1 /*
2 * Copyright (c) 2010 The WebM project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include <limits.h>
12 #include <math.h>
13 #include <stdio.h>
14
15 #include "./vpx_dsp_rtcd.h"
16 #include "./vpx_scale_rtcd.h"
17
18 #include "vpx_dsp/vpx_dsp_common.h"
19 #include "vpx_mem/vpx_mem.h"
20 #include "vpx_ports/mem.h"
21 #include "vpx_ports/system_state.h"
22 #include "vpx_scale/vpx_scale.h"
23 #include "vpx_scale/yv12config.h"
24
25 #include "vp9/common/vp9_entropymv.h"
26 #include "vp9/common/vp9_quant_common.h"
27 #include "vp9/common/vp9_reconinter.h" // vp9_setup_dst_planes()
28 #include "vp9/encoder/vp9_aq_variance.h"
29 #include "vp9/encoder/vp9_block.h"
30 #include "vp9/encoder/vp9_encodeframe.h"
31 #include "vp9/encoder/vp9_encodemb.h"
32 #include "vp9/encoder/vp9_encodemv.h"
33 #include "vp9/encoder/vp9_encoder.h"
34 #include "vp9/encoder/vp9_ethread.h"
35 #include "vp9/encoder/vp9_extend.h"
36 #include "vp9/encoder/vp9_firstpass.h"
37 #include "vp9/encoder/vp9_mcomp.h"
38 #include "vp9/encoder/vp9_quantize.h"
39 #include "vp9/encoder/vp9_rd.h"
40 #include "vpx_dsp/variance.h"
41
42 #define OUTPUT_FPF 0
43 #define ARF_STATS_OUTPUT 0
44
45 #define FIRST_PASS_Q 10.0
46 #define GF_MAX_BOOST 96.0
47 #define INTRA_MODE_PENALTY 1024
48 #define MIN_ARF_GF_BOOST 240
49 #define MIN_DECAY_FACTOR 0.01
50 #define NEW_MV_MODE_PENALTY 32
51 #define DARK_THRESH 64
52 #define DEFAULT_GRP_WEIGHT 1.0
53 #define RC_FACTOR_MIN 0.75
54 #define RC_FACTOR_MAX 1.75
55 #define SECTION_NOISE_DEF 250.0
56 #define LOW_I_THRESH 24000
57
58 #define NCOUNT_INTRA_THRESH 8192
59 #define NCOUNT_INTRA_FACTOR 3
60
61 #define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x)-0.000001 : (x) + 0.000001)
62
63 #if ARF_STATS_OUTPUT
64 unsigned int arf_count = 0;
65 #endif
66
67 // Resets the first pass file to the given position using a relative seek from
68 // the current position.
reset_fpf_position(TWO_PASS * p,const FIRSTPASS_STATS * position)69 static void reset_fpf_position(TWO_PASS *p, const FIRSTPASS_STATS *position) {
70 p->stats_in = position;
71 }
72
73 // Read frame stats at an offset from the current position.
read_frame_stats(const TWO_PASS * p,int offset)74 static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
75 if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
76 (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
77 return NULL;
78 }
79
80 return &p->stats_in[offset];
81 }
82
input_stats(TWO_PASS * p,FIRSTPASS_STATS * fps)83 static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
84 if (p->stats_in >= p->stats_in_end) return EOF;
85
86 *fps = *p->stats_in;
87 ++p->stats_in;
88 return 1;
89 }
90
output_stats(FIRSTPASS_STATS * stats,struct vpx_codec_pkt_list * pktlist)91 static void output_stats(FIRSTPASS_STATS *stats,
92 struct vpx_codec_pkt_list *pktlist) {
93 struct vpx_codec_cx_pkt pkt;
94 pkt.kind = VPX_CODEC_STATS_PKT;
95 pkt.data.twopass_stats.buf = stats;
96 pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
97 vpx_codec_pkt_list_add(pktlist, &pkt);
98
99 // TEMP debug code
100 #if OUTPUT_FPF
101 {
102 FILE *fpfile;
103 fpfile = fopen("firstpass.stt", "a");
104
105 fprintf(fpfile,
106 "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
107 "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
108 "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.0lf %12.0lf %12.0lf"
109 "%12.4lf"
110 "\n",
111 stats->frame, stats->weight, stats->intra_error, stats->coded_error,
112 stats->sr_coded_error, stats->frame_noise_energy, stats->pcnt_inter,
113 stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral,
114 stats->pcnt_intra_low, stats->pcnt_intra_high,
115 stats->intra_skip_pct, stats->intra_smooth_pct,
116 stats->inactive_zone_rows, stats->inactive_zone_cols, stats->MVr,
117 stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv,
118 stats->MVcv, stats->mv_in_out_count, stats->count, stats->duration);
119 fclose(fpfile);
120 }
121 #endif
122 }
123
124 #if CONFIG_FP_MB_STATS
output_fpmb_stats(uint8_t * this_frame_mb_stats,VP9_COMMON * cm,struct vpx_codec_pkt_list * pktlist)125 static void output_fpmb_stats(uint8_t *this_frame_mb_stats, VP9_COMMON *cm,
126 struct vpx_codec_pkt_list *pktlist) {
127 struct vpx_codec_cx_pkt pkt;
128 pkt.kind = VPX_CODEC_FPMB_STATS_PKT;
129 pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
130 pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t);
131 vpx_codec_pkt_list_add(pktlist, &pkt);
132 }
133 #endif
134
zero_stats(FIRSTPASS_STATS * section)135 static void zero_stats(FIRSTPASS_STATS *section) {
136 section->frame = 0.0;
137 section->weight = 0.0;
138 section->intra_error = 0.0;
139 section->coded_error = 0.0;
140 section->sr_coded_error = 0.0;
141 section->frame_noise_energy = 0.0;
142 section->pcnt_inter = 0.0;
143 section->pcnt_motion = 0.0;
144 section->pcnt_second_ref = 0.0;
145 section->pcnt_neutral = 0.0;
146 section->intra_skip_pct = 0.0;
147 section->intra_smooth_pct = 0.0;
148 section->pcnt_intra_low = 0.0;
149 section->pcnt_intra_high = 0.0;
150 section->inactive_zone_rows = 0.0;
151 section->inactive_zone_cols = 0.0;
152 section->MVr = 0.0;
153 section->mvr_abs = 0.0;
154 section->MVc = 0.0;
155 section->mvc_abs = 0.0;
156 section->MVrv = 0.0;
157 section->MVcv = 0.0;
158 section->mv_in_out_count = 0.0;
159 section->count = 0.0;
160 section->duration = 1.0;
161 section->spatial_layer_id = 0;
162 }
163
accumulate_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)164 static void accumulate_stats(FIRSTPASS_STATS *section,
165 const FIRSTPASS_STATS *frame) {
166 section->frame += frame->frame;
167 section->weight += frame->weight;
168 section->spatial_layer_id = frame->spatial_layer_id;
169 section->intra_error += frame->intra_error;
170 section->coded_error += frame->coded_error;
171 section->sr_coded_error += frame->sr_coded_error;
172 section->frame_noise_energy += frame->frame_noise_energy;
173 section->pcnt_inter += frame->pcnt_inter;
174 section->pcnt_motion += frame->pcnt_motion;
175 section->pcnt_second_ref += frame->pcnt_second_ref;
176 section->pcnt_neutral += frame->pcnt_neutral;
177 section->intra_skip_pct += frame->intra_skip_pct;
178 section->intra_smooth_pct += frame->intra_smooth_pct;
179 section->pcnt_intra_low += frame->pcnt_intra_low;
180 section->pcnt_intra_high += frame->pcnt_intra_high;
181 section->inactive_zone_rows += frame->inactive_zone_rows;
182 section->inactive_zone_cols += frame->inactive_zone_cols;
183 section->MVr += frame->MVr;
184 section->mvr_abs += frame->mvr_abs;
185 section->MVc += frame->MVc;
186 section->mvc_abs += frame->mvc_abs;
187 section->MVrv += frame->MVrv;
188 section->MVcv += frame->MVcv;
189 section->mv_in_out_count += frame->mv_in_out_count;
190 section->count += frame->count;
191 section->duration += frame->duration;
192 }
193
subtract_stats(FIRSTPASS_STATS * section,const FIRSTPASS_STATS * frame)194 static void subtract_stats(FIRSTPASS_STATS *section,
195 const FIRSTPASS_STATS *frame) {
196 section->frame -= frame->frame;
197 section->weight -= frame->weight;
198 section->intra_error -= frame->intra_error;
199 section->coded_error -= frame->coded_error;
200 section->sr_coded_error -= frame->sr_coded_error;
201 section->frame_noise_energy -= frame->frame_noise_energy;
202 section->pcnt_inter -= frame->pcnt_inter;
203 section->pcnt_motion -= frame->pcnt_motion;
204 section->pcnt_second_ref -= frame->pcnt_second_ref;
205 section->pcnt_neutral -= frame->pcnt_neutral;
206 section->intra_skip_pct -= frame->intra_skip_pct;
207 section->intra_smooth_pct -= frame->intra_smooth_pct;
208 section->pcnt_intra_low -= frame->pcnt_intra_low;
209 section->pcnt_intra_high -= frame->pcnt_intra_high;
210 section->inactive_zone_rows -= frame->inactive_zone_rows;
211 section->inactive_zone_cols -= frame->inactive_zone_cols;
212 section->MVr -= frame->MVr;
213 section->mvr_abs -= frame->mvr_abs;
214 section->MVc -= frame->MVc;
215 section->mvc_abs -= frame->mvc_abs;
216 section->MVrv -= frame->MVrv;
217 section->MVcv -= frame->MVcv;
218 section->mv_in_out_count -= frame->mv_in_out_count;
219 section->count -= frame->count;
220 section->duration -= frame->duration;
221 }
222
223 // Calculate an active area of the image that discounts formatting
224 // bars and partially discounts other 0 energy areas.
225 #define MIN_ACTIVE_AREA 0.5
226 #define MAX_ACTIVE_AREA 1.0
calculate_active_area(const VP9_COMP * cpi,const FIRSTPASS_STATS * this_frame)227 static double calculate_active_area(const VP9_COMP *cpi,
228 const FIRSTPASS_STATS *this_frame) {
229 double active_pct;
230
231 active_pct =
232 1.0 -
233 ((this_frame->intra_skip_pct / 2) +
234 ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows));
235 return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
236 }
237
238 // Calculate a modified Error used in distributing bits between easier and
239 // harder frames.
240 #define ACT_AREA_CORRECTION 0.5
calculate_mod_frame_score(const VP9_COMP * cpi,const TWO_PASS * twopass,const VP9EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame)241 static double calculate_mod_frame_score(const VP9_COMP *cpi,
242 const TWO_PASS *twopass,
243 const VP9EncoderConfig *oxcf,
244 const FIRSTPASS_STATS *this_frame) {
245 const FIRSTPASS_STATS *const stats = &twopass->total_stats;
246 const double av_weight = stats->weight / stats->count;
247 const double av_err = (stats->coded_error * av_weight) / stats->count;
248 double modified_score =
249 av_err * pow(this_frame->coded_error * this_frame->weight /
250 DOUBLE_DIVIDE_CHECK(av_err),
251 oxcf->two_pass_vbrbias / 100.0);
252
253 // Correction for active area. Frames with a reduced active area
254 // (eg due to formatting bars) have a higher error per mb for the
255 // remaining active MBs. The correction here assumes that coding
256 // 0.5N blocks of complexity 2X is a little easier than coding N
257 // blocks of complexity X.
258 modified_score *=
259 pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
260
261 return modified_score;
262 }
calculate_norm_frame_score(const VP9_COMP * cpi,const TWO_PASS * twopass,const VP9EncoderConfig * oxcf,const FIRSTPASS_STATS * this_frame)263 static double calculate_norm_frame_score(const VP9_COMP *cpi,
264 const TWO_PASS *twopass,
265 const VP9EncoderConfig *oxcf,
266 const FIRSTPASS_STATS *this_frame) {
267 const FIRSTPASS_STATS *const stats = &twopass->total_stats;
268 const double av_weight = stats->weight / stats->count;
269 const double av_err = (stats->coded_error * av_weight) / stats->count;
270 double modified_score =
271 av_err * pow(this_frame->coded_error * this_frame->weight /
272 DOUBLE_DIVIDE_CHECK(av_err),
273 oxcf->two_pass_vbrbias / 100.0);
274
275 const double min_score = (double)(oxcf->two_pass_vbrmin_section) / 100.0;
276 const double max_score = (double)(oxcf->two_pass_vbrmax_section) / 100.0;
277
278 // Correction for active area. Frames with a reduced active area
279 // (eg due to formatting bars) have a higher error per mb for the
280 // remaining active MBs. The correction here assumes that coding
281 // 0.5N blocks of complexity 2X is a little easier than coding N
282 // blocks of complexity X.
283 modified_score *=
284 pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
285
286 // Normalize to a midpoint score.
287 modified_score /= DOUBLE_DIVIDE_CHECK(twopass->mean_mod_score);
288
289 return fclamp(modified_score, min_score, max_score);
290 }
291
292 // This function returns the maximum target rate per frame.
frame_max_bits(const RATE_CONTROL * rc,const VP9EncoderConfig * oxcf)293 static int frame_max_bits(const RATE_CONTROL *rc,
294 const VP9EncoderConfig *oxcf) {
295 int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
296 (int64_t)oxcf->two_pass_vbrmax_section) /
297 100;
298 if (max_bits < 0)
299 max_bits = 0;
300 else if (max_bits > rc->max_frame_bandwidth)
301 max_bits = rc->max_frame_bandwidth;
302
303 return (int)max_bits;
304 }
305
vp9_init_first_pass(VP9_COMP * cpi)306 void vp9_init_first_pass(VP9_COMP *cpi) {
307 zero_stats(&cpi->twopass.total_stats);
308 }
309
vp9_end_first_pass(VP9_COMP * cpi)310 void vp9_end_first_pass(VP9_COMP *cpi) {
311 if (is_two_pass_svc(cpi)) {
312 int i;
313 for (i = 0; i < cpi->svc.number_spatial_layers; ++i) {
314 output_stats(&cpi->svc.layer_context[i].twopass.total_stats,
315 cpi->output_pkt_list);
316 }
317 } else {
318 output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
319 }
320
321 vpx_free(cpi->twopass.fp_mb_float_stats);
322 cpi->twopass.fp_mb_float_stats = NULL;
323 }
324
get_block_variance_fn(BLOCK_SIZE bsize)325 static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
326 switch (bsize) {
327 case BLOCK_8X8: return vpx_mse8x8;
328 case BLOCK_16X8: return vpx_mse16x8;
329 case BLOCK_8X16: return vpx_mse8x16;
330 default: return vpx_mse16x16;
331 }
332 }
333
get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref)334 static unsigned int get_prediction_error(BLOCK_SIZE bsize,
335 const struct buf_2d *src,
336 const struct buf_2d *ref) {
337 unsigned int sse;
338 const vpx_variance_fn_t fn = get_block_variance_fn(bsize);
339 fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
340 return sse;
341 }
342
343 #if CONFIG_VP9_HIGHBITDEPTH
highbd_get_block_variance_fn(BLOCK_SIZE bsize,int bd)344 static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
345 int bd) {
346 switch (bd) {
347 default:
348 switch (bsize) {
349 case BLOCK_8X8: return vpx_highbd_8_mse8x8;
350 case BLOCK_16X8: return vpx_highbd_8_mse16x8;
351 case BLOCK_8X16: return vpx_highbd_8_mse8x16;
352 default: return vpx_highbd_8_mse16x16;
353 }
354 break;
355 case 10:
356 switch (bsize) {
357 case BLOCK_8X8: return vpx_highbd_10_mse8x8;
358 case BLOCK_16X8: return vpx_highbd_10_mse16x8;
359 case BLOCK_8X16: return vpx_highbd_10_mse8x16;
360 default: return vpx_highbd_10_mse16x16;
361 }
362 break;
363 case 12:
364 switch (bsize) {
365 case BLOCK_8X8: return vpx_highbd_12_mse8x8;
366 case BLOCK_16X8: return vpx_highbd_12_mse16x8;
367 case BLOCK_8X16: return vpx_highbd_12_mse8x16;
368 default: return vpx_highbd_12_mse16x16;
369 }
370 break;
371 }
372 }
373
highbd_get_prediction_error(BLOCK_SIZE bsize,const struct buf_2d * src,const struct buf_2d * ref,int bd)374 static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
375 const struct buf_2d *src,
376 const struct buf_2d *ref,
377 int bd) {
378 unsigned int sse;
379 const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
380 fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
381 return sse;
382 }
383 #endif // CONFIG_VP9_HIGHBITDEPTH
384
385 // Refine the motion search range according to the frame dimension
386 // for first pass test.
get_search_range(const VP9_COMP * cpi)387 static int get_search_range(const VP9_COMP *cpi) {
388 int sr = 0;
389 const int dim = VPXMIN(cpi->initial_width, cpi->initial_height);
390
391 while ((dim << sr) < MAX_FULL_PEL_VAL) ++sr;
392 return sr;
393 }
394
first_pass_motion_search(VP9_COMP * cpi,MACROBLOCK * x,const MV * ref_mv,MV * best_mv,int * best_motion_err)395 static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
396 const MV *ref_mv, MV *best_mv,
397 int *best_motion_err) {
398 MACROBLOCKD *const xd = &x->e_mbd;
399 MV tmp_mv = { 0, 0 };
400 MV ref_mv_full = { ref_mv->row >> 3, ref_mv->col >> 3 };
401 int num00, tmp_err, n;
402 const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
403 vp9_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
404 const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
405
406 int step_param = 3;
407 int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
408 const int sr = get_search_range(cpi);
409 step_param += sr;
410 further_steps -= sr;
411
412 // Override the default variance function to use MSE.
413 v_fn_ptr.vf = get_block_variance_fn(bsize);
414 #if CONFIG_VP9_HIGHBITDEPTH
415 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
416 v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
417 }
418 #endif // CONFIG_VP9_HIGHBITDEPTH
419
420 // Center the initial step/diamond search on best mv.
421 tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
422 step_param, x->sadperbit16, &num00,
423 &v_fn_ptr, ref_mv);
424 if (tmp_err < INT_MAX)
425 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
426 if (tmp_err < INT_MAX - new_mv_mode_penalty) tmp_err += new_mv_mode_penalty;
427
428 if (tmp_err < *best_motion_err) {
429 *best_motion_err = tmp_err;
430 *best_mv = tmp_mv;
431 }
432
433 // Carry out further step/diamond searches as necessary.
434 n = num00;
435 num00 = 0;
436
437 while (n < further_steps) {
438 ++n;
439
440 if (num00) {
441 --num00;
442 } else {
443 tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
444 step_param + n, x->sadperbit16, &num00,
445 &v_fn_ptr, ref_mv);
446 if (tmp_err < INT_MAX)
447 tmp_err = vp9_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
448 if (tmp_err < INT_MAX - new_mv_mode_penalty)
449 tmp_err += new_mv_mode_penalty;
450
451 if (tmp_err < *best_motion_err) {
452 *best_motion_err = tmp_err;
453 *best_mv = tmp_mv;
454 }
455 }
456 }
457 }
458
get_bsize(const VP9_COMMON * cm,int mb_row,int mb_col)459 static BLOCK_SIZE get_bsize(const VP9_COMMON *cm, int mb_row, int mb_col) {
460 if (2 * mb_col + 1 < cm->mi_cols) {
461 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16 : BLOCK_16X8;
462 } else {
463 return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16 : BLOCK_8X8;
464 }
465 }
466
find_fp_qindex(vpx_bit_depth_t bit_depth)467 static int find_fp_qindex(vpx_bit_depth_t bit_depth) {
468 int i;
469
470 for (i = 0; i < QINDEX_RANGE; ++i)
471 if (vp9_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q) break;
472
473 if (i == QINDEX_RANGE) i--;
474
475 return i;
476 }
477
set_first_pass_params(VP9_COMP * cpi)478 static void set_first_pass_params(VP9_COMP *cpi) {
479 VP9_COMMON *const cm = &cpi->common;
480 if (!cpi->refresh_alt_ref_frame &&
481 (cm->current_video_frame == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY))) {
482 cm->frame_type = KEY_FRAME;
483 } else {
484 cm->frame_type = INTER_FRAME;
485 }
486 // Do not use periodic key frames.
487 cpi->rc.frames_to_key = INT_MAX;
488 }
489
490 // Scale an sse threshold to account for 8/10/12 bit.
scale_sse_threshold(VP9_COMMON * cm,int thresh)491 static int scale_sse_threshold(VP9_COMMON *cm, int thresh) {
492 int ret_val = thresh;
493 #if CONFIG_VP9_HIGHBITDEPTH
494 if (cm->use_highbitdepth) {
495 switch (cm->bit_depth) {
496 case VPX_BITS_8: ret_val = thresh; break;
497 case VPX_BITS_10: ret_val = thresh << 4; break;
498 case VPX_BITS_12: ret_val = thresh << 8; break;
499 default:
500 assert(0 &&
501 "cm->bit_depth should be VPX_BITS_8, "
502 "VPX_BITS_10 or VPX_BITS_12");
503 }
504 }
505 #else
506 (void)cm;
507 #endif // CONFIG_VP9_HIGHBITDEPTH
508 return ret_val;
509 }
510
511 // This threshold is used to track blocks where to all intents and purposes
512 // the intra prediction error 0. Though the metric we test against
513 // is technically a sse we are mainly interested in blocks where all the pixels
514 // in the 8 bit domain have an error of <= 1 (where error = sse) so a
515 // linear scaling for 10 and 12 bit gives similar results.
516 #define UL_INTRA_THRESH 50
get_ul_intra_threshold(VP9_COMMON * cm)517 static int get_ul_intra_threshold(VP9_COMMON *cm) {
518 int ret_val = UL_INTRA_THRESH;
519 #if CONFIG_VP9_HIGHBITDEPTH
520 if (cm->use_highbitdepth) {
521 switch (cm->bit_depth) {
522 case VPX_BITS_8: ret_val = UL_INTRA_THRESH; break;
523 case VPX_BITS_10: ret_val = UL_INTRA_THRESH << 2; break;
524 case VPX_BITS_12: ret_val = UL_INTRA_THRESH << 4; break;
525 default:
526 assert(0 &&
527 "cm->bit_depth should be VPX_BITS_8, "
528 "VPX_BITS_10 or VPX_BITS_12");
529 }
530 }
531 #else
532 (void)cm;
533 #endif // CONFIG_VP9_HIGHBITDEPTH
534 return ret_val;
535 }
536
537 #define SMOOTH_INTRA_THRESH 4000
get_smooth_intra_threshold(VP9_COMMON * cm)538 static int get_smooth_intra_threshold(VP9_COMMON *cm) {
539 int ret_val = SMOOTH_INTRA_THRESH;
540 #if CONFIG_VP9_HIGHBITDEPTH
541 if (cm->use_highbitdepth) {
542 switch (cm->bit_depth) {
543 case VPX_BITS_8: ret_val = SMOOTH_INTRA_THRESH; break;
544 case VPX_BITS_10: ret_val = SMOOTH_INTRA_THRESH << 4; break;
545 case VPX_BITS_12: ret_val = SMOOTH_INTRA_THRESH << 8; break;
546 default:
547 assert(0 &&
548 "cm->bit_depth should be VPX_BITS_8, "
549 "VPX_BITS_10 or VPX_BITS_12");
550 }
551 }
552 #else
553 (void)cm;
554 #endif // CONFIG_VP9_HIGHBITDEPTH
555 return ret_val;
556 }
557
558 #define FP_DN_THRESH 8
559 #define FP_MAX_DN_THRESH 16
560 #define KERNEL_SIZE 3
561
562 // Baseline Kernal weights for first pass noise metric
563 static uint8_t fp_dn_kernal_3[KERNEL_SIZE * KERNEL_SIZE] = { 1, 2, 1, 2, 4,
564 2, 1, 2, 1 };
565
566 // Estimate noise at a single point based on the impace of a spatial kernal
567 // on the point value
fp_estimate_point_noise(uint8_t * src_ptr,const int stride)568 static int fp_estimate_point_noise(uint8_t *src_ptr, const int stride) {
569 int sum_weight = 0;
570 int sum_val = 0;
571 int i, j;
572 int max_diff = 0;
573 int diff;
574 int dn_diff;
575 uint8_t *tmp_ptr;
576 uint8_t *kernal_ptr;
577 uint8_t dn_val;
578 uint8_t centre_val = *src_ptr;
579
580 kernal_ptr = fp_dn_kernal_3;
581
582 // Apply the kernal
583 tmp_ptr = src_ptr - stride - 1;
584 for (i = 0; i < KERNEL_SIZE; ++i) {
585 for (j = 0; j < KERNEL_SIZE; ++j) {
586 diff = abs((int)centre_val - (int)tmp_ptr[j]);
587 max_diff = VPXMAX(max_diff, diff);
588 if (diff <= FP_DN_THRESH) {
589 sum_weight += *kernal_ptr;
590 sum_val += (int)tmp_ptr[j] * (int)*kernal_ptr;
591 }
592 ++kernal_ptr;
593 }
594 tmp_ptr += stride;
595 }
596
597 if (max_diff < FP_MAX_DN_THRESH)
598 // Update the source value with the new filtered value
599 dn_val = (sum_val + (sum_weight >> 1)) / sum_weight;
600 else
601 dn_val = *src_ptr;
602
603 // return the noise energy as the square of the difference between the
604 // denoised and raw value.
605 dn_diff = (int)*src_ptr - (int)dn_val;
606 return dn_diff * dn_diff;
607 }
608 #if CONFIG_VP9_HIGHBITDEPTH
fp_highbd_estimate_point_noise(uint8_t * src_ptr,const int stride)609 static int fp_highbd_estimate_point_noise(uint8_t *src_ptr, const int stride) {
610 int sum_weight = 0;
611 int sum_val = 0;
612 int i, j;
613 int max_diff = 0;
614 int diff;
615 int dn_diff;
616 uint8_t *tmp_ptr;
617 uint16_t *tmp_ptr16;
618 uint8_t *kernal_ptr;
619 uint16_t dn_val;
620 uint16_t centre_val = *CONVERT_TO_SHORTPTR(src_ptr);
621
622 kernal_ptr = fp_dn_kernal_3;
623
624 // Apply the kernal
625 tmp_ptr = src_ptr - stride - 1;
626 for (i = 0; i < KERNEL_SIZE; ++i) {
627 tmp_ptr16 = CONVERT_TO_SHORTPTR(tmp_ptr);
628 for (j = 0; j < KERNEL_SIZE; ++j) {
629 diff = abs((int)centre_val - (int)tmp_ptr16[j]);
630 max_diff = VPXMAX(max_diff, diff);
631 if (diff <= FP_DN_THRESH) {
632 sum_weight += *kernal_ptr;
633 sum_val += (int)tmp_ptr16[j] * (int)*kernal_ptr;
634 }
635 ++kernal_ptr;
636 }
637 tmp_ptr += stride;
638 }
639
640 if (max_diff < FP_MAX_DN_THRESH)
641 // Update the source value with the new filtered value
642 dn_val = (sum_val + (sum_weight >> 1)) / sum_weight;
643 else
644 dn_val = *CONVERT_TO_SHORTPTR(src_ptr);
645
646 // return the noise energy as the square of the difference between the
647 // denoised and raw value.
648 dn_diff = (int)(*CONVERT_TO_SHORTPTR(src_ptr)) - (int)dn_val;
649 return dn_diff * dn_diff;
650 }
651 #endif
652
653 // Estimate noise for a block.
fp_estimate_block_noise(MACROBLOCK * x,BLOCK_SIZE bsize)654 static int fp_estimate_block_noise(MACROBLOCK *x, BLOCK_SIZE bsize) {
655 #if CONFIG_VP9_HIGHBITDEPTH
656 MACROBLOCKD *xd = &x->e_mbd;
657 #endif
658 uint8_t *src_ptr = &x->plane[0].src.buf[0];
659 const int width = num_4x4_blocks_wide_lookup[bsize] * 4;
660 const int height = num_4x4_blocks_high_lookup[bsize] * 4;
661 int w, h;
662 int stride = x->plane[0].src.stride;
663 int block_noise = 0;
664
665 // Sampled points to reduce cost overhead.
666 for (h = 0; h < height; h += 2) {
667 for (w = 0; w < width; w += 2) {
668 #if CONFIG_VP9_HIGHBITDEPTH
669 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
670 block_noise += fp_highbd_estimate_point_noise(src_ptr, stride);
671 else
672 block_noise += fp_estimate_point_noise(src_ptr, stride);
673 #else
674 block_noise += fp_estimate_point_noise(src_ptr, stride);
675 #endif
676 ++src_ptr;
677 }
678 src_ptr += (stride - width);
679 }
680 return block_noise << 2; // Scale << 2 to account for sampling.
681 }
682
683 // This function is called to test the functionality of row based
684 // multi-threading in unit tests for bit-exactness
accumulate_floating_point_stats(VP9_COMP * cpi,TileDataEnc * first_tile_col)685 static void accumulate_floating_point_stats(VP9_COMP *cpi,
686 TileDataEnc *first_tile_col) {
687 VP9_COMMON *const cm = &cpi->common;
688 int mb_row, mb_col;
689 first_tile_col->fp_data.intra_factor = 0;
690 first_tile_col->fp_data.brightness_factor = 0;
691 first_tile_col->fp_data.neutral_count = 0;
692 for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
693 for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
694 const int mb_index = mb_row * cm->mb_cols + mb_col;
695 first_tile_col->fp_data.intra_factor +=
696 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor;
697 first_tile_col->fp_data.brightness_factor +=
698 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor;
699 first_tile_col->fp_data.neutral_count +=
700 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count;
701 }
702 }
703 }
704
first_pass_stat_calc(VP9_COMP * cpi,FIRSTPASS_STATS * fps,FIRSTPASS_DATA * fp_acc_data)705 static void first_pass_stat_calc(VP9_COMP *cpi, FIRSTPASS_STATS *fps,
706 FIRSTPASS_DATA *fp_acc_data) {
707 VP9_COMMON *const cm = &cpi->common;
708 // The minimum error here insures some bit allocation to frames even
709 // in static regions. The allocation per MB declines for larger formats
710 // where the typical "real" energy per MB also falls.
711 // Initial estimate here uses sqrt(mbs) to define the min_err, where the
712 // number of mbs is proportional to the image area.
713 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE) ? cpi->initial_mbs
714 : cpi->common.MBs;
715 const double min_err = 200 * sqrt(num_mbs);
716
717 // Clamp the image start to rows/2. This number of rows is discarded top
718 // and bottom as dead data so rows / 2 means the frame is blank.
719 if ((fp_acc_data->image_data_start_row > cm->mb_rows / 2) ||
720 (fp_acc_data->image_data_start_row == INVALID_ROW)) {
721 fp_acc_data->image_data_start_row = cm->mb_rows / 2;
722 }
723 // Exclude any image dead zone
724 if (fp_acc_data->image_data_start_row > 0) {
725 fp_acc_data->intra_skip_count =
726 VPXMAX(0, fp_acc_data->intra_skip_count -
727 (fp_acc_data->image_data_start_row * cm->mb_cols * 2));
728 }
729
730 fp_acc_data->intra_factor = fp_acc_data->intra_factor / (double)num_mbs;
731 fp_acc_data->brightness_factor =
732 fp_acc_data->brightness_factor / (double)num_mbs;
733 fps->weight = fp_acc_data->intra_factor * fp_acc_data->brightness_factor;
734
735 fps->frame = cm->current_video_frame;
736 fps->spatial_layer_id = cpi->svc.spatial_layer_id;
737
738 fps->coded_error =
739 ((double)(fp_acc_data->coded_error >> 8) + min_err) / num_mbs;
740 fps->sr_coded_error =
741 ((double)(fp_acc_data->sr_coded_error >> 8) + min_err) / num_mbs;
742 fps->intra_error =
743 ((double)(fp_acc_data->intra_error >> 8) + min_err) / num_mbs;
744
745 fps->frame_noise_energy =
746 (double)(fp_acc_data->frame_noise_energy) / (double)num_mbs;
747 fps->count = 1.0;
748 fps->pcnt_inter = (double)(fp_acc_data->intercount) / num_mbs;
749 fps->pcnt_second_ref = (double)(fp_acc_data->second_ref_count) / num_mbs;
750 fps->pcnt_neutral = (double)(fp_acc_data->neutral_count) / num_mbs;
751 fps->pcnt_intra_low = (double)(fp_acc_data->intra_count_low) / num_mbs;
752 fps->pcnt_intra_high = (double)(fp_acc_data->intra_count_high) / num_mbs;
753 fps->intra_skip_pct = (double)(fp_acc_data->intra_skip_count) / num_mbs;
754 fps->intra_smooth_pct = (double)(fp_acc_data->intra_smooth_count) / num_mbs;
755 fps->inactive_zone_rows = (double)(fp_acc_data->image_data_start_row);
756 // Currently set to 0 as most issues relate to letter boxing.
757 fps->inactive_zone_cols = (double)0;
758
759 if (fp_acc_data->mvcount > 0) {
760 fps->MVr = (double)(fp_acc_data->sum_mvr) / fp_acc_data->mvcount;
761 fps->mvr_abs = (double)(fp_acc_data->sum_mvr_abs) / fp_acc_data->mvcount;
762 fps->MVc = (double)(fp_acc_data->sum_mvc) / fp_acc_data->mvcount;
763 fps->mvc_abs = (double)(fp_acc_data->sum_mvc_abs) / fp_acc_data->mvcount;
764 fps->MVrv = ((double)(fp_acc_data->sum_mvrs) -
765 ((double)(fp_acc_data->sum_mvr) * (fp_acc_data->sum_mvr) /
766 fp_acc_data->mvcount)) /
767 fp_acc_data->mvcount;
768 fps->MVcv = ((double)(fp_acc_data->sum_mvcs) -
769 ((double)(fp_acc_data->sum_mvc) * (fp_acc_data->sum_mvc) /
770 fp_acc_data->mvcount)) /
771 fp_acc_data->mvcount;
772 fps->mv_in_out_count =
773 (double)(fp_acc_data->sum_in_vectors) / (fp_acc_data->mvcount * 2);
774 fps->pcnt_motion = (double)(fp_acc_data->mvcount) / num_mbs;
775 } else {
776 fps->MVr = 0.0;
777 fps->mvr_abs = 0.0;
778 fps->MVc = 0.0;
779 fps->mvc_abs = 0.0;
780 fps->MVrv = 0.0;
781 fps->MVcv = 0.0;
782 fps->mv_in_out_count = 0.0;
783 fps->pcnt_motion = 0.0;
784 }
785 }
786
accumulate_fp_mb_row_stat(TileDataEnc * this_tile,FIRSTPASS_DATA * fp_acc_data)787 static void accumulate_fp_mb_row_stat(TileDataEnc *this_tile,
788 FIRSTPASS_DATA *fp_acc_data) {
789 this_tile->fp_data.intra_factor += fp_acc_data->intra_factor;
790 this_tile->fp_data.brightness_factor += fp_acc_data->brightness_factor;
791 this_tile->fp_data.coded_error += fp_acc_data->coded_error;
792 this_tile->fp_data.sr_coded_error += fp_acc_data->sr_coded_error;
793 this_tile->fp_data.frame_noise_energy += fp_acc_data->frame_noise_energy;
794 this_tile->fp_data.intra_error += fp_acc_data->intra_error;
795 this_tile->fp_data.intercount += fp_acc_data->intercount;
796 this_tile->fp_data.second_ref_count += fp_acc_data->second_ref_count;
797 this_tile->fp_data.neutral_count += fp_acc_data->neutral_count;
798 this_tile->fp_data.intra_count_low += fp_acc_data->intra_count_low;
799 this_tile->fp_data.intra_count_high += fp_acc_data->intra_count_high;
800 this_tile->fp_data.intra_skip_count += fp_acc_data->intra_skip_count;
801 this_tile->fp_data.mvcount += fp_acc_data->mvcount;
802 this_tile->fp_data.sum_mvr += fp_acc_data->sum_mvr;
803 this_tile->fp_data.sum_mvr_abs += fp_acc_data->sum_mvr_abs;
804 this_tile->fp_data.sum_mvc += fp_acc_data->sum_mvc;
805 this_tile->fp_data.sum_mvc_abs += fp_acc_data->sum_mvc_abs;
806 this_tile->fp_data.sum_mvrs += fp_acc_data->sum_mvrs;
807 this_tile->fp_data.sum_mvcs += fp_acc_data->sum_mvcs;
808 this_tile->fp_data.sum_in_vectors += fp_acc_data->sum_in_vectors;
809 this_tile->fp_data.intra_smooth_count += fp_acc_data->intra_smooth_count;
810 this_tile->fp_data.image_data_start_row =
811 VPXMIN(this_tile->fp_data.image_data_start_row,
812 fp_acc_data->image_data_start_row) == INVALID_ROW
813 ? VPXMAX(this_tile->fp_data.image_data_start_row,
814 fp_acc_data->image_data_start_row)
815 : VPXMIN(this_tile->fp_data.image_data_start_row,
816 fp_acc_data->image_data_start_row);
817 }
818
vp9_first_pass_encode_tile_mb_row(VP9_COMP * cpi,ThreadData * td,FIRSTPASS_DATA * fp_acc_data,TileDataEnc * tile_data,MV * best_ref_mv,int mb_row)819 void vp9_first_pass_encode_tile_mb_row(VP9_COMP *cpi, ThreadData *td,
820 FIRSTPASS_DATA *fp_acc_data,
821 TileDataEnc *tile_data, MV *best_ref_mv,
822 int mb_row) {
823 int mb_col;
824 MACROBLOCK *const x = &td->mb;
825 VP9_COMMON *const cm = &cpi->common;
826 MACROBLOCKD *const xd = &x->e_mbd;
827 TileInfo tile = tile_data->tile_info;
828 struct macroblock_plane *const p = x->plane;
829 struct macroblockd_plane *const pd = xd->plane;
830 const PICK_MODE_CONTEXT *ctx = &td->pc_root->none;
831 int i, c;
832 int num_mb_cols = get_num_cols(tile_data->tile_info, 1);
833
834 int recon_yoffset, recon_uvoffset;
835 const int intrapenalty = INTRA_MODE_PENALTY;
836 const MV zero_mv = { 0, 0 };
837 int recon_y_stride, recon_uv_stride, uv_mb_height;
838
839 YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
840 YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
841 YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
842 const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
843
844 LAYER_CONTEXT *const lc =
845 is_two_pass_svc(cpi) ? &cpi->svc.layer_context[cpi->svc.spatial_layer_id]
846 : NULL;
847 MODE_INFO mi_above, mi_left;
848
849 double mb_intra_factor;
850 double mb_brightness_factor;
851 double mb_neutral_count;
852
853 // First pass code requires valid last and new frame buffers.
854 assert(new_yv12 != NULL);
855 assert((lc != NULL) || frame_is_intra_only(cm) || (lst_yv12 != NULL));
856
857 if (lc != NULL) {
858 // Use either last frame or alt frame for motion search.
859 if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
860 first_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME);
861 if (first_ref_buf == NULL)
862 first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME);
863 }
864
865 if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
866 gld_yv12 = vp9_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
867 if (gld_yv12 == NULL) {
868 gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
869 }
870 } else {
871 gld_yv12 = NULL;
872 }
873 }
874
875 xd->mi = cm->mi_grid_visible + xd->mi_stride * (mb_row << 1) +
876 (tile.mi_col_start >> 1);
877 xd->mi[0] = cm->mi + xd->mi_stride * (mb_row << 1) + (tile.mi_col_start >> 1);
878
879 for (i = 0; i < MAX_MB_PLANE; ++i) {
880 p[i].coeff = ctx->coeff_pbuf[i][1];
881 p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
882 pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
883 p[i].eobs = ctx->eobs_pbuf[i][1];
884 }
885
886 recon_y_stride = new_yv12->y_stride;
887 recon_uv_stride = new_yv12->uv_stride;
888 uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
889
890 // Reset above block coeffs.
891 recon_yoffset =
892 (mb_row * recon_y_stride * 16) + (tile.mi_col_start >> 1) * 16;
893 recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height) +
894 (tile.mi_col_start >> 1) * uv_mb_height;
895
896 // Set up limit values for motion vectors to prevent them extending
897 // outside the UMV borders.
898 x->mv_limits.row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
899 x->mv_limits.row_max =
900 ((cm->mb_rows - 1 - mb_row) * 16) + BORDER_MV_PIXELS_B16;
901
902 for (mb_col = tile.mi_col_start >> 1, c = 0; mb_col < (tile.mi_col_end >> 1);
903 ++mb_col, c++) {
904 int this_error;
905 int this_intra_error;
906 const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
907 const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
908 double log_intra;
909 int level_sample;
910 const int mb_index = mb_row * cm->mb_cols + mb_col;
911
912 #if CONFIG_FP_MB_STATS
913 const int mb_index = mb_row * cm->mb_cols + mb_col;
914 #endif
915
916 (*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, mb_row, c);
917
918 // Adjust to the next column of MBs.
919 x->plane[0].src.buf = cpi->Source->y_buffer +
920 mb_row * 16 * x->plane[0].src.stride + mb_col * 16;
921 x->plane[1].src.buf = cpi->Source->u_buffer +
922 mb_row * uv_mb_height * x->plane[1].src.stride +
923 mb_col * uv_mb_height;
924 x->plane[2].src.buf = cpi->Source->v_buffer +
925 mb_row * uv_mb_height * x->plane[1].src.stride +
926 mb_col * uv_mb_height;
927
928 vpx_clear_system_state();
929
930 xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
931 xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
932 xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
933 xd->mi[0]->sb_type = bsize;
934 xd->mi[0]->ref_frame[0] = INTRA_FRAME;
935 set_mi_row_col(xd, &tile, mb_row << 1, num_8x8_blocks_high_lookup[bsize],
936 mb_col << 1, num_8x8_blocks_wide_lookup[bsize], cm->mi_rows,
937 cm->mi_cols);
938 // Are edges available for intra prediction?
939 // Since the firstpass does not populate the mi_grid_visible,
940 // above_mi/left_mi must be overwritten with a nonzero value when edges
941 // are available. Required by vp9_predict_intra_block().
942 xd->above_mi = (mb_row != 0) ? &mi_above : NULL;
943 xd->left_mi = ((mb_col << 1) > tile.mi_col_start) ? &mi_left : NULL;
944
945 // Do intra 16x16 prediction.
946 x->skip_encode = 0;
947 x->fp_src_pred = 0;
948 // Do intra prediction based on source pixels for tile boundaries
949 if ((mb_col == (tile.mi_col_start >> 1)) && mb_col != 0) {
950 xd->left_mi = &mi_left;
951 x->fp_src_pred = 1;
952 }
953 xd->mi[0]->mode = DC_PRED;
954 xd->mi[0]->tx_size =
955 use_dc_pred ? (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
956 // Fix - zero the 16x16 block first. This ensures correct this_error for
957 // block sizes smaller than 16x16.
958 vp9_zero_array(x->plane[0].src_diff, 256);
959 vp9_encode_intra_block_plane(x, bsize, 0, 0);
960 this_error = vpx_get_mb_ss(x->plane[0].src_diff);
961 this_intra_error = this_error;
962
963 // Keep a record of blocks that have very low intra error residual
964 // (i.e. are in effect completely flat and untextured in the intra
965 // domain). In natural videos this is uncommon, but it is much more
966 // common in animations, graphics and screen content, so may be used
967 // as a signal to detect these types of content.
968 if (this_error < get_ul_intra_threshold(cm)) {
969 ++(fp_acc_data->intra_skip_count);
970 } else if ((mb_col > 0) &&
971 (fp_acc_data->image_data_start_row == INVALID_ROW)) {
972 fp_acc_data->image_data_start_row = mb_row;
973 }
974
975 // Blocks that are mainly smooth in the intra domain.
976 // Some special accounting for CQ but also these are better for testing
977 // noise levels.
978 if (this_error < get_smooth_intra_threshold(cm)) {
979 ++(fp_acc_data->intra_smooth_count);
980 }
981
982 // Special case noise measurement for first frame.
983 if (cm->current_video_frame == 0) {
984 if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) {
985 fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
986 } else {
987 fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
988 }
989 }
990
991 #if CONFIG_VP9_HIGHBITDEPTH
992 if (cm->use_highbitdepth) {
993 switch (cm->bit_depth) {
994 case VPX_BITS_8: break;
995 case VPX_BITS_10: this_error >>= 4; break;
996 case VPX_BITS_12: this_error >>= 8; break;
997 default:
998 assert(0 &&
999 "cm->bit_depth should be VPX_BITS_8, "
1000 "VPX_BITS_10 or VPX_BITS_12");
1001 return;
1002 }
1003 }
1004 #endif // CONFIG_VP9_HIGHBITDEPTH
1005
1006 vpx_clear_system_state();
1007 log_intra = log(this_error + 1.0);
1008 if (log_intra < 10.0) {
1009 mb_intra_factor = 1.0 + ((10.0 - log_intra) * 0.05);
1010 fp_acc_data->intra_factor += mb_intra_factor;
1011 if (cpi->row_mt_bit_exact)
1012 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor =
1013 mb_intra_factor;
1014 } else {
1015 fp_acc_data->intra_factor += 1.0;
1016 if (cpi->row_mt_bit_exact)
1017 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_intra_factor = 1.0;
1018 }
1019
1020 #if CONFIG_VP9_HIGHBITDEPTH
1021 if (cm->use_highbitdepth)
1022 level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
1023 else
1024 level_sample = x->plane[0].src.buf[0];
1025 #else
1026 level_sample = x->plane[0].src.buf[0];
1027 #endif
1028 if ((level_sample < DARK_THRESH) && (log_intra < 9.0)) {
1029 mb_brightness_factor = 1.0 + (0.01 * (DARK_THRESH - level_sample));
1030 fp_acc_data->brightness_factor += mb_brightness_factor;
1031 if (cpi->row_mt_bit_exact)
1032 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor =
1033 mb_brightness_factor;
1034 } else {
1035 fp_acc_data->brightness_factor += 1.0;
1036 if (cpi->row_mt_bit_exact)
1037 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_brightness_factor =
1038 1.0;
1039 }
1040
1041 // Intrapenalty below deals with situations where the intra and inter
1042 // error scores are very low (e.g. a plain black frame).
1043 // We do not have special cases in first pass for 0,0 and nearest etc so
1044 // all inter modes carry an overhead cost estimate for the mv.
1045 // When the error score is very low this causes us to pick all or lots of
1046 // INTRA modes and throw lots of key frames.
1047 // This penalty adds a cost matching that of a 0,0 mv to the intra case.
1048 this_error += intrapenalty;
1049
1050 // Accumulate the intra error.
1051 fp_acc_data->intra_error += (int64_t)this_error;
1052
1053 #if CONFIG_FP_MB_STATS
1054 if (cpi->use_fp_mb_stats) {
1055 // initialization
1056 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
1057 }
1058 #endif
1059
1060 // Set up limit values for motion vectors to prevent them extending
1061 // outside the UMV borders.
1062 x->mv_limits.col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
1063 x->mv_limits.col_max =
1064 ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
1065
1066 // Other than for the first frame do a motion search.
1067 if ((lc == NULL && cm->current_video_frame > 0) ||
1068 (lc != NULL && lc->current_video_frame_in_layer > 0)) {
1069 int tmp_err, motion_error, raw_motion_error;
1070 // Assume 0,0 motion with no mv overhead.
1071 MV mv = { 0, 0 }, tmp_mv = { 0, 0 };
1072 struct buf_2d unscaled_last_source_buf_2d;
1073
1074 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
1075 #if CONFIG_VP9_HIGHBITDEPTH
1076 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1077 motion_error = highbd_get_prediction_error(
1078 bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
1079 } else {
1080 motion_error =
1081 get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
1082 }
1083 #else
1084 motion_error =
1085 get_prediction_error(bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
1086 #endif // CONFIG_VP9_HIGHBITDEPTH
1087
1088 // Compute the motion error of the 0,0 motion using the last source
1089 // frame as the reference. Skip the further motion search on
1090 // reconstructed frame if this error is small.
1091 unscaled_last_source_buf_2d.buf =
1092 cpi->unscaled_last_source->y_buffer + recon_yoffset;
1093 unscaled_last_source_buf_2d.stride = cpi->unscaled_last_source->y_stride;
1094 #if CONFIG_VP9_HIGHBITDEPTH
1095 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1096 raw_motion_error = highbd_get_prediction_error(
1097 bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
1098 } else {
1099 raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1100 &unscaled_last_source_buf_2d);
1101 }
1102 #else
1103 raw_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1104 &unscaled_last_source_buf_2d);
1105 #endif // CONFIG_VP9_HIGHBITDEPTH
1106
1107 // TODO(pengchong): Replace the hard-coded threshold
1108 if (raw_motion_error > 25 || lc != NULL) {
1109 // Test last reference frame using the previous best mv as the
1110 // starting point (best reference) for the search.
1111 first_pass_motion_search(cpi, x, best_ref_mv, &mv, &motion_error);
1112
1113 // If the current best reference mv is not centered on 0,0 then do a
1114 // 0,0 based search as well.
1115 if (!is_zero_mv(best_ref_mv)) {
1116 tmp_err = INT_MAX;
1117 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
1118
1119 if (tmp_err < motion_error) {
1120 motion_error = tmp_err;
1121 mv = tmp_mv;
1122 }
1123 }
1124
1125 // Search in an older reference frame.
1126 if (((lc == NULL && cm->current_video_frame > 1) ||
1127 (lc != NULL && lc->current_video_frame_in_layer > 1)) &&
1128 gld_yv12 != NULL) {
1129 // Assume 0,0 motion with no mv overhead.
1130 int gf_motion_error;
1131
1132 xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
1133 #if CONFIG_VP9_HIGHBITDEPTH
1134 if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
1135 gf_motion_error = highbd_get_prediction_error(
1136 bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
1137 } else {
1138 gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1139 &xd->plane[0].pre[0]);
1140 }
1141 #else
1142 gf_motion_error = get_prediction_error(bsize, &x->plane[0].src,
1143 &xd->plane[0].pre[0]);
1144 #endif // CONFIG_VP9_HIGHBITDEPTH
1145
1146 first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &gf_motion_error);
1147
1148 if (gf_motion_error < motion_error && gf_motion_error < this_error)
1149 ++(fp_acc_data->second_ref_count);
1150
1151 // Reset to last frame as reference buffer.
1152 xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
1153 xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
1154 xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
1155
1156 // In accumulating a score for the older reference frame take the
1157 // best of the motion predicted score and the intra coded error
1158 // (just as will be done for) accumulation of "coded_error" for
1159 // the last frame.
1160 if (gf_motion_error < this_error)
1161 fp_acc_data->sr_coded_error += gf_motion_error;
1162 else
1163 fp_acc_data->sr_coded_error += this_error;
1164 } else {
1165 fp_acc_data->sr_coded_error += motion_error;
1166 }
1167 } else {
1168 fp_acc_data->sr_coded_error += motion_error;
1169 }
1170
1171 // Start by assuming that intra mode is best.
1172 best_ref_mv->row = 0;
1173 best_ref_mv->col = 0;
1174
1175 #if CONFIG_FP_MB_STATS
1176 if (cpi->use_fp_mb_stats) {
1177 // intra prediction statistics
1178 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
1179 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
1180 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
1181 if (this_error > FPMB_ERROR_LARGE_TH) {
1182 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
1183 } else if (this_error < FPMB_ERROR_SMALL_TH) {
1184 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
1185 }
1186 }
1187 #endif
1188
1189 if (motion_error <= this_error) {
1190 vpx_clear_system_state();
1191
1192 // Keep a count of cases where the inter and intra were very close
1193 // and very low. This helps with scene cut detection for example in
1194 // cropped clips with black bars at the sides or top and bottom.
1195 if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
1196 (this_error < (2 * intrapenalty))) {
1197 fp_acc_data->neutral_count += 1.0;
1198 if (cpi->row_mt_bit_exact)
1199 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count =
1200 1.0;
1201 // Also track cases where the intra is not much worse than the inter
1202 // and use this in limiting the GF/arf group length.
1203 } else if ((this_error > NCOUNT_INTRA_THRESH) &&
1204 (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
1205 mb_neutral_count =
1206 (double)motion_error / DOUBLE_DIVIDE_CHECK((double)this_error);
1207 fp_acc_data->neutral_count += mb_neutral_count;
1208 if (cpi->row_mt_bit_exact)
1209 cpi->twopass.fp_mb_float_stats[mb_index].frame_mb_neutral_count =
1210 mb_neutral_count;
1211 }
1212
1213 mv.row *= 8;
1214 mv.col *= 8;
1215 this_error = motion_error;
1216 xd->mi[0]->mode = NEWMV;
1217 xd->mi[0]->mv[0].as_mv = mv;
1218 xd->mi[0]->tx_size = TX_4X4;
1219 xd->mi[0]->ref_frame[0] = LAST_FRAME;
1220 xd->mi[0]->ref_frame[1] = NONE;
1221 vp9_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
1222 vp9_encode_sby_pass1(x, bsize);
1223 fp_acc_data->sum_mvr += mv.row;
1224 fp_acc_data->sum_mvr_abs += abs(mv.row);
1225 fp_acc_data->sum_mvc += mv.col;
1226 fp_acc_data->sum_mvc_abs += abs(mv.col);
1227 fp_acc_data->sum_mvrs += mv.row * mv.row;
1228 fp_acc_data->sum_mvcs += mv.col * mv.col;
1229 ++(fp_acc_data->intercount);
1230
1231 *best_ref_mv = mv;
1232
1233 #if CONFIG_FP_MB_STATS
1234 if (cpi->use_fp_mb_stats) {
1235 // inter prediction statistics
1236 cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
1237 cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
1238 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
1239 if (this_error > FPMB_ERROR_LARGE_TH) {
1240 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
1241 } else if (this_error < FPMB_ERROR_SMALL_TH) {
1242 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
1243 }
1244 }
1245 #endif
1246
1247 if (!is_zero_mv(&mv)) {
1248 ++(fp_acc_data->mvcount);
1249
1250 #if CONFIG_FP_MB_STATS
1251 if (cpi->use_fp_mb_stats) {
1252 cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_MOTION_ZERO_MASK;
1253 // check estimated motion direction
1254 if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) {
1255 // right direction
1256 cpi->twopass.frame_mb_stats_buf[mb_index] |=
1257 FPMB_MOTION_RIGHT_MASK;
1258 } else if (mv.as_mv.row < 0 &&
1259 abs(mv.as_mv.row) >= abs(mv.as_mv.col)) {
1260 // up direction
1261 cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_UP_MASK;
1262 } else if (mv.as_mv.col < 0 &&
1263 abs(mv.as_mv.col) >= abs(mv.as_mv.row)) {
1264 // left direction
1265 cpi->twopass.frame_mb_stats_buf[mb_index] |=
1266 FPMB_MOTION_LEFT_MASK;
1267 } else {
1268 // down direction
1269 cpi->twopass.frame_mb_stats_buf[mb_index] |=
1270 FPMB_MOTION_DOWN_MASK;
1271 }
1272 }
1273 #endif
1274
1275 // Does the row vector point inwards or outwards?
1276 if (mb_row < cm->mb_rows / 2) {
1277 if (mv.row > 0)
1278 --(fp_acc_data->sum_in_vectors);
1279 else if (mv.row < 0)
1280 ++(fp_acc_data->sum_in_vectors);
1281 } else if (mb_row > cm->mb_rows / 2) {
1282 if (mv.row > 0)
1283 ++(fp_acc_data->sum_in_vectors);
1284 else if (mv.row < 0)
1285 --(fp_acc_data->sum_in_vectors);
1286 }
1287
1288 // Does the col vector point inwards or outwards?
1289 if (mb_col < cm->mb_cols / 2) {
1290 if (mv.col > 0)
1291 --(fp_acc_data->sum_in_vectors);
1292 else if (mv.col < 0)
1293 ++(fp_acc_data->sum_in_vectors);
1294 } else if (mb_col > cm->mb_cols / 2) {
1295 if (mv.col > 0)
1296 ++(fp_acc_data->sum_in_vectors);
1297 else if (mv.col < 0)
1298 --(fp_acc_data->sum_in_vectors);
1299 }
1300 fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
1301 } else if (this_intra_error < scale_sse_threshold(cm, LOW_I_THRESH)) {
1302 fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
1303 } else { // 0,0 mv but high error
1304 fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
1305 }
1306 } else { // Intra < inter error
1307 int scaled_low_intra_thresh = scale_sse_threshold(cm, LOW_I_THRESH);
1308 if (this_intra_error < scaled_low_intra_thresh) {
1309 fp_acc_data->frame_noise_energy += fp_estimate_block_noise(x, bsize);
1310 if (motion_error < scaled_low_intra_thresh) {
1311 fp_acc_data->intra_count_low += 1.0;
1312 } else {
1313 fp_acc_data->intra_count_high += 1.0;
1314 }
1315 } else {
1316 fp_acc_data->frame_noise_energy += (int64_t)SECTION_NOISE_DEF;
1317 fp_acc_data->intra_count_high += 1.0;
1318 }
1319 }
1320 } else {
1321 fp_acc_data->sr_coded_error += (int64_t)this_error;
1322 }
1323 fp_acc_data->coded_error += (int64_t)this_error;
1324
1325 recon_yoffset += 16;
1326 recon_uvoffset += uv_mb_height;
1327
1328 // Accumulate row level stats to the corresponding tile stats
1329 if (cpi->row_mt && mb_col == (tile.mi_col_end >> 1) - 1)
1330 accumulate_fp_mb_row_stat(tile_data, fp_acc_data);
1331
1332 (*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, mb_row, c,
1333 num_mb_cols);
1334 }
1335 vpx_clear_system_state();
1336 }
1337
first_pass_encode(VP9_COMP * cpi,FIRSTPASS_DATA * fp_acc_data)1338 static void first_pass_encode(VP9_COMP *cpi, FIRSTPASS_DATA *fp_acc_data) {
1339 VP9_COMMON *const cm = &cpi->common;
1340 int mb_row;
1341 TileDataEnc tile_data;
1342 TileInfo *tile = &tile_data.tile_info;
1343 MV zero_mv = { 0, 0 };
1344 MV best_ref_mv;
1345 // Tiling is ignored in the first pass.
1346 vp9_tile_init(tile, cm, 0, 0);
1347
1348 for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
1349 best_ref_mv = zero_mv;
1350 vp9_first_pass_encode_tile_mb_row(cpi, &cpi->td, fp_acc_data, &tile_data,
1351 &best_ref_mv, mb_row);
1352 }
1353 }
1354
vp9_first_pass(VP9_COMP * cpi,const struct lookahead_entry * source)1355 void vp9_first_pass(VP9_COMP *cpi, const struct lookahead_entry *source) {
1356 MACROBLOCK *const x = &cpi->td.mb;
1357 VP9_COMMON *const cm = &cpi->common;
1358 MACROBLOCKD *const xd = &x->e_mbd;
1359 TWO_PASS *twopass = &cpi->twopass;
1360
1361 YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
1362 YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
1363 YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
1364 const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
1365
1366 LAYER_CONTEXT *const lc =
1367 is_two_pass_svc(cpi) ? &cpi->svc.layer_context[cpi->svc.spatial_layer_id]
1368 : NULL;
1369 BufferPool *const pool = cm->buffer_pool;
1370
1371 FIRSTPASS_DATA fp_temp_data;
1372 FIRSTPASS_DATA *fp_acc_data = &fp_temp_data;
1373
1374 vpx_clear_system_state();
1375 vp9_zero(fp_temp_data);
1376 fp_acc_data->image_data_start_row = INVALID_ROW;
1377
1378 // First pass code requires valid last and new frame buffers.
1379 assert(new_yv12 != NULL);
1380 assert((lc != NULL) || frame_is_intra_only(cm) || (lst_yv12 != NULL));
1381
1382 #if CONFIG_FP_MB_STATS
1383 if (cpi->use_fp_mb_stats) {
1384 vp9_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs);
1385 }
1386 #endif
1387
1388 set_first_pass_params(cpi);
1389 vp9_set_quantizer(cm, find_fp_qindex(cm->bit_depth));
1390
1391 if (lc != NULL) {
1392 twopass = &lc->twopass;
1393
1394 cpi->lst_fb_idx = cpi->svc.spatial_layer_id;
1395 cpi->ref_frame_flags = VP9_LAST_FLAG;
1396
1397 if (cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id <
1398 REF_FRAMES) {
1399 cpi->gld_fb_idx =
1400 cpi->svc.number_spatial_layers + cpi->svc.spatial_layer_id;
1401 cpi->ref_frame_flags |= VP9_GOLD_FLAG;
1402 cpi->refresh_golden_frame = (lc->current_video_frame_in_layer == 0);
1403 } else {
1404 cpi->refresh_golden_frame = 0;
1405 }
1406
1407 if (lc->current_video_frame_in_layer == 0) cpi->ref_frame_flags = 0;
1408
1409 vp9_scale_references(cpi);
1410
1411 // Use either last frame or alt frame for motion search.
1412 if (cpi->ref_frame_flags & VP9_LAST_FLAG) {
1413 first_ref_buf = vp9_get_scaled_ref_frame(cpi, LAST_FRAME);
1414 if (first_ref_buf == NULL)
1415 first_ref_buf = get_ref_frame_buffer(cpi, LAST_FRAME);
1416 }
1417
1418 if (cpi->ref_frame_flags & VP9_GOLD_FLAG) {
1419 gld_yv12 = vp9_get_scaled_ref_frame(cpi, GOLDEN_FRAME);
1420 if (gld_yv12 == NULL) {
1421 gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
1422 }
1423 } else {
1424 gld_yv12 = NULL;
1425 }
1426
1427 set_ref_ptrs(cm, xd,
1428 (cpi->ref_frame_flags & VP9_LAST_FLAG) ? LAST_FRAME : NONE,
1429 (cpi->ref_frame_flags & VP9_GOLD_FLAG) ? GOLDEN_FRAME : NONE);
1430
1431 cpi->Source = vp9_scale_if_required(cm, cpi->un_scaled_source,
1432 &cpi->scaled_source, 0, EIGHTTAP, 0);
1433 }
1434
1435 vp9_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
1436
1437 vp9_setup_src_planes(x, cpi->Source, 0, 0);
1438 vp9_setup_dst_planes(xd->plane, new_yv12, 0, 0);
1439
1440 if (!frame_is_intra_only(cm)) {
1441 vp9_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
1442 }
1443
1444 xd->mi = cm->mi_grid_visible;
1445 xd->mi[0] = cm->mi;
1446
1447 vp9_frame_init_quantizer(cpi);
1448
1449 x->skip_recode = 0;
1450
1451 vp9_init_mv_probs(cm);
1452 vp9_initialize_rd_consts(cpi);
1453
1454 cm->log2_tile_rows = 0;
1455
1456 if (cpi->row_mt_bit_exact && cpi->twopass.fp_mb_float_stats == NULL)
1457 CHECK_MEM_ERROR(
1458 cm, cpi->twopass.fp_mb_float_stats,
1459 vpx_calloc(cm->MBs * sizeof(*cpi->twopass.fp_mb_float_stats), 1));
1460
1461 {
1462 FIRSTPASS_STATS fps;
1463 TileDataEnc *first_tile_col;
1464 if (!cpi->row_mt) {
1465 cm->log2_tile_cols = 0;
1466 cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read_dummy;
1467 cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write_dummy;
1468 first_pass_encode(cpi, fp_acc_data);
1469 first_pass_stat_calc(cpi, &fps, fp_acc_data);
1470 } else {
1471 cpi->row_mt_sync_read_ptr = vp9_row_mt_sync_read;
1472 cpi->row_mt_sync_write_ptr = vp9_row_mt_sync_write;
1473 if (cpi->row_mt_bit_exact) {
1474 cm->log2_tile_cols = 0;
1475 vp9_zero_array(cpi->twopass.fp_mb_float_stats, cm->MBs);
1476 }
1477 vp9_encode_fp_row_mt(cpi);
1478 first_tile_col = &cpi->tile_data[0];
1479 if (cpi->row_mt_bit_exact)
1480 accumulate_floating_point_stats(cpi, first_tile_col);
1481 first_pass_stat_calc(cpi, &fps, &(first_tile_col->fp_data));
1482 }
1483
1484 // Dont allow a value of 0 for duration.
1485 // (Section duration is also defaulted to minimum of 1.0).
1486 fps.duration = VPXMAX(1.0, (double)(source->ts_end - source->ts_start));
1487
1488 // Don't want to do output stats with a stack variable!
1489 twopass->this_frame_stats = fps;
1490 output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
1491 accumulate_stats(&twopass->total_stats, &fps);
1492
1493 #if CONFIG_FP_MB_STATS
1494 if (cpi->use_fp_mb_stats) {
1495 output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list);
1496 }
1497 #endif
1498 }
1499
1500 // Copy the previous Last Frame back into gf and and arf buffers if
1501 // the prediction is good enough... but also don't allow it to lag too far.
1502 if ((twopass->sr_update_lag > 3) ||
1503 ((cm->current_video_frame > 0) &&
1504 (twopass->this_frame_stats.pcnt_inter > 0.20) &&
1505 ((twopass->this_frame_stats.intra_error /
1506 DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
1507 if (gld_yv12 != NULL) {
1508 ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
1509 cm->ref_frame_map[cpi->lst_fb_idx]);
1510 }
1511 twopass->sr_update_lag = 1;
1512 } else {
1513 ++twopass->sr_update_lag;
1514 }
1515
1516 vpx_extend_frame_borders(new_yv12);
1517
1518 if (lc != NULL) {
1519 vp9_update_reference_frames(cpi);
1520 } else {
1521 // The frame we just compressed now becomes the last frame.
1522 ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
1523 cm->new_fb_idx);
1524 }
1525
1526 // Special case for the first frame. Copy into the GF buffer as a second
1527 // reference.
1528 if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX &&
1529 lc == NULL) {
1530 ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
1531 cm->ref_frame_map[cpi->lst_fb_idx]);
1532 }
1533
1534 // Use this to see what the first pass reconstruction looks like.
1535 if (0) {
1536 char filename[512];
1537 FILE *recon_file;
1538 snprintf(filename, sizeof(filename), "enc%04d.yuv",
1539 (int)cm->current_video_frame);
1540
1541 if (cm->current_video_frame == 0)
1542 recon_file = fopen(filename, "wb");
1543 else
1544 recon_file = fopen(filename, "ab");
1545
1546 (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
1547 fclose(recon_file);
1548 }
1549
1550 ++cm->current_video_frame;
1551 if (cpi->use_svc) vp9_inc_frame_in_layer(cpi);
1552 }
1553
1554 static const double q_pow_term[(QINDEX_RANGE >> 5) + 1] = {
1555 0.65, 0.70, 0.75, 0.85, 0.90, 0.90, 0.90, 1.00, 1.25
1556 };
1557
calc_correction_factor(double err_per_mb,double err_divisor,int q)1558 static double calc_correction_factor(double err_per_mb, double err_divisor,
1559 int q) {
1560 const double error_term = err_per_mb / DOUBLE_DIVIDE_CHECK(err_divisor);
1561 const int index = q >> 5;
1562 double power_term;
1563
1564 assert((index >= 0) && (index < (QINDEX_RANGE >> 5)));
1565
1566 // Adjustment based on quantizer to the power term.
1567 power_term =
1568 q_pow_term[index] +
1569 (((q_pow_term[index + 1] - q_pow_term[index]) * (q % 32)) / 32.0);
1570
1571 // Calculate correction factor.
1572 if (power_term < 1.0) assert(error_term >= 0.0);
1573
1574 return fclamp(pow(error_term, power_term), 0.05, 5.0);
1575 }
1576
1577 #define ERR_DIVISOR 115.0
1578 #define NOISE_FACTOR_MIN 0.9
1579 #define NOISE_FACTOR_MAX 1.1
get_twopass_worst_quality(VP9_COMP * cpi,const double section_err,double inactive_zone,double section_noise,int section_target_bandwidth)1580 static int get_twopass_worst_quality(VP9_COMP *cpi, const double section_err,
1581 double inactive_zone, double section_noise,
1582 int section_target_bandwidth) {
1583 const RATE_CONTROL *const rc = &cpi->rc;
1584 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1585 TWO_PASS *const twopass = &cpi->twopass;
1586
1587 // Clamp the target rate to VBR min / max limts.
1588 const int target_rate =
1589 vp9_rc_clamp_pframe_target_size(cpi, section_target_bandwidth);
1590 double noise_factor = pow((section_noise / SECTION_NOISE_DEF), 0.5);
1591 noise_factor = fclamp(noise_factor, NOISE_FACTOR_MIN, NOISE_FACTOR_MAX);
1592 inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
1593
1594 if (target_rate <= 0) {
1595 return rc->worst_quality; // Highest value allowed
1596 } else {
1597 const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
1598 ? cpi->initial_mbs
1599 : cpi->common.MBs;
1600 const double active_pct = VPXMAX(0.01, 1.0 - inactive_zone);
1601 const int active_mbs = (int)VPXMAX(1, (double)num_mbs * active_pct);
1602 const double av_err_per_mb = section_err / active_pct;
1603 const double speed_term = 1.0 + 0.04 * oxcf->speed;
1604 double last_group_rate_err;
1605 const int target_norm_bits_per_mb =
1606 (int)(((uint64_t)target_rate << BPER_MB_NORMBITS) / active_mbs);
1607 int q;
1608
1609 // based on recent history adjust expectations of bits per macroblock.
1610 last_group_rate_err =
1611 (double)twopass->rolling_arf_group_actual_bits /
1612 DOUBLE_DIVIDE_CHECK((double)twopass->rolling_arf_group_target_bits);
1613 last_group_rate_err = VPXMAX(0.25, VPXMIN(4.0, last_group_rate_err));
1614 twopass->bpm_factor *= (3.0 + last_group_rate_err) / 4.0;
1615 twopass->bpm_factor = VPXMAX(0.25, VPXMIN(4.0, twopass->bpm_factor));
1616
1617 // Try and pick a max Q that will be high enough to encode the
1618 // content at the given rate.
1619 for (q = rc->best_quality; q < rc->worst_quality; ++q) {
1620 const double factor =
1621 calc_correction_factor(av_err_per_mb, ERR_DIVISOR, q);
1622 const int bits_per_mb = vp9_rc_bits_per_mb(
1623 INTER_FRAME, q,
1624 factor * speed_term * cpi->twopass.bpm_factor * noise_factor,
1625 cpi->common.bit_depth);
1626 if (bits_per_mb <= target_norm_bits_per_mb) break;
1627 }
1628
1629 // Restriction on active max q for constrained quality mode.
1630 if (cpi->oxcf.rc_mode == VPX_CQ) q = VPXMAX(q, oxcf->cq_level);
1631 return q;
1632 }
1633 }
1634
setup_rf_level_maxq(VP9_COMP * cpi)1635 static void setup_rf_level_maxq(VP9_COMP *cpi) {
1636 int i;
1637 RATE_CONTROL *const rc = &cpi->rc;
1638 for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
1639 int qdelta = vp9_frame_type_qdelta(cpi, i, rc->worst_quality);
1640 rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality);
1641 }
1642 }
1643
init_subsampling(VP9_COMP * cpi)1644 static void init_subsampling(VP9_COMP *cpi) {
1645 const VP9_COMMON *const cm = &cpi->common;
1646 RATE_CONTROL *const rc = &cpi->rc;
1647 const int w = cm->width;
1648 const int h = cm->height;
1649 int i;
1650
1651 for (i = 0; i < FRAME_SCALE_STEPS; ++i) {
1652 // Note: Frames with odd-sized dimensions may result from this scaling.
1653 rc->frame_width[i] = (w * 16) / frame_scale_factor[i];
1654 rc->frame_height[i] = (h * 16) / frame_scale_factor[i];
1655 }
1656
1657 setup_rf_level_maxq(cpi);
1658 }
1659
calculate_coded_size(VP9_COMP * cpi,int * scaled_frame_width,int * scaled_frame_height)1660 void calculate_coded_size(VP9_COMP *cpi, int *scaled_frame_width,
1661 int *scaled_frame_height) {
1662 RATE_CONTROL *const rc = &cpi->rc;
1663 *scaled_frame_width = rc->frame_width[rc->frame_size_selector];
1664 *scaled_frame_height = rc->frame_height[rc->frame_size_selector];
1665 }
1666
vp9_init_second_pass(VP9_COMP * cpi)1667 void vp9_init_second_pass(VP9_COMP *cpi) {
1668 SVC *const svc = &cpi->svc;
1669 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
1670 const int is_two_pass_svc =
1671 (svc->number_spatial_layers > 1) || (svc->number_temporal_layers > 1);
1672 RATE_CONTROL *const rc = &cpi->rc;
1673 TWO_PASS *const twopass =
1674 is_two_pass_svc ? &svc->layer_context[svc->spatial_layer_id].twopass
1675 : &cpi->twopass;
1676 double frame_rate;
1677 FIRSTPASS_STATS *stats;
1678
1679 zero_stats(&twopass->total_stats);
1680 zero_stats(&twopass->total_left_stats);
1681
1682 if (!twopass->stats_in_end) return;
1683
1684 stats = &twopass->total_stats;
1685
1686 *stats = *twopass->stats_in_end;
1687 twopass->total_left_stats = *stats;
1688
1689 frame_rate = 10000000.0 * stats->count / stats->duration;
1690 // Each frame can have a different duration, as the frame rate in the source
1691 // isn't guaranteed to be constant. The frame rate prior to the first frame
1692 // encoded in the second pass is a guess. However, the sum duration is not.
1693 // It is calculated based on the actual durations of all frames from the
1694 // first pass.
1695
1696 if (is_two_pass_svc) {
1697 vp9_update_spatial_layer_framerate(cpi, frame_rate);
1698 twopass->bits_left =
1699 (int64_t)(stats->duration *
1700 svc->layer_context[svc->spatial_layer_id].target_bandwidth /
1701 10000000.0);
1702 } else {
1703 vp9_new_framerate(cpi, frame_rate);
1704 twopass->bits_left =
1705 (int64_t)(stats->duration * oxcf->target_bandwidth / 10000000.0);
1706 }
1707
1708 // This variable monitors how far behind the second ref update is lagging.
1709 twopass->sr_update_lag = 1;
1710
1711 // Scan the first pass file and calculate a modified score for each
1712 // frame that is used to distribute bits. The modified score is assumed
1713 // to provide a linear basis for bit allocation. I.e a frame A with a score
1714 // that is double that of frame B will be allocated 2x as many bits.
1715 {
1716 const FIRSTPASS_STATS *s = twopass->stats_in;
1717 double modified_score_total = 0.0;
1718
1719 // The first scan is unclamped and gives a raw average.
1720 while (s < twopass->stats_in_end) {
1721 modified_score_total += calculate_mod_frame_score(cpi, twopass, oxcf, s);
1722 ++s;
1723 }
1724
1725 // The average error from this first scan is used to define the midpoint
1726 // error for the rate distribution function.
1727 twopass->mean_mod_score =
1728 modified_score_total / DOUBLE_DIVIDE_CHECK(stats->count);
1729
1730 // Second scan using clamps based on the previous cycle average.
1731 // This may modify the total and average somewhat but we dont bother with
1732 // further itterations.
1733 s = twopass->stats_in;
1734 modified_score_total = 0.0;
1735 while (s < twopass->stats_in_end) {
1736 modified_score_total += calculate_norm_frame_score(cpi, twopass, oxcf, s);
1737 ++s;
1738 }
1739 twopass->normalized_score_left = modified_score_total;
1740 }
1741
1742 // Reset the vbr bits off target counters
1743 rc->vbr_bits_off_target = 0;
1744 rc->vbr_bits_off_target_fast = 0;
1745 rc->rate_error_estimate = 0;
1746
1747 // Static sequence monitor variables.
1748 twopass->kf_zeromotion_pct = 100;
1749 twopass->last_kfgroup_zeromotion_pct = 100;
1750
1751 // Initialize bits per macro_block estimate correction factor.
1752 twopass->bpm_factor = 1.0;
1753 // Initialize actual and target bits counters for ARF groups so that
1754 // at the start we have a neutral bpm adjustment.
1755 twopass->rolling_arf_group_target_bits = 1;
1756 twopass->rolling_arf_group_actual_bits = 1;
1757
1758 if (oxcf->resize_mode != RESIZE_NONE) {
1759 init_subsampling(cpi);
1760 }
1761
1762 // Initialize the arnr strangth adjustment to 0
1763 twopass->arnr_strength_adjustment = 0;
1764 }
1765
1766 #define SR_DIFF_PART 0.0015
1767 #define INTRA_PART 0.005
1768 #define DEFAULT_DECAY_LIMIT 0.75
1769 #define LOW_SR_DIFF_TRHESH 0.1
1770 #define SR_DIFF_MAX 128.0
1771 #define LOW_CODED_ERR_PER_MB 10.0
1772 #define NCOUNT_FRAME_II_THRESH 6.0
1773
get_sr_decay_rate(const VP9_COMP * cpi,const FIRSTPASS_STATS * frame)1774 static double get_sr_decay_rate(const VP9_COMP *cpi,
1775 const FIRSTPASS_STATS *frame) {
1776 double sr_diff = (frame->sr_coded_error - frame->coded_error);
1777 double sr_decay = 1.0;
1778 double modified_pct_inter;
1779 double modified_pcnt_intra;
1780 const double motion_amplitude_part =
1781 frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) /
1782 (cpi->initial_height + cpi->initial_width));
1783
1784 modified_pct_inter = frame->pcnt_inter;
1785 if ((frame->coded_error > LOW_CODED_ERR_PER_MB) &&
1786 ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
1787 (double)NCOUNT_FRAME_II_THRESH)) {
1788 modified_pct_inter =
1789 frame->pcnt_inter + frame->pcnt_intra_low - frame->pcnt_neutral;
1790 }
1791 modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
1792
1793 if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
1794 sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX);
1795 sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) - motion_amplitude_part -
1796 (INTRA_PART * modified_pcnt_intra);
1797 }
1798 return VPXMAX(sr_decay, DEFAULT_DECAY_LIMIT);
1799 }
1800
1801 // This function gives an estimate of how badly we believe the prediction
1802 // quality is decaying from frame to frame.
get_zero_motion_factor(const VP9_COMP * cpi,const FIRSTPASS_STATS * frame)1803 static double get_zero_motion_factor(const VP9_COMP *cpi,
1804 const FIRSTPASS_STATS *frame) {
1805 const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion;
1806 double sr_decay = get_sr_decay_rate(cpi, frame);
1807 return VPXMIN(sr_decay, zero_motion_pct);
1808 }
1809
1810 #define ZM_POWER_FACTOR 0.75
1811
get_prediction_decay_rate(const VP9_COMP * cpi,const FIRSTPASS_STATS * next_frame)1812 static double get_prediction_decay_rate(const VP9_COMP *cpi,
1813 const FIRSTPASS_STATS *next_frame) {
1814 const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
1815 const double zero_motion_factor =
1816 (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
1817 ZM_POWER_FACTOR));
1818
1819 return VPXMAX(zero_motion_factor,
1820 (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
1821 }
1822
1823 // Function to test for a condition where a complex transition is followed
1824 // by a static section. For example in slide shows where there is a fade
1825 // between slides. This is to help with more optimal kf and gf positioning.
detect_transition_to_still(VP9_COMP * cpi,int frame_interval,int still_interval,double loop_decay_rate,double last_decay_rate)1826 static int detect_transition_to_still(VP9_COMP *cpi, int frame_interval,
1827 int still_interval,
1828 double loop_decay_rate,
1829 double last_decay_rate) {
1830 TWO_PASS *const twopass = &cpi->twopass;
1831 RATE_CONTROL *const rc = &cpi->rc;
1832
1833 // Break clause to detect very still sections after motion
1834 // For example a static image after a fade or other transition
1835 // instead of a clean scene cut.
1836 if (frame_interval > rc->min_gf_interval && loop_decay_rate >= 0.999 &&
1837 last_decay_rate < 0.9) {
1838 int j;
1839
1840 // Look ahead a few frames to see if static condition persists...
1841 for (j = 0; j < still_interval; ++j) {
1842 const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
1843 if (stats >= twopass->stats_in_end) break;
1844
1845 if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break;
1846 }
1847
1848 // Only if it does do we signal a transition to still.
1849 return j == still_interval;
1850 }
1851
1852 return 0;
1853 }
1854
1855 // This function detects a flash through the high relative pcnt_second_ref
1856 // score in the frame following a flash frame. The offset passed in should
1857 // reflect this.
detect_flash(const TWO_PASS * twopass,int offset)1858 static int detect_flash(const TWO_PASS *twopass, int offset) {
1859 const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
1860
1861 // What we are looking for here is a situation where there is a
1862 // brief break in prediction (such as a flash) but subsequent frames
1863 // are reasonably well predicted by an earlier (pre flash) frame.
1864 // The recovery after a flash is indicated by a high pcnt_second_ref
1865 // compared to pcnt_inter.
1866 return next_frame != NULL &&
1867 next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
1868 next_frame->pcnt_second_ref >= 0.5;
1869 }
1870
1871 // Update the motion related elements to the GF arf boost calculation.
accumulate_frame_motion_stats(const FIRSTPASS_STATS * stats,double * mv_in_out,double * mv_in_out_accumulator,double * abs_mv_in_out_accumulator,double * mv_ratio_accumulator)1872 static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
1873 double *mv_in_out,
1874 double *mv_in_out_accumulator,
1875 double *abs_mv_in_out_accumulator,
1876 double *mv_ratio_accumulator) {
1877 const double pct = stats->pcnt_motion;
1878
1879 // Accumulate Motion In/Out of frame stats.
1880 *mv_in_out = stats->mv_in_out_count * pct;
1881 *mv_in_out_accumulator += *mv_in_out;
1882 *abs_mv_in_out_accumulator += fabs(*mv_in_out);
1883
1884 // Accumulate a measure of how uniform (or conversely how random) the motion
1885 // field is (a ratio of abs(mv) / mv).
1886 if (pct > 0.05) {
1887 const double mvr_ratio =
1888 fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
1889 const double mvc_ratio =
1890 fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
1891
1892 *mv_ratio_accumulator +=
1893 pct * (mvr_ratio < stats->mvr_abs ? mvr_ratio : stats->mvr_abs);
1894 *mv_ratio_accumulator +=
1895 pct * (mvc_ratio < stats->mvc_abs ? mvc_ratio : stats->mvc_abs);
1896 }
1897 }
1898
1899 #define BASELINE_ERR_PER_MB 12500.0
calc_frame_boost(VP9_COMP * cpi,const FIRSTPASS_STATS * this_frame,double * sr_accumulator,double this_frame_mv_in_out,double max_boost)1900 static double calc_frame_boost(VP9_COMP *cpi, const FIRSTPASS_STATS *this_frame,
1901 double *sr_accumulator,
1902 double this_frame_mv_in_out, double max_boost) {
1903 double frame_boost;
1904 const double lq = vp9_convert_qindex_to_q(
1905 cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth);
1906 const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5);
1907 const double active_area = calculate_active_area(cpi, this_frame);
1908
1909 // Underlying boost factor is based on inter error ratio.
1910 frame_boost = (BASELINE_ERR_PER_MB * active_area) /
1911 DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator);
1912
1913 // Update the accumulator for second ref error difference.
1914 // This is intended to give an indication of how much the coded error is
1915 // increasing over time.
1916 *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error);
1917 *sr_accumulator = VPXMAX(0.0, *sr_accumulator);
1918
1919 // Small adjustment for cases where there is a zoom out
1920 if (this_frame_mv_in_out > 0.0)
1921 frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1922
1923 // Q correction and scalling
1924 frame_boost = frame_boost * boost_q_correction;
1925
1926 return VPXMIN(frame_boost, max_boost * boost_q_correction);
1927 }
1928
1929 #define KF_BASELINE_ERR_PER_MB 12500.0
calc_kf_frame_boost(VP9_COMP * cpi,const FIRSTPASS_STATS * this_frame,double * sr_accumulator,double this_frame_mv_in_out,double max_boost)1930 static double calc_kf_frame_boost(VP9_COMP *cpi,
1931 const FIRSTPASS_STATS *this_frame,
1932 double *sr_accumulator,
1933 double this_frame_mv_in_out,
1934 double max_boost) {
1935 double frame_boost;
1936 const double lq = vp9_convert_qindex_to_q(
1937 cpi->rc.avg_frame_qindex[INTER_FRAME], cpi->common.bit_depth);
1938 const double boost_q_correction = VPXMIN((0.50 + (lq * 0.015)), 2.00);
1939 const double active_area = calculate_active_area(cpi, this_frame);
1940
1941 // Underlying boost factor is based on inter error ratio.
1942 frame_boost = (KF_BASELINE_ERR_PER_MB * active_area) /
1943 DOUBLE_DIVIDE_CHECK(this_frame->coded_error + *sr_accumulator);
1944
1945 // Update the accumulator for second ref error difference.
1946 // This is intended to give an indication of how much the coded error is
1947 // increasing over time.
1948 *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error);
1949 *sr_accumulator = VPXMAX(0.0, *sr_accumulator);
1950
1951 // Small adjustment for cases where there is a zoom out
1952 if (this_frame_mv_in_out > 0.0)
1953 frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
1954
1955 // Q correction and scalling
1956 frame_boost = frame_boost * boost_q_correction;
1957
1958 return VPXMIN(frame_boost, max_boost * boost_q_correction);
1959 }
1960
calc_arf_boost(VP9_COMP * cpi,int offset,int f_frames,int b_frames,int * f_boost,int * b_boost)1961 static int calc_arf_boost(VP9_COMP *cpi, int offset, int f_frames, int b_frames,
1962 int *f_boost, int *b_boost) {
1963 TWO_PASS *const twopass = &cpi->twopass;
1964 int i;
1965 double boost_score = 0.0;
1966 double mv_ratio_accumulator = 0.0;
1967 double decay_accumulator = 1.0;
1968 double this_frame_mv_in_out = 0.0;
1969 double mv_in_out_accumulator = 0.0;
1970 double abs_mv_in_out_accumulator = 0.0;
1971 double sr_accumulator = 0.0;
1972 int arf_boost;
1973 int flash_detected = 0;
1974
1975 // Search forward from the proposed arf/next gf position.
1976 for (i = 0; i < f_frames; ++i) {
1977 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
1978 if (this_frame == NULL) break;
1979
1980 // Update the motion related elements to the boost calculation.
1981 accumulate_frame_motion_stats(
1982 this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
1983 &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
1984
1985 // We want to discount the flash frame itself and the recovery
1986 // frame that follows as both will have poor scores.
1987 flash_detected = detect_flash(twopass, i + offset) ||
1988 detect_flash(twopass, i + offset + 1);
1989
1990 // Accumulate the effect of prediction quality decay.
1991 if (!flash_detected) {
1992 decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
1993 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
1994 ? MIN_DECAY_FACTOR
1995 : decay_accumulator;
1996 }
1997
1998 sr_accumulator = 0.0;
1999 boost_score += decay_accumulator *
2000 calc_frame_boost(cpi, this_frame, &sr_accumulator,
2001 this_frame_mv_in_out, GF_MAX_BOOST);
2002 }
2003
2004 *f_boost = (int)boost_score;
2005
2006 // Reset for backward looking loop.
2007 boost_score = 0.0;
2008 mv_ratio_accumulator = 0.0;
2009 decay_accumulator = 1.0;
2010 this_frame_mv_in_out = 0.0;
2011 mv_in_out_accumulator = 0.0;
2012 abs_mv_in_out_accumulator = 0.0;
2013 sr_accumulator = 0.0;
2014
2015 // Search backward towards last gf position.
2016 for (i = -1; i >= -b_frames; --i) {
2017 const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
2018 if (this_frame == NULL) break;
2019
2020 // Update the motion related elements to the boost calculation.
2021 accumulate_frame_motion_stats(
2022 this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
2023 &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
2024
2025 // We want to discount the the flash frame itself and the recovery
2026 // frame that follows as both will have poor scores.
2027 flash_detected = detect_flash(twopass, i + offset) ||
2028 detect_flash(twopass, i + offset + 1);
2029
2030 // Cumulative effect of prediction quality decay.
2031 if (!flash_detected) {
2032 decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
2033 decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
2034 ? MIN_DECAY_FACTOR
2035 : decay_accumulator;
2036 }
2037
2038 sr_accumulator = 0.0;
2039 boost_score += decay_accumulator *
2040 calc_frame_boost(cpi, this_frame, &sr_accumulator,
2041 this_frame_mv_in_out, GF_MAX_BOOST);
2042 }
2043 *b_boost = (int)boost_score;
2044
2045 arf_boost = (*f_boost + *b_boost);
2046 if (arf_boost < ((b_frames + f_frames) * 20))
2047 arf_boost = ((b_frames + f_frames) * 20);
2048 arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST);
2049
2050 return arf_boost;
2051 }
2052
2053 // Calculate a section intra ratio used in setting max loop filter.
calculate_section_intra_ratio(const FIRSTPASS_STATS * begin,const FIRSTPASS_STATS * end,int section_length)2054 static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
2055 const FIRSTPASS_STATS *end,
2056 int section_length) {
2057 const FIRSTPASS_STATS *s = begin;
2058 double intra_error = 0.0;
2059 double coded_error = 0.0;
2060 int i = 0;
2061
2062 while (s < end && i < section_length) {
2063 intra_error += s->intra_error;
2064 coded_error += s->coded_error;
2065 ++s;
2066 ++i;
2067 }
2068
2069 return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
2070 }
2071
2072 // Calculate the total bits to allocate in this GF/ARF group.
calculate_total_gf_group_bits(VP9_COMP * cpi,double gf_group_err)2073 static int64_t calculate_total_gf_group_bits(VP9_COMP *cpi,
2074 double gf_group_err) {
2075 const RATE_CONTROL *const rc = &cpi->rc;
2076 const TWO_PASS *const twopass = &cpi->twopass;
2077 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
2078 int64_t total_group_bits;
2079
2080 // Calculate the bits to be allocated to the group as a whole.
2081 if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0.0)) {
2082 total_group_bits = (int64_t)(twopass->kf_group_bits *
2083 (gf_group_err / twopass->kf_group_error_left));
2084 } else {
2085 total_group_bits = 0;
2086 }
2087
2088 // Clamp odd edge cases.
2089 total_group_bits = (total_group_bits < 0)
2090 ? 0
2091 : (total_group_bits > twopass->kf_group_bits)
2092 ? twopass->kf_group_bits
2093 : total_group_bits;
2094
2095 // Clip based on user supplied data rate variability limit.
2096 if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
2097 total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
2098
2099 return total_group_bits;
2100 }
2101
2102 // Calculate the number bits extra to assign to boosted frames in a group.
calculate_boost_bits(int frame_count,int boost,int64_t total_group_bits)2103 static int calculate_boost_bits(int frame_count, int boost,
2104 int64_t total_group_bits) {
2105 int allocation_chunks;
2106
2107 // return 0 for invalid inputs (could arise e.g. through rounding errors)
2108 if (!boost || (total_group_bits <= 0) || (frame_count <= 0)) return 0;
2109
2110 allocation_chunks = (frame_count * 100) + boost;
2111
2112 // Prevent overflow.
2113 if (boost > 1023) {
2114 int divisor = boost >> 10;
2115 boost /= divisor;
2116 allocation_chunks /= divisor;
2117 }
2118
2119 // Calculate the number of extra bits for use in the boosted frame or frames.
2120 return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
2121 0);
2122 }
2123
2124 // Current limit on maximum number of active arfs in a GF/ARF group.
2125 #define MAX_ACTIVE_ARFS 2
2126 #define ARF_SLOT1 2
2127 #define ARF_SLOT2 3
2128 // This function indirects the choice of buffers for arfs.
2129 // At the moment the values are fixed but this may change as part of
2130 // the integration process with other codec features that swap buffers around.
get_arf_buffer_indices(unsigned char * arf_buffer_indices)2131 static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
2132 arf_buffer_indices[0] = ARF_SLOT1;
2133 arf_buffer_indices[1] = ARF_SLOT2;
2134 }
2135
allocate_gf_group_bits(VP9_COMP * cpi,int64_t gf_group_bits,int gf_arf_bits)2136 static void allocate_gf_group_bits(VP9_COMP *cpi, int64_t gf_group_bits,
2137 int gf_arf_bits) {
2138 RATE_CONTROL *const rc = &cpi->rc;
2139 TWO_PASS *const twopass = &cpi->twopass;
2140 GF_GROUP *const gf_group = &twopass->gf_group;
2141 FIRSTPASS_STATS frame_stats;
2142 int i;
2143 int frame_index = 1;
2144 int target_frame_size;
2145 int key_frame;
2146 const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
2147 int64_t total_group_bits = gf_group_bits;
2148 int mid_boost_bits = 0;
2149 int mid_frame_idx;
2150 unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
2151 int alt_frame_index = frame_index;
2152 int has_temporal_layers =
2153 is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1;
2154 int normal_frames;
2155 int normal_frame_bits;
2156 int last_frame_bits;
2157 int last_frame_reduction;
2158
2159 // Only encode alt reference frame in temporal base layer.
2160 if (has_temporal_layers) alt_frame_index = cpi->svc.number_temporal_layers;
2161
2162 key_frame =
2163 cpi->common.frame_type == KEY_FRAME || vp9_is_upper_layer_key_frame(cpi);
2164
2165 get_arf_buffer_indices(arf_buffer_indices);
2166
2167 // For key frames the frame target rate is already set and it
2168 // is also the golden frame.
2169 if (!key_frame) {
2170 if (rc->source_alt_ref_active) {
2171 gf_group->update_type[0] = OVERLAY_UPDATE;
2172 gf_group->rf_level[0] = INTER_NORMAL;
2173 gf_group->bit_allocation[0] = 0;
2174 } else {
2175 gf_group->update_type[0] = GF_UPDATE;
2176 gf_group->rf_level[0] = GF_ARF_STD;
2177 gf_group->bit_allocation[0] = gf_arf_bits;
2178 }
2179 gf_group->arf_update_idx[0] = arf_buffer_indices[0];
2180 gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
2181
2182 // Step over the golden frame / overlay frame
2183 if (EOF == input_stats(twopass, &frame_stats)) return;
2184 }
2185
2186 // Deduct the boost bits for arf (or gf if it is not a key frame)
2187 // from the group total.
2188 if (rc->source_alt_ref_pending || !key_frame) total_group_bits -= gf_arf_bits;
2189
2190 // Store the bits to spend on the ARF if there is one.
2191 if (rc->source_alt_ref_pending) {
2192 gf_group->update_type[alt_frame_index] = ARF_UPDATE;
2193 gf_group->rf_level[alt_frame_index] = GF_ARF_STD;
2194 gf_group->bit_allocation[alt_frame_index] = gf_arf_bits;
2195
2196 if (has_temporal_layers)
2197 gf_group->arf_src_offset[alt_frame_index] =
2198 (unsigned char)(rc->baseline_gf_interval -
2199 cpi->svc.number_temporal_layers);
2200 else
2201 gf_group->arf_src_offset[alt_frame_index] =
2202 (unsigned char)(rc->baseline_gf_interval - 1);
2203
2204 gf_group->arf_update_idx[alt_frame_index] = arf_buffer_indices[0];
2205 gf_group->arf_ref_idx[alt_frame_index] =
2206 arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
2207 rc->source_alt_ref_active];
2208 if (!has_temporal_layers) ++frame_index;
2209
2210 if (cpi->multi_arf_enabled) {
2211 // Set aside a slot for a level 1 arf.
2212 gf_group->update_type[frame_index] = ARF_UPDATE;
2213 gf_group->rf_level[frame_index] = GF_ARF_LOW;
2214 gf_group->arf_src_offset[frame_index] =
2215 (unsigned char)((rc->baseline_gf_interval >> 1) - 1);
2216 gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1];
2217 gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
2218 ++frame_index;
2219 }
2220 }
2221
2222 // Note index of the first normal inter frame int eh group (not gf kf arf)
2223 gf_group->first_inter_index = frame_index;
2224
2225 // Define middle frame
2226 mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
2227
2228 normal_frames = (rc->baseline_gf_interval - rc->source_alt_ref_pending);
2229
2230 // The last frame in the group is used less as a predictor so reduce
2231 // its allocation a little.
2232 if (normal_frames > 1) {
2233 normal_frame_bits = (int)(total_group_bits / normal_frames);
2234 last_frame_reduction = normal_frame_bits / 16;
2235 last_frame_bits = normal_frame_bits - last_frame_reduction;
2236 } else {
2237 normal_frame_bits = (int)total_group_bits;
2238 last_frame_bits = normal_frame_bits;
2239 last_frame_reduction = 0;
2240 }
2241
2242 // Allocate bits to the other frames in the group.
2243 for (i = 0; i < normal_frames; ++i) {
2244 int arf_idx = 0;
2245 if (EOF == input_stats(twopass, &frame_stats)) break;
2246
2247 if (has_temporal_layers && frame_index == alt_frame_index) {
2248 ++frame_index;
2249 }
2250
2251 target_frame_size = (i == (normal_frames - 1))
2252 ? last_frame_bits
2253 : (i == mid_frame_idx)
2254 ? normal_frame_bits + last_frame_reduction
2255 : normal_frame_bits;
2256
2257 if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
2258 mid_boost_bits += (target_frame_size >> 4);
2259 target_frame_size -= (target_frame_size >> 4);
2260
2261 if (frame_index <= mid_frame_idx) arf_idx = 1;
2262 }
2263 gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
2264 gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
2265
2266 target_frame_size =
2267 clamp(target_frame_size, 0, VPXMIN(max_bits, (int)total_group_bits));
2268
2269 gf_group->update_type[frame_index] = LF_UPDATE;
2270 gf_group->rf_level[frame_index] = INTER_NORMAL;
2271
2272 gf_group->bit_allocation[frame_index] = target_frame_size;
2273 ++frame_index;
2274 }
2275
2276 // Note:
2277 // We need to configure the frame at the end of the sequence + 1 that will be
2278 // the start frame for the next group. Otherwise prior to the call to
2279 // vp9_rc_get_second_pass_params() the data will be undefined.
2280 gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
2281 gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
2282
2283 if (rc->source_alt_ref_pending) {
2284 gf_group->update_type[frame_index] = OVERLAY_UPDATE;
2285 gf_group->rf_level[frame_index] = INTER_NORMAL;
2286
2287 // Final setup for second arf and its overlay.
2288 if (cpi->multi_arf_enabled) {
2289 gf_group->bit_allocation[2] =
2290 gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits;
2291 gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE;
2292 gf_group->bit_allocation[mid_frame_idx] = 0;
2293 }
2294 } else {
2295 gf_group->update_type[frame_index] = GF_UPDATE;
2296 gf_group->rf_level[frame_index] = GF_ARF_STD;
2297 }
2298
2299 // Note whether multi-arf was enabled this group for next time.
2300 cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled;
2301 }
2302
2303 // Adjusts the ARNF filter for a GF group.
adjust_group_arnr_filter(VP9_COMP * cpi,double section_noise,double section_inter,double section_motion)2304 static void adjust_group_arnr_filter(VP9_COMP *cpi, double section_noise,
2305 double section_inter,
2306 double section_motion) {
2307 TWO_PASS *const twopass = &cpi->twopass;
2308 double section_zeromv = section_inter - section_motion;
2309
2310 twopass->arnr_strength_adjustment = 0;
2311
2312 if ((section_zeromv < 0.10) || (section_noise <= (SECTION_NOISE_DEF * 0.75)))
2313 twopass->arnr_strength_adjustment -= 1;
2314 if (section_zeromv > 0.50) twopass->arnr_strength_adjustment += 1;
2315 }
2316
2317 // Analyse and define a gf/arf group.
2318 #define ARF_DECAY_BREAKOUT 0.10
define_gf_group(VP9_COMP * cpi,FIRSTPASS_STATS * this_frame)2319 static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
2320 VP9_COMMON *const cm = &cpi->common;
2321 RATE_CONTROL *const rc = &cpi->rc;
2322 VP9EncoderConfig *const oxcf = &cpi->oxcf;
2323 TWO_PASS *const twopass = &cpi->twopass;
2324 FIRSTPASS_STATS next_frame;
2325 const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
2326 int i;
2327
2328 double boost_score = 0.0;
2329 double old_boost_score = 0.0;
2330 double gf_group_err = 0.0;
2331 double gf_group_raw_error = 0.0;
2332 double gf_group_noise = 0.0;
2333 double gf_group_skip_pct = 0.0;
2334 double gf_group_inactive_zone_rows = 0.0;
2335 double gf_group_inter = 0.0;
2336 double gf_group_motion = 0.0;
2337 double gf_first_frame_err = 0.0;
2338 double mod_frame_err = 0.0;
2339
2340 double mv_ratio_accumulator = 0.0;
2341 double decay_accumulator = 1.0;
2342 double zero_motion_accumulator = 1.0;
2343 double loop_decay_rate = 1.00;
2344 double last_loop_decay_rate = 1.00;
2345
2346 double this_frame_mv_in_out = 0.0;
2347 double mv_in_out_accumulator = 0.0;
2348 double abs_mv_in_out_accumulator = 0.0;
2349 double mv_ratio_accumulator_thresh;
2350 double mv_in_out_thresh;
2351 double abs_mv_in_out_thresh;
2352 double sr_accumulator = 0.0;
2353 unsigned int allow_alt_ref = is_altref_enabled(cpi);
2354
2355 int f_boost = 0;
2356 int b_boost = 0;
2357 int flash_detected;
2358 int active_max_gf_interval;
2359 int active_min_gf_interval;
2360 int64_t gf_group_bits;
2361 int gf_arf_bits;
2362 const int is_key_frame = frame_is_intra_only(cm);
2363 const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
2364
2365 // Reset the GF group data structures unless this is a key
2366 // frame in which case it will already have been done.
2367 if (is_key_frame == 0) {
2368 vp9_zero(twopass->gf_group);
2369 }
2370
2371 vpx_clear_system_state();
2372 vp9_zero(next_frame);
2373
2374 // Load stats for the current frame.
2375 mod_frame_err = calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
2376
2377 // Note the error of the frame at the start of the group. This will be
2378 // the GF frame error if we code a normal gf.
2379 gf_first_frame_err = mod_frame_err;
2380
2381 // If this is a key frame or the overlay from a previous arf then
2382 // the error score / cost of this frame has already been accounted for.
2383 if (arf_active_or_kf) {
2384 gf_group_err -= gf_first_frame_err;
2385 gf_group_raw_error -= this_frame->coded_error;
2386 gf_group_noise -= this_frame->frame_noise_energy;
2387 gf_group_skip_pct -= this_frame->intra_skip_pct;
2388 gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows;
2389 gf_group_inter -= this_frame->pcnt_inter;
2390 gf_group_motion -= this_frame->pcnt_motion;
2391 }
2392
2393 // Motion breakout threshold for loop below depends on image size.
2394 mv_ratio_accumulator_thresh =
2395 (cpi->initial_height + cpi->initial_width) / 4.0;
2396 mv_in_out_thresh = (cpi->initial_height + cpi->initial_width) / 300.0;
2397 abs_mv_in_out_thresh = (cpi->initial_height + cpi->initial_width) / 200.0;
2398
2399 // Set a maximum and minimum interval for the GF group.
2400 // If the image appears almost completely static we can extend beyond this.
2401 {
2402 int int_max_q = (int)(vp9_convert_qindex_to_q(twopass->active_worst_quality,
2403 cpi->common.bit_depth));
2404 int int_lbq = (int)(vp9_convert_qindex_to_q(rc->last_boosted_qindex,
2405 cpi->common.bit_depth));
2406 active_min_gf_interval =
2407 rc->min_gf_interval + arf_active_or_kf + VPXMIN(2, int_max_q / 200);
2408 active_min_gf_interval =
2409 VPXMIN(active_min_gf_interval, rc->max_gf_interval + arf_active_or_kf);
2410
2411 if (cpi->multi_arf_allowed) {
2412 active_max_gf_interval = rc->max_gf_interval;
2413 } else {
2414 // The value chosen depends on the active Q range. At low Q we have
2415 // bits to spare and are better with a smaller interval and smaller boost.
2416 // At high Q when there are few bits to spare we are better with a longer
2417 // interval to spread the cost of the GF.
2418 active_max_gf_interval = 12 + arf_active_or_kf + VPXMIN(4, (int_lbq / 6));
2419
2420 // We have: active_min_gf_interval <=
2421 // rc->max_gf_interval + arf_active_or_kf.
2422 if (active_max_gf_interval < active_min_gf_interval) {
2423 active_max_gf_interval = active_min_gf_interval;
2424 } else {
2425 active_max_gf_interval = VPXMIN(active_max_gf_interval,
2426 rc->max_gf_interval + arf_active_or_kf);
2427 }
2428
2429 // Would the active max drop us out just before the near the next kf?
2430 if ((active_max_gf_interval <= rc->frames_to_key) &&
2431 (active_max_gf_interval >= (rc->frames_to_key - rc->min_gf_interval)))
2432 active_max_gf_interval = rc->frames_to_key / 2;
2433 }
2434 }
2435
2436 i = 0;
2437 while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
2438 ++i;
2439
2440 // Accumulate error score of frames in this gf group.
2441 mod_frame_err = calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
2442 gf_group_err += mod_frame_err;
2443 gf_group_raw_error += this_frame->coded_error;
2444 gf_group_noise += this_frame->frame_noise_energy;
2445 gf_group_skip_pct += this_frame->intra_skip_pct;
2446 gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
2447 gf_group_inter += this_frame->pcnt_inter;
2448 gf_group_motion += this_frame->pcnt_motion;
2449
2450 if (EOF == input_stats(twopass, &next_frame)) break;
2451
2452 // Test for the case where there is a brief flash but the prediction
2453 // quality back to an earlier frame is then restored.
2454 flash_detected = detect_flash(twopass, 0);
2455
2456 // Update the motion related elements to the boost calculation.
2457 accumulate_frame_motion_stats(
2458 &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator,
2459 &abs_mv_in_out_accumulator, &mv_ratio_accumulator);
2460
2461 // Accumulate the effect of prediction quality decay.
2462 if (!flash_detected) {
2463 last_loop_decay_rate = loop_decay_rate;
2464 loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
2465
2466 decay_accumulator = decay_accumulator * loop_decay_rate;
2467
2468 // Monitor for static sections.
2469 zero_motion_accumulator = VPXMIN(
2470 zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
2471
2472 // Break clause to detect very still sections after motion. For example,
2473 // a static image after a fade or other transition.
2474 if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
2475 last_loop_decay_rate)) {
2476 allow_alt_ref = 0;
2477 break;
2478 }
2479 }
2480
2481 // Calculate a boost number for this frame.
2482 sr_accumulator = 0.0;
2483 boost_score += decay_accumulator *
2484 calc_frame_boost(cpi, &next_frame, &sr_accumulator,
2485 this_frame_mv_in_out, GF_MAX_BOOST);
2486
2487 // Break out conditions.
2488 if (
2489 // Break at active_max_gf_interval unless almost totally static.
2490 ((i >= active_max_gf_interval) && (zero_motion_accumulator < 0.995)) ||
2491 (
2492 // Don't break out with a very short interval.
2493 (i >= active_min_gf_interval) &&
2494 // If possible dont break very close to a kf
2495 ((rc->frames_to_key - i) >= rc->min_gf_interval) &&
2496 (!flash_detected) &&
2497 ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
2498 (abs_mv_in_out_accumulator > abs_mv_in_out_thresh) ||
2499 (mv_in_out_accumulator < -mv_in_out_thresh) ||
2500 (decay_accumulator < ARF_DECAY_BREAKOUT)))) {
2501 boost_score = old_boost_score;
2502 break;
2503 }
2504
2505 *this_frame = next_frame;
2506 old_boost_score = boost_score;
2507 }
2508
2509 // Was the group length constrained by the requirement for a new KF?
2510 rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
2511
2512 // Should we use the alternate reference frame.
2513 if (allow_alt_ref && (i < cpi->oxcf.lag_in_frames) &&
2514 (i >= rc->min_gf_interval)) {
2515 // Calculate the boost for alt ref.
2516 rc->gfu_boost =
2517 calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost, &b_boost);
2518 rc->source_alt_ref_pending = 1;
2519
2520 // Test to see if multi arf is appropriate.
2521 cpi->multi_arf_enabled =
2522 (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
2523 (zero_motion_accumulator < 0.995))
2524 ? 1
2525 : 0;
2526 } else {
2527 rc->gfu_boost = VPXMAX((int)boost_score, MIN_ARF_GF_BOOST);
2528 rc->source_alt_ref_pending = 0;
2529 }
2530
2531 #ifdef AGGRESSIVE_VBR
2532 // Limit maximum boost based on interval length.
2533 rc->gfu_boost = VPXMIN((int)rc->gfu_boost, i * 140);
2534 #else
2535 rc->gfu_boost = VPXMIN((int)rc->gfu_boost, i * 200);
2536 #endif
2537
2538 // Set the interval until the next gf.
2539 rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending);
2540
2541 // Only encode alt reference frame in temporal base layer. So
2542 // baseline_gf_interval should be multiple of a temporal layer group
2543 // (typically the frame distance between two base layer frames)
2544 if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
2545 int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
2546 int new_gf_interval = (rc->baseline_gf_interval + count) & (~count);
2547 int j;
2548 for (j = 0; j < new_gf_interval - rc->baseline_gf_interval; ++j) {
2549 if (EOF == input_stats(twopass, this_frame)) break;
2550 gf_group_err +=
2551 calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
2552 gf_group_raw_error += this_frame->coded_error;
2553 gf_group_noise += this_frame->frame_noise_energy;
2554 gf_group_skip_pct += this_frame->intra_skip_pct;
2555 gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
2556 gf_group_inter += this_frame->pcnt_inter;
2557 gf_group_motion += this_frame->pcnt_motion;
2558 }
2559 rc->baseline_gf_interval = new_gf_interval;
2560 }
2561
2562 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
2563
2564 // Reset the file position.
2565 reset_fpf_position(twopass, start_pos);
2566
2567 // Calculate the bits to be allocated to the gf/arf group as a whole
2568 gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
2569
2570 // Calculate an estimate of the maxq needed for the group.
2571 // We are more aggressive about correcting for sections
2572 // where there could be significant overshoot than for easier
2573 // sections where we do not wish to risk creating an overshoot
2574 // of the allocated bit budget.
2575 if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) {
2576 const int vbr_group_bits_per_frame =
2577 (int)(gf_group_bits / rc->baseline_gf_interval);
2578 const double group_av_err = gf_group_raw_error / rc->baseline_gf_interval;
2579 const double group_av_noise = gf_group_noise / rc->baseline_gf_interval;
2580 const double group_av_skip_pct =
2581 gf_group_skip_pct / rc->baseline_gf_interval;
2582 const double group_av_inactive_zone =
2583 ((gf_group_inactive_zone_rows * 2) /
2584 (rc->baseline_gf_interval * (double)cm->mb_rows));
2585 int tmp_q = get_twopass_worst_quality(
2586 cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone),
2587 group_av_noise, vbr_group_bits_per_frame);
2588 twopass->active_worst_quality =
2589 (tmp_q + (twopass->active_worst_quality * 3)) >> 2;
2590 }
2591
2592 // Context Adjustment of ARNR filter strength
2593 if (rc->baseline_gf_interval > 1) {
2594 adjust_group_arnr_filter(cpi, (gf_group_noise / rc->baseline_gf_interval),
2595 (gf_group_inter / rc->baseline_gf_interval),
2596 (gf_group_motion / rc->baseline_gf_interval));
2597 } else {
2598 twopass->arnr_strength_adjustment = 0;
2599 }
2600
2601 // Calculate the extra bits to be used for boosted frame(s)
2602 gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval, rc->gfu_boost,
2603 gf_group_bits);
2604
2605 // Adjust KF group bits and error remaining.
2606 twopass->kf_group_error_left -= gf_group_err;
2607
2608 // Allocate bits to each of the frames in the GF group.
2609 allocate_gf_group_bits(cpi, gf_group_bits, gf_arf_bits);
2610
2611 // Reset the file position.
2612 reset_fpf_position(twopass, start_pos);
2613
2614 // Calculate a section intra ratio used in setting max loop filter.
2615 if (cpi->common.frame_type != KEY_FRAME) {
2616 twopass->section_intra_rating = calculate_section_intra_ratio(
2617 start_pos, twopass->stats_in_end, rc->baseline_gf_interval);
2618 }
2619
2620 if (oxcf->resize_mode == RESIZE_DYNAMIC) {
2621 // Default to starting GF groups at normal frame size.
2622 cpi->rc.next_frame_size_selector = UNSCALED;
2623 }
2624
2625 // Reset rolling actual and target bits counters for ARF groups.
2626 twopass->rolling_arf_group_target_bits = 0;
2627 twopass->rolling_arf_group_actual_bits = 0;
2628 }
2629
2630 // Threshold for use of the lagging second reference frame. High second ref
2631 // usage may point to a transient event like a flash or occlusion rather than
2632 // a real scene cut.
2633 #define SECOND_REF_USEAGE_THRESH 0.1
2634 // Minimum % intra coding observed in first pass (1.0 = 100%)
2635 #define MIN_INTRA_LEVEL 0.25
2636 // Minimum ratio between the % of intra coding and inter coding in the first
2637 // pass after discounting neutral blocks (discounting neutral blocks in this
2638 // way helps catch scene cuts in clips with very flat areas or letter box
2639 // format clips with image padding.
2640 #define INTRA_VS_INTER_THRESH 2.0
2641 // Hard threshold where the first pass chooses intra for almost all blocks.
2642 // In such a case even if the frame is not a scene cut coding a key frame
2643 // may be a good option.
2644 #define VERY_LOW_INTER_THRESH 0.05
2645 // Maximum threshold for the relative ratio of intra error score vs best
2646 // inter error score.
2647 #define KF_II_ERR_THRESHOLD 2.5
2648 // In real scene cuts there is almost always a sharp change in the intra
2649 // or inter error score.
2650 #define ERR_CHANGE_THRESHOLD 0.4
2651 // For real scene cuts we expect an improvment in the intra inter error
2652 // ratio in the next frame.
2653 #define II_IMPROVEMENT_THRESHOLD 3.5
2654 #define KF_II_MAX 128.0
2655 #define II_FACTOR 12.5
2656 // Test for very low intra complexity which could cause false key frames
2657 #define V_LOW_INTRA 0.5
2658
test_candidate_kf(TWO_PASS * twopass,const FIRSTPASS_STATS * last_frame,const FIRSTPASS_STATS * this_frame,const FIRSTPASS_STATS * next_frame)2659 static int test_candidate_kf(TWO_PASS *twopass,
2660 const FIRSTPASS_STATS *last_frame,
2661 const FIRSTPASS_STATS *this_frame,
2662 const FIRSTPASS_STATS *next_frame) {
2663 int is_viable_kf = 0;
2664 double pcnt_intra = 1.0 - this_frame->pcnt_inter;
2665 double modified_pcnt_inter =
2666 this_frame->pcnt_inter - this_frame->pcnt_neutral;
2667
2668 // Does the frame satisfy the primary criteria of a key frame?
2669 // See above for an explanation of the test criteria.
2670 // If so, then examine how well it predicts subsequent frames.
2671 if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
2672 (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
2673 ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
2674 ((pcnt_intra > MIN_INTRA_LEVEL) &&
2675 (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
2676 ((this_frame->intra_error /
2677 DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
2678 KF_II_ERR_THRESHOLD) &&
2679 ((fabs(last_frame->coded_error - this_frame->coded_error) /
2680 DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
2681 ERR_CHANGE_THRESHOLD) ||
2682 (fabs(last_frame->intra_error - this_frame->intra_error) /
2683 DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
2684 ERR_CHANGE_THRESHOLD) ||
2685 ((next_frame->intra_error /
2686 DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
2687 II_IMPROVEMENT_THRESHOLD))))) {
2688 int i;
2689 const FIRSTPASS_STATS *start_pos = twopass->stats_in;
2690 FIRSTPASS_STATS local_next_frame = *next_frame;
2691 double boost_score = 0.0;
2692 double old_boost_score = 0.0;
2693 double decay_accumulator = 1.0;
2694
2695 // Examine how well the key frame predicts subsequent frames.
2696 for (i = 0; i < 16; ++i) {
2697 double next_iiratio = (II_FACTOR * local_next_frame.intra_error /
2698 DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
2699
2700 if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX;
2701
2702 // Cumulative effect of decay in prediction quality.
2703 if (local_next_frame.pcnt_inter > 0.85)
2704 decay_accumulator *= local_next_frame.pcnt_inter;
2705 else
2706 decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
2707
2708 // Keep a running total.
2709 boost_score += (decay_accumulator * next_iiratio);
2710
2711 // Test various breakout clauses.
2712 if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) ||
2713 (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) <
2714 0.20) &&
2715 (next_iiratio < 3.0)) ||
2716 ((boost_score - old_boost_score) < 3.0) ||
2717 (local_next_frame.intra_error < V_LOW_INTRA)) {
2718 break;
2719 }
2720
2721 old_boost_score = boost_score;
2722
2723 // Get the next frame details
2724 if (EOF == input_stats(twopass, &local_next_frame)) break;
2725 }
2726
2727 // If there is tolerable prediction for at least the next 3 frames then
2728 // break out else discard this potential key frame and move on
2729 if (boost_score > 30.0 && (i > 3)) {
2730 is_viable_kf = 1;
2731 } else {
2732 // Reset the file position
2733 reset_fpf_position(twopass, start_pos);
2734
2735 is_viable_kf = 0;
2736 }
2737 }
2738
2739 return is_viable_kf;
2740 }
2741
2742 #define FRAMES_TO_CHECK_DECAY 8
2743 #define MIN_KF_TOT_BOOST 300
2744 #define KF_BOOST_SCAN_MAX_FRAMES 32
2745
2746 #ifdef AGGRESSIVE_VBR
2747 #define KF_MAX_FRAME_BOOST 80.0
2748 #define MAX_KF_TOT_BOOST 4800
2749 #else
2750 #define KF_MAX_FRAME_BOOST 96.0
2751 #define MAX_KF_TOT_BOOST 5400
2752 #endif
2753
find_next_key_frame(VP9_COMP * cpi,FIRSTPASS_STATS * this_frame)2754 static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
2755 int i, j;
2756 RATE_CONTROL *const rc = &cpi->rc;
2757 TWO_PASS *const twopass = &cpi->twopass;
2758 GF_GROUP *const gf_group = &twopass->gf_group;
2759 const VP9EncoderConfig *const oxcf = &cpi->oxcf;
2760 const FIRSTPASS_STATS first_frame = *this_frame;
2761 const FIRSTPASS_STATS *const start_position = twopass->stats_in;
2762 FIRSTPASS_STATS next_frame;
2763 FIRSTPASS_STATS last_frame;
2764 int kf_bits = 0;
2765 double decay_accumulator = 1.0;
2766 double zero_motion_accumulator = 1.0;
2767 double boost_score = 0.0;
2768 double kf_mod_err = 0.0;
2769 double kf_group_err = 0.0;
2770 double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
2771 double sr_accumulator = 0.0;
2772
2773 vp9_zero(next_frame);
2774
2775 cpi->common.frame_type = KEY_FRAME;
2776
2777 // Reset the GF group data structures.
2778 vp9_zero(*gf_group);
2779
2780 // Is this a forced key frame by interval.
2781 rc->this_key_frame_forced = rc->next_key_frame_forced;
2782
2783 // Clear the alt ref active flag and last group multi arf flags as they
2784 // can never be set for a key frame.
2785 rc->source_alt_ref_active = 0;
2786 cpi->multi_arf_last_grp_enabled = 0;
2787
2788 // KF is always a GF so clear frames till next gf counter.
2789 rc->frames_till_gf_update_due = 0;
2790
2791 rc->frames_to_key = 1;
2792
2793 twopass->kf_group_bits = 0; // Total bits available to kf group
2794 twopass->kf_group_error_left = 0.0; // Group modified error score.
2795
2796 kf_mod_err = calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
2797
2798 // Initialize the decay rates for the recent frames to check
2799 for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0;
2800
2801 // Find the next keyframe.
2802 i = 0;
2803 while (twopass->stats_in < twopass->stats_in_end &&
2804 rc->frames_to_key < cpi->oxcf.key_freq) {
2805 // Accumulate kf group error.
2806 kf_group_err += calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
2807
2808 // Load the next frame's stats.
2809 last_frame = *this_frame;
2810 input_stats(twopass, this_frame);
2811
2812 // Provided that we are not at the end of the file...
2813 if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
2814 double loop_decay_rate;
2815
2816 // Check for a scene cut.
2817 if (test_candidate_kf(twopass, &last_frame, this_frame,
2818 twopass->stats_in))
2819 break;
2820
2821 // How fast is the prediction quality decaying?
2822 loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
2823
2824 // We want to know something about the recent past... rather than
2825 // as used elsewhere where we are concerned with decay in prediction
2826 // quality since the last GF or KF.
2827 recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate;
2828 decay_accumulator = 1.0;
2829 for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
2830 decay_accumulator *= recent_loop_decay[j];
2831
2832 // Special check for transition or high motion followed by a
2833 // static scene.
2834 if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
2835 loop_decay_rate, decay_accumulator))
2836 break;
2837
2838 // Step on to the next frame.
2839 ++rc->frames_to_key;
2840
2841 // If we don't have a real key frame within the next two
2842 // key_freq intervals then break out of the loop.
2843 if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq) break;
2844 } else {
2845 ++rc->frames_to_key;
2846 }
2847 ++i;
2848 }
2849
2850 // If there is a max kf interval set by the user we must obey it.
2851 // We already breakout of the loop above at 2x max.
2852 // This code centers the extra kf if the actual natural interval
2853 // is between 1x and 2x.
2854 if (cpi->oxcf.auto_key && rc->frames_to_key > cpi->oxcf.key_freq) {
2855 FIRSTPASS_STATS tmp_frame = first_frame;
2856
2857 rc->frames_to_key /= 2;
2858
2859 // Reset to the start of the group.
2860 reset_fpf_position(twopass, start_position);
2861
2862 kf_group_err = 0.0;
2863
2864 // Rescan to get the correct error data for the forced kf group.
2865 for (i = 0; i < rc->frames_to_key; ++i) {
2866 kf_group_err +=
2867 calculate_norm_frame_score(cpi, twopass, oxcf, &tmp_frame);
2868 input_stats(twopass, &tmp_frame);
2869 }
2870 rc->next_key_frame_forced = 1;
2871 } else if (twopass->stats_in == twopass->stats_in_end ||
2872 rc->frames_to_key >= cpi->oxcf.key_freq) {
2873 rc->next_key_frame_forced = 1;
2874 } else {
2875 rc->next_key_frame_forced = 0;
2876 }
2877
2878 if (is_two_pass_svc(cpi) && cpi->svc.number_temporal_layers > 1) {
2879 int count = (1 << (cpi->svc.number_temporal_layers - 1)) - 1;
2880 int new_frame_to_key = (rc->frames_to_key + count) & (~count);
2881 int j;
2882 for (j = 0; j < new_frame_to_key - rc->frames_to_key; ++j) {
2883 if (EOF == input_stats(twopass, this_frame)) break;
2884 kf_group_err +=
2885 calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
2886 }
2887 rc->frames_to_key = new_frame_to_key;
2888 }
2889
2890 // Special case for the last key frame of the file.
2891 if (twopass->stats_in >= twopass->stats_in_end) {
2892 // Accumulate kf group error.
2893 kf_group_err += calculate_norm_frame_score(cpi, twopass, oxcf, this_frame);
2894 }
2895
2896 // Calculate the number of bits that should be assigned to the kf group.
2897 if (twopass->bits_left > 0 && twopass->normalized_score_left > 0.0) {
2898 // Maximum number of bits for a single normal frame (not key frame).
2899 const int max_bits = frame_max_bits(rc, &cpi->oxcf);
2900
2901 // Maximum number of bits allocated to the key frame group.
2902 int64_t max_grp_bits;
2903
2904 // Default allocation based on bits left and relative
2905 // complexity of the section.
2906 twopass->kf_group_bits = (int64_t)(
2907 twopass->bits_left * (kf_group_err / twopass->normalized_score_left));
2908
2909 // Clip based on maximum per frame rate defined by the user.
2910 max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
2911 if (twopass->kf_group_bits > max_grp_bits)
2912 twopass->kf_group_bits = max_grp_bits;
2913 } else {
2914 twopass->kf_group_bits = 0;
2915 }
2916 twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits);
2917
2918 // Reset the first pass file position.
2919 reset_fpf_position(twopass, start_position);
2920
2921 // Scan through the kf group collating various stats used to determine
2922 // how many bits to spend on it.
2923 boost_score = 0.0;
2924
2925 for (i = 0; i < (rc->frames_to_key - 1); ++i) {
2926 if (EOF == input_stats(twopass, &next_frame)) break;
2927
2928 if (i <= KF_BOOST_SCAN_MAX_FRAMES) {
2929 double frame_boost;
2930 double zm_factor;
2931
2932 // Monitor for static sections.
2933 zero_motion_accumulator = VPXMIN(
2934 zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
2935
2936 // Factor 0.75-1.25 based on how much of frame is static.
2937 zm_factor = (0.75 + (zero_motion_accumulator / 2.0));
2938
2939 // The second (lagging) ref error is not valid immediately after
2940 // a key frame because either the lag has not built up (in the case of
2941 // the first key frame or it points to a refernce before the new key
2942 // frame.
2943 if (i < 2) sr_accumulator = 0.0;
2944 frame_boost = calc_kf_frame_boost(cpi, &next_frame, &sr_accumulator, 0,
2945 KF_MAX_FRAME_BOOST * zm_factor);
2946
2947 boost_score += frame_boost;
2948 if (frame_boost < 25.00) break;
2949 } else {
2950 break;
2951 }
2952 }
2953
2954 reset_fpf_position(twopass, start_position);
2955
2956 // Store the zero motion percentage
2957 twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
2958
2959 // Calculate a section intra ratio used in setting max loop filter.
2960 twopass->section_intra_rating = calculate_section_intra_ratio(
2961 start_position, twopass->stats_in_end, rc->frames_to_key);
2962
2963 // Apply various clamps for min and max boost
2964 rc->kf_boost = VPXMAX((int)boost_score, (rc->frames_to_key * 3));
2965 rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_TOT_BOOST);
2966 rc->kf_boost = VPXMIN(rc->kf_boost, MAX_KF_TOT_BOOST);
2967
2968 // Work out how many bits to allocate for the key frame itself.
2969 kf_bits = calculate_boost_bits((rc->frames_to_key - 1), rc->kf_boost,
2970 twopass->kf_group_bits);
2971
2972 twopass->kf_group_bits -= kf_bits;
2973
2974 // Save the bits to spend on the key frame.
2975 gf_group->bit_allocation[0] = kf_bits;
2976 gf_group->update_type[0] = KF_UPDATE;
2977 gf_group->rf_level[0] = KF_STD;
2978
2979 // Note the total error score of the kf group minus the key frame itself.
2980 twopass->kf_group_error_left = (kf_group_err - kf_mod_err);
2981
2982 // Adjust the count of total modified error left.
2983 // The count of bits left is adjusted elsewhere based on real coded frame
2984 // sizes.
2985 twopass->normalized_score_left -= kf_group_err;
2986
2987 if (oxcf->resize_mode == RESIZE_DYNAMIC) {
2988 // Default to normal-sized frame on keyframes.
2989 cpi->rc.next_frame_size_selector = UNSCALED;
2990 }
2991 }
2992
2993 // Define the reference buffers that will be updated post encode.
configure_buffer_updates(VP9_COMP * cpi)2994 static void configure_buffer_updates(VP9_COMP *cpi) {
2995 TWO_PASS *const twopass = &cpi->twopass;
2996
2997 cpi->rc.is_src_frame_alt_ref = 0;
2998 switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
2999 case KF_UPDATE:
3000 cpi->refresh_last_frame = 1;
3001 cpi->refresh_golden_frame = 1;
3002 cpi->refresh_alt_ref_frame = 1;
3003 break;
3004 case LF_UPDATE:
3005 cpi->refresh_last_frame = 1;
3006 cpi->refresh_golden_frame = 0;
3007 cpi->refresh_alt_ref_frame = 0;
3008 break;
3009 case GF_UPDATE:
3010 cpi->refresh_last_frame = 1;
3011 cpi->refresh_golden_frame = 1;
3012 cpi->refresh_alt_ref_frame = 0;
3013 break;
3014 case OVERLAY_UPDATE:
3015 cpi->refresh_last_frame = 0;
3016 cpi->refresh_golden_frame = 1;
3017 cpi->refresh_alt_ref_frame = 0;
3018 cpi->rc.is_src_frame_alt_ref = 1;
3019 break;
3020 case ARF_UPDATE:
3021 cpi->refresh_last_frame = 0;
3022 cpi->refresh_golden_frame = 0;
3023 cpi->refresh_alt_ref_frame = 1;
3024 break;
3025 default: assert(0); break;
3026 }
3027 if (is_two_pass_svc(cpi)) {
3028 if (cpi->svc.temporal_layer_id > 0) {
3029 cpi->refresh_last_frame = 0;
3030 cpi->refresh_golden_frame = 0;
3031 }
3032 if (cpi->svc.layer_context[cpi->svc.spatial_layer_id].gold_ref_idx < 0)
3033 cpi->refresh_golden_frame = 0;
3034 if (cpi->alt_ref_source == NULL) cpi->refresh_alt_ref_frame = 0;
3035 }
3036 }
3037
is_skippable_frame(const VP9_COMP * cpi)3038 static int is_skippable_frame(const VP9_COMP *cpi) {
3039 // If the current frame does not have non-zero motion vector detected in the
3040 // first pass, and so do its previous and forward frames, then this frame
3041 // can be skipped for partition check, and the partition size is assigned
3042 // according to the variance
3043 const SVC *const svc = &cpi->svc;
3044 const TWO_PASS *const twopass =
3045 is_two_pass_svc(cpi) ? &svc->layer_context[svc->spatial_layer_id].twopass
3046 : &cpi->twopass;
3047
3048 return (!frame_is_intra_only(&cpi->common) &&
3049 twopass->stats_in - 2 > twopass->stats_in_start &&
3050 twopass->stats_in < twopass->stats_in_end &&
3051 (twopass->stats_in - 1)->pcnt_inter -
3052 (twopass->stats_in - 1)->pcnt_motion ==
3053 1 &&
3054 (twopass->stats_in - 2)->pcnt_inter -
3055 (twopass->stats_in - 2)->pcnt_motion ==
3056 1 &&
3057 twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
3058 }
3059
vp9_rc_get_second_pass_params(VP9_COMP * cpi)3060 void vp9_rc_get_second_pass_params(VP9_COMP *cpi) {
3061 VP9_COMMON *const cm = &cpi->common;
3062 RATE_CONTROL *const rc = &cpi->rc;
3063 TWO_PASS *const twopass = &cpi->twopass;
3064 GF_GROUP *const gf_group = &twopass->gf_group;
3065 FIRSTPASS_STATS this_frame;
3066
3067 int target_rate;
3068 LAYER_CONTEXT *const lc =
3069 is_two_pass_svc(cpi) ? &cpi->svc.layer_context[cpi->svc.spatial_layer_id]
3070 : 0;
3071
3072 if (!twopass->stats_in) return;
3073
3074 // If this is an arf frame then we dont want to read the stats file or
3075 // advance the input pointer as we already have what we need.
3076 if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
3077 int target_rate;
3078 configure_buffer_updates(cpi);
3079 target_rate = gf_group->bit_allocation[gf_group->index];
3080 target_rate = vp9_rc_clamp_pframe_target_size(cpi, target_rate);
3081 rc->base_frame_target = target_rate;
3082
3083 cm->frame_type = INTER_FRAME;
3084
3085 if (lc != NULL) {
3086 if (cpi->svc.spatial_layer_id == 0) {
3087 lc->is_key_frame = 0;
3088 } else {
3089 lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
3090
3091 if (lc->is_key_frame) cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
3092 }
3093 }
3094
3095 // Do the firstpass stats indicate that this frame is skippable for the
3096 // partition search?
3097 if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 &&
3098 (!cpi->use_svc || is_two_pass_svc(cpi))) {
3099 cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
3100 }
3101
3102 return;
3103 }
3104
3105 vpx_clear_system_state();
3106
3107 if (cpi->oxcf.rc_mode == VPX_Q) {
3108 twopass->active_worst_quality = cpi->oxcf.cq_level;
3109 } else if (cm->current_video_frame == 0 ||
3110 (lc != NULL && lc->current_video_frame_in_layer == 0)) {
3111 const int frames_left =
3112 (int)(twopass->total_stats.count -
3113 ((lc != NULL) ? lc->current_video_frame_in_layer
3114 : cm->current_video_frame));
3115 // Special case code for first frame.
3116 const int section_target_bandwidth =
3117 (int)(twopass->bits_left / frames_left);
3118 const double section_length = twopass->total_left_stats.count;
3119 const double section_error =
3120 twopass->total_left_stats.coded_error / section_length;
3121 const double section_intra_skip =
3122 twopass->total_left_stats.intra_skip_pct / section_length;
3123 const double section_inactive_zone =
3124 (twopass->total_left_stats.inactive_zone_rows * 2) /
3125 ((double)cm->mb_rows * section_length);
3126 const double section_noise =
3127 twopass->total_left_stats.frame_noise_energy / section_length;
3128 int tmp_q;
3129
3130 tmp_q = get_twopass_worst_quality(
3131 cpi, section_error, section_intra_skip + section_inactive_zone,
3132 section_noise, section_target_bandwidth);
3133
3134 twopass->active_worst_quality = tmp_q;
3135 twopass->baseline_active_worst_quality = tmp_q;
3136 rc->ni_av_qi = tmp_q;
3137 rc->last_q[INTER_FRAME] = tmp_q;
3138 rc->avg_q = vp9_convert_qindex_to_q(tmp_q, cm->bit_depth);
3139 rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
3140 rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
3141 rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
3142 }
3143 vp9_zero(this_frame);
3144 if (EOF == input_stats(twopass, &this_frame)) return;
3145
3146 // Set the frame content type flag.
3147 if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
3148 twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
3149 else
3150 twopass->fr_content_type = FC_NORMAL;
3151
3152 // Keyframe and section processing.
3153 if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
3154 FIRSTPASS_STATS this_frame_copy;
3155 this_frame_copy = this_frame;
3156 // Define next KF group and assign bits to it.
3157 find_next_key_frame(cpi, &this_frame);
3158 this_frame = this_frame_copy;
3159 } else {
3160 cm->frame_type = INTER_FRAME;
3161 }
3162
3163 if (lc != NULL) {
3164 if (cpi->svc.spatial_layer_id == 0) {
3165 lc->is_key_frame = (cm->frame_type == KEY_FRAME);
3166 if (lc->is_key_frame) {
3167 cpi->ref_frame_flags &=
3168 (~VP9_LAST_FLAG & ~VP9_GOLD_FLAG & ~VP9_ALT_FLAG);
3169 lc->frames_from_key_frame = 0;
3170 // Encode an intra only empty frame since we have a key frame.
3171 cpi->svc.encode_intra_empty_frame = 1;
3172 }
3173 } else {
3174 cm->frame_type = INTER_FRAME;
3175 lc->is_key_frame = cpi->svc.layer_context[0].is_key_frame;
3176
3177 if (lc->is_key_frame) {
3178 cpi->ref_frame_flags &= (~VP9_LAST_FLAG);
3179 lc->frames_from_key_frame = 0;
3180 }
3181 }
3182 }
3183
3184 // Define a new GF/ARF group. (Should always enter here for key frames).
3185 if (rc->frames_till_gf_update_due == 0) {
3186 define_gf_group(cpi, &this_frame);
3187
3188 rc->frames_till_gf_update_due = rc->baseline_gf_interval;
3189 if (lc != NULL) cpi->refresh_golden_frame = 1;
3190
3191 #if ARF_STATS_OUTPUT
3192 {
3193 FILE *fpfile;
3194 fpfile = fopen("arf.stt", "a");
3195 ++arf_count;
3196 fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n", cm->current_video_frame,
3197 rc->frames_till_gf_update_due, rc->kf_boost, arf_count,
3198 rc->gfu_boost);
3199
3200 fclose(fpfile);
3201 }
3202 #endif
3203 }
3204
3205 configure_buffer_updates(cpi);
3206
3207 // Do the firstpass stats indicate that this frame is skippable for the
3208 // partition search?
3209 if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2 &&
3210 (!cpi->use_svc || is_two_pass_svc(cpi))) {
3211 cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
3212 }
3213
3214 target_rate = gf_group->bit_allocation[gf_group->index];
3215 rc->base_frame_target = target_rate;
3216
3217 // The multiplication by 256 reverses a scaling factor of (>> 8)
3218 // applied when combining MB error values for the frame.
3219 twopass->mb_av_energy = log((this_frame.intra_error * 256.0) + 1.0);
3220 twopass->mb_smooth_pct = this_frame.intra_smooth_pct;
3221
3222 // Update the total stats remaining structure.
3223 subtract_stats(&twopass->total_left_stats, &this_frame);
3224 }
3225
3226 #define MINQ_ADJ_LIMIT 48
3227 #define MINQ_ADJ_LIMIT_CQ 20
3228 #define HIGH_UNDERSHOOT_RATIO 2
vp9_twopass_postencode_update(VP9_COMP * cpi)3229 void vp9_twopass_postencode_update(VP9_COMP *cpi) {
3230 TWO_PASS *const twopass = &cpi->twopass;
3231 RATE_CONTROL *const rc = &cpi->rc;
3232 VP9_COMMON *const cm = &cpi->common;
3233 const int bits_used = rc->base_frame_target;
3234
3235 // VBR correction is done through rc->vbr_bits_off_target. Based on the
3236 // sign of this value, a limited % adjustment is made to the target rate
3237 // of subsequent frames, to try and push it back towards 0. This method
3238 // is designed to prevent extreme behaviour at the end of a clip
3239 // or group of frames.
3240 rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
3241 twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0);
3242
3243 // Target vs actual bits for this arf group.
3244 twopass->rolling_arf_group_target_bits += rc->this_frame_target;
3245 twopass->rolling_arf_group_actual_bits += rc->projected_frame_size;
3246
3247 // Calculate the pct rc error.
3248 if (rc->total_actual_bits) {
3249 rc->rate_error_estimate =
3250 (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
3251 rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
3252 } else {
3253 rc->rate_error_estimate = 0;
3254 }
3255
3256 if (cpi->common.frame_type != KEY_FRAME &&
3257 !vp9_is_upper_layer_key_frame(cpi)) {
3258 twopass->kf_group_bits -= bits_used;
3259 twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
3260 }
3261 twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0);
3262
3263 // Increment the gf group index ready for the next frame.
3264 ++twopass->gf_group.index;
3265
3266 // If the rate control is drifting consider adjustment to min or maxq.
3267 if ((cpi->oxcf.rc_mode != VPX_Q) && !cpi->rc.is_src_frame_alt_ref) {
3268 const int maxq_adj_limit =
3269 rc->worst_quality - twopass->active_worst_quality;
3270 const int minq_adj_limit =
3271 (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
3272 int aq_extend_min = 0;
3273 int aq_extend_max = 0;
3274
3275 // Extend min or Max Q range to account for imbalance from the base
3276 // value when using AQ.
3277 if (cpi->oxcf.aq_mode != NO_AQ) {
3278 if (cm->seg.aq_av_offset < 0) {
3279 // The balance of the AQ map tends towarda lowering the average Q.
3280 aq_extend_min = 0;
3281 aq_extend_max = VPXMIN(maxq_adj_limit, -cm->seg.aq_av_offset);
3282 } else {
3283 // The balance of the AQ map tends towards raising the average Q.
3284 aq_extend_min = VPXMIN(minq_adj_limit, cm->seg.aq_av_offset);
3285 aq_extend_max = 0;
3286 }
3287 }
3288
3289 // Undershoot.
3290 if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
3291 --twopass->extend_maxq;
3292 if (rc->rolling_target_bits >= rc->rolling_actual_bits)
3293 ++twopass->extend_minq;
3294 // Overshoot.
3295 } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
3296 --twopass->extend_minq;
3297 if (rc->rolling_target_bits < rc->rolling_actual_bits)
3298 ++twopass->extend_maxq;
3299 } else {
3300 // Adjustment for extreme local overshoot.
3301 if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
3302 rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
3303 ++twopass->extend_maxq;
3304
3305 // Unwind undershoot or overshoot adjustment.
3306 if (rc->rolling_target_bits < rc->rolling_actual_bits)
3307 --twopass->extend_minq;
3308 else if (rc->rolling_target_bits > rc->rolling_actual_bits)
3309 --twopass->extend_maxq;
3310 }
3311
3312 twopass->extend_minq =
3313 clamp(twopass->extend_minq, aq_extend_min, minq_adj_limit);
3314 twopass->extend_maxq =
3315 clamp(twopass->extend_maxq, aq_extend_max, maxq_adj_limit);
3316
3317 // If there is a big and undexpected undershoot then feed the extra
3318 // bits back in quickly. One situation where this may happen is if a
3319 // frame is unexpectedly almost perfectly predicted by the ARF or GF
3320 // but not very well predcited by the previous frame.
3321 if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
3322 int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
3323 if (rc->projected_frame_size < fast_extra_thresh) {
3324 rc->vbr_bits_off_target_fast +=
3325 fast_extra_thresh - rc->projected_frame_size;
3326 rc->vbr_bits_off_target_fast =
3327 VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
3328
3329 // Fast adaptation of minQ if necessary to use up the extra bits.
3330 if (rc->avg_frame_bandwidth) {
3331 twopass->extend_minq_fast =
3332 (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
3333 }
3334 twopass->extend_minq_fast = VPXMIN(
3335 twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
3336 } else if (rc->vbr_bits_off_target_fast) {
3337 twopass->extend_minq_fast = VPXMIN(
3338 twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
3339 } else {
3340 twopass->extend_minq_fast = 0;
3341 }
3342 }
3343 }
3344 }
3345