• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // MSA common macros
11 //
12 // Author(s):  Prashant Patil   (prashant.patil@imgtec.com)
13 
14 #ifndef WEBP_DSP_MSA_MACRO_H_
15 #define WEBP_DSP_MSA_MACRO_H_
16 
17 #include <stdint.h>
18 #include <msa.h>
19 
20 #if defined(__clang__)
21   #define CLANG_BUILD
22 #endif
23 
24 #ifdef CLANG_BUILD
25   #define ADDVI_H(a, b)  __msa_addvi_h((v8i16)a, b)
26   #define ADDVI_W(a, b)  __msa_addvi_w((v4i32)a, b)
27   #define SRAI_B(a, b)  __msa_srai_b((v16i8)a, b)
28   #define SRAI_H(a, b)  __msa_srai_h((v8i16)a, b)
29   #define SRAI_W(a, b)  __msa_srai_w((v4i32)a, b)
30   #define SRLI_H(a, b)  __msa_srli_h((v8i16)a, b)
31   #define SLLI_B(a, b)  __msa_slli_b((v4i32)a, b)
32   #define ANDI_B(a, b)  __msa_andi_b((v16u8)a, b)
33   #define ORI_B(a, b)   __msa_ori_b((v16u8)a, b)
34 #else
35   #define ADDVI_H(a, b)  (a + b)
36   #define ADDVI_W(a, b)  (a + b)
37   #define SRAI_B(a, b)  (a >> b)
38   #define SRAI_H(a, b)  (a >> b)
39   #define SRAI_W(a, b)  (a >> b)
40   #define SRLI_H(a, b)  (a << b)
41   #define SLLI_B(a, b)  (a << b)
42   #define ANDI_B(a, b)  (a & b)
43   #define ORI_B(a, b)   (a | b)
44 #endif
45 
46 #define LD_B(RTYPE, psrc) *((RTYPE*)(psrc))
47 #define LD_UB(...) LD_B(v16u8, __VA_ARGS__)
48 #define LD_SB(...) LD_B(v16i8, __VA_ARGS__)
49 
50 #define LD_H(RTYPE, psrc) *((RTYPE*)(psrc))
51 #define LD_UH(...) LD_H(v8u16, __VA_ARGS__)
52 #define LD_SH(...) LD_H(v8i16, __VA_ARGS__)
53 
54 #define LD_W(RTYPE, psrc) *((RTYPE*)(psrc))
55 #define LD_UW(...) LD_W(v4u32, __VA_ARGS__)
56 #define LD_SW(...) LD_W(v4i32, __VA_ARGS__)
57 
58 #define ST_B(RTYPE, in, pdst) *((RTYPE*)(pdst)) = in
59 #define ST_UB(...) ST_B(v16u8, __VA_ARGS__)
60 #define ST_SB(...) ST_B(v16i8, __VA_ARGS__)
61 
62 #define ST_H(RTYPE, in, pdst) *((RTYPE*)(pdst)) = in
63 #define ST_UH(...) ST_H(v8u16, __VA_ARGS__)
64 #define ST_SH(...) ST_H(v8i16, __VA_ARGS__)
65 
66 #define ST_W(RTYPE, in, pdst) *((RTYPE*)(pdst)) = in
67 #define ST_UW(...) ST_W(v4u32, __VA_ARGS__)
68 #define ST_SW(...) ST_W(v4i32, __VA_ARGS__)
69 
70 #define MSA_LOAD_FUNC(TYPE, INSTR, FUNC_NAME)             \
71   static inline TYPE FUNC_NAME(const void* const psrc) {  \
72     const uint8_t* const psrc_m = (const uint8_t*)psrc;   \
73     TYPE val_m;                                           \
74     asm volatile (                                        \
75       "" #INSTR " %[val_m], %[psrc_m]  \n\t"              \
76       : [val_m] "=r" (val_m)                              \
77       : [psrc_m] "m" (*psrc_m));                          \
78     return val_m;                                         \
79   }
80 
81 #define MSA_LOAD(psrc, FUNC_NAME)  FUNC_NAME(psrc)
82 
83 #define MSA_STORE_FUNC(TYPE, INSTR, FUNC_NAME)               \
84   static inline void FUNC_NAME(TYPE val, void* const pdst) { \
85     uint8_t* const pdst_m = (uint8_t*)pdst;                  \
86     TYPE val_m = val;                                        \
87     asm volatile (                                           \
88       " " #INSTR "  %[val_m],  %[pdst_m]  \n\t"              \
89       : [pdst_m] "=m" (*pdst_m)                              \
90       : [val_m] "r" (val_m));                                \
91   }
92 
93 #define MSA_STORE(val, pdst, FUNC_NAME)  FUNC_NAME(val, pdst)
94 
95 #if (__mips_isa_rev >= 6)
96   MSA_LOAD_FUNC(uint16_t, lh, msa_lh);
97   #define LH(psrc)  MSA_LOAD(psrc, msa_lh)
98   MSA_LOAD_FUNC(uint32_t, lw, msa_lw);
99   #define LW(psrc)  MSA_LOAD(psrc, msa_lw)
100   #if (__mips == 64)
101     MSA_LOAD_FUNC(uint64_t, ld, msa_ld);
102     #define LD(psrc)  MSA_LOAD(psrc, msa_ld)
103   #else  // !(__mips == 64)
104     #define LD(psrc)  ((((uint64_t)MSA_LOAD(psrc + 4, msa_lw)) << 32) | \
105                        MSA_LOAD(psrc, msa_lw))
106   #endif  // (__mips == 64)
107 
108   MSA_STORE_FUNC(uint16_t, sh, msa_sh);
109   #define SH(val, pdst)  MSA_STORE(val, pdst, msa_sh)
110   MSA_STORE_FUNC(uint32_t, sw, msa_sw);
111   #define SW(val, pdst)  MSA_STORE(val, pdst, msa_sw)
112   MSA_STORE_FUNC(uint64_t, sd, msa_sd);
113   #define SD(val, pdst)  MSA_STORE(val, pdst, msa_sd)
114 #else  // !(__mips_isa_rev >= 6)
115   MSA_LOAD_FUNC(uint16_t, ulh, msa_ulh);
116   #define LH(psrc)  MSA_LOAD(psrc, msa_ulh)
117   MSA_LOAD_FUNC(uint32_t, ulw, msa_ulw);
118   #define LW(psrc)  MSA_LOAD(psrc, msa_ulw)
119   #if (__mips == 64)
120     MSA_LOAD_FUNC(uint64_t, uld, msa_uld);
121     #define LD(psrc)  MSA_LOAD(psrc, msa_uld)
122   #else  // !(__mips == 64)
123     #define LD(psrc)  ((((uint64_t)MSA_LOAD(psrc + 4, msa_ulw)) << 32) | \
124                         MSA_LOAD(psrc, msa_ulw))
125   #endif  // (__mips == 64)
126 
127   MSA_STORE_FUNC(uint16_t, ush, msa_ush);
128   #define SH(val, pdst)  MSA_STORE(val, pdst, msa_ush)
129   MSA_STORE_FUNC(uint32_t, usw, msa_usw);
130   #define SW(val, pdst)  MSA_STORE(val, pdst, msa_usw)
131   #define SD(val, pdst) do {                                               \
132     uint8_t* const pdst_sd_m = (uint8_t*)(pdst);                           \
133     const uint32_t val0_m = (uint32_t)(val & 0x00000000FFFFFFFF);          \
134     const uint32_t val1_m = (uint32_t)((val >> 32) & 0x00000000FFFFFFFF);  \
135     SW(val0_m, pdst_sd_m);                                                 \
136     SW(val1_m, pdst_sd_m + 4);                                             \
137   } while (0)
138 #endif  // (__mips_isa_rev >= 6)
139 
140 /* Description : Load 4 words with stride
141  * Arguments   : Inputs  - psrc, stride
142  *               Outputs - out0, out1, out2, out3
143  * Details     : Load word in 'out0' from (psrc)
144  *               Load word in 'out1' from (psrc + stride)
145  *               Load word in 'out2' from (psrc + 2 * stride)
146  *               Load word in 'out3' from (psrc + 3 * stride)
147  */
148 #define LW4(psrc, stride, out0, out1, out2, out3) do {  \
149   const uint8_t* ptmp = (const uint8_t*)psrc;           \
150   out0 = LW(ptmp);                                      \
151   ptmp += stride;                                       \
152   out1 = LW(ptmp);                                      \
153   ptmp += stride;                                       \
154   out2 = LW(ptmp);                                      \
155   ptmp += stride;                                       \
156   out3 = LW(ptmp);                                      \
157 } while (0)
158 
159 /* Description : Store words with stride
160  * Arguments   : Inputs - in0, in1, in2, in3, pdst, stride
161  * Details     : Store word from 'in0' to (pdst)
162  *               Store word from 'in1' to (pdst + stride)
163  *               Store word from 'in2' to (pdst + 2 * stride)
164  *               Store word from 'in3' to (pdst + 3 * stride)
165  */
166 #define SW4(in0, in1, in2, in3, pdst, stride) do {  \
167   uint8_t* ptmp = (uint8_t*)pdst;                   \
168   SW(in0, ptmp);                                    \
169   ptmp += stride;                                   \
170   SW(in1, ptmp);                                    \
171   ptmp += stride;                                   \
172   SW(in2, ptmp);                                    \
173   ptmp += stride;                                   \
174   SW(in3, ptmp);                                    \
175 } while (0)
176 
177 #define SW3(in0, in1, in2, pdst, stride) do {  \
178   uint8_t* ptmp = (uint8_t*)pdst;              \
179   SW(in0, ptmp);                               \
180   ptmp += stride;                              \
181   SW(in1, ptmp);                               \
182   ptmp += stride;                              \
183   SW(in2, ptmp);                               \
184 } while (0)
185 
186 #define SW2(in0, in1, pdst, stride) do {  \
187   uint8_t* ptmp = (uint8_t*)pdst;         \
188   SW(in0, ptmp);                          \
189   ptmp += stride;                         \
190   SW(in1, ptmp);                          \
191 } while (0)
192 
193 /* Description : Store 4 double words with stride
194  * Arguments   : Inputs - in0, in1, in2, in3, pdst, stride
195  * Details     : Store double word from 'in0' to (pdst)
196  *               Store double word from 'in1' to (pdst + stride)
197  *               Store double word from 'in2' to (pdst + 2 * stride)
198  *               Store double word from 'in3' to (pdst + 3 * stride)
199  */
200 #define SD4(in0, in1, in2, in3, pdst, stride) do {  \
201   uint8_t* ptmp = (uint8_t*)pdst;                   \
202   SD(in0, ptmp);                                    \
203   ptmp += stride;                                   \
204   SD(in1, ptmp);                                    \
205   ptmp += stride;                                   \
206   SD(in2, ptmp);                                    \
207   ptmp += stride;                                   \
208   SD(in3, ptmp);                                    \
209 } while (0)
210 
211 /* Description : Load vectors with 16 byte elements with stride
212  * Arguments   : Inputs  - psrc, stride
213  *               Outputs - out0, out1
214  *               Return Type - as per RTYPE
215  * Details     : Load 16 byte elements in 'out0' from (psrc)
216  *               Load 16 byte elements in 'out1' from (psrc + stride)
217  */
218 #define LD_B2(RTYPE, psrc, stride, out0, out1) do {  \
219   out0 = LD_B(RTYPE, psrc);                          \
220   out1 = LD_B(RTYPE, psrc + stride);                 \
221 } while (0)
222 #define LD_UB2(...) LD_B2(v16u8, __VA_ARGS__)
223 #define LD_SB2(...) LD_B2(v16i8, __VA_ARGS__)
224 
225 #define LD_B3(RTYPE, psrc, stride, out0, out1, out2) do {  \
226   LD_B2(RTYPE, psrc, stride, out0, out1);                  \
227   out2 = LD_B(RTYPE, psrc + 2 * stride);                   \
228 } while (0)
229 #define LD_UB3(...) LD_B3(v16u8, __VA_ARGS__)
230 #define LD_SB3(...) LD_B3(v16i8, __VA_ARGS__)
231 
232 #define LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3) do {  \
233   LD_B2(RTYPE, psrc, stride, out0, out1);                        \
234   LD_B2(RTYPE, psrc + 2 * stride , stride, out2, out3);          \
235 } while (0)
236 #define LD_UB4(...) LD_B4(v16u8, __VA_ARGS__)
237 #define LD_SB4(...) LD_B4(v16i8, __VA_ARGS__)
238 
239 #define LD_B8(RTYPE, psrc, stride,                                  \
240               out0, out1, out2, out3, out4, out5, out6, out7) do {  \
241   LD_B4(RTYPE, psrc, stride, out0, out1, out2, out3);               \
242   LD_B4(RTYPE, psrc + 4 * stride, stride, out4, out5, out6, out7);  \
243 } while (0)
244 #define LD_UB8(...) LD_B8(v16u8, __VA_ARGS__)
245 #define LD_SB8(...) LD_B8(v16i8, __VA_ARGS__)
246 
247 /* Description : Load vectors with 8 halfword elements with stride
248  * Arguments   : Inputs  - psrc, stride
249  *               Outputs - out0, out1
250  * Details     : Load 8 halfword elements in 'out0' from (psrc)
251  *               Load 8 halfword elements in 'out1' from (psrc + stride)
252  */
253 #define LD_H2(RTYPE, psrc, stride, out0, out1) do {  \
254   out0 = LD_H(RTYPE, psrc);                          \
255   out1 = LD_H(RTYPE, psrc + stride);                 \
256 } while (0)
257 #define LD_UH2(...) LD_H2(v8u16, __VA_ARGS__)
258 #define LD_SH2(...) LD_H2(v8i16, __VA_ARGS__)
259 
260 /* Description : Load vectors with 4 word elements with stride
261  * Arguments   : Inputs  - psrc, stride
262  *               Outputs - out0, out1, out2, out3
263  * Details     : Load 4 word elements in 'out0' from (psrc + 0 * stride)
264  *               Load 4 word elements in 'out1' from (psrc + 1 * stride)
265  *               Load 4 word elements in 'out2' from (psrc + 2 * stride)
266  *               Load 4 word elements in 'out3' from (psrc + 3 * stride)
267  */
268 #define LD_W2(RTYPE, psrc, stride, out0, out1) do {  \
269   out0 = LD_W(RTYPE, psrc);                          \
270   out1 = LD_W(RTYPE, psrc + stride);                 \
271 } while (0)
272 #define LD_UW2(...) LD_W2(v4u32, __VA_ARGS__)
273 #define LD_SW2(...) LD_W2(v4i32, __VA_ARGS__)
274 
275 #define LD_W3(RTYPE, psrc, stride, out0, out1, out2) do {  \
276   LD_W2(RTYPE, psrc, stride, out0, out1);                  \
277   out2 = LD_W(RTYPE, psrc + 2 * stride);                   \
278 } while (0)
279 #define LD_UW3(...) LD_W3(v4u32, __VA_ARGS__)
280 #define LD_SW3(...) LD_W3(v4i32, __VA_ARGS__)
281 
282 #define LD_W4(RTYPE, psrc, stride, out0, out1, out2, out3) do {  \
283   LD_W2(RTYPE, psrc, stride, out0, out1);                        \
284   LD_W2(RTYPE, psrc + 2 * stride, stride, out2, out3);           \
285 } while (0)
286 #define LD_UW4(...) LD_W4(v4u32, __VA_ARGS__)
287 #define LD_SW4(...) LD_W4(v4i32, __VA_ARGS__)
288 
289 /* Description : Store vectors of 16 byte elements with stride
290  * Arguments   : Inputs - in0, in1, pdst, stride
291  * Details     : Store 16 byte elements from 'in0' to (pdst)
292  *               Store 16 byte elements from 'in1' to (pdst + stride)
293  */
294 #define ST_B2(RTYPE, in0, in1, pdst, stride) do {  \
295   ST_B(RTYPE, in0, pdst);                          \
296   ST_B(RTYPE, in1, pdst + stride);                 \
297 } while (0)
298 #define ST_UB2(...) ST_B2(v16u8, __VA_ARGS__)
299 #define ST_SB2(...) ST_B2(v16i8, __VA_ARGS__)
300 
301 #define ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride) do {  \
302   ST_B2(RTYPE, in0, in1, pdst, stride);                      \
303   ST_B2(RTYPE, in2, in3, pdst + 2 * stride, stride);         \
304 } while (0)
305 #define ST_UB4(...) ST_B4(v16u8, __VA_ARGS__)
306 #define ST_SB4(...) ST_B4(v16i8, __VA_ARGS__)
307 
308 #define ST_B8(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,    \
309               pdst, stride) do {                                \
310   ST_B4(RTYPE, in0, in1, in2, in3, pdst, stride);               \
311   ST_B4(RTYPE, in4, in5, in6, in7, pdst + 4 * stride, stride);  \
312 } while (0)
313 #define ST_UB8(...) ST_B8(v16u8, __VA_ARGS__)
314 
315 /* Description : Store vectors of 4 word elements with stride
316  * Arguments   : Inputs - in0, in1, in2, in3, pdst, stride
317  * Details     : Store 4 word elements from 'in0' to (pdst + 0 * stride)
318  *               Store 4 word elements from 'in1' to (pdst + 1 * stride)
319  *               Store 4 word elements from 'in2' to (pdst + 2 * stride)
320  *               Store 4 word elements from 'in3' to (pdst + 3 * stride)
321  */
322 #define ST_W2(RTYPE, in0, in1, pdst, stride) do {  \
323   ST_W(RTYPE, in0, pdst);                          \
324   ST_W(RTYPE, in1, pdst + stride);                 \
325 } while (0)
326 #define ST_UW2(...) ST_W2(v4u32, __VA_ARGS__)
327 #define ST_SW2(...) ST_W2(v4i32, __VA_ARGS__)
328 
329 #define ST_W3(RTYPE, in0, in1, in2, pdst, stride) do {  \
330   ST_W2(RTYPE, in0, in1, pdst, stride);                 \
331   ST_W(RTYPE, in2, pdst + 2 * stride);                  \
332 } while (0)
333 #define ST_UW3(...) ST_W3(v4u32, __VA_ARGS__)
334 #define ST_SW3(...) ST_W3(v4i32, __VA_ARGS__)
335 
336 #define ST_W4(RTYPE, in0, in1, in2, in3, pdst, stride) do {  \
337   ST_W2(RTYPE, in0, in1, pdst, stride);                      \
338   ST_W2(RTYPE, in2, in3, pdst + 2 * stride, stride);         \
339 } while (0)
340 #define ST_UW4(...) ST_W4(v4u32, __VA_ARGS__)
341 #define ST_SW4(...) ST_W4(v4i32, __VA_ARGS__)
342 
343 /* Description : Store vectors of 8 halfword elements with stride
344  * Arguments   : Inputs - in0, in1, pdst, stride
345  * Details     : Store 8 halfword elements from 'in0' to (pdst)
346  *               Store 8 halfword elements from 'in1' to (pdst + stride)
347  */
348 #define ST_H2(RTYPE, in0, in1, pdst, stride) do {  \
349   ST_H(RTYPE, in0, pdst);                          \
350   ST_H(RTYPE, in1, pdst + stride);                 \
351 } while (0)
352 #define ST_UH2(...) ST_H2(v8u16, __VA_ARGS__)
353 #define ST_SH2(...) ST_H2(v8i16, __VA_ARGS__)
354 
355 /* Description : Store 2x4 byte block to destination memory from input vector
356  * Arguments   : Inputs - in, stidx, pdst, stride
357  * Details     : Index 'stidx' halfword element from 'in' vector is copied to
358  *               the GP register and stored to (pdst)
359  *               Index 'stidx+1' halfword element from 'in' vector is copied to
360  *               the GP register and stored to (pdst + stride)
361  *               Index 'stidx+2' halfword element from 'in' vector is copied to
362  *               the GP register and stored to (pdst + 2 * stride)
363  *               Index 'stidx+3' halfword element from 'in' vector is copied to
364  *               the GP register and stored to (pdst + 3 * stride)
365  */
366 #define ST2x4_UB(in, stidx, pdst, stride) do {                   \
367   uint8_t* pblk_2x4_m = (uint8_t*)pdst;                          \
368   const uint16_t out0_m = __msa_copy_s_h((v8i16)in, stidx);      \
369   const uint16_t out1_m = __msa_copy_s_h((v8i16)in, stidx + 1);  \
370   const uint16_t out2_m = __msa_copy_s_h((v8i16)in, stidx + 2);  \
371   const uint16_t out3_m = __msa_copy_s_h((v8i16)in, stidx + 3);  \
372   SH(out0_m, pblk_2x4_m);                                        \
373   pblk_2x4_m += stride;                                          \
374   SH(out1_m, pblk_2x4_m);                                        \
375   pblk_2x4_m += stride;                                          \
376   SH(out2_m, pblk_2x4_m);                                        \
377   pblk_2x4_m += stride;                                          \
378   SH(out3_m, pblk_2x4_m);                                        \
379 } while (0)
380 
381 /* Description : Store 4x4 byte block to destination memory from input vector
382  * Arguments   : Inputs - in0, in1, pdst, stride
383  * Details     : 'Idx0' word element from input vector 'in0' is copied to the
384  *               GP register and stored to (pdst)
385  *               'Idx1' word element from input vector 'in0' is copied to the
386  *               GP register and stored to (pdst + stride)
387  *               'Idx2' word element from input vector 'in0' is copied to the
388  *               GP register and stored to (pdst + 2 * stride)
389  *               'Idx3' word element from input vector 'in0' is copied to the
390  *               GP register and stored to (pdst + 3 * stride)
391  */
392 #define ST4x4_UB(in0, in1, idx0, idx1, idx2, idx3, pdst, stride) do {  \
393   uint8_t* const pblk_4x4_m = (uint8_t*)pdst;                          \
394   const uint32_t out0_m = __msa_copy_s_w((v4i32)in0, idx0);            \
395   const uint32_t out1_m = __msa_copy_s_w((v4i32)in0, idx1);            \
396   const uint32_t out2_m = __msa_copy_s_w((v4i32)in1, idx2);            \
397   const uint32_t out3_m = __msa_copy_s_w((v4i32)in1, idx3);            \
398   SW4(out0_m, out1_m, out2_m, out3_m, pblk_4x4_m, stride);             \
399 } while (0)
400 
401 #define ST4x8_UB(in0, in1, pdst, stride) do {                     \
402   uint8_t* const pblk_4x8 = (uint8_t*)pdst;                       \
403   ST4x4_UB(in0, in0, 0, 1, 2, 3, pblk_4x8, stride);               \
404   ST4x4_UB(in1, in1, 0, 1, 2, 3, pblk_4x8 + 4 * stride, stride);  \
405 } while (0)
406 
407 /* Description : Immediate number of elements to slide
408  * Arguments   : Inputs  - in0, in1, slide_val
409  *               Outputs - out
410  *               Return Type - as per RTYPE
411  * Details     : Byte elements from 'in1' vector are slid into 'in0' by
412  *               value specified in the 'slide_val'
413  */
414 #define SLDI_B(RTYPE, in0, in1, slide_val)                      \
415         (RTYPE)__msa_sldi_b((v16i8)in0, (v16i8)in1, slide_val)  \
416 
417 #define SLDI_UB(...) SLDI_B(v16u8, __VA_ARGS__)
418 #define SLDI_SB(...) SLDI_B(v16i8, __VA_ARGS__)
419 #define SLDI_SH(...) SLDI_B(v8i16, __VA_ARGS__)
420 
421 /* Description : Shuffle byte vector elements as per mask vector
422  * Arguments   : Inputs  - in0, in1, in2, in3, mask0, mask1
423  *               Outputs - out0, out1
424  *               Return Type - as per RTYPE
425  * Details     : Byte elements from 'in0' & 'in1' are copied selectively to
426  *               'out0' as per control vector 'mask0'
427  */
428 #define VSHF_B(RTYPE, in0, in1, mask)                              \
429         (RTYPE)__msa_vshf_b((v16i8)mask, (v16i8)in1, (v16i8)in0)
430 
431 #define VSHF_UB(...) VSHF_B(v16u8, __VA_ARGS__)
432 #define VSHF_SB(...) VSHF_B(v16i8, __VA_ARGS__)
433 #define VSHF_UH(...) VSHF_B(v8u16, __VA_ARGS__)
434 #define VSHF_SH(...) VSHF_B(v8i16, __VA_ARGS__)
435 
436 #define VSHF_B2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) do {  \
437   out0 = VSHF_B(RTYPE, in0, in1, mask0);                                   \
438   out1 = VSHF_B(RTYPE, in2, in3, mask1);                                   \
439 } while (0)
440 #define VSHF_B2_UB(...) VSHF_B2(v16u8, __VA_ARGS__)
441 #define VSHF_B2_SB(...) VSHF_B2(v16i8, __VA_ARGS__)
442 #define VSHF_B2_UH(...) VSHF_B2(v8u16, __VA_ARGS__)
443 #define VSHF_B2_SH(...) VSHF_B2(v8i16, __VA_ARGS__)
444 
445 /* Description : Shuffle halfword vector elements as per mask vector
446  * Arguments   : Inputs  - in0, in1, in2, in3, mask0, mask1
447  *               Outputs - out0, out1
448  *               Return Type - as per RTYPE
449  * Details     : halfword elements from 'in0' & 'in1' are copied selectively to
450  *               'out0' as per control vector 'mask0'
451  */
452 #define VSHF_H2(RTYPE, in0, in1, in2, in3, mask0, mask1, out0, out1) do {  \
453   out0 = (RTYPE)__msa_vshf_h((v8i16)mask0, (v8i16)in1, (v8i16)in0);        \
454   out1 = (RTYPE)__msa_vshf_h((v8i16)mask1, (v8i16)in3, (v8i16)in2);        \
455 } while (0)
456 #define VSHF_H2_UH(...) VSHF_H2(v8u16, __VA_ARGS__)
457 #define VSHF_H2_SH(...) VSHF_H2(v8i16, __VA_ARGS__)
458 
459 /* Description : Dot product of byte vector elements
460  * Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
461  *               Outputs - out0, out1
462  *               Return Type - as per RTYPE
463  * Details     : Signed byte elements from 'mult0' are multiplied with
464  *               signed byte elements from 'cnst0' producing a result
465  *               twice the size of input i.e. signed halfword.
466  *               The multiplication result of adjacent odd-even elements
467  *               are added together and written to the 'out0' vector
468 */
469 #define DOTP_SB2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do {  \
470   out0 = (RTYPE)__msa_dotp_s_h((v16i8)mult0, (v16i8)cnst0);           \
471   out1 = (RTYPE)__msa_dotp_s_h((v16i8)mult1, (v16i8)cnst1);           \
472 } while (0)
473 #define DOTP_SB2_SH(...) DOTP_SB2(v8i16, __VA_ARGS__)
474 
475 /* Description : Dot product of halfword vector elements
476  * Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
477  *               Outputs - out0, out1
478  *               Return Type - as per RTYPE
479  * Details     : Signed halfword elements from 'mult0' are multiplied with
480  *               signed halfword elements from 'cnst0' producing a result
481  *               twice the size of input i.e. signed word.
482  *               The multiplication result of adjacent odd-even elements
483  *               are added together and written to the 'out0' vector
484  */
485 #define DOTP_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do {  \
486   out0 = (RTYPE)__msa_dotp_s_w((v8i16)mult0, (v8i16)cnst0);           \
487   out1 = (RTYPE)__msa_dotp_s_w((v8i16)mult1, (v8i16)cnst1);           \
488 } while (0)
489 #define DOTP_SH2_SW(...) DOTP_SH2(v4i32, __VA_ARGS__)
490 
491 /* Description : Dot product of unsigned word vector elements
492  * Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
493  *               Outputs - out0, out1
494  *               Return Type - as per RTYPE
495  * Details     : Unsigned word elements from 'mult0' are multiplied with
496  *               unsigned word elements from 'cnst0' producing a result
497  *               twice the size of input i.e. unsigned double word.
498  *               The multiplication result of adjacent odd-even elements
499  *               are added together and written to the 'out0' vector
500  */
501 #define DOTP_UW2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do {  \
502   out0 = (RTYPE)__msa_dotp_u_d((v4u32)mult0, (v4u32)cnst0);           \
503   out1 = (RTYPE)__msa_dotp_u_d((v4u32)mult1, (v4u32)cnst1);           \
504 } while (0)
505 #define DOTP_UW2_UD(...) DOTP_UW2(v2u64, __VA_ARGS__)
506 
507 /* Description : Dot product & addition of halfword vector elements
508  * Arguments   : Inputs  - mult0, mult1, cnst0, cnst1
509  *               Outputs - out0, out1
510  *               Return Type - as per RTYPE
511  * Details     : Signed halfword elements from 'mult0' are multiplied with
512  *               signed halfword elements from 'cnst0' producing a result
513  *               twice the size of input i.e. signed word.
514  *               The multiplication result of adjacent odd-even elements
515  *               are added to the 'out0' vector
516  */
517 #define DPADD_SH2(RTYPE, mult0, mult1, cnst0, cnst1, out0, out1) do {      \
518   out0 = (RTYPE)__msa_dpadd_s_w((v4i32)out0, (v8i16)mult0, (v8i16)cnst0);  \
519   out1 = (RTYPE)__msa_dpadd_s_w((v4i32)out1, (v8i16)mult1, (v8i16)cnst1);  \
520 } while (0)
521 #define DPADD_SH2_SW(...) DPADD_SH2(v4i32, __VA_ARGS__)
522 
523 /* Description : Clips all signed halfword elements of input vector
524  *               between 0 & 255
525  * Arguments   : Input/output  - val
526  *               Return Type - signed halfword
527  */
528 #define CLIP_SH_0_255(val) do {                   \
529   const v8i16 max_m = __msa_ldi_h(255);           \
530   val = __msa_maxi_s_h((v8i16)val, 0);            \
531   val = __msa_min_s_h(max_m, (v8i16)val);         \
532 } while (0)
533 
534 #define CLIP_SH2_0_255(in0, in1) do {  \
535   CLIP_SH_0_255(in0);                  \
536   CLIP_SH_0_255(in1);                  \
537 } while (0)
538 
539 #define CLIP_SH4_0_255(in0, in1, in2, in3) do {  \
540   CLIP_SH2_0_255(in0, in1);                      \
541   CLIP_SH2_0_255(in2, in3);                      \
542 } while (0)
543 
544 /* Description : Clips all unsigned halfword elements of input vector
545  *               between 0 & 255
546  * Arguments   : Input  - in
547  *               Output - out_m
548  *               Return Type - unsigned halfword
549  */
550 #define CLIP_UH_0_255(in) do {                    \
551   const v8u16 max_m = (v8u16)__msa_ldi_h(255);    \
552   in = __msa_maxi_u_h((v8u16) in, 0);             \
553   in = __msa_min_u_h((v8u16) max_m, (v8u16) in);  \
554 } while (0)
555 
556 #define CLIP_UH2_0_255(in0, in1) do {  \
557   CLIP_UH_0_255(in0);                  \
558   CLIP_UH_0_255(in1);                  \
559 } while (0)
560 
561 /* Description : Clips all signed word elements of input vector
562  *               between 0 & 255
563  * Arguments   : Input/output  - val
564  *               Return Type - signed word
565  */
566 #define CLIP_SW_0_255(val) do {                   \
567   const v4i32 max_m = __msa_ldi_w(255);           \
568   val = __msa_maxi_s_w((v4i32)val, 0);            \
569   val = __msa_min_s_w(max_m, (v4i32)val);         \
570 } while (0)
571 
572 #define CLIP_SW4_0_255(in0, in1, in2, in3) do {   \
573   CLIP_SW_0_255(in0);                             \
574   CLIP_SW_0_255(in1);                             \
575   CLIP_SW_0_255(in2);                             \
576   CLIP_SW_0_255(in3);                             \
577 } while (0)
578 
579 /* Description : Horizontal addition of 4 signed word elements of input vector
580  * Arguments   : Input  - in       (signed word vector)
581  *               Output - sum_m    (i32 sum)
582  *               Return Type - signed word (GP)
583  * Details     : 4 signed word elements of 'in' vector are added together and
584  *               the resulting integer sum is returned
585  */
func_hadd_sw_s32(v4i32 in)586 static WEBP_INLINE int32_t func_hadd_sw_s32(v4i32 in) {
587   const v2i64 res0_m = __msa_hadd_s_d((v4i32)in, (v4i32)in);
588   const v2i64 res1_m = __msa_splati_d(res0_m, 1);
589   const v2i64 out = res0_m + res1_m;
590   int32_t sum_m = __msa_copy_s_w((v4i32)out, 0);
591   return sum_m;
592 }
593 #define HADD_SW_S32(in) func_hadd_sw_s32(in)
594 
595 /* Description : Horizontal addition of 8 signed halfword elements
596  * Arguments   : Input  - in       (signed halfword vector)
597  *               Output - sum_m    (s32 sum)
598  *               Return Type - signed word
599  * Details     : 8 signed halfword elements of input vector are added
600  *               together and the resulting integer sum is returned
601  */
func_hadd_sh_s32(v8i16 in)602 static WEBP_INLINE int32_t func_hadd_sh_s32(v8i16 in) {
603   const v4i32 res = __msa_hadd_s_w(in, in);
604   const v2i64 res0 = __msa_hadd_s_d(res, res);
605   const v2i64 res1 = __msa_splati_d(res0, 1);
606   const v2i64 res2 = res0 + res1;
607   const int32_t sum_m = __msa_copy_s_w((v4i32)res2, 0);
608   return sum_m;
609 }
610 #define HADD_SH_S32(in) func_hadd_sh_s32(in)
611 
612 /* Description : Horizontal addition of 8 unsigned halfword elements
613  * Arguments   : Input  - in       (unsigned halfword vector)
614  *               Output - sum_m    (u32 sum)
615  *               Return Type - unsigned word
616  * Details     : 8 unsigned halfword elements of input vector are added
617  *               together and the resulting integer sum is returned
618  */
func_hadd_uh_u32(v8u16 in)619 static WEBP_INLINE uint32_t func_hadd_uh_u32(v8u16 in) {
620   uint32_t sum_m;
621   const v4u32 res_m = __msa_hadd_u_w(in, in);
622   v2u64 res0_m = __msa_hadd_u_d(res_m, res_m);
623   v2u64 res1_m = (v2u64)__msa_splati_d((v2i64)res0_m, 1);
624   res0_m = res0_m + res1_m;
625   sum_m = __msa_copy_s_w((v4i32)res0_m, 0);
626   return sum_m;
627 }
628 #define HADD_UH_U32(in) func_hadd_uh_u32(in)
629 
630 /* Description : Horizontal addition of signed half word vector elements
631    Arguments   : Inputs  - in0, in1
632                  Outputs - out0, out1
633                  Return Type - as per RTYPE
634    Details     : Each signed odd half word element from 'in0' is added to
635                  even signed half word element from 'in0' (pairwise) and the
636                  halfword result is written in 'out0'
637 */
638 #define HADD_SH2(RTYPE, in0, in1, out0, out1) do {       \
639   out0 = (RTYPE)__msa_hadd_s_w((v8i16)in0, (v8i16)in0);  \
640   out1 = (RTYPE)__msa_hadd_s_w((v8i16)in1, (v8i16)in1);  \
641 } while (0)
642 #define HADD_SH2_SW(...) HADD_SH2(v4i32, __VA_ARGS__)
643 
644 #define HADD_SH4(RTYPE, in0, in1, in2, in3, out0, out1, out2, out3) do {  \
645   HADD_SH2(RTYPE, in0, in1, out0, out1);                                  \
646   HADD_SH2(RTYPE, in2, in3, out2, out3);                                  \
647 } while (0)
648 #define HADD_SH4_SW(...) HADD_SH4(v4i32, __VA_ARGS__)
649 
650 /* Description : Horizontal subtraction of unsigned byte vector elements
651  * Arguments   : Inputs  - in0, in1
652  *               Outputs - out0, out1
653  *               Return Type - as per RTYPE
654  * Details     : Each unsigned odd byte element from 'in0' is subtracted from
655  *               even unsigned byte element from 'in0' (pairwise) and the
656  *               halfword result is written to 'out0'
657  */
658 #define HSUB_UB2(RTYPE, in0, in1, out0, out1) do {       \
659   out0 = (RTYPE)__msa_hsub_u_h((v16u8)in0, (v16u8)in0);  \
660   out1 = (RTYPE)__msa_hsub_u_h((v16u8)in1, (v16u8)in1);  \
661 } while (0)
662 #define HSUB_UB2_UH(...) HSUB_UB2(v8u16, __VA_ARGS__)
663 #define HSUB_UB2_SH(...) HSUB_UB2(v8i16, __VA_ARGS__)
664 #define HSUB_UB2_SW(...) HSUB_UB2(v4i32, __VA_ARGS__)
665 
666 /* Description : Set element n input vector to GPR value
667  * Arguments   : Inputs - in0, in1, in2, in3
668  *               Output - out
669  *               Return Type - as per RTYPE
670  * Details     : Set element 0 in vector 'out' to value specified in 'in0'
671  */
672 #define INSERT_W2(RTYPE, in0, in1, out) do {        \
673   out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0);  \
674   out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1);  \
675 } while (0)
676 #define INSERT_W2_UB(...) INSERT_W2(v16u8, __VA_ARGS__)
677 #define INSERT_W2_SB(...) INSERT_W2(v16i8, __VA_ARGS__)
678 
679 #define INSERT_W4(RTYPE, in0, in1, in2, in3, out) do {  \
680   out = (RTYPE)__msa_insert_w((v4i32)out, 0, in0);      \
681   out = (RTYPE)__msa_insert_w((v4i32)out, 1, in1);      \
682   out = (RTYPE)__msa_insert_w((v4i32)out, 2, in2);      \
683   out = (RTYPE)__msa_insert_w((v4i32)out, 3, in3);      \
684 } while (0)
685 #define INSERT_W4_UB(...) INSERT_W4(v16u8, __VA_ARGS__)
686 #define INSERT_W4_SB(...) INSERT_W4(v16i8, __VA_ARGS__)
687 #define INSERT_W4_SW(...) INSERT_W4(v4i32, __VA_ARGS__)
688 
689 /* Description : Set element n of double word input vector to GPR value
690  * Arguments   : Inputs - in0, in1
691  *               Output - out
692  *               Return Type - as per RTYPE
693  * Details     : Set element 0 in vector 'out' to GPR value specified in 'in0'
694  *               Set element 1 in vector 'out' to GPR value specified in 'in1'
695  */
696 #define INSERT_D2(RTYPE, in0, in1, out) do {        \
697   out = (RTYPE)__msa_insert_d((v2i64)out, 0, in0);  \
698   out = (RTYPE)__msa_insert_d((v2i64)out, 1, in1);  \
699 } while (0)
700 #define INSERT_D2_UB(...) INSERT_D2(v16u8, __VA_ARGS__)
701 #define INSERT_D2_SB(...) INSERT_D2(v16i8, __VA_ARGS__)
702 
703 /* Description : Interleave even byte elements from vectors
704  * Arguments   : Inputs  - in0, in1, in2, in3
705  *               Outputs - out0, out1
706  *               Return Type - as per RTYPE
707  * Details     : Even byte elements of 'in0' and 'in1' are interleaved
708  *               and written to 'out0'
709  */
710 #define ILVEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
711   out0 = (RTYPE)__msa_ilvev_b((v16i8)in1, (v16i8)in0);        \
712   out1 = (RTYPE)__msa_ilvev_b((v16i8)in3, (v16i8)in2);        \
713 } while (0)
714 #define ILVEV_B2_UB(...) ILVEV_B2(v16u8, __VA_ARGS__)
715 #define ILVEV_B2_SB(...) ILVEV_B2(v16i8, __VA_ARGS__)
716 #define ILVEV_B2_UH(...) ILVEV_B2(v8u16, __VA_ARGS__)
717 #define ILVEV_B2_SH(...) ILVEV_B2(v8i16, __VA_ARGS__)
718 #define ILVEV_B2_SD(...) ILVEV_B2(v2i64, __VA_ARGS__)
719 
720 /* Description : Interleave odd byte elements from vectors
721  * Arguments   : Inputs  - in0, in1, in2, in3
722  *               Outputs - out0, out1
723  *               Return Type - as per RTYPE
724  * Details     : Odd byte elements of 'in0' and 'in1' are interleaved
725  *               and written to 'out0'
726  */
727 #define ILVOD_B2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
728   out0 = (RTYPE)__msa_ilvod_b((v16i8)in1, (v16i8)in0);        \
729   out1 = (RTYPE)__msa_ilvod_b((v16i8)in3, (v16i8)in2);        \
730 } while (0)
731 #define ILVOD_B2_UB(...) ILVOD_B2(v16u8, __VA_ARGS__)
732 #define ILVOD_B2_SB(...) ILVOD_B2(v16i8, __VA_ARGS__)
733 #define ILVOD_B2_UH(...) ILVOD_B2(v8u16, __VA_ARGS__)
734 #define ILVOD_B2_SH(...) ILVOD_B2(v8i16, __VA_ARGS__)
735 #define ILVOD_B2_SD(...) ILVOD_B2(v2i64, __VA_ARGS__)
736 
737 /* Description : Interleave even halfword elements from vectors
738  * Arguments   : Inputs  - in0, in1, in2, in3
739  *               Outputs - out0, out1
740  *               Return Type - as per RTYPE
741  * Details     : Even halfword elements of 'in0' and 'in1' are interleaved
742  *               and written to 'out0'
743  */
744 #define ILVEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
745   out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0);        \
746   out1 = (RTYPE)__msa_ilvev_h((v8i16)in3, (v8i16)in2);        \
747 } while (0)
748 #define ILVEV_H2_UB(...) ILVEV_H2(v16u8, __VA_ARGS__)
749 #define ILVEV_H2_UH(...) ILVEV_H2(v8u16, __VA_ARGS__)
750 #define ILVEV_H2_SH(...) ILVEV_H2(v8i16, __VA_ARGS__)
751 #define ILVEV_H2_SW(...) ILVEV_H2(v4i32, __VA_ARGS__)
752 
753 /* Description : Interleave odd halfword elements from vectors
754  * Arguments   : Inputs  - in0, in1, in2, in3
755  *               Outputs - out0, out1
756  *               Return Type - as per RTYPE
757  * Details     : Odd halfword elements of 'in0' and 'in1' are interleaved
758  *               and written to 'out0'
759  */
760 #define ILVOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
761   out0 = (RTYPE)__msa_ilvod_h((v8i16)in1, (v8i16)in0);        \
762   out1 = (RTYPE)__msa_ilvod_h((v8i16)in3, (v8i16)in2);        \
763 } while (0)
764 #define ILVOD_H2_UB(...) ILVOD_H2(v16u8, __VA_ARGS__)
765 #define ILVOD_H2_UH(...) ILVOD_H2(v8u16, __VA_ARGS__)
766 #define ILVOD_H2_SH(...) ILVOD_H2(v8i16, __VA_ARGS__)
767 #define ILVOD_H2_SW(...) ILVOD_H2(v4i32, __VA_ARGS__)
768 
769 /* Description : Interleave even word elements from vectors
770  * Arguments   : Inputs  - in0, in1, in2, in3
771  *               Outputs - out0, out1
772  *               Return Type - as per RTYPE
773  * Details     : Even word elements of 'in0' and 'in1' are interleaved
774  *               and written to 'out0'
775  */
776 #define ILVEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
777   out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0);        \
778   out1 = (RTYPE)__msa_ilvev_w((v4i32)in3, (v4i32)in2);        \
779 } while (0)
780 #define ILVEV_W2_UB(...) ILVEV_W2(v16u8, __VA_ARGS__)
781 #define ILVEV_W2_SB(...) ILVEV_W2(v16i8, __VA_ARGS__)
782 #define ILVEV_W2_UH(...) ILVEV_W2(v8u16, __VA_ARGS__)
783 #define ILVEV_W2_SD(...) ILVEV_W2(v2i64, __VA_ARGS__)
784 
785 /* Description : Interleave even-odd word elements from vectors
786  * Arguments   : Inputs  - in0, in1, in2, in3
787  *               Outputs - out0, out1
788  *               Return Type - as per RTYPE
789  * Details     : Even word elements of 'in0' and 'in1' are interleaved
790  *               and written to 'out0'
791  *               Odd word elements of 'in2' and 'in3' are interleaved
792  *               and written to 'out1'
793  */
794 #define ILVEVOD_W2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
795   out0 = (RTYPE)__msa_ilvev_w((v4i32)in1, (v4i32)in0);          \
796   out1 = (RTYPE)__msa_ilvod_w((v4i32)in3, (v4i32)in2);          \
797 } while (0)
798 #define ILVEVOD_W2_UB(...) ILVEVOD_W2(v16u8, __VA_ARGS__)
799 #define ILVEVOD_W2_UH(...) ILVEVOD_W2(v8u16, __VA_ARGS__)
800 #define ILVEVOD_W2_SH(...) ILVEVOD_W2(v8i16, __VA_ARGS__)
801 #define ILVEVOD_W2_SW(...) ILVEVOD_W2(v4i32, __VA_ARGS__)
802 
803 /* Description : Interleave even-odd half-word elements from vectors
804  * Arguments   : Inputs  - in0, in1, in2, in3
805  *               Outputs - out0, out1
806  *               Return Type - as per RTYPE
807  * Details     : Even half-word elements of 'in0' and 'in1' are interleaved
808  *               and written to 'out0'
809  *               Odd half-word elements of 'in2' and 'in3' are interleaved
810  *               and written to 'out1'
811  */
812 #define ILVEVOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
813   out0 = (RTYPE)__msa_ilvev_h((v8i16)in1, (v8i16)in0);          \
814   out1 = (RTYPE)__msa_ilvod_h((v8i16)in3, (v8i16)in2);          \
815 } while (0)
816 #define ILVEVOD_H2_UB(...) ILVEVOD_H2(v16u8, __VA_ARGS__)
817 #define ILVEVOD_H2_UH(...) ILVEVOD_H2(v8u16, __VA_ARGS__)
818 #define ILVEVOD_H2_SH(...) ILVEVOD_H2(v8i16, __VA_ARGS__)
819 #define ILVEVOD_H2_SW(...) ILVEVOD_H2(v4i32, __VA_ARGS__)
820 
821 /* Description : Interleave even double word elements from vectors
822  * Arguments   : Inputs  - in0, in1, in2, in3
823  *               Outputs - out0, out1
824  *               Return Type - as per RTYPE
825  * Details     : Even double word elements of 'in0' and 'in1' are interleaved
826  *               and written to 'out0'
827  */
828 #define ILVEV_D2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
829   out0 = (RTYPE)__msa_ilvev_d((v2i64)in1, (v2i64)in0);        \
830   out1 = (RTYPE)__msa_ilvev_d((v2i64)in3, (v2i64)in2);        \
831 } while (0)
832 #define ILVEV_D2_UB(...) ILVEV_D2(v16u8, __VA_ARGS__)
833 #define ILVEV_D2_SB(...) ILVEV_D2(v16i8, __VA_ARGS__)
834 #define ILVEV_D2_SW(...) ILVEV_D2(v4i32, __VA_ARGS__)
835 #define ILVEV_D2_SD(...) ILVEV_D2(v2i64, __VA_ARGS__)
836 
837 /* Description : Interleave left half of byte elements from vectors
838  * Arguments   : Inputs  - in0, in1, in2, in3
839  *               Outputs - out0, out1
840  *               Return Type - as per RTYPE
841  * Details     : Left half of byte elements of 'in0' and 'in1' are interleaved
842  *               and written to 'out0'.
843  */
844 #define ILVL_B2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
845   out0 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1);        \
846   out1 = (RTYPE)__msa_ilvl_b((v16i8)in2, (v16i8)in3);        \
847 } while (0)
848 #define ILVL_B2_UB(...) ILVL_B2(v16u8, __VA_ARGS__)
849 #define ILVL_B2_SB(...) ILVL_B2(v16i8, __VA_ARGS__)
850 #define ILVL_B2_UH(...) ILVL_B2(v8u16, __VA_ARGS__)
851 #define ILVL_B2_SH(...) ILVL_B2(v8i16, __VA_ARGS__)
852 #define ILVL_B2_SW(...) ILVL_B2(v4i32, __VA_ARGS__)
853 
854 /* Description : Interleave right half of byte elements from vectors
855  * Arguments   : Inputs  - in0, in1, in2, in3
856  *               Outputs - out0, out1
857  *               Return Type - as per RTYPE
858  * Details     : Right half of byte elements of 'in0' and 'in1' are interleaved
859  *               and written to out0.
860  */
861 #define ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
862   out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1);        \
863   out1 = (RTYPE)__msa_ilvr_b((v16i8)in2, (v16i8)in3);        \
864 } while (0)
865 #define ILVR_B2_UB(...) ILVR_B2(v16u8, __VA_ARGS__)
866 #define ILVR_B2_SB(...) ILVR_B2(v16i8, __VA_ARGS__)
867 #define ILVR_B2_UH(...) ILVR_B2(v8u16, __VA_ARGS__)
868 #define ILVR_B2_SH(...) ILVR_B2(v8i16, __VA_ARGS__)
869 #define ILVR_B2_SW(...) ILVR_B2(v4i32, __VA_ARGS__)
870 
871 #define ILVR_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
872                 out0, out1, out2, out3) do {                    \
873   ILVR_B2(RTYPE, in0, in1, in2, in3, out0, out1);               \
874   ILVR_B2(RTYPE, in4, in5, in6, in7, out2, out3);               \
875 } while (0)
876 #define ILVR_B4_UB(...) ILVR_B4(v16u8, __VA_ARGS__)
877 #define ILVR_B4_SB(...) ILVR_B4(v16i8, __VA_ARGS__)
878 #define ILVR_B4_UH(...) ILVR_B4(v8u16, __VA_ARGS__)
879 #define ILVR_B4_SH(...) ILVR_B4(v8i16, __VA_ARGS__)
880 #define ILVR_B4_SW(...) ILVR_B4(v4i32, __VA_ARGS__)
881 
882 /* Description : Interleave right half of halfword elements from vectors
883  * Arguments   : Inputs  - in0, in1, in2, in3
884  *               Outputs - out0, out1
885  *               Return Type - as per RTYPE
886  * Details     : Right half of halfword elements of 'in0' and 'in1' are
887  *               interleaved and written to 'out0'.
888  */
889 #define ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
890   out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1);        \
891   out1 = (RTYPE)__msa_ilvr_h((v8i16)in2, (v8i16)in3);        \
892 } while (0)
893 #define ILVR_H2_UB(...) ILVR_H2(v16u8, __VA_ARGS__)
894 #define ILVR_H2_SH(...) ILVR_H2(v8i16, __VA_ARGS__)
895 #define ILVR_H2_SW(...) ILVR_H2(v4i32, __VA_ARGS__)
896 
897 #define ILVR_H4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
898                 out0, out1, out2, out3) do {                    \
899   ILVR_H2(RTYPE, in0, in1, in2, in3, out0, out1);               \
900   ILVR_H2(RTYPE, in4, in5, in6, in7, out2, out3);               \
901 } while (0)
902 #define ILVR_H4_UB(...) ILVR_H4(v16u8, __VA_ARGS__)
903 #define ILVR_H4_SH(...) ILVR_H4(v8i16, __VA_ARGS__)
904 #define ILVR_H4_SW(...) ILVR_H4(v4i32, __VA_ARGS__)
905 
906 /* Description : Interleave right half of double word elements from vectors
907  * Arguments   : Inputs  - in0, in1, in2, in3
908  *               Outputs - out0, out1
909  *               Return Type - as per RTYPE
910  * Details     : Right half of double word elements of 'in0' and 'in1' are
911  *               interleaved and written to 'out0'.
912  */
913 #define ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
914   out0 = (RTYPE)__msa_ilvr_d((v2i64)in0, (v2i64)in1);        \
915   out1 = (RTYPE)__msa_ilvr_d((v2i64)in2, (v2i64)in3);        \
916 } while (0)
917 #define ILVR_D2_UB(...) ILVR_D2(v16u8, __VA_ARGS__)
918 #define ILVR_D2_SB(...) ILVR_D2(v16i8, __VA_ARGS__)
919 #define ILVR_D2_SH(...) ILVR_D2(v8i16, __VA_ARGS__)
920 
921 #define ILVR_D4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
922                 out0, out1, out2, out3) do {                    \
923   ILVR_D2(RTYPE, in0, in1, in2, in3, out0, out1);               \
924   ILVR_D2(RTYPE, in4, in5, in6, in7, out2, out3);               \
925 } while (0)
926 #define ILVR_D4_SB(...) ILVR_D4(v16i8, __VA_ARGS__)
927 #define ILVR_D4_UB(...) ILVR_D4(v16u8, __VA_ARGS__)
928 
929 /* Description : Interleave both left and right half of input vectors
930  * Arguments   : Inputs  - in0, in1
931  *               Outputs - out0, out1
932  *               Return Type - as per RTYPE
933  * Details     : Right half of byte elements from 'in0' and 'in1' are
934  *               interleaved and written to 'out0'
935  */
936 #define ILVRL_B2(RTYPE, in0, in1, out0, out1) do {     \
937   out0 = (RTYPE)__msa_ilvr_b((v16i8)in0, (v16i8)in1);  \
938   out1 = (RTYPE)__msa_ilvl_b((v16i8)in0, (v16i8)in1);  \
939 } while (0)
940 #define ILVRL_B2_UB(...) ILVRL_B2(v16u8, __VA_ARGS__)
941 #define ILVRL_B2_SB(...) ILVRL_B2(v16i8, __VA_ARGS__)
942 #define ILVRL_B2_UH(...) ILVRL_B2(v8u16, __VA_ARGS__)
943 #define ILVRL_B2_SH(...) ILVRL_B2(v8i16, __VA_ARGS__)
944 #define ILVRL_B2_SW(...) ILVRL_B2(v4i32, __VA_ARGS__)
945 
946 #define ILVRL_H2(RTYPE, in0, in1, out0, out1) do {     \
947   out0 = (RTYPE)__msa_ilvr_h((v8i16)in0, (v8i16)in1);  \
948   out1 = (RTYPE)__msa_ilvl_h((v8i16)in0, (v8i16)in1);  \
949 } while (0)
950 #define ILVRL_H2_UB(...) ILVRL_H2(v16u8, __VA_ARGS__)
951 #define ILVRL_H2_SB(...) ILVRL_H2(v16i8, __VA_ARGS__)
952 #define ILVRL_H2_SH(...) ILVRL_H2(v8i16, __VA_ARGS__)
953 #define ILVRL_H2_SW(...) ILVRL_H2(v4i32, __VA_ARGS__)
954 #define ILVRL_H2_UW(...) ILVRL_H2(v4u32, __VA_ARGS__)
955 
956 #define ILVRL_W2(RTYPE, in0, in1, out0, out1) do {     \
957   out0 = (RTYPE)__msa_ilvr_w((v4i32)in0, (v4i32)in1);  \
958   out1 = (RTYPE)__msa_ilvl_w((v4i32)in0, (v4i32)in1);  \
959 } while (0)
960 #define ILVRL_W2_UB(...) ILVRL_W2(v16u8, __VA_ARGS__)
961 #define ILVRL_W2_SH(...) ILVRL_W2(v8i16, __VA_ARGS__)
962 #define ILVRL_W2_SW(...) ILVRL_W2(v4i32, __VA_ARGS__)
963 #define ILVRL_W2_UW(...) ILVRL_W2(v4u32, __VA_ARGS__)
964 
965 /* Description : Pack even byte elements of vector pairs
966  *  Arguments   : Inputs  - in0, in1, in2, in3
967  *                Outputs - out0, out1
968  *                Return Type - as per RTYPE
969  *  Details     : Even byte elements of 'in0' are copied to the left half of
970  *                'out0' & even byte elements of 'in1' are copied to the right
971  *                half of 'out0'.
972  */
973 #define PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
974   out0 = (RTYPE)__msa_pckev_b((v16i8)in0, (v16i8)in1);        \
975   out1 = (RTYPE)__msa_pckev_b((v16i8)in2, (v16i8)in3);        \
976 } while (0)
977 #define PCKEV_B2_SB(...) PCKEV_B2(v16i8, __VA_ARGS__)
978 #define PCKEV_B2_UB(...) PCKEV_B2(v16u8, __VA_ARGS__)
979 #define PCKEV_B2_SH(...) PCKEV_B2(v8i16, __VA_ARGS__)
980 #define PCKEV_B2_SW(...) PCKEV_B2(v4i32, __VA_ARGS__)
981 
982 #define PCKEV_B4(RTYPE, in0, in1, in2, in3, in4, in5, in6, in7,  \
983                  out0, out1, out2, out3) do {                    \
984   PCKEV_B2(RTYPE, in0, in1, in2, in3, out0, out1);               \
985   PCKEV_B2(RTYPE, in4, in5, in6, in7, out2, out3);               \
986 } while (0)
987 #define PCKEV_B4_SB(...) PCKEV_B4(v16i8, __VA_ARGS__)
988 #define PCKEV_B4_UB(...) PCKEV_B4(v16u8, __VA_ARGS__)
989 #define PCKEV_B4_SH(...) PCKEV_B4(v8i16, __VA_ARGS__)
990 #define PCKEV_B4_SW(...) PCKEV_B4(v4i32, __VA_ARGS__)
991 
992 /* Description : Pack even halfword elements of vector pairs
993  * Arguments   : Inputs  - in0, in1, in2, in3
994  *               Outputs - out0, out1
995  *               Return Type - as per RTYPE
996  * Details     : Even halfword elements of 'in0' are copied to the left half of
997  *               'out0' & even halfword elements of 'in1' are copied to the
998  *               right half of 'out0'.
999  */
1000 #define PCKEV_H2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
1001   out0 = (RTYPE)__msa_pckev_h((v8i16)in0, (v8i16)in1);        \
1002   out1 = (RTYPE)__msa_pckev_h((v8i16)in2, (v8i16)in3);        \
1003 } while (0)
1004 #define PCKEV_H2_UH(...) PCKEV_H2(v8u16, __VA_ARGS__)
1005 #define PCKEV_H2_SH(...) PCKEV_H2(v8i16, __VA_ARGS__)
1006 #define PCKEV_H2_SW(...) PCKEV_H2(v4i32, __VA_ARGS__)
1007 #define PCKEV_H2_UW(...) PCKEV_H2(v4u32, __VA_ARGS__)
1008 
1009 /* Description : Pack even word elements of vector pairs
1010  * Arguments   : Inputs  - in0, in1, in2, in3
1011  *               Outputs - out0, out1
1012  *               Return Type - as per RTYPE
1013  * Details     : Even word elements of 'in0' are copied to the left half of
1014  *               'out0' & even word elements of 'in1' are copied to the
1015  *               right half of 'out0'.
1016  */
1017 #define PCKEV_W2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
1018   out0 = (RTYPE)__msa_pckev_w((v4i32)in0, (v4i32)in1);        \
1019   out1 = (RTYPE)__msa_pckev_w((v4i32)in2, (v4i32)in3);        \
1020 } while (0)
1021 #define PCKEV_W2_UH(...) PCKEV_W2(v8u16, __VA_ARGS__)
1022 #define PCKEV_W2_SH(...) PCKEV_W2(v8i16, __VA_ARGS__)
1023 #define PCKEV_W2_SW(...) PCKEV_W2(v4i32, __VA_ARGS__)
1024 #define PCKEV_W2_UW(...) PCKEV_W2(v4u32, __VA_ARGS__)
1025 
1026 /* Description : Pack odd halfword elements of vector pairs
1027  * Arguments   : Inputs  - in0, in1, in2, in3
1028  *               Outputs - out0, out1
1029  *               Return Type - as per RTYPE
1030  * Details     : Odd halfword elements of 'in0' are copied to the left half of
1031  *               'out0' & odd halfword elements of 'in1' are copied to the
1032  *               right half of 'out0'.
1033  */
1034 #define PCKOD_H2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
1035   out0 = (RTYPE)__msa_pckod_h((v8i16)in0, (v8i16)in1);        \
1036   out1 = (RTYPE)__msa_pckod_h((v8i16)in2, (v8i16)in3);        \
1037 } while (0)
1038 #define PCKOD_H2_UH(...) PCKOD_H2(v8u16, __VA_ARGS__)
1039 #define PCKOD_H2_SH(...) PCKOD_H2(v8i16, __VA_ARGS__)
1040 #define PCKOD_H2_SW(...) PCKOD_H2(v4i32, __VA_ARGS__)
1041 #define PCKOD_H2_UW(...) PCKOD_H2(v4u32, __VA_ARGS__)
1042 
1043 /* Description : Arithmetic immediate shift right all elements of word vector
1044  * Arguments   : Inputs  - in0, in1, shift
1045  *               Outputs - in place operation
1046  *               Return Type - as per input vector RTYPE
1047  * Details     : Each element of vector 'in0' is right shifted by 'shift' and
1048  *               the result is written in-place. 'shift' is a GP variable.
1049  */
1050 #define SRAI_W2(RTYPE, in0, in1, shift_val) do {  \
1051   in0 = (RTYPE)SRAI_W(in0, shift_val);            \
1052   in1 = (RTYPE)SRAI_W(in1, shift_val);            \
1053 } while (0)
1054 #define SRAI_W2_SW(...) SRAI_W2(v4i32, __VA_ARGS__)
1055 #define SRAI_W2_UW(...) SRAI_W2(v4u32, __VA_ARGS__)
1056 
1057 #define SRAI_W4(RTYPE, in0, in1, in2, in3, shift_val) do {  \
1058   SRAI_W2(RTYPE, in0, in1, shift_val);                      \
1059   SRAI_W2(RTYPE, in2, in3, shift_val);                      \
1060 } while (0)
1061 #define SRAI_W4_SW(...) SRAI_W4(v4i32, __VA_ARGS__)
1062 #define SRAI_W4_UW(...) SRAI_W4(v4u32, __VA_ARGS__)
1063 
1064 /* Description : Arithmetic shift right all elements of half-word vector
1065  * Arguments   : Inputs  - in0, in1, shift
1066  *               Outputs - in place operation
1067  *               Return Type - as per input vector RTYPE
1068  * Details     : Each element of vector 'in0' is right shifted by 'shift' and
1069  *               the result is written in-place. 'shift' is a GP variable.
1070  */
1071 #define SRAI_H2(RTYPE, in0, in1, shift_val) do {  \
1072   in0 = (RTYPE)SRAI_H(in0, shift_val);            \
1073   in1 = (RTYPE)SRAI_H(in1, shift_val);            \
1074 } while (0)
1075 #define SRAI_H2_SH(...) SRAI_H2(v8i16, __VA_ARGS__)
1076 #define SRAI_H2_UH(...) SRAI_H2(v8u16, __VA_ARGS__)
1077 
1078 /* Description : Arithmetic rounded shift right all elements of word vector
1079  * Arguments   : Inputs  - in0, in1, shift
1080  *               Outputs - in place operation
1081  *               Return Type - as per input vector RTYPE
1082  * Details     : Each element of vector 'in0' is right shifted by 'shift' and
1083  *               the result is written in-place. 'shift' is a GP variable.
1084  */
1085 #define SRARI_W2(RTYPE, in0, in1, shift) do {     \
1086   in0 = (RTYPE)__msa_srari_w((v4i32)in0, shift);  \
1087   in1 = (RTYPE)__msa_srari_w((v4i32)in1, shift);  \
1088 } while (0)
1089 #define SRARI_W2_SW(...) SRARI_W2(v4i32, __VA_ARGS__)
1090 
1091 #define SRARI_W4(RTYPE, in0, in1, in2, in3, shift) do {  \
1092   SRARI_W2(RTYPE, in0, in1, shift);                      \
1093   SRARI_W2(RTYPE, in2, in3, shift);                      \
1094 } while (0)
1095 #define SRARI_W4_SH(...) SRARI_W4(v8i16, __VA_ARGS__)
1096 #define SRARI_W4_UW(...) SRARI_W4(v4u32, __VA_ARGS__)
1097 #define SRARI_W4_SW(...) SRARI_W4(v4i32, __VA_ARGS__)
1098 
1099 /* Description : Shift right arithmetic rounded double words
1100  * Arguments   : Inputs  - in0, in1, shift
1101  *               Outputs - in place operation
1102  *               Return Type - as per RTYPE
1103  * Details     : Each element of vector 'in0' is shifted right arithmetically by
1104  *               the number of bits in the corresponding element in the vector
1105  *               'shift'. The last discarded bit is added to shifted value for
1106  *               rounding and the result is written in-place.
1107  *               'shift' is a vector.
1108  */
1109 #define SRAR_D2(RTYPE, in0, in1, shift) do {            \
1110   in0 = (RTYPE)__msa_srar_d((v2i64)in0, (v2i64)shift);  \
1111   in1 = (RTYPE)__msa_srar_d((v2i64)in1, (v2i64)shift);  \
1112 } while (0)
1113 #define SRAR_D2_SW(...) SRAR_D2(v4i32, __VA_ARGS__)
1114 #define SRAR_D2_SD(...) SRAR_D2(v2i64, __VA_ARGS__)
1115 #define SRAR_D2_UD(...) SRAR_D2(v2u64, __VA_ARGS__)
1116 
1117 #define SRAR_D4(RTYPE, in0, in1, in2, in3, shift) do {  \
1118   SRAR_D2(RTYPE, in0, in1, shift);                      \
1119   SRAR_D2(RTYPE, in2, in3, shift);                      \
1120 } while (0)
1121 #define SRAR_D4_SD(...) SRAR_D4(v2i64, __VA_ARGS__)
1122 #define SRAR_D4_UD(...) SRAR_D4(v2u64, __VA_ARGS__)
1123 
1124 /* Description : Addition of 2 pairs of half-word vectors
1125  * Arguments   : Inputs  - in0, in1, in2, in3
1126  *               Outputs - out0, out1
1127  * Details     : Each element in 'in0' is added to 'in1' and result is written
1128  *               to 'out0'.
1129  */
1130 #define ADDVI_H2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
1131   out0 = (RTYPE)ADDVI_H(in0, in1);                            \
1132   out1 = (RTYPE)ADDVI_H(in2, in3);                            \
1133 } while (0)
1134 #define ADDVI_H2_SH(...) ADDVI_H2(v8i16, __VA_ARGS__)
1135 #define ADDVI_H2_UH(...) ADDVI_H2(v8u16, __VA_ARGS__)
1136 
1137 /* Description : Addition of 2 pairs of word vectors
1138  * Arguments   : Inputs  - in0, in1, in2, in3
1139  *               Outputs - out0, out1
1140  * Details     : Each element in 'in0' is added to 'in1' and result is written
1141  *               to 'out0'.
1142  */
1143 #define ADDVI_W2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
1144   out0 = (RTYPE)ADDVI_W(in0, in1);                            \
1145   out1 = (RTYPE)ADDVI_W(in2, in3);                            \
1146 } while (0)
1147 #define ADDVI_W2_SW(...) ADDVI_W2(v4i32, __VA_ARGS__)
1148 
1149 /* Description : Fill 2 pairs of word vectors with GP registers
1150  * Arguments   : Inputs  - in0, in1
1151  *               Outputs - out0, out1
1152  * Details     : GP register in0 is replicated in each word element of out0
1153  *               GP register in1 is replicated in each word element of out1
1154  */
1155 #define FILL_W2(RTYPE, in0, in1, out0, out1) do {  \
1156   out0 = (RTYPE)__msa_fill_w(in0);                 \
1157   out1 = (RTYPE)__msa_fill_w(in1);                 \
1158 } while (0)
1159 #define FILL_W2_SW(...) FILL_W2(v4i32, __VA_ARGS__)
1160 
1161 /* Description : Addition of 2 pairs of vectors
1162  * Arguments   : Inputs  - in0, in1, in2, in3
1163  *               Outputs - out0, out1
1164  * Details     : Each element in 'in0' is added to 'in1' and result is written
1165  *               to 'out0'.
1166  */
1167 #define ADD2(in0, in1, in2, in3, out0, out1) do {  \
1168   out0 = in0 + in1;                                \
1169   out1 = in2 + in3;                                \
1170 } while (0)
1171 
1172 #define ADD4(in0, in1, in2, in3, in4, in5, in6, in7,  \
1173              out0, out1, out2, out3) do {             \
1174   ADD2(in0, in1, in2, in3, out0, out1);               \
1175   ADD2(in4, in5, in6, in7, out2, out3);               \
1176 } while (0)
1177 
1178 /* Description : Subtraction of 2 pairs of vectors
1179  * Arguments   : Inputs  - in0, in1, in2, in3
1180  *               Outputs - out0, out1
1181  * Details     : Each element in 'in1' is subtracted from 'in0' and result is
1182  *               written to 'out0'.
1183  */
1184 #define SUB2(in0, in1, in2, in3, out0, out1) do {  \
1185   out0 = in0 - in1;                                \
1186   out1 = in2 - in3;                                \
1187 } while (0)
1188 
1189 #define SUB3(in0, in1, in2, in3, in4, in5, out0, out1, out2) do {  \
1190   out0 = in0 - in1;                                                \
1191   out1 = in2 - in3;                                                \
1192   out2 = in4 - in5;                                                \
1193 } while (0)
1194 
1195 #define SUB4(in0, in1, in2, in3, in4, in5, in6, in7,  \
1196              out0, out1, out2, out3) do {             \
1197   out0 = in0 - in1;                                   \
1198   out1 = in2 - in3;                                   \
1199   out2 = in4 - in5;                                   \
1200   out3 = in6 - in7;                                   \
1201 } while (0)
1202 
1203 /* Description : Addition - Subtraction of input vectors
1204  * Arguments   : Inputs  - in0, in1
1205  *               Outputs - out0, out1
1206  * Details     : Each element in 'in1' is added to 'in0' and result is
1207  *               written to 'out0'.
1208  *               Each element in 'in1' is subtracted from 'in0' and result is
1209  *               written to 'out1'.
1210  */
1211 #define ADDSUB2(in0, in1, out0, out1) do {  \
1212   out0 = in0 + in1;                         \
1213   out1 = in0 - in1;                         \
1214 } while (0)
1215 
1216 /* Description : Multiplication of pairs of vectors
1217  * Arguments   : Inputs  - in0, in1, in2, in3
1218  *               Outputs - out0, out1
1219  * Details     : Each element from 'in0' is multiplied with elements from 'in1'
1220  *               and the result is written to 'out0'
1221  */
1222 #define MUL2(in0, in1, in2, in3, out0, out1) do {  \
1223   out0 = in0 * in1;                                \
1224   out1 = in2 * in3;                                \
1225 } while (0)
1226 
1227 #define MUL4(in0, in1, in2, in3, in4, in5, in6, in7,  \
1228              out0, out1, out2, out3) do {             \
1229   MUL2(in0, in1, in2, in3, out0, out1);               \
1230   MUL2(in4, in5, in6, in7, out2, out3);               \
1231 } while (0)
1232 
1233 /* Description : Sign extend halfword elements from right half of the vector
1234  * Arguments   : Input  - in    (halfword vector)
1235  *               Output - out   (sign extended word vector)
1236  *               Return Type - signed word
1237  * Details     : Sign bit of halfword elements from input vector 'in' is
1238  *               extracted and interleaved with same vector 'in0' to generate
1239  *               4 word elements keeping sign intact
1240  */
1241 #define UNPCK_R_SH_SW(in, out) do {                   \
1242   const v8i16 sign_m = __msa_clti_s_h((v8i16)in, 0);  \
1243   out = (v4i32)__msa_ilvr_h(sign_m, (v8i16)in);       \
1244 } while (0)
1245 
1246 /* Description : Sign extend halfword elements from input vector and return
1247  *               the result in pair of vectors
1248  * Arguments   : Input   - in            (halfword vector)
1249  *               Outputs - out0, out1   (sign extended word vectors)
1250  *               Return Type - signed word
1251  * Details     : Sign bit of halfword elements from input vector 'in' is
1252  *               extracted and interleaved right with same vector 'in0' to
1253  *               generate 4 signed word elements in 'out0'
1254  *               Then interleaved left with same vector 'in0' to
1255  *               generate 4 signed word elements in 'out1'
1256  */
1257 #define UNPCK_SH_SW(in, out0, out1) do {              \
1258   const v8i16 tmp_m = __msa_clti_s_h((v8i16)in, 0);   \
1259   ILVRL_H2_SW(tmp_m, in, out0, out1);                 \
1260 } while (0)
1261 
1262 /* Description : Butterfly of 4 input vectors
1263  * Arguments   : Inputs  - in0, in1, in2, in3
1264  *               Outputs - out0, out1, out2, out3
1265  * Details     : Butterfly operation
1266  */
1267 #define BUTTERFLY_4(in0, in1, in2, in3, out0, out1, out2, out3) do {  \
1268   out0 = in0 + in3;                                                   \
1269   out1 = in1 + in2;                                                   \
1270   out2 = in1 - in2;                                                   \
1271   out3 = in0 - in3;                                                   \
1272 } while (0)
1273 
1274 /* Description : Transpose 16x4 block into 4x16 with byte elements in vectors
1275  * Arguments   : Inputs  - in0, in1, in2, in3, in4, in5, in6, in7,
1276  *                         in8, in9, in10, in11, in12, in13, in14, in15
1277  *               Outputs - out0, out1, out2, out3
1278  *               Return Type - unsigned byte
1279  */
1280 #define TRANSPOSE16x4_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7,        \
1281                             in8, in9, in10, in11, in12, in13, in14, in15,  \
1282                             out0, out1, out2, out3) do {                   \
1283   v2i64 tmp0_m, tmp1_m, tmp2_m, tmp3_m, tmp4_m, tmp5_m;                    \
1284   ILVEV_W2_SD(in0, in4, in8, in12, tmp2_m, tmp3_m);                        \
1285   ILVEV_W2_SD(in1, in5, in9, in13, tmp0_m, tmp1_m);                        \
1286   ILVEV_D2_UB(tmp2_m, tmp3_m, tmp0_m, tmp1_m, out1, out3);                 \
1287   ILVEV_W2_SD(in2, in6, in10, in14, tmp4_m, tmp5_m);                       \
1288   ILVEV_W2_SD(in3, in7, in11, in15, tmp0_m, tmp1_m);                       \
1289   ILVEV_D2_SD(tmp4_m, tmp5_m, tmp0_m, tmp1_m, tmp2_m, tmp3_m);             \
1290   ILVEV_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m);                 \
1291   ILVEVOD_H2_UB(tmp0_m, tmp1_m, tmp0_m, tmp1_m, out0, out2);               \
1292   ILVOD_B2_SD(out1, out3, tmp2_m, tmp3_m, tmp0_m, tmp1_m);                 \
1293   ILVEVOD_H2_UB(tmp0_m, tmp1_m, tmp0_m, tmp1_m, out1, out3);               \
1294 } while (0)
1295 
1296 /* Description : Transpose 16x8 block into 8x16 with byte elements in vectors
1297  * Arguments   : Inputs  - in0, in1, in2, in3, in4, in5, in6, in7,
1298  *                         in8, in9, in10, in11, in12, in13, in14, in15
1299  *               Outputs - out0, out1, out2, out3, out4, out5, out6, out7
1300  *               Return Type - unsigned byte
1301  */
1302 #define TRANSPOSE16x8_UB_UB(in0, in1, in2, in3, in4, in5, in6, in7,        \
1303                             in8, in9, in10, in11, in12, in13, in14, in15,  \
1304                             out0, out1, out2, out3, out4, out5,            \
1305                             out6, out7) do {                               \
1306   v8i16 tmp0_m, tmp1_m, tmp4_m, tmp5_m, tmp6_m, tmp7_m;                    \
1307   v4i32 tmp2_m, tmp3_m;                                                    \
1308   ILVEV_D2_UB(in0, in8, in1, in9, out7, out6);                             \
1309   ILVEV_D2_UB(in2, in10, in3, in11, out5, out4);                           \
1310   ILVEV_D2_UB(in4, in12, in5, in13, out3, out2);                           \
1311   ILVEV_D2_UB(in6, in14, in7, in15, out1, out0);                           \
1312   ILVEV_B2_SH(out7, out6, out5, out4, tmp0_m, tmp1_m);                     \
1313   ILVOD_B2_SH(out7, out6, out5, out4, tmp4_m, tmp5_m);                     \
1314   ILVEV_B2_UB(out3, out2, out1, out0, out5, out7);                         \
1315   ILVOD_B2_SH(out3, out2, out1, out0, tmp6_m, tmp7_m);                     \
1316   ILVEV_H2_SW(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m);                 \
1317   ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out0, out4);               \
1318   ILVOD_H2_SW(tmp0_m, tmp1_m, out5, out7, tmp2_m, tmp3_m);                 \
1319   ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out2, out6);               \
1320   ILVEV_H2_SW(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m);             \
1321   ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out1, out5);               \
1322   ILVOD_H2_SW(tmp4_m, tmp5_m, tmp6_m, tmp7_m, tmp2_m, tmp3_m);             \
1323   ILVEVOD_W2_UB(tmp2_m, tmp3_m, tmp2_m, tmp3_m, out3, out7);               \
1324 } while (0)
1325 
1326 /* Description : Transpose 4x4 block with word elements in vectors
1327  * Arguments   : Inputs  - in0, in1, in2, in3
1328  *                Outputs - out0, out1, out2, out3
1329  *                Return Type - as per RTYPE
1330  */
1331 #define TRANSPOSE4x4_W(RTYPE, in0, in1, in2, in3,                            \
1332                        out0, out1, out2, out3) do {                          \
1333   v4i32 s0_m, s1_m, s2_m, s3_m;                                              \
1334   ILVRL_W2_SW(in1, in0, s0_m, s1_m);                                         \
1335   ILVRL_W2_SW(in3, in2, s2_m, s3_m);                                         \
1336   out0 = (RTYPE)__msa_ilvr_d((v2i64)s2_m, (v2i64)s0_m);                      \
1337   out1 = (RTYPE)__msa_ilvl_d((v2i64)s2_m, (v2i64)s0_m);                      \
1338   out2 = (RTYPE)__msa_ilvr_d((v2i64)s3_m, (v2i64)s1_m);                      \
1339   out3 = (RTYPE)__msa_ilvl_d((v2i64)s3_m, (v2i64)s1_m);                      \
1340 } while (0)
1341 #define TRANSPOSE4x4_SW_SW(...) TRANSPOSE4x4_W(v4i32, __VA_ARGS__)
1342 
1343 /* Description : Add block 4x4
1344  * Arguments   : Inputs - in0, in1, in2, in3, pdst, stride
1345  * Details     : Least significant 4 bytes from each input vector are added to
1346  *               the destination bytes, clipped between 0-255 and stored.
1347  */
1348 #define ADDBLK_ST4x4_UB(in0, in1, in2, in3, pdst, stride) do {  \
1349   uint32_t src0_m, src1_m, src2_m, src3_m;                      \
1350   v8i16 inp0_m, inp1_m, res0_m, res1_m;                         \
1351   v16i8 dst0_m = { 0 };                                         \
1352   v16i8 dst1_m = { 0 };                                         \
1353   const v16i8 zero_m = { 0 };                                   \
1354   ILVR_D2_SH(in1, in0, in3, in2, inp0_m, inp1_m);               \
1355   LW4(pdst, stride, src0_m, src1_m, src2_m, src3_m);            \
1356   INSERT_W2_SB(src0_m, src1_m, dst0_m);                         \
1357   INSERT_W2_SB(src2_m, src3_m, dst1_m);                         \
1358   ILVR_B2_SH(zero_m, dst0_m, zero_m, dst1_m, res0_m, res1_m);   \
1359   ADD2(res0_m, inp0_m, res1_m, inp1_m, res0_m, res1_m);         \
1360   CLIP_SH2_0_255(res0_m, res1_m);                               \
1361   PCKEV_B2_SB(res0_m, res0_m, res1_m, res1_m, dst0_m, dst1_m);  \
1362   ST4x4_UB(dst0_m, dst1_m, 0, 1, 0, 1, pdst, stride);           \
1363 } while (0)
1364 
1365 /* Description : Pack even byte elements, extract 0 & 2 index words from pair
1366  *               of results and store 4 words in destination memory as per
1367  *               stride
1368  * Arguments   : Inputs - in0, in1, in2, in3, pdst, stride
1369  */
1370 #define PCKEV_ST4x4_UB(in0, in1, in2, in3, pdst, stride) do {  \
1371   v16i8 tmp0_m, tmp1_m;                                        \
1372   PCKEV_B2_SB(in1, in0, in3, in2, tmp0_m, tmp1_m);             \
1373   ST4x4_UB(tmp0_m, tmp1_m, 0, 2, 0, 2, pdst, stride);          \
1374 } while (0)
1375 
1376 /* Description : average with rounding (in0 + in1 + 1) / 2.
1377  * Arguments   : Inputs  - in0, in1, in2, in3,
1378  *               Outputs - out0, out1
1379  *               Return Type - as per RTYPE
1380  * Details     : Each unsigned byte element from 'in0' vector is added with
1381  *               each unsigned byte element from 'in1' vector. Then the average
1382  *               with rounding is calculated and written to 'out0'
1383  */
1384 #define AVER_UB2(RTYPE, in0, in1, in2, in3, out0, out1) do {  \
1385   out0 = (RTYPE)__msa_aver_u_b((v16u8)in0, (v16u8)in1);       \
1386   out1 = (RTYPE)__msa_aver_u_b((v16u8)in2, (v16u8)in3);       \
1387 } while (0)
1388 #define AVER_UB2_UB(...) AVER_UB2(v16u8, __VA_ARGS__)
1389 
1390 #endif  /* WEBP_DSP_MSA_MACRO_H_ */
1391