private-alias",
244 cl::desc("Use private aliases for global"
245 " variables"),
246 cl::Hidden, cl::init(false));
247
248 static cl::opt<bool>
249 ClUseMachOGlobalsSection("asan-globals-live-support",
250 cl::desc("Use linker features to support dead "
251 "code stripping of globals "
252 "(Mach-O only)"),
253 cl::Hidden, cl::init(false));
254
255 // Debug flags.
256 static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden,
257 cl::init(0));
258 static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"),
259 cl::Hidden, cl::init(0));
260 static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden,
261 cl::desc("Debug func"));
262 static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"),
263 cl::Hidden, cl::init(-1));
264 static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"),
265 cl::Hidden, cl::init(-1));
266
267 STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
268 STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
269 STATISTIC(NumOptimizedAccessesToGlobalVar,
270 "Number of optimized accesses to global vars");
271 STATISTIC(NumOptimizedAccessesToStackVar,
272 "Number of optimized accesses to stack vars");
273
274 namespace {
275 /// Frontend-provided metadata for source location.
276 struct LocationMetadata {
277 StringRef Filename;
278 int LineNo;
279 int ColumnNo;
280
LocationMetadata__anon234c86510111::LocationMetadata281 LocationMetadata() : Filename(), LineNo(0), ColumnNo(0) {}
282
empty__anon234c86510111::LocationMetadata283 bool empty() const { return Filename.empty(); }
284
parse__anon234c86510111::LocationMetadata285 void parse(MDNode *MDN) {
286 assert(MDN->getNumOperands() == 3);
287 MDString *DIFilename = cast<MDString>(MDN->getOperand(0));
288 Filename = DIFilename->getString();
289 LineNo =
290 mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue();
291 ColumnNo =
292 mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue();
293 }
294 };
295
296 /// Frontend-provided metadata for global variables.
297 class GlobalsMetadata {
298 public:
299 struct Entry {
Entry__anon234c86510111::GlobalsMetadata::Entry300 Entry() : SourceLoc(), Name(), IsDynInit(false), IsBlacklisted(false) {}
301 LocationMetadata SourceLoc;
302 StringRef Name;
303 bool IsDynInit;
304 bool IsBlacklisted;
305 };
306
GlobalsMetadata()307 GlobalsMetadata() : inited_(false) {}
308
reset()309 void reset() {
310 inited_ = false;
311 Entries.clear();
312 }
313
init(Module & M)314 void init(Module &M) {
315 assert(!inited_);
316 inited_ = true;
317 NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals");
318 if (!Globals) return;
319 for (auto MDN : Globals->operands()) {
320 // Metadata node contains the global and the fields of "Entry".
321 assert(MDN->getNumOperands() == 5);
322 auto *GV = mdconst::extract_or_null<GlobalVariable>(MDN->getOperand(0));
323 // The optimizer may optimize away a global entirely.
324 if (!GV) continue;
325 // We can already have an entry for GV if it was merged with another
326 // global.
327 Entry &E = Entries[GV];
328 if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1)))
329 E.SourceLoc.parse(Loc);
330 if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2)))
331 E.Name = Name->getString();
332 ConstantInt *IsDynInit =
333 mdconst::extract<ConstantInt>(MDN->getOperand(3));
334 E.IsDynInit |= IsDynInit->isOne();
335 ConstantInt *IsBlacklisted =
336 mdconst::extract<ConstantInt>(MDN->getOperand(4));
337 E.IsBlacklisted |= IsBlacklisted->isOne();
338 }
339 }
340
341 /// Returns metadata entry for a given global.
get(GlobalVariable * G) const342 Entry get(GlobalVariable *G) const {
343 auto Pos = Entries.find(G);
344 return (Pos != Entries.end()) ? Pos->second : Entry();
345 }
346
347 private:
348 bool inited_;
349 DenseMap<GlobalVariable *, Entry> Entries;
350 };
351
352 /// This struct defines the shadow mapping using the rule:
353 /// shadow = (mem >> Scale) ADD-or-OR Offset.
354 struct ShadowMapping {
355 int Scale;
356 uint64_t Offset;
357 bool OrShadowOffset;
358 };
359
getShadowMapping(Triple & TargetTriple,int LongSize,bool IsKasan)360 static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize,
361 bool IsKasan) {
362 bool IsAndroid = TargetTriple.isAndroid();
363 bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS();
364 bool IsFreeBSD = TargetTriple.isOSFreeBSD();
365 bool IsLinux = TargetTriple.isOSLinux();
366 bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64 ||
367 TargetTriple.getArch() == llvm::Triple::ppc64le;
368 bool IsSystemZ = TargetTriple.getArch() == llvm::Triple::systemz;
369 bool IsX86 = TargetTriple.getArch() == llvm::Triple::x86;
370 bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64;
371 bool IsMIPS32 = TargetTriple.getArch() == llvm::Triple::mips ||
372 TargetTriple.getArch() == llvm::Triple::mipsel;
373 bool IsMIPS64 = TargetTriple.getArch() == llvm::Triple::mips64 ||
374 TargetTriple.getArch() == llvm::Triple::mips64el;
375 bool IsAArch64 = TargetTriple.getArch() == llvm::Triple::aarch64;
376 bool IsWindows = TargetTriple.isOSWindows();
377
378 ShadowMapping Mapping;
379
380 if (LongSize == 32) {
381 // Android is always PIE, which means that the beginning of the address
382 // space is always available.
383 if (IsAndroid)
384 Mapping.Offset = 0;
385 else if (IsMIPS32)
386 Mapping.Offset = kMIPS32_ShadowOffset32;
387 else if (IsFreeBSD)
388 Mapping.Offset = kFreeBSD_ShadowOffset32;
389 else if (IsIOS)
390 // If we're targeting iOS and x86, the binary is built for iOS simulator.
391 Mapping.Offset = IsX86 ? kIOSSimShadowOffset32 : kIOSShadowOffset32;
392 else if (IsWindows)
393 Mapping.Offset = kWindowsShadowOffset32;
394 else
395 Mapping.Offset = kDefaultShadowOffset32;
396 } else { // LongSize == 64
397 if (IsPPC64)
398 Mapping.Offset = kPPC64_ShadowOffset64;
399 else if (IsSystemZ)
400 Mapping.Offset = kSystemZ_ShadowOffset64;
401 else if (IsFreeBSD)
402 Mapping.Offset = kFreeBSD_ShadowOffset64;
403 else if (IsLinux && IsX86_64) {
404 if (IsKasan)
405 Mapping.Offset = kLinuxKasan_ShadowOffset64;
406 else
407 Mapping.Offset = kSmallX86_64ShadowOffset;
408 } else if (IsWindows && IsX86_64) {
409 Mapping.Offset = kWindowsShadowOffset64;
410 } else if (IsMIPS64)
411 Mapping.Offset = kMIPS64_ShadowOffset64;
412 else if (IsIOS)
413 // If we're targeting iOS and x86, the binary is built for iOS simulator.
414 Mapping.Offset = IsX86_64 ? kIOSSimShadowOffset64 : kIOSShadowOffset64;
415 else if (IsAArch64)
416 Mapping.Offset = kAArch64_ShadowOffset64;
417 else
418 Mapping.Offset = kDefaultShadowOffset64;
419 }
420
421 Mapping.Scale = kDefaultShadowScale;
422 if (ClMappingScale.getNumOccurrences() > 0) {
423 Mapping.Scale = ClMappingScale;
424 }
425
426 if (ClMappingOffset.getNumOccurrences() > 0) {
427 Mapping.Offset = ClMappingOffset;
428 }
429
430 // OR-ing shadow offset if more efficient (at least on x86) if the offset
431 // is a power of two, but on ppc64 we have to use add since the shadow
432 // offset is not necessary 1/8-th of the address space. On SystemZ,
433 // we could OR the constant in a single instruction, but it's more
434 // efficient to load it once and use indexed addressing.
435 Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ
436 && !(Mapping.Offset & (Mapping.Offset - 1));
437
438 return Mapping;
439 }
440
RedzoneSizeForScale(int MappingScale)441 static size_t RedzoneSizeForScale(int MappingScale) {
442 // Redzone used for stack and globals is at least 32 bytes.
443 // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively.
444 return std::max(32U, 1U << MappingScale);
445 }
446
447 /// AddressSanitizer: instrument the code in module to find memory bugs.
448 struct AddressSanitizer : public FunctionPass {
AddressSanitizer__anon234c86510111::AddressSanitizer449 explicit AddressSanitizer(bool CompileKernel = false, bool Recover = false,
450 bool UseAfterScope = false)
451 : FunctionPass(ID), CompileKernel(CompileKernel || ClEnableKasan),
452 Recover(Recover || ClRecover),
453 UseAfterScope(UseAfterScope || ClUseAfterScope) {
454 initializeAddressSanitizerPass(*PassRegistry::getPassRegistry());
455 }
getPassName__anon234c86510111::AddressSanitizer456 const char *getPassName() const override {
457 return "AddressSanitizerFunctionPass";
458 }
getAnalysisUsage__anon234c86510111::AddressSanitizer459 void getAnalysisUsage(AnalysisUsage &AU) const override {
460 AU.addRequired<DominatorTreeWrapperPass>();
461 AU.addRequired<TargetLibraryInfoWrapperPass>();
462 }
getAllocaSizeInBytes__anon234c86510111::AddressSanitizer463 uint64_t getAllocaSizeInBytes(AllocaInst *AI) const {
464 uint64_t ArraySize = 1;
465 if (AI->isArrayAllocation()) {
466 ConstantInt *CI = dyn_cast<ConstantInt>(AI->getArraySize());
467 assert(CI && "non-constant array size");
468 ArraySize = CI->getZExtValue();
469 }
470 Type *Ty = AI->getAllocatedType();
471 uint64_t SizeInBytes =
472 AI->getModule()->getDataLayout().getTypeAllocSize(Ty);
473 return SizeInBytes * ArraySize;
474 }
475 /// Check if we want (and can) handle this alloca.
476 bool isInterestingAlloca(AllocaInst &AI);
477
478 /// If it is an interesting memory access, return the PointerOperand
479 /// and set IsWrite/Alignment. Otherwise return nullptr.
480 Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite,
481 uint64_t *TypeSize, unsigned *Alignment);
482 void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, Instruction *I,
483 bool UseCalls, const DataLayout &DL);
484 void instrumentPointerComparisonOrSubtraction(Instruction *I);
485 void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore,
486 Value *Addr, uint32_t TypeSize, bool IsWrite,
487 Value *SizeArgument, bool UseCalls, uint32_t Exp);
488 void instrumentUnusualSizeOrAlignment(Instruction *I, Value *Addr,
489 uint32_t TypeSize, bool IsWrite,
490 Value *SizeArgument, bool UseCalls,
491 uint32_t Exp);
492 Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
493 Value *ShadowValue, uint32_t TypeSize);
494 Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr,
495 bool IsWrite, size_t AccessSizeIndex,
496 Value *SizeArgument, uint32_t Exp);
497 void instrumentMemIntrinsic(MemIntrinsic *MI);
498 Value *memToShadow(Value *Shadow, IRBuilder<> &IRB);
499 bool runOnFunction(Function &F) override;
500 bool maybeInsertAsanInitAtFunctionEntry(Function &F);
501 void markEscapedLocalAllocas(Function &F);
502 bool doInitialization(Module &M) override;
503 bool doFinalization(Module &M) override;
504 static char ID; // Pass identification, replacement for typeid
505
getDominatorTree__anon234c86510111::AddressSanitizer506 DominatorTree &getDominatorTree() const { return *DT; }
507
508 private:
509 void initializeCallbacks(Module &M);
510
511 bool LooksLikeCodeInBug11395(Instruction *I);
512 bool GlobalIsLinkerInitialized(GlobalVariable *G);
513 bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr,
514 uint64_t TypeSize) const;
515
516 /// Helper to cleanup per-function state.
517 struct FunctionStateRAII {
518 AddressSanitizer *Pass;
FunctionStateRAII__anon234c86510111::AddressSanitizer::FunctionStateRAII519 FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) {
520 assert(Pass->ProcessedAllocas.empty() &&
521 "last pass forgot to clear cache");
522 }
~FunctionStateRAII__anon234c86510111::AddressSanitizer::FunctionStateRAII523 ~FunctionStateRAII() { Pass->ProcessedAllocas.clear(); }
524 };
525
526 LLVMContext *C;
527 Triple TargetTriple;
528 int LongSize;
529 bool CompileKernel;
530 bool Recover;
531 bool UseAfterScope;
532 Type *IntptrTy;
533 ShadowMapping Mapping;
534 DominatorTree *DT;
535 Function *AsanCtorFunction = nullptr;
536 Function *AsanInitFunction = nullptr;
537 Function *AsanHandleNoReturnFunc;
538 Function *AsanPtrCmpFunction, *AsanPtrSubFunction;
539 // This array is indexed by AccessIsWrite, Experiment and log2(AccessSize).
540 Function *AsanErrorCallback[2][2][kNumberOfAccessSizes];
541 Function *AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes];
542 // This array is indexed by AccessIsWrite and Experiment.
543 Function *AsanErrorCallbackSized[2][2];
544 Function *AsanMemoryAccessCallbackSized[2][2];
545 Function *AsanMemmove, *AsanMemcpy, *AsanMemset;
546 InlineAsm *EmptyAsm;
547 GlobalsMetadata GlobalsMD;
548 DenseMap<AllocaInst *, bool> ProcessedAllocas;
549
550 friend struct FunctionStackPoisoner;
551 };
552
553 class AddressSanitizerModule : public ModulePass {
554 public:
AddressSanitizerModule(bool CompileKernel=false,bool Recover=false)555 explicit AddressSanitizerModule(bool CompileKernel = false,
556 bool Recover = false)
557 : ModulePass(ID), CompileKernel(CompileKernel || ClEnableKasan),
558 Recover(Recover || ClRecover) {}
559 bool runOnModule(Module &M) override;
560 static char ID; // Pass identification, replacement for typeid
getPassName() const561 const char *getPassName() const override { return "AddressSanitizerModule"; }
562
563 private:
564 void initializeCallbacks(Module &M);
565
566 bool InstrumentGlobals(IRBuilder<> &IRB, Module &M);
567 bool ShouldInstrumentGlobal(GlobalVariable *G);
568 bool ShouldUseMachOGlobalsSection() const;
569 void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName);
570 void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName);
MinRedzoneSizeForGlobal() const571 size_t MinRedzoneSizeForGlobal() const {
572 return RedzoneSizeForScale(Mapping.Scale);
573 }
574
575 GlobalsMetadata GlobalsMD;
576 bool CompileKernel;
577 bool Recover;
578 Type *IntptrTy;
579 LLVMContext *C;
580 Triple TargetTriple;
581 ShadowMapping Mapping;
582 Function *AsanPoisonGlobals;
583 Function *AsanUnpoisonGlobals;
584 Function *AsanRegisterGlobals;
585 Function *AsanUnregisterGlobals;
586 Function *AsanRegisterImageGlobals;
587 Function *AsanUnregisterImageGlobals;
588 };
589
590 // Stack poisoning does not play well with exception handling.
591 // When an exception is thrown, we essentially bypass the code
592 // that unpoisones the stack. This is why the run-time library has
593 // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire
594 // stack in the interceptor. This however does not work inside the
595 // actual function which catches the exception. Most likely because the
596 // compiler hoists the load of the shadow value somewhere too high.
597 // This causes asan to report a non-existing bug on 453.povray.
598 // It sounds like an LLVM bug.
599 struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> {
600 Function &F;
601 AddressSanitizer &ASan;
602 DIBuilder DIB;
603 LLVMContext *C;
604 Type *IntptrTy;
605 Type *IntptrPtrTy;
606 ShadowMapping Mapping;
607
608 SmallVector<AllocaInst *, 16> AllocaVec;
609 SmallSetVector<AllocaInst *, 16> NonInstrumentedStaticAllocaVec;
610 SmallVector<Instruction *, 8> RetVec;
611 unsigned StackAlignment;
612
613 Function *AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1],
614 *AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1];
615 Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc;
616 Function *AsanAllocaPoisonFunc, *AsanAllocasUnpoisonFunc;
617
618 // Stores a place and arguments of poisoning/unpoisoning call for alloca.
619 struct AllocaPoisonCall {
620 IntrinsicInst *InsBefore;
621 AllocaInst *AI;
622 uint64_t Size;
623 bool DoPoison;
624 };
625 SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec;
626
627 SmallVector<AllocaInst *, 1> DynamicAllocaVec;
628 SmallVector<IntrinsicInst *, 1> StackRestoreVec;
629 AllocaInst *DynamicAllocaLayout = nullptr;
630 IntrinsicInst *LocalEscapeCall = nullptr;
631
632 // Maps Value to an AllocaInst from which the Value is originated.
633 typedef DenseMap<Value *, AllocaInst *> AllocaForValueMapTy;
634 AllocaForValueMapTy AllocaForValue;
635
636 bool HasNonEmptyInlineAsm = false;
637 bool HasReturnsTwiceCall = false;
638 std::unique_ptr<CallInst> EmptyInlineAsm;
639
FunctionStackPoisoner__anon234c86510111::FunctionStackPoisoner640 FunctionStackPoisoner(Function &F, AddressSanitizer &ASan)
641 : F(F),
642 ASan(ASan),
643 DIB(*F.getParent(), /*AllowUnresolved*/ false),
644 C(ASan.C),
645 IntptrTy(ASan.IntptrTy),
646 IntptrPtrTy(PointerType::get(IntptrTy, 0)),
647 Mapping(ASan.Mapping),
648 StackAlignment(1 << Mapping.Scale),
649 EmptyInlineAsm(CallInst::Create(ASan.EmptyAsm)) {}
650
runOnFunction__anon234c86510111::FunctionStackPoisoner651 bool runOnFunction() {
652 if (!ClStack) return false;
653 // Collect alloca, ret, lifetime instructions etc.
654 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB);
655
656 if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false;
657
658 initializeCallbacks(*F.getParent());
659
660 poisonStack();
661
662 if (ClDebugStack) {
663 DEBUG(dbgs() << F);
664 }
665 return true;
666 }
667
668 // Finds all Alloca instructions and puts
669 // poisoned red zones around all of them.
670 // Then unpoison everything back before the function returns.
671 void poisonStack();
672
673 void createDynamicAllocasInitStorage();
674
675 // ----------------------- Visitors.
676 /// \brief Collect all Ret instructions.
visitReturnInst__anon234c86510111::FunctionStackPoisoner677 void visitReturnInst(ReturnInst &RI) { RetVec.push_back(&RI); }
678
unpoisonDynamicAllocasBeforeInst__anon234c86510111::FunctionStackPoisoner679 void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore,
680 Value *SavedStack) {
681 IRBuilder<> IRB(InstBefore);
682 Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy);
683 // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we
684 // need to adjust extracted SP to compute the address of the most recent
685 // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for
686 // this purpose.
687 if (!isa<ReturnInst>(InstBefore)) {
688 Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration(
689 InstBefore->getModule(), Intrinsic::get_dynamic_area_offset,
690 {IntptrTy});
691
692 Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {});
693
694 DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy),
695 DynamicAreaOffset);
696 }
697
698 IRB.CreateCall(AsanAllocasUnpoisonFunc,
699 {IRB.CreateLoad(DynamicAllocaLayout), DynamicAreaPtr});
700 }
701
702 // Unpoison dynamic allocas redzones.
unpoisonDynamicAllocas__anon234c86510111::FunctionStackPoisoner703 void unpoisonDynamicAllocas() {
704 for (auto &Ret : RetVec)
705 unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout);
706
707 for (auto &StackRestoreInst : StackRestoreVec)
708 unpoisonDynamicAllocasBeforeInst(StackRestoreInst,
709 StackRestoreInst->getOperand(0));
710 }
711
712 // Deploy and poison redzones around dynamic alloca call. To do this, we
713 // should replace this call with another one with changed parameters and
714 // replace all its uses with new address, so
715 // addr = alloca type, old_size, align
716 // is replaced by
717 // new_size = (old_size + additional_size) * sizeof(type)
718 // tmp = alloca i8, new_size, max(align, 32)
719 // addr = tmp + 32 (first 32 bytes are for the left redzone).
720 // Additional_size is added to make new memory allocation contain not only
721 // requested memory, but also left, partial and right redzones.
722 void handleDynamicAllocaCall(AllocaInst *AI);
723
724 /// \brief Collect Alloca instructions we want (and can) handle.
visitAllocaInst__anon234c86510111::FunctionStackPoisoner725 void visitAllocaInst(AllocaInst &AI) {
726 if (!ASan.isInterestingAlloca(AI)) {
727 if (AI.isStaticAlloca()) NonInstrumentedStaticAllocaVec.insert(&AI);
728 return;
729 }
730
731 StackAlignment = std::max(StackAlignment, AI.getAlignment());
732 if (!AI.isStaticAlloca())
733 DynamicAllocaVec.push_back(&AI);
734 else
735 AllocaVec.push_back(&AI);
736 }
737
738 /// \brief Collect lifetime intrinsic calls to check for use-after-scope
739 /// errors.
visitIntrinsicInst__anon234c86510111::FunctionStackPoisoner740 void visitIntrinsicInst(IntrinsicInst &II) {
741 Intrinsic::ID ID = II.getIntrinsicID();
742 if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II);
743 if (ID == Intrinsic::localescape) LocalEscapeCall = &II;
744 if (!ASan.UseAfterScope)
745 return;
746 if (ID != Intrinsic::lifetime_start && ID != Intrinsic::lifetime_end)
747 return;
748 // Found lifetime intrinsic, add ASan instrumentation if necessary.
749 ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0));
750 // If size argument is undefined, don't do anything.
751 if (Size->isMinusOne()) return;
752 // Check that size doesn't saturate uint64_t and can
753 // be stored in IntptrTy.
754 const uint64_t SizeValue = Size->getValue().getLimitedValue();
755 if (SizeValue == ~0ULL ||
756 !ConstantInt::isValueValidForType(IntptrTy, SizeValue))
757 return;
758 // Find alloca instruction that corresponds to llvm.lifetime argument.
759 AllocaInst *AI = findAllocaForValue(II.getArgOperand(1));
760 if (!AI || !ASan.isInterestingAlloca(*AI))
761 return;
762 bool DoPoison = (ID == Intrinsic::lifetime_end);
763 AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison};
764 AllocaPoisonCallVec.push_back(APC);
765 }
766
visitCallSite__anon234c86510111::FunctionStackPoisoner767 void visitCallSite(CallSite CS) {
768 Instruction *I = CS.getInstruction();
769 if (CallInst *CI = dyn_cast<CallInst>(I)) {
770 HasNonEmptyInlineAsm |=
771 CI->isInlineAsm() && !CI->isIdenticalTo(EmptyInlineAsm.get());
772 HasReturnsTwiceCall |= CI->canReturnTwice();
773 }
774 }
775
776 // ---------------------- Helpers.
777 void initializeCallbacks(Module &M);
778
doesDominateAllExits__anon234c86510111::FunctionStackPoisoner779 bool doesDominateAllExits(const Instruction *I) const {
780 for (auto Ret : RetVec) {
781 if (!ASan.getDominatorTree().dominates(I, Ret)) return false;
782 }
783 return true;
784 }
785
786 /// Finds alloca where the value comes from.
787 AllocaInst *findAllocaForValue(Value *V);
788 void poisonRedZones(ArrayRef<uint8_t> ShadowBytes, IRBuilder<> &IRB,
789 Value *ShadowBase, bool DoPoison);
790 void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison);
791
792 void SetShadowToStackAfterReturnInlined(IRBuilder<> &IRB, Value *ShadowBase,
793 int Size);
794 Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L,
795 bool Dynamic);
796 PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue,
797 Instruction *ThenTerm, Value *ValueIfFalse);
798 };
799
800 } // anonymous namespace
801
802 char AddressSanitizer::ID = 0;
803 INITIALIZE_PASS_BEGIN(
804 AddressSanitizer, "asan",
805 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
806 false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)807 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
808 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
809 INITIALIZE_PASS_END(
810 AddressSanitizer, "asan",
811 "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false,
812 false)
813 FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel,
814 bool Recover,
815 bool UseAfterScope) {
816 assert(!CompileKernel || Recover);
817 return new AddressSanitizer(CompileKernel, Recover, UseAfterScope);
818 }
819
820 char AddressSanitizerModule::ID = 0;
821 INITIALIZE_PASS(
822 AddressSanitizerModule, "asan-module",
823 "AddressSanitizer: detects use-after-free and out-of-bounds bugs."
824 "ModulePass",
825 false, false)
createAddressSanitizerModulePass(bool CompileKernel,bool Recover)826 ModulePass *llvm::createAddressSanitizerModulePass(bool CompileKernel,
827 bool Recover) {
828 assert(!CompileKernel || Recover);
829 return new AddressSanitizerModule(CompileKernel, Recover);
830 }
831
TypeSizeToSizeIndex(uint32_t TypeSize)832 static size_t TypeSizeToSizeIndex(uint32_t TypeSize) {
833 size_t Res = countTrailingZeros(TypeSize / 8);
834 assert(Res < kNumberOfAccessSizes);
835 return Res;
836 }
837
838 // \brief Create a constant for Str so that we can pass it to the run-time lib.
createPrivateGlobalForString(Module & M,StringRef Str,bool AllowMerging)839 static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str,
840 bool AllowMerging) {
841 Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str);
842 // We use private linkage for module-local strings. If they can be merged
843 // with another one, we set the unnamed_addr attribute.
844 GlobalVariable *GV =
845 new GlobalVariable(M, StrConst->getType(), true,
846 GlobalValue::PrivateLinkage, StrConst, kAsanGenPrefix);
847 if (AllowMerging) GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
848 GV->setAlignment(1); // Strings may not be merged w/o setting align 1.
849 return GV;
850 }
851
852 /// \brief Create a global describing a source location.
createPrivateGlobalForSourceLoc(Module & M,LocationMetadata MD)853 static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M,
854 LocationMetadata MD) {
855 Constant *LocData[] = {
856 createPrivateGlobalForString(M, MD.Filename, true),
857 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo),
858 ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo),
859 };
860 auto LocStruct = ConstantStruct::getAnon(LocData);
861 auto GV = new GlobalVariable(M, LocStruct->getType(), true,
862 GlobalValue::PrivateLinkage, LocStruct,
863 kAsanGenPrefix);
864 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
865 return GV;
866 }
867
868 /// \brief Check if \p G has been created by a trusted compiler pass.
GlobalWasGeneratedByCompiler(GlobalVariable * G)869 static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) {
870 // Do not instrument asan globals.
871 if (G->getName().startswith(kAsanGenPrefix) ||
872 G->getName().startswith(kSanCovGenPrefix) ||
873 G->getName().startswith(kODRGenPrefix))
874 return true;
875
876 // Do not instrument gcov counter arrays.
877 if (G->getName() == "__llvm_gcov_ctr")
878 return true;
879
880 return false;
881 }
882
memToShadow(Value * Shadow,IRBuilder<> & IRB)883 Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) {
884 // Shadow >> scale
885 Shadow = IRB.CreateLShr(Shadow, Mapping.Scale);
886 if (Mapping.Offset == 0) return Shadow;
887 // (Shadow >> scale) | offset
888 if (Mapping.OrShadowOffset)
889 return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
890 else
891 return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset));
892 }
893
894 // Instrument memset/memmove/memcpy
instrumentMemIntrinsic(MemIntrinsic * MI)895 void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) {
896 IRBuilder<> IRB(MI);
897 if (isa<MemTransferInst>(MI)) {
898 IRB.CreateCall(
899 isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy,
900 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
901 IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()),
902 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
903 } else if (isa<MemSetInst>(MI)) {
904 IRB.CreateCall(
905 AsanMemset,
906 {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()),
907 IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false),
908 IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)});
909 }
910 MI->eraseFromParent();
911 }
912
913 /// Check if we want (and can) handle this alloca.
isInterestingAlloca(AllocaInst & AI)914 bool AddressSanitizer::isInterestingAlloca(AllocaInst &AI) {
915 auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI);
916
917 if (PreviouslySeenAllocaInfo != ProcessedAllocas.end())
918 return PreviouslySeenAllocaInfo->getSecond();
919
920 bool IsInteresting =
921 (AI.getAllocatedType()->isSized() &&
922 // alloca() may be called with 0 size, ignore it.
923 ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(&AI) > 0) &&
924 // We are only interested in allocas not promotable to registers.
925 // Promotable allocas are common under -O0.
926 (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) &&
927 // inalloca allocas are not treated as static, and we don't want
928 // dynamic alloca instrumentation for them as well.
929 !AI.isUsedWithInAlloca());
930
931 ProcessedAllocas[&AI] = IsInteresting;
932 return IsInteresting;
933 }
934
935 /// If I is an interesting memory access, return the PointerOperand
936 /// and set IsWrite/Alignment. Otherwise return nullptr.
isInterestingMemoryAccess(Instruction * I,bool * IsWrite,uint64_t * TypeSize,unsigned * Alignment)937 Value *AddressSanitizer::isInterestingMemoryAccess(Instruction *I,
938 bool *IsWrite,
939 uint64_t *TypeSize,
940 unsigned *Alignment) {
941 // Skip memory accesses inserted by another instrumentation.
942 if (I->getMetadata("nosanitize")) return nullptr;
943
944 Value *PtrOperand = nullptr;
945 const DataLayout &DL = I->getModule()->getDataLayout();
946 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
947 if (!ClInstrumentReads) return nullptr;
948 *IsWrite = false;
949 *TypeSize = DL.getTypeStoreSizeInBits(LI->getType());
950 *Alignment = LI->getAlignment();
951 PtrOperand = LI->getPointerOperand();
952 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
953 if (!ClInstrumentWrites) return nullptr;
954 *IsWrite = true;
955 *TypeSize = DL.getTypeStoreSizeInBits(SI->getValueOperand()->getType());
956 *Alignment = SI->getAlignment();
957 PtrOperand = SI->getPointerOperand();
958 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) {
959 if (!ClInstrumentAtomics) return nullptr;
960 *IsWrite = true;
961 *TypeSize = DL.getTypeStoreSizeInBits(RMW->getValOperand()->getType());
962 *Alignment = 0;
963 PtrOperand = RMW->getPointerOperand();
964 } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) {
965 if (!ClInstrumentAtomics) return nullptr;
966 *IsWrite = true;
967 *TypeSize = DL.getTypeStoreSizeInBits(XCHG->getCompareOperand()->getType());
968 *Alignment = 0;
969 PtrOperand = XCHG->getPointerOperand();
970 }
971
972 // Do not instrument acesses from different address spaces; we cannot deal
973 // with them.
974 if (PtrOperand) {
975 Type *PtrTy = cast<PointerType>(PtrOperand->getType()->getScalarType());
976 if (PtrTy->getPointerAddressSpace() != 0)
977 return nullptr;
978 }
979
980 // Treat memory accesses to promotable allocas as non-interesting since they
981 // will not cause memory violations. This greatly speeds up the instrumented
982 // executable at -O0.
983 if (ClSkipPromotableAllocas)
984 if (auto AI = dyn_cast_or_null<AllocaInst>(PtrOperand))
985 return isInterestingAlloca(*AI) ? AI : nullptr;
986
987 return PtrOperand;
988 }
989
isPointerOperand(Value * V)990 static bool isPointerOperand(Value *V) {
991 return V->getType()->isPointerTy() || isa<PtrToIntInst>(V);
992 }
993
994 // This is a rough heuristic; it may cause both false positives and
995 // false negatives. The proper implementation requires cooperation with
996 // the frontend.
isInterestingPointerComparisonOrSubtraction(Instruction * I)997 static bool isInterestingPointerComparisonOrSubtraction(Instruction *I) {
998 if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) {
999 if (!Cmp->isRelational()) return false;
1000 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1001 if (BO->getOpcode() != Instruction::Sub) return false;
1002 } else {
1003 return false;
1004 }
1005 return isPointerOperand(I->getOperand(0)) &&
1006 isPointerOperand(I->getOperand(1));
1007 }
1008
GlobalIsLinkerInitialized(GlobalVariable * G)1009 bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) {
1010 // If a global variable does not have dynamic initialization we don't
1011 // have to instrument it. However, if a global does not have initializer
1012 // at all, we assume it has dynamic initializer (in other TU).
1013 return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit;
1014 }
1015
instrumentPointerComparisonOrSubtraction(Instruction * I)1016 void AddressSanitizer::instrumentPointerComparisonOrSubtraction(
1017 Instruction *I) {
1018 IRBuilder<> IRB(I);
1019 Function *F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction;
1020 Value *Param[2] = {I->getOperand(0), I->getOperand(1)};
1021 for (Value *&i : Param) {
1022 if (i->getType()->isPointerTy())
1023 i = IRB.CreatePointerCast(i, IntptrTy);
1024 }
1025 IRB.CreateCall(F, Param);
1026 }
1027
instrumentMop(ObjectSizeOffsetVisitor & ObjSizeVis,Instruction * I,bool UseCalls,const DataLayout & DL)1028 void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis,
1029 Instruction *I, bool UseCalls,
1030 const DataLayout &DL) {
1031 bool IsWrite = false;
1032 unsigned Alignment = 0;
1033 uint64_t TypeSize = 0;
1034 Value *Addr = isInterestingMemoryAccess(I, &IsWrite, &TypeSize, &Alignment);
1035 assert(Addr);
1036
1037 // Optimization experiments.
1038 // The experiments can be used to evaluate potential optimizations that remove
1039 // instrumentation (assess false negatives). Instead of completely removing
1040 // some instrumentation, you set Exp to a non-zero value (mask of optimization
1041 // experiments that want to remove instrumentation of this instruction).
1042 // If Exp is non-zero, this pass will emit special calls into runtime
1043 // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls
1044 // make runtime terminate the program in a special way (with a different
1045 // exit status). Then you run the new compiler on a buggy corpus, collect
1046 // the special terminations (ideally, you don't see them at all -- no false
1047 // negatives) and make the decision on the optimization.
1048 uint32_t Exp = ClForceExperiment;
1049
1050 if (ClOpt && ClOptGlobals) {
1051 // If initialization order checking is disabled, a simple access to a
1052 // dynamically initialized global is always valid.
1053 GlobalVariable *G = dyn_cast<GlobalVariable>(GetUnderlyingObject(Addr, DL));
1054 if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) &&
1055 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1056 NumOptimizedAccessesToGlobalVar++;
1057 return;
1058 }
1059 }
1060
1061 if (ClOpt && ClOptStack) {
1062 // A direct inbounds access to a stack variable is always valid.
1063 if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
1064 isSafeAccess(ObjSizeVis, Addr, TypeSize)) {
1065 NumOptimizedAccessesToStackVar++;
1066 return;
1067 }
1068 }
1069
1070 if (IsWrite)
1071 NumInstrumentedWrites++;
1072 else
1073 NumInstrumentedReads++;
1074
1075 unsigned Granularity = 1 << Mapping.Scale;
1076 // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check
1077 // if the data is properly aligned.
1078 if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 ||
1079 TypeSize == 128) &&
1080 (Alignment >= Granularity || Alignment == 0 || Alignment >= TypeSize / 8))
1081 return instrumentAddress(I, I, Addr, TypeSize, IsWrite, nullptr, UseCalls,
1082 Exp);
1083 instrumentUnusualSizeOrAlignment(I, Addr, TypeSize, IsWrite, nullptr,
1084 UseCalls, Exp);
1085 }
1086
generateCrashCode(Instruction * InsertBefore,Value * Addr,bool IsWrite,size_t AccessSizeIndex,Value * SizeArgument,uint32_t Exp)1087 Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore,
1088 Value *Addr, bool IsWrite,
1089 size_t AccessSizeIndex,
1090 Value *SizeArgument,
1091 uint32_t Exp) {
1092 IRBuilder<> IRB(InsertBefore);
1093 Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp);
1094 CallInst *Call = nullptr;
1095 if (SizeArgument) {
1096 if (Exp == 0)
1097 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0],
1098 {Addr, SizeArgument});
1099 else
1100 Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1],
1101 {Addr, SizeArgument, ExpVal});
1102 } else {
1103 if (Exp == 0)
1104 Call =
1105 IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr);
1106 else
1107 Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex],
1108 {Addr, ExpVal});
1109 }
1110
1111 // We don't do Call->setDoesNotReturn() because the BB already has
1112 // UnreachableInst at the end.
1113 // This EmptyAsm is required to avoid callback merge.
1114 IRB.CreateCall(EmptyAsm, {});
1115 return Call;
1116 }
1117
createSlowPathCmp(IRBuilder<> & IRB,Value * AddrLong,Value * ShadowValue,uint32_t TypeSize)1118 Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong,
1119 Value *ShadowValue,
1120 uint32_t TypeSize) {
1121 size_t Granularity = static_cast<size_t>(1) << Mapping.Scale;
1122 // Addr & (Granularity - 1)
1123 Value *LastAccessedByte =
1124 IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1));
1125 // (Addr & (Granularity - 1)) + size - 1
1126 if (TypeSize / 8 > 1)
1127 LastAccessedByte = IRB.CreateAdd(
1128 LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1));
1129 // (uint8_t) ((Addr & (Granularity-1)) + size - 1)
1130 LastAccessedByte =
1131 IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false);
1132 // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue
1133 return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue);
1134 }
1135
instrumentAddress(Instruction * OrigIns,Instruction * InsertBefore,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1136 void AddressSanitizer::instrumentAddress(Instruction *OrigIns,
1137 Instruction *InsertBefore, Value *Addr,
1138 uint32_t TypeSize, bool IsWrite,
1139 Value *SizeArgument, bool UseCalls,
1140 uint32_t Exp) {
1141 IRBuilder<> IRB(InsertBefore);
1142 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1143 size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize);
1144
1145 if (UseCalls) {
1146 if (Exp == 0)
1147 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex],
1148 AddrLong);
1149 else
1150 IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex],
1151 {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1152 return;
1153 }
1154
1155 Type *ShadowTy =
1156 IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale));
1157 Type *ShadowPtrTy = PointerType::get(ShadowTy, 0);
1158 Value *ShadowPtr = memToShadow(AddrLong, IRB);
1159 Value *CmpVal = Constant::getNullValue(ShadowTy);
1160 Value *ShadowValue =
1161 IRB.CreateLoad(IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy));
1162
1163 Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal);
1164 size_t Granularity = 1ULL << Mapping.Scale;
1165 TerminatorInst *CrashTerm = nullptr;
1166
1167 if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) {
1168 // We use branch weights for the slow path check, to indicate that the slow
1169 // path is rarely taken. This seems to be the case for SPEC benchmarks.
1170 TerminatorInst *CheckTerm = SplitBlockAndInsertIfThen(
1171 Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000));
1172 assert(cast<BranchInst>(CheckTerm)->isUnconditional());
1173 BasicBlock *NextBB = CheckTerm->getSuccessor(0);
1174 IRB.SetInsertPoint(CheckTerm);
1175 Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize);
1176 if (Recover) {
1177 CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false);
1178 } else {
1179 BasicBlock *CrashBlock =
1180 BasicBlock::Create(*C, "", NextBB->getParent(), NextBB);
1181 CrashTerm = new UnreachableInst(*C, CrashBlock);
1182 BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2);
1183 ReplaceInstWithInst(CheckTerm, NewTerm);
1184 }
1185 } else {
1186 CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover);
1187 }
1188
1189 Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite,
1190 AccessSizeIndex, SizeArgument, Exp);
1191 Crash->setDebugLoc(OrigIns->getDebugLoc());
1192 }
1193
1194 // Instrument unusual size or unusual alignment.
1195 // We can not do it with a single check, so we do 1-byte check for the first
1196 // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able
1197 // to report the actual access size.
instrumentUnusualSizeOrAlignment(Instruction * I,Value * Addr,uint32_t TypeSize,bool IsWrite,Value * SizeArgument,bool UseCalls,uint32_t Exp)1198 void AddressSanitizer::instrumentUnusualSizeOrAlignment(
1199 Instruction *I, Value *Addr, uint32_t TypeSize, bool IsWrite,
1200 Value *SizeArgument, bool UseCalls, uint32_t Exp) {
1201 IRBuilder<> IRB(I);
1202 Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8);
1203 Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy);
1204 if (UseCalls) {
1205 if (Exp == 0)
1206 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0],
1207 {AddrLong, Size});
1208 else
1209 IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1],
1210 {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)});
1211 } else {
1212 Value *LastByte = IRB.CreateIntToPtr(
1213 IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)),
1214 Addr->getType());
1215 instrumentAddress(I, I, Addr, 8, IsWrite, Size, false, Exp);
1216 instrumentAddress(I, I, LastByte, 8, IsWrite, Size, false, Exp);
1217 }
1218 }
1219
poisonOneInitializer(Function & GlobalInit,GlobalValue * ModuleName)1220 void AddressSanitizerModule::poisonOneInitializer(Function &GlobalInit,
1221 GlobalValue *ModuleName) {
1222 // Set up the arguments to our poison/unpoison functions.
1223 IRBuilder<> IRB(&GlobalInit.front(),
1224 GlobalInit.front().getFirstInsertionPt());
1225
1226 // Add a call to poison all external globals before the given function starts.
1227 Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy);
1228 IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr);
1229
1230 // Add calls to unpoison all globals before each return instruction.
1231 for (auto &BB : GlobalInit.getBasicBlockList())
1232 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator()))
1233 CallInst::Create(AsanUnpoisonGlobals, "", RI);
1234 }
1235
createInitializerPoisonCalls(Module & M,GlobalValue * ModuleName)1236 void AddressSanitizerModule::createInitializerPoisonCalls(
1237 Module &M, GlobalValue *ModuleName) {
1238 GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors");
1239
1240 ConstantArray *CA = cast<ConstantArray>(GV->getInitializer());
1241 for (Use &OP : CA->operands()) {
1242 if (isa<ConstantAggregateZero>(OP)) continue;
1243 ConstantStruct *CS = cast<ConstantStruct>(OP);
1244
1245 // Must have a function or null ptr.
1246 if (Function *F = dyn_cast<Function>(CS->getOperand(1))) {
1247 if (F->getName() == kAsanModuleCtorName) continue;
1248 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1249 // Don't instrument CTORs that will run before asan.module_ctor.
1250 if (Priority->getLimitedValue() <= kAsanCtorAndDtorPriority) continue;
1251 poisonOneInitializer(*F, ModuleName);
1252 }
1253 }
1254 }
1255
ShouldInstrumentGlobal(GlobalVariable * G)1256 bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) {
1257 Type *Ty = G->getValueType();
1258 DEBUG(dbgs() << "GLOBAL: " << *G << "\n");
1259
1260 if (GlobalsMD.get(G).IsBlacklisted) return false;
1261 if (!Ty->isSized()) return false;
1262 if (!G->hasInitializer()) return false;
1263 if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals.
1264 // Touch only those globals that will not be defined in other modules.
1265 // Don't handle ODR linkage types and COMDATs since other modules may be built
1266 // without ASan.
1267 if (G->getLinkage() != GlobalVariable::ExternalLinkage &&
1268 G->getLinkage() != GlobalVariable::PrivateLinkage &&
1269 G->getLinkage() != GlobalVariable::InternalLinkage)
1270 return false;
1271 if (G->hasComdat()) return false;
1272 // Two problems with thread-locals:
1273 // - The address of the main thread's copy can't be computed at link-time.
1274 // - Need to poison all copies, not just the main thread's one.
1275 if (G->isThreadLocal()) return false;
1276 // For now, just ignore this Global if the alignment is large.
1277 if (G->getAlignment() > MinRedzoneSizeForGlobal()) return false;
1278
1279 if (G->hasSection()) {
1280 StringRef Section = G->getSection();
1281
1282 // Globals from llvm.metadata aren't emitted, do not instrument them.
1283 if (Section == "llvm.metadata") return false;
1284 // Do not instrument globals from special LLVM sections.
1285 if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false;
1286
1287 // Do not instrument function pointers to initialization and termination
1288 // routines: dynamic linker will not properly handle redzones.
1289 if (Section.startswith(".preinit_array") ||
1290 Section.startswith(".init_array") ||
1291 Section.startswith(".fini_array")) {
1292 return false;
1293 }
1294
1295 // Callbacks put into the CRT initializer/terminator sections
1296 // should not be instrumented.
1297 // See https://code.google.com/p/address-sanitizer/issues/detail?id=305
1298 // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx
1299 if (Section.startswith(".CRT")) {
1300 DEBUG(dbgs() << "Ignoring a global initializer callback: " << *G << "\n");
1301 return false;
1302 }
1303
1304 if (TargetTriple.isOSBinFormatMachO()) {
1305 StringRef ParsedSegment, ParsedSection;
1306 unsigned TAA = 0, StubSize = 0;
1307 bool TAAParsed;
1308 std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier(
1309 Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize);
1310 assert(ErrorCode.empty() && "Invalid section specifier.");
1311
1312 // Ignore the globals from the __OBJC section. The ObjC runtime assumes
1313 // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to
1314 // them.
1315 if (ParsedSegment == "__OBJC" ||
1316 (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) {
1317 DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n");
1318 return false;
1319 }
1320 // See http://code.google.com/p/address-sanitizer/issues/detail?id=32
1321 // Constant CFString instances are compiled in the following way:
1322 // -- the string buffer is emitted into
1323 // __TEXT,__cstring,cstring_literals
1324 // -- the constant NSConstantString structure referencing that buffer
1325 // is placed into __DATA,__cfstring
1326 // Therefore there's no point in placing redzones into __DATA,__cfstring.
1327 // Moreover, it causes the linker to crash on OS X 10.7
1328 if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") {
1329 DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n");
1330 return false;
1331 }
1332 // The linker merges the contents of cstring_literals and removes the
1333 // trailing zeroes.
1334 if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) {
1335 DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n");
1336 return false;
1337 }
1338 }
1339 }
1340
1341 return true;
1342 }
1343
1344 // On Mach-O platforms, we emit global metadata in a separate section of the
1345 // binary in order to allow the linker to properly dead strip. This is only
1346 // supported on recent versions of ld64.
ShouldUseMachOGlobalsSection() const1347 bool AddressSanitizerModule::ShouldUseMachOGlobalsSection() const {
1348 if (!ClUseMachOGlobalsSection)
1349 return false;
1350
1351 if (!TargetTriple.isOSBinFormatMachO())
1352 return false;
1353
1354 if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11))
1355 return true;
1356 if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9))
1357 return true;
1358 if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2))
1359 return true;
1360
1361 return false;
1362 }
1363
initializeCallbacks(Module & M)1364 void AddressSanitizerModule::initializeCallbacks(Module &M) {
1365 IRBuilder<> IRB(*C);
1366
1367 // Declare our poisoning and unpoisoning functions.
1368 AsanPoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1369 kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, nullptr));
1370 AsanPoisonGlobals->setLinkage(Function::ExternalLinkage);
1371 AsanUnpoisonGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1372 kAsanUnpoisonGlobalsName, IRB.getVoidTy(), nullptr));
1373 AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage);
1374
1375 // Declare functions that register/unregister globals.
1376 AsanRegisterGlobals = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1377 kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1378 AsanRegisterGlobals->setLinkage(Function::ExternalLinkage);
1379 AsanUnregisterGlobals = checkSanitizerInterfaceFunction(
1380 M.getOrInsertFunction(kAsanUnregisterGlobalsName, IRB.getVoidTy(),
1381 IntptrTy, IntptrTy, nullptr));
1382 AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage);
1383
1384 // Declare the functions that find globals in a shared object and then invoke
1385 // the (un)register function on them.
1386 AsanRegisterImageGlobals = checkSanitizerInterfaceFunction(
1387 M.getOrInsertFunction(kAsanRegisterImageGlobalsName,
1388 IRB.getVoidTy(), IntptrTy, nullptr));
1389 AsanRegisterImageGlobals->setLinkage(Function::ExternalLinkage);
1390
1391 AsanUnregisterImageGlobals = checkSanitizerInterfaceFunction(
1392 M.getOrInsertFunction(kAsanUnregisterImageGlobalsName,
1393 IRB.getVoidTy(), IntptrTy, nullptr));
1394 AsanUnregisterImageGlobals->setLinkage(Function::ExternalLinkage);
1395 }
1396
1397 // This function replaces all global variables with new variables that have
1398 // trailing redzones. It also creates a function that poisons
1399 // redzones and inserts this function into llvm.global_ctors.
InstrumentGlobals(IRBuilder<> & IRB,Module & M)1400 bool AddressSanitizerModule::InstrumentGlobals(IRBuilder<> &IRB, Module &M) {
1401 GlobalsMD.init(M);
1402
1403 SmallVector<GlobalVariable *, 16> GlobalsToChange;
1404
1405 for (auto &G : M.globals()) {
1406 if (ShouldInstrumentGlobal(&G)) GlobalsToChange.push_back(&G);
1407 }
1408
1409 size_t n = GlobalsToChange.size();
1410 if (n == 0) return false;
1411
1412 // A global is described by a structure
1413 // size_t beg;
1414 // size_t size;
1415 // size_t size_with_redzone;
1416 // const char *name;
1417 // const char *module_name;
1418 // size_t has_dynamic_init;
1419 // void *source_location;
1420 // size_t odr_indicator;
1421 // We initialize an array of such structures and pass it to a run-time call.
1422 StructType *GlobalStructTy =
1423 StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy,
1424 IntptrTy, IntptrTy, IntptrTy, nullptr);
1425 SmallVector<Constant *, 16> Initializers(n);
1426
1427 bool HasDynamicallyInitializedGlobals = false;
1428
1429 // We shouldn't merge same module names, as this string serves as unique
1430 // module ID in runtime.
1431 GlobalVariable *ModuleName = createPrivateGlobalForString(
1432 M, M.getModuleIdentifier(), /*AllowMerging*/ false);
1433
1434 auto &DL = M.getDataLayout();
1435 for (size_t i = 0; i < n; i++) {
1436 static const uint64_t kMaxGlobalRedzone = 1 << 18;
1437 GlobalVariable *G = GlobalsToChange[i];
1438
1439 auto MD = GlobalsMD.get(G);
1440 StringRef NameForGlobal = G->getName();
1441 // Create string holding the global name (use global name from metadata
1442 // if it's available, otherwise just write the name of global variable).
1443 GlobalVariable *Name = createPrivateGlobalForString(
1444 M, MD.Name.empty() ? NameForGlobal : MD.Name,
1445 /*AllowMerging*/ true);
1446
1447 Type *Ty = G->getValueType();
1448 uint64_t SizeInBytes = DL.getTypeAllocSize(Ty);
1449 uint64_t MinRZ = MinRedzoneSizeForGlobal();
1450 // MinRZ <= RZ <= kMaxGlobalRedzone
1451 // and trying to make RZ to be ~ 1/4 of SizeInBytes.
1452 uint64_t RZ = std::max(
1453 MinRZ, std::min(kMaxGlobalRedzone, (SizeInBytes / MinRZ / 4) * MinRZ));
1454 uint64_t RightRedzoneSize = RZ;
1455 // Round up to MinRZ
1456 if (SizeInBytes % MinRZ) RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ);
1457 assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0);
1458 Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize);
1459
1460 StructType *NewTy = StructType::get(Ty, RightRedZoneTy, nullptr);
1461 Constant *NewInitializer =
1462 ConstantStruct::get(NewTy, G->getInitializer(),
1463 Constant::getNullValue(RightRedZoneTy), nullptr);
1464
1465 // Create a new global variable with enough space for a redzone.
1466 GlobalValue::LinkageTypes Linkage = G->getLinkage();
1467 if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage)
1468 Linkage = GlobalValue::InternalLinkage;
1469 GlobalVariable *NewGlobal =
1470 new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer,
1471 "", G, G->getThreadLocalMode());
1472 NewGlobal->copyAttributesFrom(G);
1473 NewGlobal->setAlignment(MinRZ);
1474
1475 Value *Indices2[2];
1476 Indices2[0] = IRB.getInt32(0);
1477 Indices2[1] = IRB.getInt32(0);
1478
1479 G->replaceAllUsesWith(
1480 ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true));
1481 NewGlobal->takeName(G);
1482 G->eraseFromParent();
1483
1484 Constant *SourceLoc;
1485 if (!MD.SourceLoc.empty()) {
1486 auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc);
1487 SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy);
1488 } else {
1489 SourceLoc = ConstantInt::get(IntptrTy, 0);
1490 }
1491
1492 Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy());
1493 GlobalValue *InstrumentedGlobal = NewGlobal;
1494
1495 bool CanUsePrivateAliases = TargetTriple.isOSBinFormatELF();
1496 if (CanUsePrivateAliases && ClUsePrivateAliasForGlobals) {
1497 // Create local alias for NewGlobal to avoid crash on ODR between
1498 // instrumented and non-instrumented libraries.
1499 auto *GA = GlobalAlias::create(GlobalValue::InternalLinkage,
1500 NameForGlobal + M.getName(), NewGlobal);
1501
1502 // With local aliases, we need to provide another externally visible
1503 // symbol __odr_asan_XXX to detect ODR violation.
1504 auto *ODRIndicatorSym =
1505 new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage,
1506 Constant::getNullValue(IRB.getInt8Ty()),
1507 kODRGenPrefix + NameForGlobal, nullptr,
1508 NewGlobal->getThreadLocalMode());
1509
1510 // Set meaningful attributes for indicator symbol.
1511 ODRIndicatorSym->setVisibility(NewGlobal->getVisibility());
1512 ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass());
1513 ODRIndicatorSym->setAlignment(1);
1514 ODRIndicator = ODRIndicatorSym;
1515 InstrumentedGlobal = GA;
1516 }
1517
1518 Initializers[i] = ConstantStruct::get(
1519 GlobalStructTy,
1520 ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy),
1521 ConstantInt::get(IntptrTy, SizeInBytes),
1522 ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize),
1523 ConstantExpr::getPointerCast(Name, IntptrTy),
1524 ConstantExpr::getPointerCast(ModuleName, IntptrTy),
1525 ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc,
1526 ConstantExpr::getPointerCast(ODRIndicator, IntptrTy), nullptr);
1527
1528 if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true;
1529
1530 DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n");
1531 }
1532
1533
1534 GlobalVariable *AllGlobals = nullptr;
1535 GlobalVariable *RegisteredFlag = nullptr;
1536
1537 // On recent Mach-O platforms, we emit the global metadata in a way that
1538 // allows the linker to properly strip dead globals.
1539 if (ShouldUseMachOGlobalsSection()) {
1540 // RegisteredFlag serves two purposes. First, we can pass it to dladdr()
1541 // to look up the loaded image that contains it. Second, we can store in it
1542 // whether registration has already occurred, to prevent duplicate
1543 // registration.
1544 //
1545 // Common linkage allows us to coalesce needles defined in each object
1546 // file so that there's only one per shared library.
1547 RegisteredFlag = new GlobalVariable(
1548 M, IntptrTy, false, GlobalVariable::CommonLinkage,
1549 ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName);
1550
1551 // We also emit a structure which binds the liveness of the global
1552 // variable to the metadata struct.
1553 StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy, nullptr);
1554
1555 for (size_t i = 0; i < n; i++) {
1556 GlobalVariable *Metadata = new GlobalVariable(
1557 M, GlobalStructTy, false, GlobalVariable::InternalLinkage,
1558 Initializers[i], "");
1559 Metadata->setSection("__DATA,__asan_globals,regular");
1560 Metadata->setAlignment(1); // don't leave padding in between
1561
1562 auto LivenessBinder = ConstantStruct::get(LivenessTy,
1563 Initializers[i]->getAggregateElement(0u),
1564 ConstantExpr::getPointerCast(Metadata, IntptrTy),
1565 nullptr);
1566 GlobalVariable *Liveness = new GlobalVariable(
1567 M, LivenessTy, false, GlobalVariable::InternalLinkage,
1568 LivenessBinder, "");
1569 Liveness->setSection("__DATA,__asan_liveness,regular,live_support");
1570 }
1571 } else {
1572 // On all other platfoms, we just emit an array of global metadata
1573 // structures.
1574 ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n);
1575 AllGlobals = new GlobalVariable(
1576 M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage,
1577 ConstantArray::get(ArrayOfGlobalStructTy, Initializers), "");
1578 }
1579
1580 // Create calls for poisoning before initializers run and unpoisoning after.
1581 if (HasDynamicallyInitializedGlobals)
1582 createInitializerPoisonCalls(M, ModuleName);
1583
1584 // Create a call to register the globals with the runtime.
1585 if (ShouldUseMachOGlobalsSection()) {
1586 IRB.CreateCall(AsanRegisterImageGlobals,
1587 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
1588 } else {
1589 IRB.CreateCall(AsanRegisterGlobals,
1590 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1591 ConstantInt::get(IntptrTy, n)});
1592 }
1593
1594 // We also need to unregister globals at the end, e.g., when a shared library
1595 // gets closed.
1596 Function *AsanDtorFunction =
1597 Function::Create(FunctionType::get(Type::getVoidTy(*C), false),
1598 GlobalValue::InternalLinkage, kAsanModuleDtorName, &M);
1599 BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction);
1600 IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB));
1601
1602 if (ShouldUseMachOGlobalsSection()) {
1603 IRB_Dtor.CreateCall(AsanUnregisterImageGlobals,
1604 {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)});
1605 } else {
1606 IRB_Dtor.CreateCall(AsanUnregisterGlobals,
1607 {IRB.CreatePointerCast(AllGlobals, IntptrTy),
1608 ConstantInt::get(IntptrTy, n)});
1609 }
1610
1611 appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndDtorPriority);
1612
1613 DEBUG(dbgs() << M);
1614 return true;
1615 }
1616
runOnModule(Module & M)1617 bool AddressSanitizerModule::runOnModule(Module &M) {
1618 C = &(M.getContext());
1619 int LongSize = M.getDataLayout().getPointerSizeInBits();
1620 IntptrTy = Type::getIntNTy(*C, LongSize);
1621 TargetTriple = Triple(M.getTargetTriple());
1622 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
1623 initializeCallbacks(M);
1624
1625 bool Changed = false;
1626
1627 // TODO(glider): temporarily disabled globals instrumentation for KASan.
1628 if (ClGlobals && !CompileKernel) {
1629 Function *CtorFunc = M.getFunction(kAsanModuleCtorName);
1630 assert(CtorFunc);
1631 IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator());
1632 Changed |= InstrumentGlobals(IRB, M);
1633 }
1634
1635 return Changed;
1636 }
1637
initializeCallbacks(Module & M)1638 void AddressSanitizer::initializeCallbacks(Module &M) {
1639 IRBuilder<> IRB(*C);
1640 // Create __asan_report* callbacks.
1641 // IsWrite, TypeSize and Exp are encoded in the function name.
1642 for (int Exp = 0; Exp < 2; Exp++) {
1643 for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) {
1644 const std::string TypeStr = AccessIsWrite ? "store" : "load";
1645 const std::string ExpStr = Exp ? "exp_" : "";
1646 const std::string SuffixStr = CompileKernel ? "N" : "_n";
1647 const std::string EndingStr = Recover ? "_noabort" : "";
1648 Type *ExpType = Exp ? Type::getInt32Ty(*C) : nullptr;
1649 AsanErrorCallbackSized[AccessIsWrite][Exp] =
1650 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1651 kAsanReportErrorTemplate + ExpStr + TypeStr + SuffixStr + EndingStr,
1652 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1653 AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] =
1654 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1655 ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr,
1656 IRB.getVoidTy(), IntptrTy, IntptrTy, ExpType, nullptr));
1657 for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes;
1658 AccessSizeIndex++) {
1659 const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex);
1660 AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1661 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1662 kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr,
1663 IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1664 AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] =
1665 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1666 ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr,
1667 IRB.getVoidTy(), IntptrTy, ExpType, nullptr));
1668 }
1669 }
1670 }
1671
1672 const std::string MemIntrinCallbackPrefix =
1673 CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix;
1674 AsanMemmove = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1675 MemIntrinCallbackPrefix + "memmove", IRB.getInt8PtrTy(),
1676 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1677 AsanMemcpy = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1678 MemIntrinCallbackPrefix + "memcpy", IRB.getInt8PtrTy(),
1679 IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy, nullptr));
1680 AsanMemset = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1681 MemIntrinCallbackPrefix + "memset", IRB.getInt8PtrTy(),
1682 IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy, nullptr));
1683
1684 AsanHandleNoReturnFunc = checkSanitizerInterfaceFunction(
1685 M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy(), nullptr));
1686
1687 AsanPtrCmpFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1688 kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1689 AsanPtrSubFunction = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1690 kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1691 // We insert an empty inline asm after __asan_report* to avoid callback merge.
1692 EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false),
1693 StringRef(""), StringRef(""),
1694 /*hasSideEffects=*/true);
1695 }
1696
1697 // virtual
doInitialization(Module & M)1698 bool AddressSanitizer::doInitialization(Module &M) {
1699 // Initialize the private fields. No one has accessed them before.
1700
1701 GlobalsMD.init(M);
1702
1703 C = &(M.getContext());
1704 LongSize = M.getDataLayout().getPointerSizeInBits();
1705 IntptrTy = Type::getIntNTy(*C, LongSize);
1706 TargetTriple = Triple(M.getTargetTriple());
1707
1708 if (!CompileKernel) {
1709 std::tie(AsanCtorFunction, AsanInitFunction) =
1710 createSanitizerCtorAndInitFunctions(
1711 M, kAsanModuleCtorName, kAsanInitName,
1712 /*InitArgTypes=*/{}, /*InitArgs=*/{}, kAsanVersionCheckName);
1713 appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndDtorPriority);
1714 }
1715 Mapping = getShadowMapping(TargetTriple, LongSize, CompileKernel);
1716 return true;
1717 }
1718
doFinalization(Module & M)1719 bool AddressSanitizer::doFinalization(Module &M) {
1720 GlobalsMD.reset();
1721 return false;
1722 }
1723
maybeInsertAsanInitAtFunctionEntry(Function & F)1724 bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) {
1725 // For each NSObject descendant having a +load method, this method is invoked
1726 // by the ObjC runtime before any of the static constructors is called.
1727 // Therefore we need to instrument such methods with a call to __asan_init
1728 // at the beginning in order to initialize our runtime before any access to
1729 // the shadow memory.
1730 // We cannot just ignore these methods, because they may call other
1731 // instrumented functions.
1732 if (F.getName().find(" load]") != std::string::npos) {
1733 IRBuilder<> IRB(&F.front(), F.front().begin());
1734 IRB.CreateCall(AsanInitFunction, {});
1735 return true;
1736 }
1737 return false;
1738 }
1739
markEscapedLocalAllocas(Function & F)1740 void AddressSanitizer::markEscapedLocalAllocas(Function &F) {
1741 // Find the one possible call to llvm.localescape and pre-mark allocas passed
1742 // to it as uninteresting. This assumes we haven't started processing allocas
1743 // yet. This check is done up front because iterating the use list in
1744 // isInterestingAlloca would be algorithmically slower.
1745 assert(ProcessedAllocas.empty() && "must process localescape before allocas");
1746
1747 // Try to get the declaration of llvm.localescape. If it's not in the module,
1748 // we can exit early.
1749 if (!F.getParent()->getFunction("llvm.localescape")) return;
1750
1751 // Look for a call to llvm.localescape call in the entry block. It can't be in
1752 // any other block.
1753 for (Instruction &I : F.getEntryBlock()) {
1754 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I);
1755 if (II && II->getIntrinsicID() == Intrinsic::localescape) {
1756 // We found a call. Mark all the allocas passed in as uninteresting.
1757 for (Value *Arg : II->arg_operands()) {
1758 AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
1759 assert(AI && AI->isStaticAlloca() &&
1760 "non-static alloca arg to localescape");
1761 ProcessedAllocas[AI] = false;
1762 }
1763 break;
1764 }
1765 }
1766 }
1767
runOnFunction(Function & F)1768 bool AddressSanitizer::runOnFunction(Function &F) {
1769 if (&F == AsanCtorFunction) return false;
1770 if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false;
1771 DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n");
1772 initializeCallbacks(*F.getParent());
1773
1774 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1775
1776 // If needed, insert __asan_init before checking for SanitizeAddress attr.
1777 maybeInsertAsanInitAtFunctionEntry(F);
1778
1779 if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return false;
1780
1781 if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) return false;
1782
1783 FunctionStateRAII CleanupObj(this);
1784
1785 // We can't instrument allocas used with llvm.localescape. Only static allocas
1786 // can be passed to that intrinsic.
1787 markEscapedLocalAllocas(F);
1788
1789 // We want to instrument every address only once per basic block (unless there
1790 // are calls between uses).
1791 SmallSet<Value *, 16> TempsToInstrument;
1792 SmallVector<Instruction *, 16> ToInstrument;
1793 SmallVector<Instruction *, 8> NoReturnCalls;
1794 SmallVector<BasicBlock *, 16> AllBlocks;
1795 SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts;
1796 int NumAllocas = 0;
1797 bool IsWrite;
1798 unsigned Alignment;
1799 uint64_t TypeSize;
1800 const TargetLibraryInfo *TLI =
1801 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
1802
1803 // Fill the set of memory operations to instrument.
1804 for (auto &BB : F) {
1805 AllBlocks.push_back(&BB);
1806 TempsToInstrument.clear();
1807 int NumInsnsPerBB = 0;
1808 for (auto &Inst : BB) {
1809 if (LooksLikeCodeInBug11395(&Inst)) return false;
1810 if (Value *Addr = isInterestingMemoryAccess(&Inst, &IsWrite, &TypeSize,
1811 &Alignment)) {
1812 if (ClOpt && ClOptSameTemp) {
1813 if (!TempsToInstrument.insert(Addr).second)
1814 continue; // We've seen this temp in the current BB.
1815 }
1816 } else if (ClInvalidPointerPairs &&
1817 isInterestingPointerComparisonOrSubtraction(&Inst)) {
1818 PointerComparisonsOrSubtracts.push_back(&Inst);
1819 continue;
1820 } else if (isa<MemIntrinsic>(Inst)) {
1821 // ok, take it.
1822 } else {
1823 if (isa<AllocaInst>(Inst)) NumAllocas++;
1824 CallSite CS(&Inst);
1825 if (CS) {
1826 // A call inside BB.
1827 TempsToInstrument.clear();
1828 if (CS.doesNotReturn()) NoReturnCalls.push_back(CS.getInstruction());
1829 }
1830 if (CallInst *CI = dyn_cast<CallInst>(&Inst))
1831 maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI);
1832 continue;
1833 }
1834 ToInstrument.push_back(&Inst);
1835 NumInsnsPerBB++;
1836 if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break;
1837 }
1838 }
1839
1840 bool UseCalls =
1841 CompileKernel ||
1842 (ClInstrumentationWithCallsThreshold >= 0 &&
1843 ToInstrument.size() > (unsigned)ClInstrumentationWithCallsThreshold);
1844 const DataLayout &DL = F.getParent()->getDataLayout();
1845 ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(),
1846 /*RoundToAlign=*/true);
1847
1848 // Instrument.
1849 int NumInstrumented = 0;
1850 for (auto Inst : ToInstrument) {
1851 if (ClDebugMin < 0 || ClDebugMax < 0 ||
1852 (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) {
1853 if (isInterestingMemoryAccess(Inst, &IsWrite, &TypeSize, &Alignment))
1854 instrumentMop(ObjSizeVis, Inst, UseCalls,
1855 F.getParent()->getDataLayout());
1856 else
1857 instrumentMemIntrinsic(cast<MemIntrinsic>(Inst));
1858 }
1859 NumInstrumented++;
1860 }
1861
1862 FunctionStackPoisoner FSP(F, *this);
1863 bool ChangedStack = FSP.runOnFunction();
1864
1865 // We must unpoison the stack before every NoReturn call (throw, _exit, etc).
1866 // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37
1867 for (auto CI : NoReturnCalls) {
1868 IRBuilder<> IRB(CI);
1869 IRB.CreateCall(AsanHandleNoReturnFunc, {});
1870 }
1871
1872 for (auto Inst : PointerComparisonsOrSubtracts) {
1873 instrumentPointerComparisonOrSubtraction(Inst);
1874 NumInstrumented++;
1875 }
1876
1877 bool res = NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty();
1878
1879 DEBUG(dbgs() << "ASAN done instrumenting: " << res << " " << F << "\n");
1880
1881 return res;
1882 }
1883
1884 // Workaround for bug 11395: we don't want to instrument stack in functions
1885 // with large assembly blobs (32-bit only), otherwise reg alloc may crash.
1886 // FIXME: remove once the bug 11395 is fixed.
LooksLikeCodeInBug11395(Instruction * I)1887 bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) {
1888 if (LongSize != 32) return false;
1889 CallInst *CI = dyn_cast<CallInst>(I);
1890 if (!CI || !CI->isInlineAsm()) return false;
1891 if (CI->getNumArgOperands() <= 5) return false;
1892 // We have inline assembly with quite a few arguments.
1893 return true;
1894 }
1895
initializeCallbacks(Module & M)1896 void FunctionStackPoisoner::initializeCallbacks(Module &M) {
1897 IRBuilder<> IRB(*C);
1898 for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) {
1899 std::string Suffix = itostr(i);
1900 AsanStackMallocFunc[i] = checkSanitizerInterfaceFunction(
1901 M.getOrInsertFunction(kAsanStackMallocNameTemplate + Suffix, IntptrTy,
1902 IntptrTy, nullptr));
1903 AsanStackFreeFunc[i] = checkSanitizerInterfaceFunction(
1904 M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix,
1905 IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1906 }
1907 if (ASan.UseAfterScope) {
1908 AsanPoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
1909 M.getOrInsertFunction(kAsanPoisonStackMemoryName, IRB.getVoidTy(),
1910 IntptrTy, IntptrTy, nullptr));
1911 AsanUnpoisonStackMemoryFunc = checkSanitizerInterfaceFunction(
1912 M.getOrInsertFunction(kAsanUnpoisonStackMemoryName, IRB.getVoidTy(),
1913 IntptrTy, IntptrTy, nullptr));
1914 }
1915
1916 AsanAllocaPoisonFunc = checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1917 kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1918 AsanAllocasUnpoisonFunc =
1919 checkSanitizerInterfaceFunction(M.getOrInsertFunction(
1920 kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy, nullptr));
1921 }
1922
poisonRedZones(ArrayRef<uint8_t> ShadowBytes,IRBuilder<> & IRB,Value * ShadowBase,bool DoPoison)1923 void FunctionStackPoisoner::poisonRedZones(ArrayRef<uint8_t> ShadowBytes,
1924 IRBuilder<> &IRB, Value *ShadowBase,
1925 bool DoPoison) {
1926 size_t n = ShadowBytes.size();
1927 size_t i = 0;
1928 // We need to (un)poison n bytes of stack shadow. Poison as many as we can
1929 // using 64-bit stores (if we are on 64-bit arch), then poison the rest
1930 // with 32-bit stores, then with 16-byte stores, then with 8-byte stores.
1931 for (size_t LargeStoreSizeInBytes = ASan.LongSize / 8;
1932 LargeStoreSizeInBytes != 0; LargeStoreSizeInBytes /= 2) {
1933 for (; i + LargeStoreSizeInBytes - 1 < n; i += LargeStoreSizeInBytes) {
1934 uint64_t Val = 0;
1935 for (size_t j = 0; j < LargeStoreSizeInBytes; j++) {
1936 if (F.getParent()->getDataLayout().isLittleEndian())
1937 Val |= (uint64_t)ShadowBytes[i + j] << (8 * j);
1938 else
1939 Val = (Val << 8) | ShadowBytes[i + j];
1940 }
1941 if (!Val) continue;
1942 Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
1943 Type *StoreTy = Type::getIntNTy(*C, LargeStoreSizeInBytes * 8);
1944 Value *Poison = ConstantInt::get(StoreTy, DoPoison ? Val : 0);
1945 IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, StoreTy->getPointerTo()));
1946 }
1947 }
1948 }
1949
1950 // Fake stack allocator (asan_fake_stack.h) has 11 size classes
1951 // for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass
StackMallocSizeClass(uint64_t LocalStackSize)1952 static int StackMallocSizeClass(uint64_t LocalStackSize) {
1953 assert(LocalStackSize <= kMaxStackMallocSize);
1954 uint64_t MaxSize = kMinStackMallocSize;
1955 for (int i = 0;; i++, MaxSize *= 2)
1956 if (LocalStackSize <= MaxSize) return i;
1957 llvm_unreachable("impossible LocalStackSize");
1958 }
1959
1960 // Set Size bytes starting from ShadowBase to kAsanStackAfterReturnMagic.
1961 // We can not use MemSet intrinsic because it may end up calling the actual
1962 // memset. Size is a multiple of 8.
1963 // Currently this generates 8-byte stores on x86_64; it may be better to
1964 // generate wider stores.
SetShadowToStackAfterReturnInlined(IRBuilder<> & IRB,Value * ShadowBase,int Size)1965 void FunctionStackPoisoner::SetShadowToStackAfterReturnInlined(
1966 IRBuilder<> &IRB, Value *ShadowBase, int Size) {
1967 assert(!(Size % 8));
1968
1969 // kAsanStackAfterReturnMagic is 0xf5.
1970 const uint64_t kAsanStackAfterReturnMagic64 = 0xf5f5f5f5f5f5f5f5ULL;
1971
1972 for (int i = 0; i < Size; i += 8) {
1973 Value *p = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i));
1974 IRB.CreateStore(
1975 ConstantInt::get(IRB.getInt64Ty(), kAsanStackAfterReturnMagic64),
1976 IRB.CreateIntToPtr(p, IRB.getInt64Ty()->getPointerTo()));
1977 }
1978 }
1979
createPHI(IRBuilder<> & IRB,Value * Cond,Value * ValueIfTrue,Instruction * ThenTerm,Value * ValueIfFalse)1980 PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond,
1981 Value *ValueIfTrue,
1982 Instruction *ThenTerm,
1983 Value *ValueIfFalse) {
1984 PHINode *PHI = IRB.CreatePHI(IntptrTy, 2);
1985 BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent();
1986 PHI->addIncoming(ValueIfFalse, CondBlock);
1987 BasicBlock *ThenBlock = ThenTerm->getParent();
1988 PHI->addIncoming(ValueIfTrue, ThenBlock);
1989 return PHI;
1990 }
1991
createAllocaForLayout(IRBuilder<> & IRB,const ASanStackFrameLayout & L,bool Dynamic)1992 Value *FunctionStackPoisoner::createAllocaForLayout(
1993 IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) {
1994 AllocaInst *Alloca;
1995 if (Dynamic) {
1996 Alloca = IRB.CreateAlloca(IRB.getInt8Ty(),
1997 ConstantInt::get(IRB.getInt64Ty(), L.FrameSize),
1998 "MyAlloca");
1999 } else {
2000 Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize),
2001 nullptr, "MyAlloca");
2002 assert(Alloca->isStaticAlloca());
2003 }
2004 assert((ClRealignStack & (ClRealignStack - 1)) == 0);
2005 size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack);
2006 Alloca->setAlignment(FrameAlignment);
2007 return IRB.CreatePointerCast(Alloca, IntptrTy);
2008 }
2009
createDynamicAllocasInitStorage()2010 void FunctionStackPoisoner::createDynamicAllocasInitStorage() {
2011 BasicBlock &FirstBB = *F.begin();
2012 IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin()));
2013 DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr);
2014 IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout);
2015 DynamicAllocaLayout->setAlignment(32);
2016 }
2017
poisonStack()2018 void FunctionStackPoisoner::poisonStack() {
2019 assert(AllocaVec.size() > 0 || DynamicAllocaVec.size() > 0);
2020
2021 // Insert poison calls for lifetime intrinsics for alloca.
2022 bool HavePoisonedStaticAllocas = false;
2023 for (const auto &APC : AllocaPoisonCallVec) {
2024 assert(APC.InsBefore);
2025 assert(APC.AI);
2026 assert(ASan.isInterestingAlloca(*APC.AI));
2027 bool IsDynamicAlloca = !(*APC.AI).isStaticAlloca();
2028 if (!ClInstrumentAllocas && IsDynamicAlloca)
2029 continue;
2030
2031 IRBuilder<> IRB(APC.InsBefore);
2032 poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison);
2033 // Dynamic allocas will be unpoisoned unconditionally below in
2034 // unpoisonDynamicAllocas.
2035 // Flag that we need unpoison static allocas.
2036 HavePoisonedStaticAllocas |= (APC.DoPoison && !IsDynamicAlloca);
2037 }
2038
2039 if (ClInstrumentAllocas && DynamicAllocaVec.size() > 0) {
2040 // Handle dynamic allocas.
2041 createDynamicAllocasInitStorage();
2042 for (auto &AI : DynamicAllocaVec) handleDynamicAllocaCall(AI);
2043
2044 unpoisonDynamicAllocas();
2045 }
2046
2047 if (AllocaVec.empty()) return;
2048
2049 int StackMallocIdx = -1;
2050 DebugLoc EntryDebugLocation;
2051 if (auto SP = F.getSubprogram())
2052 EntryDebugLocation = DebugLoc::get(SP->getScopeLine(), 0, SP);
2053
2054 Instruction *InsBefore = AllocaVec[0];
2055 IRBuilder<> IRB(InsBefore);
2056 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2057
2058 // Make sure non-instrumented allocas stay in the entry block. Otherwise,
2059 // debug info is broken, because only entry-block allocas are treated as
2060 // regular stack slots.
2061 auto InsBeforeB = InsBefore->getParent();
2062 assert(InsBeforeB == &F.getEntryBlock());
2063 for (BasicBlock::iterator I(InsBefore); I != InsBeforeB->end(); ++I)
2064 if (auto *AI = dyn_cast<AllocaInst>(I))
2065 if (NonInstrumentedStaticAllocaVec.count(AI) > 0)
2066 AI->moveBefore(InsBefore);
2067
2068 // If we have a call to llvm.localescape, keep it in the entry block.
2069 if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore);
2070
2071 SmallVector<ASanStackVariableDescription, 16> SVD;
2072 SVD.reserve(AllocaVec.size());
2073 for (AllocaInst *AI : AllocaVec) {
2074 ASanStackVariableDescription D = {AI->getName().data(),
2075 ASan.getAllocaSizeInBytes(AI),
2076 AI->getAlignment(), AI, 0};
2077 SVD.push_back(D);
2078 }
2079 // Minimal header size (left redzone) is 4 pointers,
2080 // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms.
2081 size_t MinHeaderSize = ASan.LongSize / 2;
2082 ASanStackFrameLayout L;
2083 ComputeASanStackFrameLayout(SVD, 1ULL << Mapping.Scale, MinHeaderSize, &L);
2084 DEBUG(dbgs() << L.DescriptionString << " --- " << L.FrameSize << "\n");
2085 uint64_t LocalStackSize = L.FrameSize;
2086 bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel &&
2087 LocalStackSize <= kMaxStackMallocSize;
2088 bool DoDynamicAlloca = ClDynamicAllocaStack;
2089 // Don't do dynamic alloca or stack malloc if:
2090 // 1) There is inline asm: too often it makes assumptions on which registers
2091 // are available.
2092 // 2) There is a returns_twice call (typically setjmp), which is
2093 // optimization-hostile, and doesn't play well with introduced indirect
2094 // register-relative calculation of local variable addresses.
2095 DoDynamicAlloca &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2096 DoStackMalloc &= !HasNonEmptyInlineAsm && !HasReturnsTwiceCall;
2097
2098 Value *StaticAlloca =
2099 DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false);
2100
2101 Value *FakeStack;
2102 Value *LocalStackBase;
2103
2104 if (DoStackMalloc) {
2105 // void *FakeStack = __asan_option_detect_stack_use_after_return
2106 // ? __asan_stack_malloc_N(LocalStackSize)
2107 // : nullptr;
2108 // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize);
2109 Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal(
2110 kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty());
2111 Value *UseAfterReturnIsEnabled =
2112 IRB.CreateICmpNE(IRB.CreateLoad(OptionDetectUseAfterReturn),
2113 Constant::getNullValue(IRB.getInt32Ty()));
2114 Instruction *Term =
2115 SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false);
2116 IRBuilder<> IRBIf(Term);
2117 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2118 StackMallocIdx = StackMallocSizeClass(LocalStackSize);
2119 assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass);
2120 Value *FakeStackValue =
2121 IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx],
2122 ConstantInt::get(IntptrTy, LocalStackSize));
2123 IRB.SetInsertPoint(InsBefore);
2124 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2125 FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term,
2126 ConstantInt::get(IntptrTy, 0));
2127
2128 Value *NoFakeStack =
2129 IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy));
2130 Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false);
2131 IRBIf.SetInsertPoint(Term);
2132 IRBIf.SetCurrentDebugLocation(EntryDebugLocation);
2133 Value *AllocaValue =
2134 DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca;
2135 IRB.SetInsertPoint(InsBefore);
2136 IRB.SetCurrentDebugLocation(EntryDebugLocation);
2137 LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack);
2138 } else {
2139 // void *FakeStack = nullptr;
2140 // void *LocalStackBase = alloca(LocalStackSize);
2141 FakeStack = ConstantInt::get(IntptrTy, 0);
2142 LocalStackBase =
2143 DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca;
2144 }
2145
2146 // Replace Alloca instructions with base+offset.
2147 for (const auto &Desc : SVD) {
2148 AllocaInst *AI = Desc.AI;
2149 Value *NewAllocaPtr = IRB.CreateIntToPtr(
2150 IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)),
2151 AI->getType());
2152 replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB, /*Deref=*/true);
2153 AI->replaceAllUsesWith(NewAllocaPtr);
2154 }
2155
2156 // The left-most redzone has enough space for at least 4 pointers.
2157 // Write the Magic value to redzone[0].
2158 Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy);
2159 IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic),
2160 BasePlus0);
2161 // Write the frame description constant to redzone[1].
2162 Value *BasePlus1 = IRB.CreateIntToPtr(
2163 IRB.CreateAdd(LocalStackBase,
2164 ConstantInt::get(IntptrTy, ASan.LongSize / 8)),
2165 IntptrPtrTy);
2166 GlobalVariable *StackDescriptionGlobal =
2167 createPrivateGlobalForString(*F.getParent(), L.DescriptionString,
2168 /*AllowMerging*/ true);
2169 Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy);
2170 IRB.CreateStore(Description, BasePlus1);
2171 // Write the PC to redzone[2].
2172 Value *BasePlus2 = IRB.CreateIntToPtr(
2173 IRB.CreateAdd(LocalStackBase,
2174 ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)),
2175 IntptrPtrTy);
2176 IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2);
2177
2178 // Poison the stack redzones at the entry.
2179 Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB);
2180 poisonRedZones(L.ShadowBytes, IRB, ShadowBase, true);
2181
2182 auto UnpoisonStack = [&](IRBuilder<> &IRB) {
2183 if (HavePoisonedStaticAllocas) {
2184 // If we poisoned some allocas in llvm.lifetime analysis,
2185 // unpoison whole stack frame now.
2186 poisonAlloca(LocalStackBase, LocalStackSize, IRB, false);
2187 } else {
2188 poisonRedZones(L.ShadowBytes, IRB, ShadowBase, false);
2189 }
2190 };
2191
2192 // (Un)poison the stack before all ret instructions.
2193 for (auto Ret : RetVec) {
2194 IRBuilder<> IRBRet(Ret);
2195 // Mark the current frame as retired.
2196 IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic),
2197 BasePlus0);
2198 if (DoStackMalloc) {
2199 assert(StackMallocIdx >= 0);
2200 // if FakeStack != 0 // LocalStackBase == FakeStack
2201 // // In use-after-return mode, poison the whole stack frame.
2202 // if StackMallocIdx <= 4
2203 // // For small sizes inline the whole thing:
2204 // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize);
2205 // **SavedFlagPtr(FakeStack) = 0
2206 // else
2207 // __asan_stack_free_N(FakeStack, LocalStackSize)
2208 // else
2209 // <This is not a fake stack; unpoison the redzones>
2210 Value *Cmp =
2211 IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy));
2212 TerminatorInst *ThenTerm, *ElseTerm;
2213 SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm);
2214
2215 IRBuilder<> IRBPoison(ThenTerm);
2216 if (StackMallocIdx <= 4) {
2217 int ClassSize = kMinStackMallocSize << StackMallocIdx;
2218 SetShadowToStackAfterReturnInlined(IRBPoison, ShadowBase,
2219 ClassSize >> Mapping.Scale);
2220 Value *SavedFlagPtrPtr = IRBPoison.CreateAdd(
2221 FakeStack,
2222 ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8));
2223 Value *SavedFlagPtr = IRBPoison.CreateLoad(
2224 IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy));
2225 IRBPoison.CreateStore(
2226 Constant::getNullValue(IRBPoison.getInt8Ty()),
2227 IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy()));
2228 } else {
2229 // For larger frames call __asan_stack_free_*.
2230 IRBPoison.CreateCall(
2231 AsanStackFreeFunc[StackMallocIdx],
2232 {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)});
2233 }
2234
2235 IRBuilder<> IRBElse(ElseTerm);
2236 UnpoisonStack(IRBElse);
2237 } else {
2238 UnpoisonStack(IRBRet);
2239 }
2240 }
2241
2242 // We are done. Remove the old unused alloca instructions.
2243 for (auto AI : AllocaVec) AI->eraseFromParent();
2244 }
2245
poisonAlloca(Value * V,uint64_t Size,IRBuilder<> & IRB,bool DoPoison)2246 void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size,
2247 IRBuilder<> &IRB, bool DoPoison) {
2248 // For now just insert the call to ASan runtime.
2249 Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy);
2250 Value *SizeArg = ConstantInt::get(IntptrTy, Size);
2251 IRB.CreateCall(
2252 DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc,
2253 {AddrArg, SizeArg});
2254 }
2255
2256 // Handling llvm.lifetime intrinsics for a given %alloca:
2257 // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca.
2258 // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect
2259 // invalid accesses) and unpoison it for llvm.lifetime.start (the memory
2260 // could be poisoned by previous llvm.lifetime.end instruction, as the
2261 // variable may go in and out of scope several times, e.g. in loops).
2262 // (3) if we poisoned at least one %alloca in a function,
2263 // unpoison the whole stack frame at function exit.
2264
findAllocaForValue(Value * V)2265 AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) {
2266 if (AllocaInst *AI = dyn_cast<AllocaInst>(V))
2267 // We're intested only in allocas we can handle.
2268 return ASan.isInterestingAlloca(*AI) ? AI : nullptr;
2269 // See if we've already calculated (or started to calculate) alloca for a
2270 // given value.
2271 AllocaForValueMapTy::iterator I = AllocaForValue.find(V);
2272 if (I != AllocaForValue.end()) return I->second;
2273 // Store 0 while we're calculating alloca for value V to avoid
2274 // infinite recursion if the value references itself.
2275 AllocaForValue[V] = nullptr;
2276 AllocaInst *Res = nullptr;
2277 if (CastInst *CI = dyn_cast<CastInst>(V))
2278 Res = findAllocaForValue(CI->getOperand(0));
2279 else if (PHINode *PN = dyn_cast<PHINode>(V)) {
2280 for (Value *IncValue : PN->incoming_values()) {
2281 // Allow self-referencing phi-nodes.
2282 if (IncValue == PN) continue;
2283 AllocaInst *IncValueAI = findAllocaForValue(IncValue);
2284 // AI for incoming values should exist and should all be equal.
2285 if (IncValueAI == nullptr || (Res != nullptr && IncValueAI != Res))
2286 return nullptr;
2287 Res = IncValueAI;
2288 }
2289 }
2290 if (Res) AllocaForValue[V] = Res;
2291 return Res;
2292 }
2293
handleDynamicAllocaCall(AllocaInst * AI)2294 void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) {
2295 IRBuilder<> IRB(AI);
2296
2297 const unsigned Align = std::max(kAllocaRzSize, AI->getAlignment());
2298 const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1;
2299
2300 Value *Zero = Constant::getNullValue(IntptrTy);
2301 Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize);
2302 Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask);
2303
2304 // Since we need to extend alloca with additional memory to locate
2305 // redzones, and OldSize is number of allocated blocks with
2306 // ElementSize size, get allocated memory size in bytes by
2307 // OldSize * ElementSize.
2308 const unsigned ElementSize =
2309 F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType());
2310 Value *OldSize =
2311 IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false),
2312 ConstantInt::get(IntptrTy, ElementSize));
2313
2314 // PartialSize = OldSize % 32
2315 Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask);
2316
2317 // Misalign = kAllocaRzSize - PartialSize;
2318 Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize);
2319
2320 // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0;
2321 Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize);
2322 Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero);
2323
2324 // AdditionalChunkSize = Align + PartialPadding + kAllocaRzSize
2325 // Align is added to locate left redzone, PartialPadding for possible
2326 // partial redzone and kAllocaRzSize for right redzone respectively.
2327 Value *AdditionalChunkSize = IRB.CreateAdd(
2328 ConstantInt::get(IntptrTy, Align + kAllocaRzSize), PartialPadding);
2329
2330 Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize);
2331
2332 // Insert new alloca with new NewSize and Align params.
2333 AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize);
2334 NewAlloca->setAlignment(Align);
2335
2336 // NewAddress = Address + Align
2337 Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy),
2338 ConstantInt::get(IntptrTy, Align));
2339
2340 // Insert __asan_alloca_poison call for new created alloca.
2341 IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize});
2342
2343 // Store the last alloca's address to DynamicAllocaLayout. We'll need this
2344 // for unpoisoning stuff.
2345 IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout);
2346
2347 Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType());
2348
2349 // Replace all uses of AddessReturnedByAlloca with NewAddressPtr.
2350 AI->replaceAllUsesWith(NewAddressPtr);
2351
2352 // We are done. Erase old alloca from parent.
2353 AI->eraseFromParent();
2354 }
2355
2356 // isSafeAccess returns true if Addr is always inbounds with respect to its
2357 // base object. For example, it is a field access or an array access with
2358 // constant inbounds index.
isSafeAccess(ObjectSizeOffsetVisitor & ObjSizeVis,Value * Addr,uint64_t TypeSize) const2359 bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis,
2360 Value *Addr, uint64_t TypeSize) const {
2361 SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr);
2362 if (!ObjSizeVis.bothKnown(SizeOffset)) return false;
2363 uint64_t Size = SizeOffset.first.getZExtValue();
2364 int64_t Offset = SizeOffset.second.getSExtValue();
2365 // Three checks are required to ensure safety:
2366 // . Offset >= 0 (since the offset is given from the base ptr)
2367 // . Size >= Offset (unsigned)
2368 // . Size - Offset >= NeededSize (unsigned)
2369 return Offset >= 0 && Size >= uint64_t(Offset) &&
2370 Size - uint64_t(Offset) >= TypeSize / 8;
2371 }
2372