1 /*
2 * block queue tracing parse application
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22 #include <sys/types.h>
23 #include <sys/stat.h>
24 #include <unistd.h>
25 #include <stdio.h>
26 #include <fcntl.h>
27 #include <stdlib.h>
28 #include <string.h>
29 #include <getopt.h>
30 #include <errno.h>
31 #include <signal.h>
32 #include <locale.h>
33 #include <libgen.h>
34
35 #include "blktrace.h"
36 #include "rbtree.h"
37 #include "jhash.h"
38
39 static char blkparse_version[] = "1.0.1";
40
41 struct skip_info {
42 unsigned long start, end;
43 struct skip_info *prev, *next;
44 };
45
46 struct per_dev_info {
47 dev_t dev;
48 char *name;
49
50 int backwards;
51 unsigned long long events;
52 unsigned long long first_reported_time;
53 unsigned long long last_reported_time;
54 unsigned long long last_read_time;
55 struct io_stats io_stats;
56 unsigned long skips;
57 unsigned long long seq_skips;
58 unsigned int max_depth[2];
59 unsigned int cur_depth[2];
60
61 struct rb_root rb_track;
62
63 int nfiles;
64 int ncpus;
65
66 unsigned long *cpu_map;
67 unsigned int cpu_map_max;
68
69 struct per_cpu_info *cpus;
70 };
71
72 /*
73 * some duplicated effort here, we can unify this hash and the ppi hash later
74 */
75 struct process_pid_map {
76 pid_t pid;
77 char comm[16];
78 struct process_pid_map *hash_next, *list_next;
79 };
80
81 #define PPM_HASH_SHIFT (8)
82 #define PPM_HASH_SIZE (1 << PPM_HASH_SHIFT)
83 #define PPM_HASH_MASK (PPM_HASH_SIZE - 1)
84 static struct process_pid_map *ppm_hash_table[PPM_HASH_SIZE];
85
86 struct per_process_info {
87 struct process_pid_map *ppm;
88 struct io_stats io_stats;
89 struct per_process_info *hash_next, *list_next;
90 int more_than_one;
91
92 /*
93 * individual io stats
94 */
95 unsigned long long longest_allocation_wait[2];
96 unsigned long long longest_dispatch_wait[2];
97 unsigned long long longest_completion_wait[2];
98 };
99
100 #define PPI_HASH_SHIFT (8)
101 #define PPI_HASH_SIZE (1 << PPI_HASH_SHIFT)
102 #define PPI_HASH_MASK (PPI_HASH_SIZE - 1)
103 static struct per_process_info *ppi_hash_table[PPI_HASH_SIZE];
104 static struct per_process_info *ppi_list;
105 static int ppi_list_entries;
106
107 static struct option l_opts[] = {
108 {
109 .name = "act-mask",
110 .has_arg = required_argument,
111 .flag = NULL,
112 .val = 'a'
113 },
114 {
115 .name = "set-mask",
116 .has_arg = required_argument,
117 .flag = NULL,
118 .val = 'A'
119 },
120 {
121 .name = "batch",
122 .has_arg = required_argument,
123 .flag = NULL,
124 .val = 'b'
125 },
126 {
127 .name = "input-directory",
128 .has_arg = required_argument,
129 .flag = NULL,
130 .val = 'D'
131 },
132 {
133 .name = "dump-binary",
134 .has_arg = required_argument,
135 .flag = NULL,
136 .val = 'd'
137 },
138 {
139 .name = "format",
140 .has_arg = required_argument,
141 .flag = NULL,
142 .val = 'f'
143 },
144 {
145 .name = "format-spec",
146 .has_arg = required_argument,
147 .flag = NULL,
148 .val = 'F'
149 },
150 {
151 .name = "hash-by-name",
152 .has_arg = no_argument,
153 .flag = NULL,
154 .val = 'h'
155 },
156 {
157 .name = "input",
158 .has_arg = required_argument,
159 .flag = NULL,
160 .val = 'i'
161 },
162 {
163 .name = "no-msgs",
164 .has_arg = no_argument,
165 .flag = NULL,
166 .val = 'M'
167 },
168 {
169 .name = "output",
170 .has_arg = required_argument,
171 .flag = NULL,
172 .val = 'o'
173 },
174 {
175 .name = "no-text-output",
176 .has_arg = no_argument,
177 .flag = NULL,
178 .val = 'O'
179 },
180 {
181 .name = "quiet",
182 .has_arg = no_argument,
183 .flag = NULL,
184 .val = 'q'
185 },
186 {
187 .name = "per-program-stats",
188 .has_arg = no_argument,
189 .flag = NULL,
190 .val = 's'
191 },
192 {
193 .name = "track-ios",
194 .has_arg = no_argument,
195 .flag = NULL,
196 .val = 't'
197 },
198 {
199 .name = "stopwatch",
200 .has_arg = required_argument,
201 .flag = NULL,
202 .val = 'w'
203 },
204 {
205 .name = "verbose",
206 .has_arg = no_argument,
207 .flag = NULL,
208 .val = 'v'
209 },
210 {
211 .name = "version",
212 .has_arg = no_argument,
213 .flag = NULL,
214 .val = 'V'
215 },
216 {
217 .name = NULL,
218 }
219 };
220
221 /*
222 * for sorting the displayed output
223 */
224 struct trace {
225 struct blk_io_trace *bit;
226 struct rb_node rb_node;
227 struct trace *next;
228 unsigned long read_sequence;
229 };
230
231 static struct rb_root rb_sort_root;
232 static unsigned long rb_sort_entries;
233
234 static struct trace *trace_list;
235
236 /*
237 * allocation cache
238 */
239 static struct blk_io_trace *bit_alloc_list;
240 static struct trace *t_alloc_list;
241
242 /*
243 * for tracking individual ios
244 */
245 struct io_track {
246 struct rb_node rb_node;
247
248 struct process_pid_map *ppm;
249 __u64 sector;
250 unsigned long long allocation_time;
251 unsigned long long queue_time;
252 unsigned long long dispatch_time;
253 unsigned long long completion_time;
254 };
255
256 static int ndevices;
257 static struct per_dev_info *devices;
258 static char *get_dev_name(struct per_dev_info *, char *, int);
259 static int trace_rb_insert_last(struct per_dev_info *, struct trace *);
260
261 FILE *ofp = NULL;
262 static char *output_name;
263 static char *input_dir;
264
265 static unsigned long long genesis_time;
266 static unsigned long long last_allowed_time;
267 static unsigned long long stopwatch_start; /* start from zero by default */
268 static unsigned long long stopwatch_end = -1ULL; /* "infinity" */
269 static unsigned long read_sequence;
270
271 static int per_process_stats;
272 static int per_device_and_cpu_stats = 1;
273 static int track_ios;
274 static int ppi_hash_by_pid = 1;
275 static int verbose;
276 static unsigned int act_mask = -1U;
277 static int stats_printed;
278 static int bin_output_msgs = 1;
279 int data_is_native = -1;
280
281 static FILE *dump_fp;
282 static char *dump_binary;
283
284 static unsigned int t_alloc_cache;
285 static unsigned int bit_alloc_cache;
286
287 #define RB_BATCH_DEFAULT (512)
288 static unsigned int rb_batch = RB_BATCH_DEFAULT;
289
290 static int pipeline;
291 static char *pipename;
292
293 static int text_output = 1;
294
295 #define is_done() (*(volatile int *)(&done))
296 static volatile int done;
297
298 struct timespec abs_start_time;
299 static unsigned long long start_timestamp;
300
301 static int have_drv_data = 0;
302
303 #define JHASH_RANDOM (0x3af5f2ee)
304
305 #define CPUS_PER_LONG (8 * sizeof(unsigned long))
306 #define CPU_IDX(cpu) ((cpu) / CPUS_PER_LONG)
307 #define CPU_BIT(cpu) ((cpu) & (CPUS_PER_LONG - 1))
308
output_binary(void * buf,int len)309 static void output_binary(void *buf, int len)
310 {
311 if (dump_binary) {
312 size_t n = fwrite(buf, len, 1, dump_fp);
313 if (n != 1) {
314 perror(dump_binary);
315 fclose(dump_fp);
316 dump_binary = NULL;
317 }
318 }
319 }
320
resize_cpu_info(struct per_dev_info * pdi,int cpu)321 static void resize_cpu_info(struct per_dev_info *pdi, int cpu)
322 {
323 struct per_cpu_info *cpus = pdi->cpus;
324 int ncpus = pdi->ncpus;
325 int new_count = cpu + 1;
326 int new_space, size;
327 char *new_start;
328
329 size = new_count * sizeof(struct per_cpu_info);
330 cpus = realloc(cpus, size);
331 if (!cpus) {
332 char name[20];
333 fprintf(stderr, "Out of memory, CPU info for device %s (%d)\n",
334 get_dev_name(pdi, name, sizeof(name)), size);
335 exit(1);
336 }
337
338 new_start = (char *)cpus + (ncpus * sizeof(struct per_cpu_info));
339 new_space = (new_count - ncpus) * sizeof(struct per_cpu_info);
340 memset(new_start, 0, new_space);
341
342 pdi->ncpus = new_count;
343 pdi->cpus = cpus;
344
345 for (new_count = 0; new_count < pdi->ncpus; new_count++) {
346 struct per_cpu_info *pci = &pdi->cpus[new_count];
347
348 if (!pci->fd) {
349 pci->fd = -1;
350 memset(&pci->rb_last, 0, sizeof(pci->rb_last));
351 pci->rb_last_entries = 0;
352 pci->last_sequence = -1;
353 }
354 }
355 }
356
get_cpu_info(struct per_dev_info * pdi,int cpu)357 static struct per_cpu_info *get_cpu_info(struct per_dev_info *pdi, int cpu)
358 {
359 struct per_cpu_info *pci;
360
361 if (cpu >= pdi->ncpus)
362 resize_cpu_info(pdi, cpu);
363
364 pci = &pdi->cpus[cpu];
365 pci->cpu = cpu;
366 return pci;
367 }
368
369
resize_devices(char * name)370 static int resize_devices(char *name)
371 {
372 int size = (ndevices + 1) * sizeof(struct per_dev_info);
373
374 devices = realloc(devices, size);
375 if (!devices) {
376 fprintf(stderr, "Out of memory, device %s (%d)\n", name, size);
377 return 1;
378 }
379 memset(&devices[ndevices], 0, sizeof(struct per_dev_info));
380 devices[ndevices].name = name;
381 ndevices++;
382 return 0;
383 }
384
get_dev_info(dev_t dev)385 static struct per_dev_info *get_dev_info(dev_t dev)
386 {
387 struct per_dev_info *pdi;
388 int i;
389
390 for (i = 0; i < ndevices; i++) {
391 if (!devices[i].dev)
392 devices[i].dev = dev;
393 if (devices[i].dev == dev)
394 return &devices[i];
395 }
396
397 if (resize_devices(NULL))
398 return NULL;
399
400 pdi = &devices[ndevices - 1];
401 pdi->dev = dev;
402 pdi->first_reported_time = 0;
403 pdi->last_read_time = 0;
404
405 return pdi;
406 }
407
insert_skip(struct per_cpu_info * pci,unsigned long start,unsigned long end)408 static void insert_skip(struct per_cpu_info *pci, unsigned long start,
409 unsigned long end)
410 {
411 struct skip_info *sip;
412
413 for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
414 if (end == (sip->start - 1)) {
415 sip->start = start;
416 return;
417 } else if (start == (sip->end + 1)) {
418 sip->end = end;
419 return;
420 }
421 }
422
423 sip = malloc(sizeof(struct skip_info));
424 sip->start = start;
425 sip->end = end;
426 sip->prev = sip->next = NULL;
427 if (pci->skips_tail == NULL)
428 pci->skips_head = pci->skips_tail = sip;
429 else {
430 sip->prev = pci->skips_tail;
431 pci->skips_tail->next = sip;
432 pci->skips_tail = sip;
433 }
434 }
435
remove_sip(struct per_cpu_info * pci,struct skip_info * sip)436 static void remove_sip(struct per_cpu_info *pci, struct skip_info *sip)
437 {
438 if (sip->prev == NULL) {
439 if (sip->next == NULL)
440 pci->skips_head = pci->skips_tail = NULL;
441 else {
442 pci->skips_head = sip->next;
443 sip->next->prev = NULL;
444 }
445 } else if (sip->next == NULL) {
446 pci->skips_tail = sip->prev;
447 sip->prev->next = NULL;
448 } else {
449 sip->prev->next = sip->next;
450 sip->next->prev = sip->prev;
451 }
452
453 sip->prev = sip->next = NULL;
454 free(sip);
455 }
456
457 #define IN_SKIP(sip,seq) (((sip)->start <= (seq)) && ((seq) <= sip->end))
check_current_skips(struct per_cpu_info * pci,unsigned long seq)458 static int check_current_skips(struct per_cpu_info *pci, unsigned long seq)
459 {
460 struct skip_info *sip;
461
462 for (sip = pci->skips_tail; sip != NULL; sip = sip->prev) {
463 if (IN_SKIP(sip, seq)) {
464 if (sip->start == seq) {
465 if (sip->end == seq)
466 remove_sip(pci, sip);
467 else
468 sip->start += 1;
469 } else if (sip->end == seq)
470 sip->end -= 1;
471 else {
472 sip->end = seq - 1;
473 insert_skip(pci, seq + 1, sip->end);
474 }
475 return 1;
476 }
477 }
478
479 return 0;
480 }
481
collect_pdi_skips(struct per_dev_info * pdi)482 static void collect_pdi_skips(struct per_dev_info *pdi)
483 {
484 struct skip_info *sip;
485 int cpu;
486
487 pdi->skips = 0;
488 pdi->seq_skips = 0;
489
490 for (cpu = 0; cpu < pdi->ncpus; cpu++) {
491 struct per_cpu_info *pci = &pdi->cpus[cpu];
492
493 for (sip = pci->skips_head; sip != NULL; sip = sip->next) {
494 pdi->skips++;
495 pdi->seq_skips += (sip->end - sip->start + 1);
496 if (verbose)
497 fprintf(stderr,"(%d,%d): skipping %lu -> %lu\n",
498 MAJOR(pdi->dev), MINOR(pdi->dev),
499 sip->start, sip->end);
500 }
501 }
502 }
503
cpu_mark_online(struct per_dev_info * pdi,unsigned int cpu)504 static void cpu_mark_online(struct per_dev_info *pdi, unsigned int cpu)
505 {
506 if (cpu >= pdi->cpu_map_max || !pdi->cpu_map) {
507 int new_max = (cpu + CPUS_PER_LONG) & ~(CPUS_PER_LONG - 1);
508 unsigned long *map = malloc(new_max / sizeof(long));
509
510 memset(map, 0, new_max / sizeof(long));
511
512 if (pdi->cpu_map) {
513 memcpy(map, pdi->cpu_map, pdi->cpu_map_max / sizeof(long));
514 free(pdi->cpu_map);
515 }
516
517 pdi->cpu_map = map;
518 pdi->cpu_map_max = new_max;
519 }
520
521 pdi->cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
522 }
523
cpu_mark_offline(struct per_dev_info * pdi,int cpu)524 static inline void cpu_mark_offline(struct per_dev_info *pdi, int cpu)
525 {
526 pdi->cpu_map[CPU_IDX(cpu)] &= ~(1UL << CPU_BIT(cpu));
527 }
528
cpu_is_online(struct per_dev_info * pdi,int cpu)529 static inline int cpu_is_online(struct per_dev_info *pdi, int cpu)
530 {
531 return (pdi->cpu_map[CPU_IDX(cpu)] & (1UL << CPU_BIT(cpu))) != 0;
532 }
533
ppm_hash_pid(pid_t pid)534 static inline int ppm_hash_pid(pid_t pid)
535 {
536 return jhash_1word(pid, JHASH_RANDOM) & PPM_HASH_MASK;
537 }
538
find_ppm(pid_t pid)539 static struct process_pid_map *find_ppm(pid_t pid)
540 {
541 const int hash_idx = ppm_hash_pid(pid);
542 struct process_pid_map *ppm;
543
544 ppm = ppm_hash_table[hash_idx];
545 while (ppm) {
546 if (ppm->pid == pid)
547 return ppm;
548
549 ppm = ppm->hash_next;
550 }
551
552 return NULL;
553 }
554
add_ppm_hash(pid_t pid,const char * name)555 static struct process_pid_map *add_ppm_hash(pid_t pid, const char *name)
556 {
557 const int hash_idx = ppm_hash_pid(pid);
558 struct process_pid_map *ppm;
559
560 ppm = find_ppm(pid);
561 if (!ppm) {
562 ppm = malloc(sizeof(*ppm));
563 memset(ppm, 0, sizeof(*ppm));
564 ppm->pid = pid;
565 strcpy(ppm->comm, name);
566 ppm->hash_next = ppm_hash_table[hash_idx];
567 ppm_hash_table[hash_idx] = ppm;
568 }
569
570 return ppm;
571 }
572
handle_notify(struct blk_io_trace * bit)573 static void handle_notify(struct blk_io_trace *bit)
574 {
575 void *payload = (caddr_t) bit + sizeof(*bit);
576 __u32 two32[2];
577
578 switch (bit->action) {
579 case BLK_TN_PROCESS:
580 add_ppm_hash(bit->pid, payload);
581 break;
582
583 case BLK_TN_TIMESTAMP:
584 if (bit->pdu_len != sizeof(two32))
585 return;
586 memcpy(two32, payload, sizeof(two32));
587 if (!data_is_native) {
588 two32[0] = be32_to_cpu(two32[0]);
589 two32[1] = be32_to_cpu(two32[1]);
590 }
591 start_timestamp = bit->time;
592 abs_start_time.tv_sec = two32[0];
593 abs_start_time.tv_nsec = two32[1];
594 if (abs_start_time.tv_nsec < 0) {
595 abs_start_time.tv_sec--;
596 abs_start_time.tv_nsec += 1000000000;
597 }
598
599 break;
600
601 case BLK_TN_MESSAGE:
602 if (bit->pdu_len > 0) {
603 char msg[bit->pdu_len+1];
604
605 memcpy(msg, (char *)payload, bit->pdu_len);
606 msg[bit->pdu_len] = '\0';
607
608 fprintf(ofp,
609 "%3d,%-3d %2d %8s %5d.%09lu %5u %2s %3s %s\n",
610 MAJOR(bit->device), MINOR(bit->device),
611 bit->cpu, "0", (int) SECONDS(bit->time),
612 (unsigned long) NANO_SECONDS(bit->time),
613 0, "m", "N", msg);
614 }
615 break;
616
617 default:
618 /* Ignore unknown notify events */
619 ;
620 }
621 }
622
find_process_name(pid_t pid)623 char *find_process_name(pid_t pid)
624 {
625 struct process_pid_map *ppm = find_ppm(pid);
626
627 if (ppm)
628 return ppm->comm;
629
630 return NULL;
631 }
632
ppi_hash_pid(pid_t pid)633 static inline int ppi_hash_pid(pid_t pid)
634 {
635 return jhash_1word(pid, JHASH_RANDOM) & PPI_HASH_MASK;
636 }
637
ppi_hash_name(const char * name)638 static inline int ppi_hash_name(const char *name)
639 {
640 return jhash(name, 16, JHASH_RANDOM) & PPI_HASH_MASK;
641 }
642
ppi_hash(struct per_process_info * ppi)643 static inline int ppi_hash(struct per_process_info *ppi)
644 {
645 struct process_pid_map *ppm = ppi->ppm;
646
647 if (ppi_hash_by_pid)
648 return ppi_hash_pid(ppm->pid);
649
650 return ppi_hash_name(ppm->comm);
651 }
652
add_ppi_to_hash(struct per_process_info * ppi)653 static inline void add_ppi_to_hash(struct per_process_info *ppi)
654 {
655 const int hash_idx = ppi_hash(ppi);
656
657 ppi->hash_next = ppi_hash_table[hash_idx];
658 ppi_hash_table[hash_idx] = ppi;
659 }
660
add_ppi_to_list(struct per_process_info * ppi)661 static inline void add_ppi_to_list(struct per_process_info *ppi)
662 {
663 ppi->list_next = ppi_list;
664 ppi_list = ppi;
665 ppi_list_entries++;
666 }
667
find_ppi_by_name(char * name)668 static struct per_process_info *find_ppi_by_name(char *name)
669 {
670 const int hash_idx = ppi_hash_name(name);
671 struct per_process_info *ppi;
672
673 ppi = ppi_hash_table[hash_idx];
674 while (ppi) {
675 struct process_pid_map *ppm = ppi->ppm;
676
677 if (!strcmp(ppm->comm, name))
678 return ppi;
679
680 ppi = ppi->hash_next;
681 }
682
683 return NULL;
684 }
685
find_ppi_by_pid(pid_t pid)686 static struct per_process_info *find_ppi_by_pid(pid_t pid)
687 {
688 const int hash_idx = ppi_hash_pid(pid);
689 struct per_process_info *ppi;
690
691 ppi = ppi_hash_table[hash_idx];
692 while (ppi) {
693 struct process_pid_map *ppm = ppi->ppm;
694
695 if (ppm->pid == pid)
696 return ppi;
697
698 ppi = ppi->hash_next;
699 }
700
701 return NULL;
702 }
703
find_ppi(pid_t pid)704 static struct per_process_info *find_ppi(pid_t pid)
705 {
706 struct per_process_info *ppi;
707 char *name;
708
709 if (ppi_hash_by_pid)
710 return find_ppi_by_pid(pid);
711
712 name = find_process_name(pid);
713 if (!name)
714 return NULL;
715
716 ppi = find_ppi_by_name(name);
717 if (ppi && ppi->ppm->pid != pid)
718 ppi->more_than_one = 1;
719
720 return ppi;
721 }
722
723 /*
724 * struct trace and blktrace allocation cache, we do potentially
725 * millions of mallocs for these structures while only using at most
726 * a few thousand at the time
727 */
t_free(struct trace * t)728 static inline void t_free(struct trace *t)
729 {
730 if (t_alloc_cache < 1024) {
731 t->next = t_alloc_list;
732 t_alloc_list = t;
733 t_alloc_cache++;
734 } else
735 free(t);
736 }
737
t_alloc(void)738 static inline struct trace *t_alloc(void)
739 {
740 struct trace *t = t_alloc_list;
741
742 if (t) {
743 t_alloc_list = t->next;
744 t_alloc_cache--;
745 return t;
746 }
747
748 return malloc(sizeof(*t));
749 }
750
bit_free(struct blk_io_trace * bit)751 static inline void bit_free(struct blk_io_trace *bit)
752 {
753 if (bit_alloc_cache < 1024 && !bit->pdu_len) {
754 /*
755 * abuse a 64-bit field for a next pointer for the free item
756 */
757 bit->time = (__u64) (unsigned long) bit_alloc_list;
758 bit_alloc_list = (struct blk_io_trace *) bit;
759 bit_alloc_cache++;
760 } else
761 free(bit);
762 }
763
bit_alloc(void)764 static inline struct blk_io_trace *bit_alloc(void)
765 {
766 struct blk_io_trace *bit = bit_alloc_list;
767
768 if (bit) {
769 bit_alloc_list = (struct blk_io_trace *) (unsigned long) \
770 bit->time;
771 bit_alloc_cache--;
772 return bit;
773 }
774
775 return malloc(sizeof(*bit));
776 }
777
__put_trace_last(struct per_dev_info * pdi,struct trace * t)778 static inline void __put_trace_last(struct per_dev_info *pdi, struct trace *t)
779 {
780 struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
781
782 rb_erase(&t->rb_node, &pci->rb_last);
783 pci->rb_last_entries--;
784
785 bit_free(t->bit);
786 t_free(t);
787 }
788
put_trace(struct per_dev_info * pdi,struct trace * t)789 static void put_trace(struct per_dev_info *pdi, struct trace *t)
790 {
791 rb_erase(&t->rb_node, &rb_sort_root);
792 rb_sort_entries--;
793
794 trace_rb_insert_last(pdi, t);
795 }
796
trace_rb_insert(struct trace * t,struct rb_root * root)797 static inline int trace_rb_insert(struct trace *t, struct rb_root *root)
798 {
799 struct rb_node **p = &root->rb_node;
800 struct rb_node *parent = NULL;
801 struct trace *__t;
802
803 while (*p) {
804 parent = *p;
805
806 __t = rb_entry(parent, struct trace, rb_node);
807
808 if (t->bit->time < __t->bit->time)
809 p = &(*p)->rb_left;
810 else if (t->bit->time > __t->bit->time)
811 p = &(*p)->rb_right;
812 else if (t->bit->device < __t->bit->device)
813 p = &(*p)->rb_left;
814 else if (t->bit->device > __t->bit->device)
815 p = &(*p)->rb_right;
816 else if (t->bit->sequence < __t->bit->sequence)
817 p = &(*p)->rb_left;
818 else /* >= sequence */
819 p = &(*p)->rb_right;
820 }
821
822 rb_link_node(&t->rb_node, parent, p);
823 rb_insert_color(&t->rb_node, root);
824 return 0;
825 }
826
trace_rb_insert_sort(struct trace * t)827 static inline int trace_rb_insert_sort(struct trace *t)
828 {
829 if (!trace_rb_insert(t, &rb_sort_root)) {
830 rb_sort_entries++;
831 return 0;
832 }
833
834 return 1;
835 }
836
trace_rb_insert_last(struct per_dev_info * pdi,struct trace * t)837 static int trace_rb_insert_last(struct per_dev_info *pdi, struct trace *t)
838 {
839 struct per_cpu_info *pci = get_cpu_info(pdi, t->bit->cpu);
840
841 if (trace_rb_insert(t, &pci->rb_last))
842 return 1;
843
844 pci->rb_last_entries++;
845
846 if (pci->rb_last_entries > rb_batch * pdi->nfiles) {
847 struct rb_node *n = rb_first(&pci->rb_last);
848
849 t = rb_entry(n, struct trace, rb_node);
850 __put_trace_last(pdi, t);
851 }
852
853 return 0;
854 }
855
trace_rb_find(dev_t device,unsigned long sequence,struct rb_root * root,int order)856 static struct trace *trace_rb_find(dev_t device, unsigned long sequence,
857 struct rb_root *root, int order)
858 {
859 struct rb_node *n = root->rb_node;
860 struct rb_node *prev = NULL;
861 struct trace *__t;
862
863 while (n) {
864 __t = rb_entry(n, struct trace, rb_node);
865 prev = n;
866
867 if (device < __t->bit->device)
868 n = n->rb_left;
869 else if (device > __t->bit->device)
870 n = n->rb_right;
871 else if (sequence < __t->bit->sequence)
872 n = n->rb_left;
873 else if (sequence > __t->bit->sequence)
874 n = n->rb_right;
875 else
876 return __t;
877 }
878
879 /*
880 * hack - the list may not be sequence ordered because some
881 * events don't have sequence and time matched. so we end up
882 * being a little off in the rb lookup here, because we don't
883 * know the time we are looking for. compensate by browsing
884 * a little ahead from the last entry to find the match
885 */
886 if (order && prev) {
887 int max = 5;
888
889 while (((n = rb_next(prev)) != NULL) && max--) {
890 __t = rb_entry(n, struct trace, rb_node);
891
892 if (__t->bit->device == device &&
893 __t->bit->sequence == sequence)
894 return __t;
895
896 prev = n;
897 }
898 }
899
900 return NULL;
901 }
902
trace_rb_find_last(struct per_dev_info * pdi,struct per_cpu_info * pci,unsigned long seq)903 static inline struct trace *trace_rb_find_last(struct per_dev_info *pdi,
904 struct per_cpu_info *pci,
905 unsigned long seq)
906 {
907 return trace_rb_find(pdi->dev, seq, &pci->rb_last, 0);
908 }
909
track_rb_insert(struct per_dev_info * pdi,struct io_track * iot)910 static inline int track_rb_insert(struct per_dev_info *pdi,struct io_track *iot)
911 {
912 struct rb_node **p = &pdi->rb_track.rb_node;
913 struct rb_node *parent = NULL;
914 struct io_track *__iot;
915
916 while (*p) {
917 parent = *p;
918 __iot = rb_entry(parent, struct io_track, rb_node);
919
920 if (iot->sector < __iot->sector)
921 p = &(*p)->rb_left;
922 else if (iot->sector > __iot->sector)
923 p = &(*p)->rb_right;
924 else {
925 fprintf(stderr,
926 "sector alias (%Lu) on device %d,%d!\n",
927 (unsigned long long) iot->sector,
928 MAJOR(pdi->dev), MINOR(pdi->dev));
929 return 1;
930 }
931 }
932
933 rb_link_node(&iot->rb_node, parent, p);
934 rb_insert_color(&iot->rb_node, &pdi->rb_track);
935 return 0;
936 }
937
__find_track(struct per_dev_info * pdi,__u64 sector)938 static struct io_track *__find_track(struct per_dev_info *pdi, __u64 sector)
939 {
940 struct rb_node *n = pdi->rb_track.rb_node;
941 struct io_track *__iot;
942
943 while (n) {
944 __iot = rb_entry(n, struct io_track, rb_node);
945
946 if (sector < __iot->sector)
947 n = n->rb_left;
948 else if (sector > __iot->sector)
949 n = n->rb_right;
950 else
951 return __iot;
952 }
953
954 return NULL;
955 }
956
find_track(struct per_dev_info * pdi,pid_t pid,__u64 sector)957 static struct io_track *find_track(struct per_dev_info *pdi, pid_t pid,
958 __u64 sector)
959 {
960 struct io_track *iot;
961
962 iot = __find_track(pdi, sector);
963 if (!iot) {
964 iot = malloc(sizeof(*iot));
965 iot->ppm = find_ppm(pid);
966 if (!iot->ppm)
967 iot->ppm = add_ppm_hash(pid, "unknown");
968 iot->sector = sector;
969 track_rb_insert(pdi, iot);
970 }
971
972 return iot;
973 }
974
log_track_frontmerge(struct per_dev_info * pdi,struct blk_io_trace * t)975 static void log_track_frontmerge(struct per_dev_info *pdi,
976 struct blk_io_trace *t)
977 {
978 struct io_track *iot;
979
980 if (!track_ios)
981 return;
982
983 iot = __find_track(pdi, t->sector + t_sec(t));
984 if (!iot) {
985 if (verbose)
986 fprintf(stderr, "merge not found for (%d,%d): %llu\n",
987 MAJOR(pdi->dev), MINOR(pdi->dev),
988 (unsigned long long) t->sector + t_sec(t));
989 return;
990 }
991
992 rb_erase(&iot->rb_node, &pdi->rb_track);
993 iot->sector -= t_sec(t);
994 track_rb_insert(pdi, iot);
995 }
996
log_track_getrq(struct per_dev_info * pdi,struct blk_io_trace * t)997 static void log_track_getrq(struct per_dev_info *pdi, struct blk_io_trace *t)
998 {
999 struct io_track *iot;
1000
1001 if (!track_ios)
1002 return;
1003
1004 iot = find_track(pdi, t->pid, t->sector);
1005 iot->allocation_time = t->time;
1006 }
1007
is_remapper(struct per_dev_info * pdi)1008 static inline int is_remapper(struct per_dev_info *pdi)
1009 {
1010 int major = MAJOR(pdi->dev);
1011
1012 return (major == 253 || major == 9);
1013 }
1014
1015 /*
1016 * for md/dm setups, the interesting cycle is Q -> C. So track queueing
1017 * time here, as dispatch time
1018 */
log_track_queue(struct per_dev_info * pdi,struct blk_io_trace * t)1019 static void log_track_queue(struct per_dev_info *pdi, struct blk_io_trace *t)
1020 {
1021 struct io_track *iot;
1022
1023 if (!track_ios)
1024 return;
1025 if (!is_remapper(pdi))
1026 return;
1027
1028 iot = find_track(pdi, t->pid, t->sector);
1029 iot->dispatch_time = t->time;
1030 }
1031
1032 /*
1033 * return time between rq allocation and insertion
1034 */
log_track_insert(struct per_dev_info * pdi,struct blk_io_trace * t)1035 static unsigned long long log_track_insert(struct per_dev_info *pdi,
1036 struct blk_io_trace *t)
1037 {
1038 unsigned long long elapsed;
1039 struct io_track *iot;
1040
1041 if (!track_ios)
1042 return -1;
1043
1044 iot = find_track(pdi, t->pid, t->sector);
1045 iot->queue_time = t->time;
1046
1047 if (!iot->allocation_time)
1048 return -1;
1049
1050 elapsed = iot->queue_time - iot->allocation_time;
1051
1052 if (per_process_stats) {
1053 struct per_process_info *ppi = find_ppi(iot->ppm->pid);
1054 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1055
1056 if (ppi && elapsed > ppi->longest_allocation_wait[w])
1057 ppi->longest_allocation_wait[w] = elapsed;
1058 }
1059
1060 return elapsed;
1061 }
1062
1063 /*
1064 * return time between queue and issue
1065 */
log_track_issue(struct per_dev_info * pdi,struct blk_io_trace * t)1066 static unsigned long long log_track_issue(struct per_dev_info *pdi,
1067 struct blk_io_trace *t)
1068 {
1069 unsigned long long elapsed;
1070 struct io_track *iot;
1071
1072 if (!track_ios)
1073 return -1;
1074 if ((t->action & BLK_TC_ACT(BLK_TC_FS)) == 0)
1075 return -1;
1076
1077 iot = __find_track(pdi, t->sector);
1078 if (!iot) {
1079 if (verbose)
1080 fprintf(stderr, "issue not found for (%d,%d): %llu\n",
1081 MAJOR(pdi->dev), MINOR(pdi->dev),
1082 (unsigned long long) t->sector);
1083 return -1;
1084 }
1085
1086 iot->dispatch_time = t->time;
1087 elapsed = iot->dispatch_time - iot->queue_time;
1088
1089 if (per_process_stats) {
1090 struct per_process_info *ppi = find_ppi(iot->ppm->pid);
1091 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1092
1093 if (ppi && elapsed > ppi->longest_dispatch_wait[w])
1094 ppi->longest_dispatch_wait[w] = elapsed;
1095 }
1096
1097 return elapsed;
1098 }
1099
1100 /*
1101 * return time between dispatch and complete
1102 */
log_track_complete(struct per_dev_info * pdi,struct blk_io_trace * t)1103 static unsigned long long log_track_complete(struct per_dev_info *pdi,
1104 struct blk_io_trace *t)
1105 {
1106 unsigned long long elapsed;
1107 struct io_track *iot;
1108
1109 if (!track_ios)
1110 return -1;
1111
1112 iot = __find_track(pdi, t->sector);
1113 if (!iot) {
1114 if (verbose)
1115 fprintf(stderr,"complete not found for (%d,%d): %llu\n",
1116 MAJOR(pdi->dev), MINOR(pdi->dev),
1117 (unsigned long long) t->sector);
1118 return -1;
1119 }
1120
1121 iot->completion_time = t->time;
1122 elapsed = iot->completion_time - iot->dispatch_time;
1123
1124 if (per_process_stats) {
1125 struct per_process_info *ppi = find_ppi(iot->ppm->pid);
1126 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1127
1128 if (ppi && elapsed > ppi->longest_completion_wait[w])
1129 ppi->longest_completion_wait[w] = elapsed;
1130 }
1131
1132 /*
1133 * kill the trace, we don't need it after completion
1134 */
1135 rb_erase(&iot->rb_node, &pdi->rb_track);
1136 free(iot);
1137
1138 return elapsed;
1139 }
1140
1141
find_process_io_stats(pid_t pid)1142 static struct io_stats *find_process_io_stats(pid_t pid)
1143 {
1144 struct per_process_info *ppi = find_ppi(pid);
1145
1146 if (!ppi) {
1147 ppi = malloc(sizeof(*ppi));
1148 memset(ppi, 0, sizeof(*ppi));
1149 ppi->ppm = find_ppm(pid);
1150 if (!ppi->ppm)
1151 ppi->ppm = add_ppm_hash(pid, "unknown");
1152 add_ppi_to_hash(ppi);
1153 add_ppi_to_list(ppi);
1154 }
1155
1156 return &ppi->io_stats;
1157 }
1158
get_dev_name(struct per_dev_info * pdi,char * buffer,int size)1159 static char *get_dev_name(struct per_dev_info *pdi, char *buffer, int size)
1160 {
1161 if (pdi->name)
1162 snprintf(buffer, size, "%s", pdi->name);
1163 else
1164 snprintf(buffer, size, "%d,%d",MAJOR(pdi->dev),MINOR(pdi->dev));
1165 return buffer;
1166 }
1167
check_time(struct per_dev_info * pdi,struct blk_io_trace * bit)1168 static void check_time(struct per_dev_info *pdi, struct blk_io_trace *bit)
1169 {
1170 unsigned long long this = bit->time;
1171 unsigned long long last = pdi->last_reported_time;
1172
1173 pdi->backwards = (this < last) ? 'B' : ' ';
1174 pdi->last_reported_time = this;
1175 }
1176
__account_m(struct io_stats * ios,struct blk_io_trace * t,int rw)1177 static inline void __account_m(struct io_stats *ios, struct blk_io_trace *t,
1178 int rw)
1179 {
1180 if (rw) {
1181 ios->mwrites++;
1182 ios->mwrite_kb += t_kb(t);
1183 } else {
1184 ios->mreads++;
1185 ios->mread_kb += t_kb(t);
1186 }
1187 }
1188
account_m(struct blk_io_trace * t,struct per_cpu_info * pci,int rw)1189 static inline void account_m(struct blk_io_trace *t, struct per_cpu_info *pci,
1190 int rw)
1191 {
1192 __account_m(&pci->io_stats, t, rw);
1193
1194 if (per_process_stats) {
1195 struct io_stats *ios = find_process_io_stats(t->pid);
1196
1197 __account_m(ios, t, rw);
1198 }
1199 }
1200
__account_pc_queue(struct io_stats * ios,struct blk_io_trace * t,int rw)1201 static inline void __account_pc_queue(struct io_stats *ios,
1202 struct blk_io_trace *t, int rw)
1203 {
1204 if (rw) {
1205 ios->qwrites_pc++;
1206 ios->qwrite_kb_pc += t_kb(t);
1207 } else {
1208 ios->qreads_pc++;
1209 ios->qread_kb += t_kb(t);
1210 }
1211 }
1212
account_pc_queue(struct blk_io_trace * t,struct per_cpu_info * pci,int rw)1213 static inline void account_pc_queue(struct blk_io_trace *t,
1214 struct per_cpu_info *pci, int rw)
1215 {
1216 __account_pc_queue(&pci->io_stats, t, rw);
1217
1218 if (per_process_stats) {
1219 struct io_stats *ios = find_process_io_stats(t->pid);
1220
1221 __account_pc_queue(ios, t, rw);
1222 }
1223 }
1224
__account_pc_issue(struct io_stats * ios,int rw,unsigned int bytes)1225 static inline void __account_pc_issue(struct io_stats *ios, int rw,
1226 unsigned int bytes)
1227 {
1228 if (rw) {
1229 ios->iwrites_pc++;
1230 ios->iwrite_kb_pc += bytes >> 10;
1231 } else {
1232 ios->ireads_pc++;
1233 ios->iread_kb_pc += bytes >> 10;
1234 }
1235 }
1236
account_pc_issue(struct blk_io_trace * t,struct per_cpu_info * pci,int rw)1237 static inline void account_pc_issue(struct blk_io_trace *t,
1238 struct per_cpu_info *pci, int rw)
1239 {
1240 __account_pc_issue(&pci->io_stats, rw, t->bytes);
1241
1242 if (per_process_stats) {
1243 struct io_stats *ios = find_process_io_stats(t->pid);
1244
1245 __account_pc_issue(ios, rw, t->bytes);
1246 }
1247 }
1248
__account_pc_requeue(struct io_stats * ios,struct blk_io_trace * t,int rw)1249 static inline void __account_pc_requeue(struct io_stats *ios,
1250 struct blk_io_trace *t, int rw)
1251 {
1252 if (rw) {
1253 ios->wrqueue_pc++;
1254 ios->iwrite_kb_pc -= t_kb(t);
1255 } else {
1256 ios->rrqueue_pc++;
1257 ios->iread_kb_pc -= t_kb(t);
1258 }
1259 }
1260
account_pc_requeue(struct blk_io_trace * t,struct per_cpu_info * pci,int rw)1261 static inline void account_pc_requeue(struct blk_io_trace *t,
1262 struct per_cpu_info *pci, int rw)
1263 {
1264 __account_pc_requeue(&pci->io_stats, t, rw);
1265
1266 if (per_process_stats) {
1267 struct io_stats *ios = find_process_io_stats(t->pid);
1268
1269 __account_pc_requeue(ios, t, rw);
1270 }
1271 }
1272
__account_pc_c(struct io_stats * ios,int rw)1273 static inline void __account_pc_c(struct io_stats *ios, int rw)
1274 {
1275 if (rw)
1276 ios->cwrites_pc++;
1277 else
1278 ios->creads_pc++;
1279 }
1280
account_pc_c(struct blk_io_trace * t,struct per_cpu_info * pci,int rw)1281 static inline void account_pc_c(struct blk_io_trace *t,
1282 struct per_cpu_info *pci, int rw)
1283 {
1284 __account_pc_c(&pci->io_stats, rw);
1285
1286 if (per_process_stats) {
1287 struct io_stats *ios = find_process_io_stats(t->pid);
1288
1289 __account_pc_c(ios, rw);
1290 }
1291 }
1292
__account_queue(struct io_stats * ios,struct blk_io_trace * t,int rw)1293 static inline void __account_queue(struct io_stats *ios, struct blk_io_trace *t,
1294 int rw)
1295 {
1296 if (rw) {
1297 ios->qwrites++;
1298 ios->qwrite_kb += t_kb(t);
1299 } else {
1300 ios->qreads++;
1301 ios->qread_kb += t_kb(t);
1302 }
1303 }
1304
account_queue(struct blk_io_trace * t,struct per_cpu_info * pci,int rw)1305 static inline void account_queue(struct blk_io_trace *t,
1306 struct per_cpu_info *pci, int rw)
1307 {
1308 __account_queue(&pci->io_stats, t, rw);
1309
1310 if (per_process_stats) {
1311 struct io_stats *ios = find_process_io_stats(t->pid);
1312
1313 __account_queue(ios, t, rw);
1314 }
1315 }
1316
__account_c(struct io_stats * ios,int rw,int bytes)1317 static inline void __account_c(struct io_stats *ios, int rw, int bytes)
1318 {
1319 if (rw) {
1320 ios->cwrites++;
1321 ios->cwrite_kb += bytes >> 10;
1322 } else {
1323 ios->creads++;
1324 ios->cread_kb += bytes >> 10;
1325 }
1326 }
1327
account_c(struct blk_io_trace * t,struct per_cpu_info * pci,int rw,int bytes)1328 static inline void account_c(struct blk_io_trace *t, struct per_cpu_info *pci,
1329 int rw, int bytes)
1330 {
1331 __account_c(&pci->io_stats, rw, bytes);
1332
1333 if (per_process_stats) {
1334 struct io_stats *ios = find_process_io_stats(t->pid);
1335
1336 __account_c(ios, rw, bytes);
1337 }
1338 }
1339
__account_issue(struct io_stats * ios,int rw,unsigned int bytes)1340 static inline void __account_issue(struct io_stats *ios, int rw,
1341 unsigned int bytes)
1342 {
1343 if (rw) {
1344 ios->iwrites++;
1345 ios->iwrite_kb += bytes >> 10;
1346 } else {
1347 ios->ireads++;
1348 ios->iread_kb += bytes >> 10;
1349 }
1350 }
1351
account_issue(struct blk_io_trace * t,struct per_cpu_info * pci,int rw)1352 static inline void account_issue(struct blk_io_trace *t,
1353 struct per_cpu_info *pci, int rw)
1354 {
1355 __account_issue(&pci->io_stats, rw, t->bytes);
1356
1357 if (per_process_stats) {
1358 struct io_stats *ios = find_process_io_stats(t->pid);
1359
1360 __account_issue(ios, rw, t->bytes);
1361 }
1362 }
1363
__account_unplug(struct io_stats * ios,int timer)1364 static inline void __account_unplug(struct io_stats *ios, int timer)
1365 {
1366 if (timer)
1367 ios->timer_unplugs++;
1368 else
1369 ios->io_unplugs++;
1370 }
1371
account_unplug(struct blk_io_trace * t,struct per_cpu_info * pci,int timer)1372 static inline void account_unplug(struct blk_io_trace *t,
1373 struct per_cpu_info *pci, int timer)
1374 {
1375 __account_unplug(&pci->io_stats, timer);
1376
1377 if (per_process_stats) {
1378 struct io_stats *ios = find_process_io_stats(t->pid);
1379
1380 __account_unplug(ios, timer);
1381 }
1382 }
1383
__account_requeue(struct io_stats * ios,struct blk_io_trace * t,int rw)1384 static inline void __account_requeue(struct io_stats *ios,
1385 struct blk_io_trace *t, int rw)
1386 {
1387 if (rw) {
1388 ios->wrqueue++;
1389 ios->iwrite_kb -= t_kb(t);
1390 } else {
1391 ios->rrqueue++;
1392 ios->iread_kb -= t_kb(t);
1393 }
1394 }
1395
account_requeue(struct blk_io_trace * t,struct per_cpu_info * pci,int rw)1396 static inline void account_requeue(struct blk_io_trace *t,
1397 struct per_cpu_info *pci, int rw)
1398 {
1399 __account_requeue(&pci->io_stats, t, rw);
1400
1401 if (per_process_stats) {
1402 struct io_stats *ios = find_process_io_stats(t->pid);
1403
1404 __account_requeue(ios, t, rw);
1405 }
1406 }
1407
log_complete(struct per_dev_info * pdi,struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1408 static void log_complete(struct per_dev_info *pdi, struct per_cpu_info *pci,
1409 struct blk_io_trace *t, char *act)
1410 {
1411 process_fmt(act, pci, t, log_track_complete(pdi, t), 0, NULL);
1412 }
1413
log_insert(struct per_dev_info * pdi,struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1414 static void log_insert(struct per_dev_info *pdi, struct per_cpu_info *pci,
1415 struct blk_io_trace *t, char *act)
1416 {
1417 process_fmt(act, pci, t, log_track_insert(pdi, t), 0, NULL);
1418 }
1419
log_queue(struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1420 static void log_queue(struct per_cpu_info *pci, struct blk_io_trace *t,
1421 char *act)
1422 {
1423 process_fmt(act, pci, t, -1, 0, NULL);
1424 }
1425
log_issue(struct per_dev_info * pdi,struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1426 static void log_issue(struct per_dev_info *pdi, struct per_cpu_info *pci,
1427 struct blk_io_trace *t, char *act)
1428 {
1429 process_fmt(act, pci, t, log_track_issue(pdi, t), 0, NULL);
1430 }
1431
log_merge(struct per_dev_info * pdi,struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1432 static void log_merge(struct per_dev_info *pdi, struct per_cpu_info *pci,
1433 struct blk_io_trace *t, char *act)
1434 {
1435 if (act[0] == 'F')
1436 log_track_frontmerge(pdi, t);
1437
1438 process_fmt(act, pci, t, -1ULL, 0, NULL);
1439 }
1440
log_action(struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1441 static void log_action(struct per_cpu_info *pci, struct blk_io_trace *t,
1442 char *act)
1443 {
1444 process_fmt(act, pci, t, -1ULL, 0, NULL);
1445 }
1446
log_generic(struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1447 static void log_generic(struct per_cpu_info *pci, struct blk_io_trace *t,
1448 char *act)
1449 {
1450 process_fmt(act, pci, t, -1ULL, 0, NULL);
1451 }
1452
log_unplug(struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1453 static void log_unplug(struct per_cpu_info *pci, struct blk_io_trace *t,
1454 char *act)
1455 {
1456 process_fmt(act, pci, t, -1ULL, 0, NULL);
1457 }
1458
log_split(struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1459 static void log_split(struct per_cpu_info *pci, struct blk_io_trace *t,
1460 char *act)
1461 {
1462 process_fmt(act, pci, t, -1ULL, 0, NULL);
1463 }
1464
log_pc(struct per_cpu_info * pci,struct blk_io_trace * t,char * act)1465 static void log_pc(struct per_cpu_info *pci, struct blk_io_trace *t, char *act)
1466 {
1467 unsigned char *buf = (unsigned char *) t + sizeof(*t);
1468
1469 process_fmt(act, pci, t, -1ULL, t->pdu_len, buf);
1470 }
1471
dump_trace_pc(struct blk_io_trace * t,struct per_dev_info * pdi,struct per_cpu_info * pci)1472 static void dump_trace_pc(struct blk_io_trace *t, struct per_dev_info *pdi,
1473 struct per_cpu_info *pci)
1474 {
1475 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1476 int act = t->action & 0xffff;
1477
1478 switch (act) {
1479 case __BLK_TA_QUEUE:
1480 log_generic(pci, t, "Q");
1481 account_pc_queue(t, pci, w);
1482 break;
1483 case __BLK_TA_GETRQ:
1484 log_generic(pci, t, "G");
1485 break;
1486 case __BLK_TA_SLEEPRQ:
1487 log_generic(pci, t, "S");
1488 break;
1489 case __BLK_TA_REQUEUE:
1490 /*
1491 * can happen if we miss traces, don't let it go
1492 * below zero
1493 */
1494 if (pdi->cur_depth[w])
1495 pdi->cur_depth[w]--;
1496 account_pc_requeue(t, pci, w);
1497 log_generic(pci, t, "R");
1498 break;
1499 case __BLK_TA_ISSUE:
1500 account_pc_issue(t, pci, w);
1501 pdi->cur_depth[w]++;
1502 if (pdi->cur_depth[w] > pdi->max_depth[w])
1503 pdi->max_depth[w] = pdi->cur_depth[w];
1504 log_pc(pci, t, "D");
1505 break;
1506 case __BLK_TA_COMPLETE:
1507 if (pdi->cur_depth[w])
1508 pdi->cur_depth[w]--;
1509 log_pc(pci, t, "C");
1510 account_pc_c(t, pci, w);
1511 break;
1512 case __BLK_TA_INSERT:
1513 log_pc(pci, t, "I");
1514 break;
1515 default:
1516 fprintf(stderr, "Bad pc action %x\n", act);
1517 break;
1518 }
1519 }
1520
dump_trace_fs(struct blk_io_trace * t,struct per_dev_info * pdi,struct per_cpu_info * pci)1521 static void dump_trace_fs(struct blk_io_trace *t, struct per_dev_info *pdi,
1522 struct per_cpu_info *pci)
1523 {
1524 int w = (t->action & BLK_TC_ACT(BLK_TC_WRITE)) != 0;
1525 int act = t->action & 0xffff;
1526
1527 switch (act) {
1528 case __BLK_TA_QUEUE:
1529 log_track_queue(pdi, t);
1530 account_queue(t, pci, w);
1531 log_queue(pci, t, "Q");
1532 break;
1533 case __BLK_TA_INSERT:
1534 log_insert(pdi, pci, t, "I");
1535 break;
1536 case __BLK_TA_BACKMERGE:
1537 account_m(t, pci, w);
1538 log_merge(pdi, pci, t, "M");
1539 break;
1540 case __BLK_TA_FRONTMERGE:
1541 account_m(t, pci, w);
1542 log_merge(pdi, pci, t, "F");
1543 break;
1544 case __BLK_TA_GETRQ:
1545 log_track_getrq(pdi, t);
1546 log_generic(pci, t, "G");
1547 break;
1548 case __BLK_TA_SLEEPRQ:
1549 log_generic(pci, t, "S");
1550 break;
1551 case __BLK_TA_REQUEUE:
1552 /*
1553 * can happen if we miss traces, don't let it go
1554 * below zero
1555 */
1556 if (pdi->cur_depth[w])
1557 pdi->cur_depth[w]--;
1558 account_requeue(t, pci, w);
1559 log_queue(pci, t, "R");
1560 break;
1561 case __BLK_TA_ISSUE:
1562 account_issue(t, pci, w);
1563 pdi->cur_depth[w]++;
1564 if (pdi->cur_depth[w] > pdi->max_depth[w])
1565 pdi->max_depth[w] = pdi->cur_depth[w];
1566 log_issue(pdi, pci, t, "D");
1567 break;
1568 case __BLK_TA_COMPLETE:
1569 if (pdi->cur_depth[w])
1570 pdi->cur_depth[w]--;
1571 account_c(t, pci, w, t->bytes);
1572 log_complete(pdi, pci, t, "C");
1573 break;
1574 case __BLK_TA_PLUG:
1575 log_action(pci, t, "P");
1576 break;
1577 case __BLK_TA_UNPLUG_IO:
1578 account_unplug(t, pci, 0);
1579 log_unplug(pci, t, "U");
1580 break;
1581 case __BLK_TA_UNPLUG_TIMER:
1582 account_unplug(t, pci, 1);
1583 log_unplug(pci, t, "UT");
1584 break;
1585 case __BLK_TA_SPLIT:
1586 log_split(pci, t, "X");
1587 break;
1588 case __BLK_TA_BOUNCE:
1589 log_generic(pci, t, "B");
1590 break;
1591 case __BLK_TA_REMAP:
1592 log_generic(pci, t, "A");
1593 break;
1594 case __BLK_TA_DRV_DATA:
1595 have_drv_data = 1;
1596 /* dump to binary file only */
1597 break;
1598 default:
1599 fprintf(stderr, "Bad fs action %x\n", t->action);
1600 break;
1601 }
1602 }
1603
dump_trace(struct blk_io_trace * t,struct per_cpu_info * pci,struct per_dev_info * pdi)1604 static void dump_trace(struct blk_io_trace *t, struct per_cpu_info *pci,
1605 struct per_dev_info *pdi)
1606 {
1607 if (text_output) {
1608 if (t->action == BLK_TN_MESSAGE)
1609 handle_notify(t);
1610 else if (t->action & BLK_TC_ACT(BLK_TC_PC))
1611 dump_trace_pc(t, pdi, pci);
1612 else
1613 dump_trace_fs(t, pdi, pci);
1614 }
1615
1616 if (!pdi->events)
1617 pdi->first_reported_time = t->time;
1618
1619 pdi->events++;
1620
1621 if (bin_output_msgs ||
1622 !(t->action & BLK_TC_ACT(BLK_TC_NOTIFY) &&
1623 t->action == BLK_TN_MESSAGE))
1624 output_binary(t, sizeof(*t) + t->pdu_len);
1625 }
1626
1627 /*
1628 * print in a proper way, not too small and not too big. if more than
1629 * 1000,000K, turn into M and so on
1630 */
size_cnv(char * dst,unsigned long long num,int in_kb)1631 static char *size_cnv(char *dst, unsigned long long num, int in_kb)
1632 {
1633 char suff[] = { '\0', 'K', 'M', 'G', 'P' };
1634 unsigned int i = 0;
1635
1636 if (in_kb)
1637 i++;
1638
1639 while (num > 1000 * 1000ULL && (i < sizeof(suff) - 1)) {
1640 i++;
1641 num /= 1000;
1642 }
1643
1644 sprintf(dst, "%'8Lu%c", num, suff[i]);
1645 return dst;
1646 }
1647
dump_io_stats(struct per_dev_info * pdi,struct io_stats * ios,char * msg)1648 static void dump_io_stats(struct per_dev_info *pdi, struct io_stats *ios,
1649 char *msg)
1650 {
1651 static char x[256], y[256];
1652
1653 fprintf(ofp, "%s\n", msg);
1654
1655 fprintf(ofp, " Reads Queued: %s, %siB\t", size_cnv(x, ios->qreads, 0), size_cnv(y, ios->qread_kb, 1));
1656 fprintf(ofp, " Writes Queued: %s, %siB\n", size_cnv(x, ios->qwrites, 0), size_cnv(y, ios->qwrite_kb, 1));
1657 fprintf(ofp, " Read Dispatches: %s, %siB\t", size_cnv(x, ios->ireads, 0), size_cnv(y, ios->iread_kb, 1));
1658 fprintf(ofp, " Write Dispatches: %s, %siB\n", size_cnv(x, ios->iwrites, 0), size_cnv(y, ios->iwrite_kb, 1));
1659 fprintf(ofp, " Reads Requeued: %s\t\t", size_cnv(x, ios->rrqueue, 0));
1660 fprintf(ofp, " Writes Requeued: %s\n", size_cnv(x, ios->wrqueue, 0));
1661 fprintf(ofp, " Reads Completed: %s, %siB\t", size_cnv(x, ios->creads, 0), size_cnv(y, ios->cread_kb, 1));
1662 fprintf(ofp, " Writes Completed: %s, %siB\n", size_cnv(x, ios->cwrites, 0), size_cnv(y, ios->cwrite_kb, 1));
1663 fprintf(ofp, " Read Merges: %s, %siB\t", size_cnv(x, ios->mreads, 0), size_cnv(y, ios->mread_kb, 1));
1664 fprintf(ofp, " Write Merges: %s, %siB\n", size_cnv(x, ios->mwrites, 0), size_cnv(y, ios->mwrite_kb, 1));
1665 if (pdi) {
1666 fprintf(ofp, " Read depth: %'8u%8c\t", pdi->max_depth[0], ' ');
1667 fprintf(ofp, " Write depth: %'8u\n", pdi->max_depth[1]);
1668 }
1669 if (ios->qreads_pc || ios->qwrites_pc || ios->ireads_pc || ios->iwrites_pc ||
1670 ios->rrqueue_pc || ios->wrqueue_pc || ios->creads_pc || ios->cwrites_pc) {
1671 fprintf(ofp, " PC Reads Queued: %s, %siB\t", size_cnv(x, ios->qreads_pc, 0), size_cnv(y, ios->qread_kb_pc, 1));
1672 fprintf(ofp, " PC Writes Queued: %s, %siB\n", size_cnv(x, ios->qwrites_pc, 0), size_cnv(y, ios->qwrite_kb_pc, 1));
1673 fprintf(ofp, " PC Read Disp.: %s, %siB\t", size_cnv(x, ios->ireads_pc, 0), size_cnv(y, ios->iread_kb_pc, 1));
1674 fprintf(ofp, " PC Write Disp.: %s, %siB\n", size_cnv(x, ios->iwrites_pc, 0), size_cnv(y, ios->iwrite_kb_pc, 1));
1675 fprintf(ofp, " PC Reads Req.: %s\t\t", size_cnv(x, ios->rrqueue_pc, 0));
1676 fprintf(ofp, " PC Writes Req.: %s\n", size_cnv(x, ios->wrqueue_pc, 0));
1677 fprintf(ofp, " PC Reads Compl.: %s\t\t", size_cnv(x, ios->creads_pc, 0));
1678 fprintf(ofp, " PC Writes Compl.: %s\n", size_cnv(x, ios->cwrites, 0));
1679 }
1680 fprintf(ofp, " IO unplugs: %'8lu%8c\t", ios->io_unplugs, ' ');
1681 fprintf(ofp, " Timer unplugs: %'8lu\n", ios->timer_unplugs);
1682 }
1683
dump_wait_stats(struct per_process_info * ppi)1684 static void dump_wait_stats(struct per_process_info *ppi)
1685 {
1686 unsigned long rawait = ppi->longest_allocation_wait[0] / 1000;
1687 unsigned long rdwait = ppi->longest_dispatch_wait[0] / 1000;
1688 unsigned long rcwait = ppi->longest_completion_wait[0] / 1000;
1689 unsigned long wawait = ppi->longest_allocation_wait[1] / 1000;
1690 unsigned long wdwait = ppi->longest_dispatch_wait[1] / 1000;
1691 unsigned long wcwait = ppi->longest_completion_wait[1] / 1000;
1692
1693 fprintf(ofp, " Allocation wait: %'8lu%8c\t", rawait, ' ');
1694 fprintf(ofp, " Allocation wait: %'8lu\n", wawait);
1695 fprintf(ofp, " Dispatch wait: %'8lu%8c\t", rdwait, ' ');
1696 fprintf(ofp, " Dispatch wait: %'8lu\n", wdwait);
1697 fprintf(ofp, " Completion wait: %'8lu%8c\t", rcwait, ' ');
1698 fprintf(ofp, " Completion wait: %'8lu\n", wcwait);
1699 }
1700
ppi_name_compare(const void * p1,const void * p2)1701 static int ppi_name_compare(const void *p1, const void *p2)
1702 {
1703 struct per_process_info *ppi1 = *((struct per_process_info **) p1);
1704 struct per_process_info *ppi2 = *((struct per_process_info **) p2);
1705 int res;
1706
1707 res = strverscmp(ppi1->ppm->comm, ppi2->ppm->comm);
1708 if (!res)
1709 res = ppi1->ppm->pid > ppi2->ppm->pid;
1710
1711 return res;
1712 }
1713
sort_process_list(void)1714 static void sort_process_list(void)
1715 {
1716 struct per_process_info **ppis;
1717 struct per_process_info *ppi;
1718 int i = 0;
1719
1720 ppis = malloc(ppi_list_entries * sizeof(struct per_process_info *));
1721
1722 ppi = ppi_list;
1723 while (ppi) {
1724 ppis[i++] = ppi;
1725 ppi = ppi->list_next;
1726 }
1727
1728 qsort(ppis, ppi_list_entries, sizeof(ppi), ppi_name_compare);
1729
1730 i = ppi_list_entries - 1;
1731 ppi_list = NULL;
1732 while (i >= 0) {
1733 ppi = ppis[i];
1734
1735 ppi->list_next = ppi_list;
1736 ppi_list = ppi;
1737 i--;
1738 }
1739
1740 free(ppis);
1741 }
1742
show_process_stats(void)1743 static void show_process_stats(void)
1744 {
1745 struct per_process_info *ppi;
1746
1747 sort_process_list();
1748
1749 ppi = ppi_list;
1750 while (ppi) {
1751 struct process_pid_map *ppm = ppi->ppm;
1752 char name[64];
1753
1754 if (ppi->more_than_one)
1755 sprintf(name, "%s (%u, ...)", ppm->comm, ppm->pid);
1756 else
1757 sprintf(name, "%s (%u)", ppm->comm, ppm->pid);
1758
1759 dump_io_stats(NULL, &ppi->io_stats, name);
1760 dump_wait_stats(ppi);
1761 ppi = ppi->list_next;
1762 }
1763
1764 fprintf(ofp, "\n");
1765 }
1766
show_device_and_cpu_stats(void)1767 static void show_device_and_cpu_stats(void)
1768 {
1769 struct per_dev_info *pdi;
1770 struct per_cpu_info *pci;
1771 struct io_stats total, *ios;
1772 unsigned long long rrate, wrate, msec;
1773 int i, j, pci_events;
1774 char line[3 + 8/*cpu*/ + 2 + 32/*dev*/ + 3];
1775 char name[32];
1776 double ratio;
1777
1778 for (pdi = devices, i = 0; i < ndevices; i++, pdi++) {
1779
1780 memset(&total, 0, sizeof(total));
1781 pci_events = 0;
1782
1783 if (i > 0)
1784 fprintf(ofp, "\n");
1785
1786 for (pci = pdi->cpus, j = 0; j < pdi->ncpus; j++, pci++) {
1787 if (!pci->nelems)
1788 continue;
1789
1790 ios = &pci->io_stats;
1791 total.qreads += ios->qreads;
1792 total.qwrites += ios->qwrites;
1793 total.creads += ios->creads;
1794 total.cwrites += ios->cwrites;
1795 total.mreads += ios->mreads;
1796 total.mwrites += ios->mwrites;
1797 total.ireads += ios->ireads;
1798 total.iwrites += ios->iwrites;
1799 total.rrqueue += ios->rrqueue;
1800 total.wrqueue += ios->wrqueue;
1801 total.qread_kb += ios->qread_kb;
1802 total.qwrite_kb += ios->qwrite_kb;
1803 total.cread_kb += ios->cread_kb;
1804 total.cwrite_kb += ios->cwrite_kb;
1805 total.iread_kb += ios->iread_kb;
1806 total.iwrite_kb += ios->iwrite_kb;
1807 total.mread_kb += ios->mread_kb;
1808 total.mwrite_kb += ios->mwrite_kb;
1809
1810 total.qreads_pc += ios->qreads_pc;
1811 total.qwrites_pc += ios->qwrites_pc;
1812 total.creads_pc += ios->creads_pc;
1813 total.cwrites_pc += ios->cwrites_pc;
1814 total.ireads_pc += ios->ireads_pc;
1815 total.iwrites_pc += ios->iwrites_pc;
1816 total.rrqueue_pc += ios->rrqueue_pc;
1817 total.wrqueue_pc += ios->wrqueue_pc;
1818 total.qread_kb_pc += ios->qread_kb_pc;
1819 total.qwrite_kb_pc += ios->qwrite_kb_pc;
1820 total.iread_kb_pc += ios->iread_kb_pc;
1821 total.iwrite_kb_pc += ios->iwrite_kb_pc;
1822
1823 total.timer_unplugs += ios->timer_unplugs;
1824 total.io_unplugs += ios->io_unplugs;
1825
1826 snprintf(line, sizeof(line) - 1, "CPU%d (%s):",
1827 j, get_dev_name(pdi, name, sizeof(name)));
1828 dump_io_stats(pdi, ios, line);
1829 pci_events++;
1830 }
1831
1832 if (pci_events > 1) {
1833 fprintf(ofp, "\n");
1834 snprintf(line, sizeof(line) - 1, "Total (%s):",
1835 get_dev_name(pdi, name, sizeof(name)));
1836 dump_io_stats(NULL, &total, line);
1837 }
1838
1839 wrate = rrate = 0;
1840 msec = (pdi->last_reported_time - pdi->first_reported_time) / 1000000;
1841 if (msec) {
1842 rrate = 1000 * total.cread_kb / msec;
1843 wrate = 1000 * total.cwrite_kb / msec;
1844 }
1845
1846 fprintf(ofp, "\nThroughput (R/W): %'LuKiB/s / %'LuKiB/s\n",
1847 rrate, wrate);
1848 fprintf(ofp, "Events (%s): %'Lu entries\n",
1849 get_dev_name(pdi, line, sizeof(line)), pdi->events);
1850
1851 collect_pdi_skips(pdi);
1852 if (!pdi->skips && !pdi->events)
1853 ratio = 0.0;
1854 else
1855 ratio = 100.0 * ((double)pdi->seq_skips /
1856 (double)(pdi->events + pdi->seq_skips));
1857 fprintf(ofp, "Skips: %'lu forward (%'llu - %5.1lf%%)\n",
1858 pdi->skips, pdi->seq_skips, ratio);
1859 }
1860 }
1861
find_genesis(void)1862 static void find_genesis(void)
1863 {
1864 struct trace *t = trace_list;
1865
1866 genesis_time = -1ULL;
1867 while (t != NULL) {
1868 if (t->bit->time < genesis_time)
1869 genesis_time = t->bit->time;
1870
1871 t = t->next;
1872 }
1873
1874 /* The time stamp record will usually be the first
1875 * record in the trace, but not always.
1876 */
1877 if (start_timestamp
1878 && start_timestamp != genesis_time) {
1879 long delta = genesis_time - start_timestamp;
1880
1881 abs_start_time.tv_sec += SECONDS(delta);
1882 abs_start_time.tv_nsec += NANO_SECONDS(delta);
1883 if (abs_start_time.tv_nsec < 0) {
1884 abs_start_time.tv_nsec += 1000000000;
1885 abs_start_time.tv_sec -= 1;
1886 } else
1887 if (abs_start_time.tv_nsec > 1000000000) {
1888 abs_start_time.tv_nsec -= 1000000000;
1889 abs_start_time.tv_sec += 1;
1890 }
1891 }
1892 }
1893
check_stopwatch(struct blk_io_trace * bit)1894 static inline int check_stopwatch(struct blk_io_trace *bit)
1895 {
1896 if (bit->time < stopwatch_end &&
1897 bit->time >= stopwatch_start)
1898 return 0;
1899
1900 return 1;
1901 }
1902
1903 /*
1904 * return youngest entry read
1905 */
sort_entries(unsigned long long * youngest)1906 static int sort_entries(unsigned long long *youngest)
1907 {
1908 struct per_dev_info *pdi = NULL;
1909 struct per_cpu_info *pci = NULL;
1910 struct trace *t;
1911
1912 if (!genesis_time)
1913 find_genesis();
1914
1915 *youngest = 0;
1916 while ((t = trace_list) != NULL) {
1917 struct blk_io_trace *bit = t->bit;
1918
1919 trace_list = t->next;
1920
1921 bit->time -= genesis_time;
1922
1923 if (bit->time < *youngest || !*youngest)
1924 *youngest = bit->time;
1925
1926 if (!pdi || pdi->dev != bit->device) {
1927 pdi = get_dev_info(bit->device);
1928 pci = NULL;
1929 }
1930
1931 if (!pci || pci->cpu != bit->cpu)
1932 pci = get_cpu_info(pdi, bit->cpu);
1933
1934 if (bit->sequence < pci->smallest_seq_read)
1935 pci->smallest_seq_read = bit->sequence;
1936
1937 if (check_stopwatch(bit)) {
1938 bit_free(bit);
1939 t_free(t);
1940 continue;
1941 }
1942
1943 if (trace_rb_insert_sort(t))
1944 return -1;
1945 }
1946
1947 return 0;
1948 }
1949
1950 /*
1951 * to continue, we must have traces from all online cpus in the tree
1952 */
check_cpu_map(struct per_dev_info * pdi)1953 static int check_cpu_map(struct per_dev_info *pdi)
1954 {
1955 unsigned long *cpu_map;
1956 struct rb_node *n;
1957 struct trace *__t;
1958 unsigned int i;
1959 int ret, cpu;
1960
1961 /*
1962 * create a map of the cpus we have traces for
1963 */
1964 cpu_map = malloc(pdi->cpu_map_max / sizeof(long));
1965 n = rb_first(&rb_sort_root);
1966 while (n) {
1967 __t = rb_entry(n, struct trace, rb_node);
1968 cpu = __t->bit->cpu;
1969
1970 cpu_map[CPU_IDX(cpu)] |= (1UL << CPU_BIT(cpu));
1971 n = rb_next(n);
1972 }
1973
1974 /*
1975 * we can't continue if pdi->cpu_map has entries set that we don't
1976 * have in the sort rbtree. the opposite is not a problem, though
1977 */
1978 ret = 0;
1979 for (i = 0; i < pdi->cpu_map_max / CPUS_PER_LONG; i++) {
1980 if (pdi->cpu_map[i] & ~(cpu_map[i])) {
1981 ret = 1;
1982 break;
1983 }
1984 }
1985
1986 free(cpu_map);
1987 return ret;
1988 }
1989
check_sequence(struct per_dev_info * pdi,struct trace * t,int force)1990 static int check_sequence(struct per_dev_info *pdi, struct trace *t, int force)
1991 {
1992 struct blk_io_trace *bit = t->bit;
1993 unsigned long expected_sequence;
1994 struct per_cpu_info *pci;
1995 struct trace *__t;
1996
1997 pci = get_cpu_info(pdi, bit->cpu);
1998 expected_sequence = pci->last_sequence + 1;
1999
2000 if (!expected_sequence) {
2001 /*
2002 * 1 should be the first entry, just allow it
2003 */
2004 if (bit->sequence == 1)
2005 return 0;
2006 if (bit->sequence == pci->smallest_seq_read)
2007 return 0;
2008
2009 return check_cpu_map(pdi);
2010 }
2011
2012 if (bit->sequence == expected_sequence)
2013 return 0;
2014
2015 /*
2016 * we may not have seen that sequence yet. if we are not doing
2017 * the final run, break and wait for more entries.
2018 */
2019 if (expected_sequence < pci->smallest_seq_read) {
2020 __t = trace_rb_find_last(pdi, pci, expected_sequence);
2021 if (!__t)
2022 goto skip;
2023
2024 __put_trace_last(pdi, __t);
2025 return 0;
2026 } else if (!force) {
2027 return 1;
2028 } else {
2029 skip:
2030 if (check_current_skips(pci, bit->sequence))
2031 return 0;
2032
2033 if (expected_sequence < bit->sequence)
2034 insert_skip(pci, expected_sequence, bit->sequence - 1);
2035 return 0;
2036 }
2037 }
2038
show_entries_rb(int force)2039 static void show_entries_rb(int force)
2040 {
2041 struct per_dev_info *pdi = NULL;
2042 struct per_cpu_info *pci = NULL;
2043 struct blk_io_trace *bit;
2044 struct rb_node *n;
2045 struct trace *t;
2046
2047 while ((n = rb_first(&rb_sort_root)) != NULL) {
2048 if (is_done() && !force && !pipeline)
2049 break;
2050
2051 t = rb_entry(n, struct trace, rb_node);
2052 bit = t->bit;
2053
2054 if (read_sequence - t->read_sequence < 1 && !force)
2055 break;
2056
2057 if (!pdi || pdi->dev != bit->device) {
2058 pdi = get_dev_info(bit->device);
2059 pci = NULL;
2060 }
2061
2062 if (!pdi) {
2063 fprintf(stderr, "Unknown device ID? (%d,%d)\n",
2064 MAJOR(bit->device), MINOR(bit->device));
2065 break;
2066 }
2067
2068 if (check_sequence(pdi, t, force))
2069 break;
2070
2071 if (!force && bit->time > last_allowed_time)
2072 break;
2073
2074 check_time(pdi, bit);
2075
2076 if (!pci || pci->cpu != bit->cpu)
2077 pci = get_cpu_info(pdi, bit->cpu);
2078
2079 pci->last_sequence = bit->sequence;
2080
2081 pci->nelems++;
2082
2083 if (bit->action & (act_mask << BLK_TC_SHIFT))
2084 dump_trace(bit, pci, pdi);
2085
2086 put_trace(pdi, t);
2087 }
2088 }
2089
read_data(int fd,void * buffer,int bytes,int block,int * fdblock)2090 static int read_data(int fd, void *buffer, int bytes, int block, int *fdblock)
2091 {
2092 int ret, bytes_left, fl;
2093 void *p;
2094
2095 if (block != *fdblock) {
2096 fl = fcntl(fd, F_GETFL);
2097
2098 if (!block) {
2099 *fdblock = 0;
2100 fcntl(fd, F_SETFL, fl | O_NONBLOCK);
2101 } else {
2102 *fdblock = 1;
2103 fcntl(fd, F_SETFL, fl & ~O_NONBLOCK);
2104 }
2105 }
2106
2107 bytes_left = bytes;
2108 p = buffer;
2109 while (bytes_left > 0) {
2110 ret = read(fd, p, bytes_left);
2111 if (!ret)
2112 return 1;
2113 else if (ret < 0) {
2114 if (errno != EAGAIN) {
2115 perror("read");
2116 return -1;
2117 }
2118
2119 /*
2120 * never do partial reads. we can return if we
2121 * didn't read anything and we should not block,
2122 * otherwise wait for data
2123 */
2124 if ((bytes_left == bytes) && !block)
2125 return 1;
2126
2127 usleep(10);
2128 continue;
2129 } else {
2130 p += ret;
2131 bytes_left -= ret;
2132 }
2133 }
2134
2135 return 0;
2136 }
2137
get_pdulen(struct blk_io_trace * bit)2138 static inline __u16 get_pdulen(struct blk_io_trace *bit)
2139 {
2140 if (data_is_native)
2141 return bit->pdu_len;
2142
2143 return __bswap_16(bit->pdu_len);
2144 }
2145
get_magic(struct blk_io_trace * bit)2146 static inline __u32 get_magic(struct blk_io_trace *bit)
2147 {
2148 if (data_is_native)
2149 return bit->magic;
2150
2151 return __bswap_32(bit->magic);
2152 }
2153
read_events(int fd,int always_block,int * fdblock)2154 static int read_events(int fd, int always_block, int *fdblock)
2155 {
2156 struct per_dev_info *pdi = NULL;
2157 unsigned int events = 0;
2158
2159 while (!is_done() && events < rb_batch) {
2160 struct blk_io_trace *bit;
2161 struct trace *t;
2162 int pdu_len, should_block, ret;
2163 __u32 magic;
2164
2165 bit = bit_alloc();
2166
2167 should_block = !events || always_block;
2168
2169 ret = read_data(fd, bit, sizeof(*bit), should_block, fdblock);
2170 if (ret) {
2171 bit_free(bit);
2172 if (!events && ret < 0)
2173 events = ret;
2174 break;
2175 }
2176
2177 /*
2178 * look at first trace to check whether we need to convert
2179 * data in the future
2180 */
2181 if (data_is_native == -1 && check_data_endianness(bit->magic))
2182 break;
2183
2184 magic = get_magic(bit);
2185 if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
2186 fprintf(stderr, "Bad magic %x\n", magic);
2187 break;
2188 }
2189
2190 pdu_len = get_pdulen(bit);
2191 if (pdu_len) {
2192 void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
2193
2194 if (read_data(fd, ptr + sizeof(*bit), pdu_len, 1, fdblock)) {
2195 bit_free(ptr);
2196 break;
2197 }
2198
2199 bit = ptr;
2200 }
2201
2202 trace_to_cpu(bit);
2203
2204 if (verify_trace(bit)) {
2205 bit_free(bit);
2206 continue;
2207 }
2208
2209 /*
2210 * not a real trace, so grab and handle it here
2211 */
2212 if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY) && bit->action != BLK_TN_MESSAGE) {
2213 handle_notify(bit);
2214 output_binary(bit, sizeof(*bit) + bit->pdu_len);
2215 continue;
2216 }
2217
2218 t = t_alloc();
2219 memset(t, 0, sizeof(*t));
2220 t->bit = bit;
2221 t->read_sequence = read_sequence;
2222
2223 t->next = trace_list;
2224 trace_list = t;
2225
2226 if (!pdi || pdi->dev != bit->device)
2227 pdi = get_dev_info(bit->device);
2228
2229 if (bit->time > pdi->last_read_time)
2230 pdi->last_read_time = bit->time;
2231
2232 events++;
2233 }
2234
2235 return events;
2236 }
2237
2238 /*
2239 * Managing input streams
2240 */
2241
2242 struct ms_stream {
2243 struct ms_stream *next;
2244 struct trace *first, *last;
2245 struct per_dev_info *pdi;
2246 unsigned int cpu;
2247 };
2248
2249 #define MS_HASH(d, c) ((MAJOR(d) & 0xff) ^ (MINOR(d) & 0xff) ^ (cpu & 0xff))
2250
2251 struct ms_stream *ms_head;
2252 struct ms_stream *ms_hash[256];
2253
2254 static void ms_sort(struct ms_stream *msp);
2255 static int ms_prime(struct ms_stream *msp);
2256
ms_peek(struct ms_stream * msp)2257 static inline struct trace *ms_peek(struct ms_stream *msp)
2258 {
2259 return (msp == NULL) ? NULL : msp->first;
2260 }
2261
ms_peek_time(struct ms_stream * msp)2262 static inline __u64 ms_peek_time(struct ms_stream *msp)
2263 {
2264 return ms_peek(msp)->bit->time;
2265 }
2266
ms_resort(struct ms_stream * msp)2267 static inline void ms_resort(struct ms_stream *msp)
2268 {
2269 if (msp->next && ms_peek_time(msp) > ms_peek_time(msp->next)) {
2270 ms_head = msp->next;
2271 msp->next = NULL;
2272 ms_sort(msp);
2273 }
2274 }
2275
ms_deq(struct ms_stream * msp)2276 static inline void ms_deq(struct ms_stream *msp)
2277 {
2278 msp->first = msp->first->next;
2279 if (!msp->first) {
2280 msp->last = NULL;
2281 if (!ms_prime(msp)) {
2282 ms_head = msp->next;
2283 msp->next = NULL;
2284 return;
2285 }
2286 }
2287
2288 ms_resort(msp);
2289 }
2290
ms_sort(struct ms_stream * msp)2291 static void ms_sort(struct ms_stream *msp)
2292 {
2293 __u64 msp_t = ms_peek_time(msp);
2294 struct ms_stream *this_msp = ms_head;
2295
2296 if (this_msp == NULL)
2297 ms_head = msp;
2298 else if (msp_t < ms_peek_time(this_msp)) {
2299 msp->next = this_msp;
2300 ms_head = msp;
2301 }
2302 else {
2303 while (this_msp->next && ms_peek_time(this_msp->next) < msp_t)
2304 this_msp = this_msp->next;
2305
2306 msp->next = this_msp->next;
2307 this_msp->next = msp;
2308 }
2309 }
2310
ms_prime(struct ms_stream * msp)2311 static int ms_prime(struct ms_stream *msp)
2312 {
2313 __u32 magic;
2314 unsigned int i;
2315 struct trace *t;
2316 struct per_dev_info *pdi = msp->pdi;
2317 struct per_cpu_info *pci = get_cpu_info(pdi, msp->cpu);
2318 struct blk_io_trace *bit = NULL;
2319 int ret, pdu_len, ndone = 0;
2320
2321 for (i = 0; !is_done() && pci->fd >= 0 && i < rb_batch; i++) {
2322 bit = bit_alloc();
2323 ret = read_data(pci->fd, bit, sizeof(*bit), 1, &pci->fdblock);
2324 if (ret)
2325 goto err;
2326
2327 if (data_is_native == -1 && check_data_endianness(bit->magic))
2328 goto err;
2329
2330 magic = get_magic(bit);
2331 if ((magic & 0xffffff00) != BLK_IO_TRACE_MAGIC) {
2332 fprintf(stderr, "Bad magic %x\n", magic);
2333 goto err;
2334
2335 }
2336
2337 pdu_len = get_pdulen(bit);
2338 if (pdu_len) {
2339 void *ptr = realloc(bit, sizeof(*bit) + pdu_len);
2340 ret = read_data(pci->fd, ptr + sizeof(*bit), pdu_len,
2341 1, &pci->fdblock);
2342 if (ret) {
2343 free(ptr);
2344 bit = NULL;
2345 goto err;
2346 }
2347
2348 bit = ptr;
2349 }
2350
2351 trace_to_cpu(bit);
2352 if (verify_trace(bit))
2353 goto err;
2354
2355 if (bit->action & BLK_TC_ACT(BLK_TC_NOTIFY) && bit->action != BLK_TN_MESSAGE) {
2356 handle_notify(bit);
2357 output_binary(bit, sizeof(*bit) + bit->pdu_len);
2358 bit_free(bit);
2359
2360 i -= 1;
2361 continue;
2362 }
2363
2364 if (bit->time > pdi->last_read_time)
2365 pdi->last_read_time = bit->time;
2366
2367 t = t_alloc();
2368 memset(t, 0, sizeof(*t));
2369 t->bit = bit;
2370
2371 if (msp->first == NULL)
2372 msp->first = msp->last = t;
2373 else {
2374 msp->last->next = t;
2375 msp->last = t;
2376 }
2377
2378 ndone++;
2379 }
2380
2381 return ndone;
2382
2383 err:
2384 if (bit) bit_free(bit);
2385
2386 cpu_mark_offline(pdi, pci->cpu);
2387 close(pci->fd);
2388 pci->fd = -1;
2389
2390 return ndone;
2391 }
2392
ms_alloc(struct per_dev_info * pdi,int cpu)2393 static struct ms_stream *ms_alloc(struct per_dev_info *pdi, int cpu)
2394 {
2395 struct ms_stream *msp = malloc(sizeof(*msp));
2396
2397 msp->next = NULL;
2398 msp->first = msp->last = NULL;
2399 msp->pdi = pdi;
2400 msp->cpu = cpu;
2401
2402 if (ms_prime(msp))
2403 ms_sort(msp);
2404
2405 return msp;
2406 }
2407
setup_file(struct per_dev_info * pdi,int cpu)2408 static int setup_file(struct per_dev_info *pdi, int cpu)
2409 {
2410 int len = 0;
2411 struct stat st;
2412 char *p, *dname;
2413 struct per_cpu_info *pci = get_cpu_info(pdi, cpu);
2414
2415 pci->cpu = cpu;
2416 pci->fdblock = -1;
2417
2418 p = strdup(pdi->name);
2419 dname = dirname(p);
2420 if (strcmp(dname, ".")) {
2421 input_dir = dname;
2422 p = strdup(pdi->name);
2423 strcpy(pdi->name, basename(p));
2424 }
2425 free(p);
2426
2427 if (input_dir)
2428 len = sprintf(pci->fname, "%s/", input_dir);
2429
2430 snprintf(pci->fname + len, sizeof(pci->fname)-1-len,
2431 "%s.blktrace.%d", pdi->name, pci->cpu);
2432 if (stat(pci->fname, &st) < 0)
2433 return 0;
2434 if (!st.st_size)
2435 return 1;
2436
2437 pci->fd = open(pci->fname, O_RDONLY);
2438 if (pci->fd < 0) {
2439 perror(pci->fname);
2440 return 0;
2441 }
2442
2443 printf("Input file %s added\n", pci->fname);
2444 cpu_mark_online(pdi, pci->cpu);
2445
2446 pdi->nfiles++;
2447 ms_alloc(pdi, pci->cpu);
2448
2449 return 1;
2450 }
2451
handle(struct ms_stream * msp)2452 static int handle(struct ms_stream *msp)
2453 {
2454 struct trace *t;
2455 struct per_dev_info *pdi;
2456 struct per_cpu_info *pci;
2457 struct blk_io_trace *bit;
2458
2459 t = ms_peek(msp);
2460
2461 bit = t->bit;
2462 pdi = msp->pdi;
2463 pci = get_cpu_info(pdi, msp->cpu);
2464 pci->nelems++;
2465 bit->time -= genesis_time;
2466
2467 if (t->bit->time > stopwatch_end)
2468 return 0;
2469
2470 pdi->last_reported_time = bit->time;
2471 if ((bit->action & (act_mask << BLK_TC_SHIFT))&&
2472 t->bit->time >= stopwatch_start)
2473 dump_trace(bit, pci, pdi);
2474
2475 ms_deq(msp);
2476
2477 if (text_output)
2478 trace_rb_insert_last(pdi, t);
2479 else {
2480 bit_free(t->bit);
2481 t_free(t);
2482 }
2483
2484 return 1;
2485 }
2486
2487 /*
2488 * Check if we need to sanitize the name. We allow 'foo', or if foo.blktrace.X
2489 * is given, then strip back down to 'foo' to avoid missing files.
2490 */
name_fixup(char * name)2491 static int name_fixup(char *name)
2492 {
2493 char *b;
2494
2495 if (!name)
2496 return 1;
2497
2498 b = strstr(name, ".blktrace.");
2499 if (b)
2500 *b = '\0';
2501
2502 return 0;
2503 }
2504
do_file(void)2505 static int do_file(void)
2506 {
2507 int i, cpu, ret;
2508 struct per_dev_info *pdi;
2509
2510 /*
2511 * first prepare all files for reading
2512 */
2513 for (i = 0; i < ndevices; i++) {
2514 pdi = &devices[i];
2515 ret = name_fixup(pdi->name);
2516 if (ret)
2517 return ret;
2518
2519 for (cpu = 0; setup_file(pdi, cpu); cpu++)
2520 ;
2521 }
2522
2523 /*
2524 * Get the initial time stamp
2525 */
2526 if (ms_head)
2527 genesis_time = ms_peek_time(ms_head);
2528
2529 /*
2530 * Keep processing traces while any are left
2531 */
2532 while (!is_done() && ms_head && handle(ms_head))
2533 ;
2534
2535 return 0;
2536 }
2537
do_pipe(int fd)2538 static void do_pipe(int fd)
2539 {
2540 unsigned long long youngest;
2541 int events, fdblock;
2542
2543 last_allowed_time = -1ULL;
2544 fdblock = -1;
2545 while ((events = read_events(fd, 0, &fdblock)) > 0) {
2546 read_sequence++;
2547
2548 #if 0
2549 smallest_seq_read = -1U;
2550 #endif
2551
2552 if (sort_entries(&youngest))
2553 break;
2554
2555 if (youngest > stopwatch_end)
2556 break;
2557
2558 show_entries_rb(0);
2559 }
2560
2561 if (rb_sort_entries)
2562 show_entries_rb(1);
2563 }
2564
do_fifo(void)2565 static int do_fifo(void)
2566 {
2567 int fd;
2568
2569 if (!strcmp(pipename, "-"))
2570 fd = dup(STDIN_FILENO);
2571 else
2572 fd = open(pipename, O_RDONLY);
2573
2574 if (fd == -1) {
2575 perror("dup stdin");
2576 return -1;
2577 }
2578
2579 do_pipe(fd);
2580 close(fd);
2581 return 0;
2582 }
2583
show_stats(void)2584 static void show_stats(void)
2585 {
2586 if (!ofp)
2587 return;
2588 if (stats_printed)
2589 return;
2590
2591 stats_printed = 1;
2592
2593 if (per_process_stats)
2594 show_process_stats();
2595
2596 if (per_device_and_cpu_stats)
2597 show_device_and_cpu_stats();
2598
2599 fflush(ofp);
2600 }
2601
handle_sigint(int sig)2602 static void handle_sigint(__attribute__((__unused__)) int sig)
2603 {
2604 done = 1;
2605 }
2606
2607 /*
2608 * Extract start and duration times from a string, allowing
2609 * us to specify a time interval of interest within a trace.
2610 * Format: "duration" (start is zero) or "start:duration".
2611 */
find_stopwatch_interval(char * string)2612 static int find_stopwatch_interval(char *string)
2613 {
2614 double value;
2615 char *sp;
2616
2617 value = strtod(string, &sp);
2618 if (sp == string) {
2619 fprintf(stderr,"Invalid stopwatch timer: %s\n", string);
2620 return 1;
2621 }
2622 if (*sp == ':') {
2623 stopwatch_start = DOUBLE_TO_NANO_ULL(value);
2624 string = sp + 1;
2625 value = strtod(string, &sp);
2626 if (sp == string || *sp != '\0') {
2627 fprintf(stderr,"Invalid stopwatch duration time: %s\n",
2628 string);
2629 return 1;
2630 }
2631 } else if (*sp != '\0') {
2632 fprintf(stderr,"Invalid stopwatch start timer: %s\n", string);
2633 return 1;
2634 }
2635 stopwatch_end = DOUBLE_TO_NANO_ULL(value);
2636 if (stopwatch_end <= stopwatch_start) {
2637 fprintf(stderr, "Invalid stopwatch interval: %Lu -> %Lu\n",
2638 stopwatch_start, stopwatch_end);
2639 return 1;
2640 }
2641
2642 return 0;
2643 }
2644
is_pipe(const char * str)2645 static int is_pipe(const char *str)
2646 {
2647 struct stat st;
2648
2649 if (!strcmp(str, "-"))
2650 return 1;
2651 if (!stat(str, &st) && S_ISFIFO(st.st_mode))
2652 return 1;
2653
2654 return 0;
2655 }
2656
2657 #define S_OPTS "a:A:b:D:d:f:F:hi:o:Oqstw:vVM"
2658 static char usage_str[] = "\n\n" \
2659 "-i <file> | --input=<file>\n" \
2660 "[ -a <action field> | --act-mask=<action field> ]\n" \
2661 "[ -A <action mask> | --set-mask=<action mask> ]\n" \
2662 "[ -b <traces> | --batch=<traces> ]\n" \
2663 "[ -d <file> | --dump-binary=<file> ]\n" \
2664 "[ -D <dir> | --input-directory=<dir> ]\n" \
2665 "[ -f <format> | --format=<format> ]\n" \
2666 "[ -F <spec> | --format-spec=<spec> ]\n" \
2667 "[ -h | --hash-by-name ]\n" \
2668 "[ -o <file> | --output=<file> ]\n" \
2669 "[ -O | --no-text-output ]\n" \
2670 "[ -q | --quiet ]\n" \
2671 "[ -s | --per-program-stats ]\n" \
2672 "[ -t | --track-ios ]\n" \
2673 "[ -w <time> | --stopwatch=<time> ]\n" \
2674 "[ -M | --no-msgs\n" \
2675 "[ -v | --verbose ]\n" \
2676 "[ -V | --version ]\n\n" \
2677 "\t-b stdin read batching\n" \
2678 "\t-d Output file. If specified, binary data is written to file\n" \
2679 "\t-D Directory to prepend to input file names\n" \
2680 "\t-f Output format. Customize the output format. The format field\n" \
2681 "\t identifies can be found in the documentation\n" \
2682 "\t-F Format specification. Can be found in the documentation\n" \
2683 "\t-h Hash processes by name, not pid\n" \
2684 "\t-i Input file containing trace data, or '-' for stdin\n" \
2685 "\t-o Output file. If not given, output is stdout\n" \
2686 "\t-O Do NOT output text data\n" \
2687 "\t-q Quiet. Don't display any stats at the end of the trace\n" \
2688 "\t-s Show per-program io statistics\n" \
2689 "\t-t Track individual ios. Will tell you the time a request took\n" \
2690 "\t to get queued, to get dispatched, and to get completed\n" \
2691 "\t-w Only parse data between the given time interval in seconds.\n" \
2692 "\t If 'start' isn't given, blkparse defaults the start time to 0\n" \
2693 "\t-M Do not output messages to binary file\n" \
2694 "\t-v More verbose for marginal errors\n" \
2695 "\t-V Print program version info\n\n";
2696
usage(char * prog)2697 static void usage(char *prog)
2698 {
2699 fprintf(stderr, "Usage: %s %s %s", prog, blkparse_version, usage_str);
2700 }
2701
main(int argc,char * argv[])2702 int main(int argc, char *argv[])
2703 {
2704 int i, c, ret, mode;
2705 int act_mask_tmp = 0;
2706 char *ofp_buffer = NULL;
2707 char *bin_ofp_buffer = NULL;
2708
2709 while ((c = getopt_long(argc, argv, S_OPTS, l_opts, NULL)) != -1) {
2710 switch (c) {
2711 case 'a':
2712 i = find_mask_map(optarg);
2713 if (i < 0) {
2714 fprintf(stderr,"Invalid action mask %s\n",
2715 optarg);
2716 return 1;
2717 }
2718 act_mask_tmp |= i;
2719 break;
2720
2721 case 'A':
2722 if ((sscanf(optarg, "%x", &i) != 1) ||
2723 !valid_act_opt(i)) {
2724 fprintf(stderr,
2725 "Invalid set action mask %s/0x%x\n",
2726 optarg, i);
2727 return 1;
2728 }
2729 act_mask_tmp = i;
2730 break;
2731 case 'i':
2732 if (is_pipe(optarg) && !pipeline) {
2733 pipeline = 1;
2734 pipename = strdup(optarg);
2735 } else if (resize_devices(optarg) != 0)
2736 return 1;
2737 break;
2738 case 'D':
2739 input_dir = optarg;
2740 break;
2741 case 'o':
2742 output_name = optarg;
2743 break;
2744 case 'O':
2745 text_output = 0;
2746 break;
2747 case 'b':
2748 rb_batch = atoi(optarg);
2749 if (rb_batch <= 0)
2750 rb_batch = RB_BATCH_DEFAULT;
2751 break;
2752 case 's':
2753 per_process_stats = 1;
2754 break;
2755 case 't':
2756 track_ios = 1;
2757 break;
2758 case 'q':
2759 per_device_and_cpu_stats = 0;
2760 break;
2761 case 'w':
2762 if (find_stopwatch_interval(optarg) != 0)
2763 return 1;
2764 break;
2765 case 'f':
2766 set_all_format_specs(optarg);
2767 break;
2768 case 'F':
2769 if (add_format_spec(optarg) != 0)
2770 return 1;
2771 break;
2772 case 'h':
2773 ppi_hash_by_pid = 0;
2774 break;
2775 case 'v':
2776 verbose++;
2777 break;
2778 case 'V':
2779 printf("%s version %s\n", argv[0], blkparse_version);
2780 return 0;
2781 case 'd':
2782 dump_binary = optarg;
2783 break;
2784 case 'M':
2785 bin_output_msgs = 0;
2786 break;
2787 default:
2788 usage(argv[0]);
2789 return 1;
2790 }
2791 }
2792
2793 while (optind < argc) {
2794 if (is_pipe(argv[optind]) && !pipeline) {
2795 pipeline = 1;
2796 pipename = strdup(argv[optind]);
2797 } else if (resize_devices(argv[optind]) != 0)
2798 return 1;
2799 optind++;
2800 }
2801
2802 if (!pipeline && !ndevices) {
2803 usage(argv[0]);
2804 return 1;
2805 }
2806
2807 if (act_mask_tmp != 0)
2808 act_mask = act_mask_tmp;
2809
2810 memset(&rb_sort_root, 0, sizeof(rb_sort_root));
2811
2812 signal(SIGINT, handle_sigint);
2813 signal(SIGHUP, handle_sigint);
2814 signal(SIGTERM, handle_sigint);
2815
2816 setlocale(LC_NUMERIC, "en_US");
2817
2818 if (text_output) {
2819 if (!output_name) {
2820 ofp = fdopen(STDOUT_FILENO, "w");
2821 mode = _IOLBF;
2822 } else {
2823 char ofname[128];
2824
2825 snprintf(ofname, sizeof(ofname) - 1, "%s", output_name);
2826 ofp = fopen(ofname, "w");
2827 mode = _IOFBF;
2828 }
2829
2830 if (!ofp) {
2831 perror("fopen");
2832 return 1;
2833 }
2834
2835 ofp_buffer = malloc(4096);
2836 if (setvbuf(ofp, ofp_buffer, mode, 4096)) {
2837 perror("setvbuf");
2838 return 1;
2839 }
2840 }
2841
2842 if (dump_binary) {
2843 dump_fp = fopen(dump_binary, "w");
2844 if (!dump_fp) {
2845 perror(dump_binary);
2846 dump_binary = NULL;
2847 return 1;
2848 }
2849 bin_ofp_buffer = malloc(128 * 1024);
2850 if (setvbuf(dump_fp, bin_ofp_buffer, _IOFBF, 128 * 1024)) {
2851 perror("setvbuf binary");
2852 return 1;
2853 }
2854 }
2855
2856 if (pipeline)
2857 ret = do_fifo();
2858 else
2859 ret = do_file();
2860
2861 if (!ret)
2862 show_stats();
2863
2864 if (have_drv_data && !dump_binary)
2865 printf("\ndiscarded traces containing low-level device driver "
2866 "specific data (only available in binary output)\n");
2867
2868 if (ofp_buffer) {
2869 fflush(ofp);
2870 free(ofp_buffer);
2871 }
2872 if (bin_ofp_buffer) {
2873 fflush(dump_fp);
2874 free(bin_ofp_buffer);
2875 }
2876 return ret;
2877 }
2878