1
2 /* -----------------------------------------------------------------------------------------------------------
3 Software License for The Fraunhofer FDK AAC Codec Library for Android
4
5 � Copyright 1995 - 2013 Fraunhofer-Gesellschaft zur F�rderung der angewandten Forschung e.V.
6 All rights reserved.
7
8 1. INTRODUCTION
9 The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software that implements
10 the MPEG Advanced Audio Coding ("AAC") encoding and decoding scheme for digital audio.
11 This FDK AAC Codec software is intended to be used on a wide variety of Android devices.
12
13 AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient general perceptual
14 audio codecs. AAC-ELD is considered the best-performing full-bandwidth communications codec by
15 independent studies and is widely deployed. AAC has been standardized by ISO and IEC as part
16 of the MPEG specifications.
17
18 Patent licenses for necessary patent claims for the FDK AAC Codec (including those of Fraunhofer)
19 may be obtained through Via Licensing (www.vialicensing.com) or through the respective patent owners
20 individually for the purpose of encoding or decoding bit streams in products that are compliant with
21 the ISO/IEC MPEG audio standards. Please note that most manufacturers of Android devices already license
22 these patent claims through Via Licensing or directly from the patent owners, and therefore FDK AAC Codec
23 software may already be covered under those patent licenses when it is used for those licensed purposes only.
24
25 Commercially-licensed AAC software libraries, including floating-point versions with enhanced sound quality,
26 are also available from Fraunhofer. Users are encouraged to check the Fraunhofer website for additional
27 applications information and documentation.
28
29 2. COPYRIGHT LICENSE
30
31 Redistribution and use in source and binary forms, with or without modification, are permitted without
32 payment of copyright license fees provided that you satisfy the following conditions:
33
34 You must retain the complete text of this software license in redistributions of the FDK AAC Codec or
35 your modifications thereto in source code form.
36
37 You must retain the complete text of this software license in the documentation and/or other materials
38 provided with redistributions of the FDK AAC Codec or your modifications thereto in binary form.
39 You must make available free of charge copies of the complete source code of the FDK AAC Codec and your
40 modifications thereto to recipients of copies in binary form.
41
42 The name of Fraunhofer may not be used to endorse or promote products derived from this library without
43 prior written permission.
44
45 You may not charge copyright license fees for anyone to use, copy or distribute the FDK AAC Codec
46 software or your modifications thereto.
47
48 Your modified versions of the FDK AAC Codec must carry prominent notices stating that you changed the software
49 and the date of any change. For modified versions of the FDK AAC Codec, the term
50 "Fraunhofer FDK AAC Codec Library for Android" must be replaced by the term
51 "Third-Party Modified Version of the Fraunhofer FDK AAC Codec Library for Android."
52
53 3. NO PATENT LICENSE
54
55 NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without limitation the patents of Fraunhofer,
56 ARE GRANTED BY THIS SOFTWARE LICENSE. Fraunhofer provides no warranty of patent non-infringement with
57 respect to this software.
58
59 You may use this FDK AAC Codec software or modifications thereto only for purposes that are authorized
60 by appropriate patent licenses.
61
62 4. DISCLAIMER
63
64 This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright holders and contributors
65 "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, including but not limited to the implied warranties
66 of merchantability and fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
67 CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, or consequential damages,
68 including but not limited to procurement of substitute goods or services; loss of use, data, or profits,
69 or business interruption, however caused and on any theory of liability, whether in contract, strict
70 liability, or tort (including negligence), arising in any way out of the use of this software, even if
71 advised of the possibility of such damage.
72
73 5. CONTACT INFORMATION
74
75 Fraunhofer Institute for Integrated Circuits IIS
76 Attention: Audio and Multimedia Departments - FDK AAC LL
77 Am Wolfsmantel 33
78 91058 Erlangen, Germany
79
80 www.iis.fraunhofer.de/amm
81 amm-info@iis.fraunhofer.de
82 ----------------------------------------------------------------------------------------------------------- */
83
84 #include "invf_est.h"
85 #include "sbr_misc.h"
86
87 #include "genericStds.h"
88
89 #define MAX_NUM_REGIONS 10
90 #define SCALE_FAC_QUO 512.0f
91 #define SCALE_FAC_NRG 256.0f
92
93 #ifndef min
94 #define min(a,b) ( a < b ? a:b)
95 #endif
96
97 #ifndef max
98 #define max(a,b) ( a > b ? a:b)
99 #endif
100
101 static const FIXP_DBL quantStepsSbr[4] = { 0x00400000, 0x02800000, 0x03800000, 0x04c00000 } ; /* table scaled with SCALE_FAC_QUO */
102 static const FIXP_DBL quantStepsOrig[4] = { 0x00000000, 0x00c00000, 0x01c00000, 0x02800000 } ; /* table scaled with SCALE_FAC_QUO */
103 static const FIXP_DBL nrgBorders[4] = { 0x0c800000, 0x0f000000, 0x11800000, 0x14000000 } ; /* table scaled with SCALE_FAC_NRG */
104
105 static const DETECTOR_PARAMETERS detectorParamsAAC = {
106 quantStepsSbr,
107 quantStepsOrig,
108 nrgBorders,
109 4, /* Number of borders SBR. */
110 4, /* Number of borders orig. */
111 4, /* Number of borders Nrg. */
112 { /* Region space. */
113 {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */
114 {INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF, INVF_OFF}, /* | */
115 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */
116 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
117 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */
118 },/*------------------------ regionOrig ---------------------------------*/
119 { /* Region space transient. */
120 {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
121 {INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
122 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */
123 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
124 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */
125 },/*------------------------ regionOrig ---------------------------------*/
126 {-4, -3, -2, -1, 0} /* Reduction factor of the inverse filtering for low energies.*/
127 };
128
129 static const FIXP_DBL hysteresis = 0x00400000 ; /* Delta value for hysteresis. scaled with SCALE_FAC_QUO */
130
131 /*
132 * AAC+SBR PARAMETERS for Speech
133 *********************************/
134 static const DETECTOR_PARAMETERS detectorParamsAACSpeech = {
135 quantStepsSbr,
136 quantStepsOrig,
137 nrgBorders,
138 4, /* Number of borders SBR. */
139 4, /* Number of borders orig. */
140 4, /* Number of borders Nrg. */
141 { /* Region space. */
142 {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
143 {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
144 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */
145 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
146 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */
147 },/*------------------------ regionOrig ---------------------------------*/
148 { /* Region space transient. */
149 {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
150 {INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_LOW_LEVEL, INVF_OFF, INVF_OFF}, /* | */
151 {INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* regionSbr */
152 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF}, /* | */
153 {INVF_HIGH_LEVEL, INVF_HIGH_LEVEL, INVF_MID_LEVEL, INVF_OFF, INVF_OFF} /* | */
154 },/*------------------------ regionOrig ---------------------------------*/
155 {-4, -3, -2, -1, 0} /* Reduction factor of the inverse filtering for low energies.*/
156 };
157
158 /*
159 * Smoothing filters.
160 ************************/
161 typedef const FIXP_DBL FIR_FILTER[5];
162
163 static const FIR_FILTER fir_0 = { 0x7fffffff, 0x00000000, 0x00000000, 0x00000000, 0x00000000 } ;
164 static const FIR_FILTER fir_1 = { 0x2aaaaa80, 0x555554ff, 0x00000000, 0x00000000, 0x00000000 } ;
165 static const FIR_FILTER fir_2 = { 0x10000000, 0x30000000, 0x40000000, 0x00000000, 0x00000000 } ;
166 static const FIR_FILTER fir_3 = { 0x077f80e8, 0x199999a0, 0x2bb3b240, 0x33333340, 0x00000000 } ;
167 static const FIR_FILTER fir_4 = { 0x04130598, 0x0ebdb000, 0x1becfa60, 0x2697a4c0, 0x2aaaaa80 } ;
168
169
170 static const FIR_FILTER *const fir_table[5] = {
171 &fir_0,
172 &fir_1,
173 &fir_2,
174 &fir_3,
175 &fir_4
176 };
177
178 /**************************************************************************/
179 /*!
180 \brief Calculates the values used for the detector.
181
182
183 \return none
184
185 */
186 /**************************************************************************/
187 static void
calculateDetectorValues(FIXP_DBL ** quotaMatrixOrig,SCHAR * indexVector,FIXP_DBL * nrgVector,DETECTOR_VALUES * detectorValues,INT startChannel,INT stopChannel,INT startIndex,INT stopIndex,INT numberOfStrongest)188 calculateDetectorValues(FIXP_DBL **quotaMatrixOrig, /*!< Matrix holding the tonality values of the original. */
189 SCHAR *indexVector, /*!< Index vector to obtain the patched data. */
190 FIXP_DBL *nrgVector, /*!< Energy vector. */
191 DETECTOR_VALUES *detectorValues, /*!< pointer to DETECTOR_VALUES struct. */
192 INT startChannel, /*!< Start channel. */
193 INT stopChannel, /*!< Stop channel. */
194 INT startIndex, /*!< Start index. */
195 INT stopIndex, /*!< Stop index. */
196 INT numberOfStrongest /*!< The number of sorted tonal components to be considered. */
197 )
198 {
199 INT i,temp, j;
200
201 const FIXP_DBL* filter = *fir_table[INVF_SMOOTHING_LENGTH];
202 FIXP_DBL origQuotaMeanStrongest, sbrQuotaMeanStrongest;
203 FIXP_DBL origQuota, sbrQuota;
204 FIXP_DBL invIndex, invChannel, invTemp;
205 FIXP_DBL quotaVecOrig[64], quotaVecSbr[64];
206
207 FDKmemclear(quotaVecOrig,64*sizeof(FIXP_DBL));
208 FDKmemclear(quotaVecSbr,64*sizeof(FIXP_DBL));
209
210 invIndex = GetInvInt(stopIndex-startIndex);
211 invChannel = GetInvInt(stopChannel-startChannel);
212
213 /*
214 Calculate the mean value, over the current time segment, for the original, the HFR
215 and the difference, over all channels in the current frequency range.
216 NOTE: the averaging is done on the values quota/(1 - quota + RELAXATION).
217 */
218
219 /* The original, the sbr signal and the total energy */
220 detectorValues->avgNrg = FL2FXCONST_DBL(0.0f);
221 for(j=startIndex; j<stopIndex; j++) {
222 for(i=startChannel; i<stopChannel; i++) {
223 quotaVecOrig[i] += fMult(quotaMatrixOrig[j][i], invIndex);
224
225 if(indexVector[i] != -1)
226 quotaVecSbr[i] += fMult(quotaMatrixOrig[j][indexVector[i]], invIndex);
227 }
228 detectorValues->avgNrg += fMult(nrgVector[j], invIndex);
229 }
230
231 /*
232 Calculate the mean value, over the current frequency range, for the original, the HFR
233 and the difference. Also calculate the same mean values for the three vectors, but only
234 includeing the x strongest copmponents.
235 */
236
237 origQuota = FL2FXCONST_DBL(0.0f);
238 sbrQuota = FL2FXCONST_DBL(0.0f);
239 for(i=startChannel; i<stopChannel; i++) {
240 origQuota += fMultDiv2(quotaVecOrig[i], invChannel);
241 sbrQuota += fMultDiv2(quotaVecSbr[i], invChannel);
242 }
243
244 /*
245 Calculate the mean value for the x strongest components
246 */
247 FDKsbrEnc_Shellsort_fract(quotaVecOrig+startChannel,stopChannel-startChannel);
248 FDKsbrEnc_Shellsort_fract(quotaVecSbr+startChannel,stopChannel-startChannel);
249
250 origQuotaMeanStrongest = FL2FXCONST_DBL(0.0f);
251 sbrQuotaMeanStrongest = FL2FXCONST_DBL(0.0f);
252
253 temp = min(stopChannel - startChannel, numberOfStrongest);
254 invTemp = GetInvInt(temp);
255
256 for(i=0; i<temp; i++) {
257 origQuotaMeanStrongest += fMultDiv2(quotaVecOrig[i + stopChannel - temp], invTemp);
258 sbrQuotaMeanStrongest += fMultDiv2(quotaVecSbr[i + stopChannel - temp], invTemp);
259 }
260
261 /*
262 The value for the strongest component
263 */
264 detectorValues->origQuotaMax = quotaVecOrig[stopChannel - 1];
265 detectorValues->sbrQuotaMax = quotaVecSbr[stopChannel - 1];
266
267 /*
268 Buffer values
269 */
270 FDKmemmove(detectorValues->origQuotaMean, detectorValues->origQuotaMean + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL));
271 FDKmemmove(detectorValues->sbrQuotaMean, detectorValues->sbrQuotaMean + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL));
272 FDKmemmove(detectorValues->origQuotaMeanStrongest, detectorValues->origQuotaMeanStrongest + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL));
273 FDKmemmove(detectorValues->sbrQuotaMeanStrongest, detectorValues->sbrQuotaMeanStrongest + 1, INVF_SMOOTHING_LENGTH*sizeof(FIXP_DBL));
274
275 detectorValues->origQuotaMean[INVF_SMOOTHING_LENGTH] = origQuota<<1;
276 detectorValues->sbrQuotaMean[INVF_SMOOTHING_LENGTH] = sbrQuota<<1;
277 detectorValues->origQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] = origQuotaMeanStrongest<<1;
278 detectorValues->sbrQuotaMeanStrongest[INVF_SMOOTHING_LENGTH] = sbrQuotaMeanStrongest<<1;
279
280 /*
281 Filter values
282 */
283 detectorValues->origQuotaMeanFilt = FL2FXCONST_DBL(0.0f);
284 detectorValues->sbrQuotaMeanFilt = FL2FXCONST_DBL(0.0f);
285 detectorValues->origQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f);
286 detectorValues->sbrQuotaMeanStrongestFilt = FL2FXCONST_DBL(0.0f);
287
288 for(i=0;i<INVF_SMOOTHING_LENGTH+1;i++) {
289 detectorValues->origQuotaMeanFilt += fMult(detectorValues->origQuotaMean[i], filter[i]);
290 detectorValues->sbrQuotaMeanFilt += fMult(detectorValues->sbrQuotaMean[i], filter[i]);
291 detectorValues->origQuotaMeanStrongestFilt += fMult(detectorValues->origQuotaMeanStrongest[i], filter[i]);
292 detectorValues->sbrQuotaMeanStrongestFilt += fMult(detectorValues->sbrQuotaMeanStrongest[i], filter[i]);
293 }
294 }
295
296 /**************************************************************************/
297 /*!
298 \brief Returns the region in which the input value belongs.
299
300
301
302 \return region.
303
304 */
305 /**************************************************************************/
306 static INT
findRegion(FIXP_DBL currVal,const FIXP_DBL * borders,const INT numBorders)307 findRegion(FIXP_DBL currVal, /*!< The current value. */
308 const FIXP_DBL *borders, /*!< The border of the regions. */
309 const INT numBorders /*!< The number of borders. */
310 )
311 {
312 INT i;
313
314 if(currVal < borders[0]){
315 return 0;
316 }
317
318 for(i = 1; i < numBorders; i++){
319 if( currVal >= borders[i-1] && currVal < borders[i]){
320 return i;
321 }
322 }
323
324 if(currVal >= borders[numBorders-1]){
325 return numBorders;
326 }
327
328 return 0; /* We never get here, it's just to avoid compiler warnings.*/
329 }
330
331 /**************************************************************************/
332 /*!
333 \brief Makes a clever decision based on the quota vector.
334
335
336 \return decision on which invf mode to use
337
338 */
339 /**************************************************************************/
340 static INVF_MODE
decisionAlgorithm(const DETECTOR_PARAMETERS * detectorParams,DETECTOR_VALUES * detectorValues,INT transientFlag,INT * prevRegionSbr,INT * prevRegionOrig)341 decisionAlgorithm(const DETECTOR_PARAMETERS *detectorParams, /*!< Struct with the detector parameters. */
342 DETECTOR_VALUES *detectorValues, /*!< Struct with the detector values. */
343 INT transientFlag, /*!< Flag indicating if there is a transient present.*/
344 INT* prevRegionSbr, /*!< The previous region in which the Sbr value was. */
345 INT* prevRegionOrig /*!< The previous region in which the Orig value was. */
346 )
347 {
348 INT invFiltLevel, regionSbr, regionOrig, regionNrg;
349
350 /*
351 Current thresholds.
352 */
353 const FIXP_DBL *quantStepsSbr = detectorParams->quantStepsSbr;
354 const FIXP_DBL *quantStepsOrig = detectorParams->quantStepsOrig;
355 const FIXP_DBL *nrgBorders = detectorParams->nrgBorders;
356 const INT numRegionsSbr = detectorParams->numRegionsSbr;
357 const INT numRegionsOrig = detectorParams->numRegionsOrig;
358 const INT numRegionsNrg = detectorParams->numRegionsNrg;
359
360 FIXP_DBL quantStepsSbrTmp[MAX_NUM_REGIONS];
361 FIXP_DBL quantStepsOrigTmp[MAX_NUM_REGIONS];
362
363 /*
364 Current detector values.
365 */
366 FIXP_DBL origQuotaMeanFilt;
367 FIXP_DBL sbrQuotaMeanFilt;
368 FIXP_DBL nrg;
369
370 /* 0.375 = 3.0 / 8.0; 0.31143075889 = log2(RELAXATION)/64.0; 0.625 = log(16)/64.0; 0.6875 = 44/64.0 */
371 origQuotaMeanFilt = (fMultDiv2(FL2FXCONST_DBL(2.f*0.375f), (FIXP_DBL)(CalcLdData(max(detectorValues->origQuotaMeanFilt,(FIXP_DBL)1)) + FL2FXCONST_DBL(0.31143075889f)))) << 0; /* scaled by 1/2^9 */
372 sbrQuotaMeanFilt = (fMultDiv2(FL2FXCONST_DBL(2.f*0.375f), (FIXP_DBL)(CalcLdData(max(detectorValues->sbrQuotaMeanFilt,(FIXP_DBL)1)) + FL2FXCONST_DBL(0.31143075889f)))) << 0; /* scaled by 1/2^9 */
373 /* If energy is zero then we will get different results for different word lengths. */
374 nrg = (fMultDiv2(FL2FXCONST_DBL(2.f*0.375f), (FIXP_DBL)(CalcLdData(detectorValues->avgNrg+(FIXP_DBL)1) + FL2FXCONST_DBL(0.0625f) + FL2FXCONST_DBL(0.6875f)))) << 0; /* scaled by 1/2^8; 2^44 -> qmf energy scale */
375
376 FDKmemcpy(quantStepsSbrTmp,quantStepsSbr,numRegionsSbr*sizeof(FIXP_DBL));
377 FDKmemcpy(quantStepsOrigTmp,quantStepsOrig,numRegionsOrig*sizeof(FIXP_DBL));
378
379 if(*prevRegionSbr < numRegionsSbr)
380 quantStepsSbrTmp[*prevRegionSbr] = quantStepsSbr[*prevRegionSbr] + hysteresis;
381 if(*prevRegionSbr > 0)
382 quantStepsSbrTmp[*prevRegionSbr - 1] = quantStepsSbr[*prevRegionSbr - 1] - hysteresis;
383
384 if(*prevRegionOrig < numRegionsOrig)
385 quantStepsOrigTmp[*prevRegionOrig] = quantStepsOrig[*prevRegionOrig] + hysteresis;
386 if(*prevRegionOrig > 0)
387 quantStepsOrigTmp[*prevRegionOrig - 1] = quantStepsOrig[*prevRegionOrig - 1] - hysteresis;
388
389 regionSbr = findRegion(sbrQuotaMeanFilt, quantStepsSbrTmp, numRegionsSbr);
390 regionOrig = findRegion(origQuotaMeanFilt, quantStepsOrigTmp, numRegionsOrig);
391 regionNrg = findRegion(nrg,nrgBorders,numRegionsNrg);
392
393 *prevRegionSbr = regionSbr;
394 *prevRegionOrig = regionOrig;
395
396 /* Use different settings if a transient is present*/
397 invFiltLevel = (transientFlag == 1) ? detectorParams->regionSpaceTransient[regionSbr][regionOrig]
398 : detectorParams->regionSpace[regionSbr][regionOrig];
399
400 /* Compensate for low energy.*/
401 invFiltLevel = max(invFiltLevel + detectorParams->EnergyCompFactor[regionNrg],0);
402
403 return (INVF_MODE) (invFiltLevel);
404 }
405
406 /**************************************************************************/
407 /*!
408 \brief Estiamtion of the inverse filtering level required
409 in the decoder.
410
411 A second order LPC is calculated for every filterbank channel, using
412 the covariance method. THe ratio between the energy of the predicted
413 signal and the energy of the non-predictable signal is calcualted.
414
415 \return none.
416
417 */
418 /**************************************************************************/
419 void
FDKsbrEnc_qmfInverseFilteringDetector(HANDLE_SBR_INV_FILT_EST hInvFilt,FIXP_DBL ** quotaMatrix,FIXP_DBL * nrgVector,SCHAR * indexVector,INT startIndex,INT stopIndex,INT transientFlag,INVF_MODE * infVec)420 FDKsbrEnc_qmfInverseFilteringDetector(HANDLE_SBR_INV_FILT_EST hInvFilt, /*!< Handle to the SBR_INV_FILT_EST struct. */
421 FIXP_DBL **quotaMatrix, /*!< The matrix holding the tonality values of the original. */
422 FIXP_DBL *nrgVector, /*!< The energy vector. */
423 SCHAR *indexVector, /*!< Index vector to obtain the patched data. */
424 INT startIndex, /*!< Start index. */
425 INT stopIndex, /*!< Stop index. */
426 INT transientFlag, /*!< Flag indicating if a transient is present or not.*/
427 INVF_MODE* infVec /*!< Vector holding the inverse filtering levels. */
428 )
429 {
430 INT band;
431
432 /*
433 * Do the inverse filtering level estimation.
434 *****************************************************/
435 for(band = 0 ; band < hInvFilt->noDetectorBands; band++){
436 INT startChannel = hInvFilt->freqBandTableInvFilt[band];
437 INT stopChannel = hInvFilt->freqBandTableInvFilt[band+1];
438
439
440 calculateDetectorValues( quotaMatrix,
441 indexVector,
442 nrgVector,
443 &hInvFilt->detectorValues[band],
444 startChannel,
445 stopChannel,
446 startIndex,
447 stopIndex,
448 hInvFilt->numberOfStrongest);
449
450 infVec[band]= decisionAlgorithm( hInvFilt->detectorParams,
451 &hInvFilt->detectorValues[band],
452 transientFlag,
453 &hInvFilt->prevRegionSbr[band],
454 &hInvFilt->prevRegionOrig[band]);
455 }
456
457 }
458
459
460 /**************************************************************************/
461 /*!
462 \brief Initialize an instance of the inverse filtering level estimator.
463
464
465 \return errorCode, noError if successful.
466
467 */
468 /**************************************************************************/
469 INT
FDKsbrEnc_initInvFiltDetector(HANDLE_SBR_INV_FILT_EST hInvFilt,INT * freqBandTableDetector,INT numDetectorBands,UINT useSpeechConfig)470 FDKsbrEnc_initInvFiltDetector (HANDLE_SBR_INV_FILT_EST hInvFilt, /*!< Pointer to a handle to the SBR_INV_FILT_EST struct. */
471 INT* freqBandTableDetector, /*!< Frequency band table for the inverse filtering. */
472 INT numDetectorBands, /*!< Number of inverse filtering bands. */
473 UINT useSpeechConfig /*!< Flag: adapt tuning parameters according to speech*/
474 )
475 {
476 INT i;
477
478 FDKmemclear( hInvFilt,sizeof(SBR_INV_FILT_EST));
479
480 hInvFilt->detectorParams = (useSpeechConfig) ? &detectorParamsAACSpeech
481 : &detectorParamsAAC ;
482
483 hInvFilt->noDetectorBandsMax = numDetectorBands;
484
485 /*
486 Memory initialisation
487 */
488 for(i=0;i<hInvFilt->noDetectorBandsMax;i++){
489 FDKmemclear(&hInvFilt->detectorValues[i], sizeof(DETECTOR_VALUES));
490 hInvFilt->prevInvfMode[i] = INVF_OFF;
491 hInvFilt->prevRegionOrig[i] = 0;
492 hInvFilt->prevRegionSbr[i] = 0;
493 }
494
495 /*
496 Reset the inverse fltering detector.
497 */
498 FDKsbrEnc_resetInvFiltDetector(hInvFilt,
499 freqBandTableDetector,
500 hInvFilt->noDetectorBandsMax);
501
502 return (0);
503 }
504
505
506 /**************************************************************************/
507 /*!
508 \brief resets sbr inverse filtering structure.
509
510
511
512 \return errorCode, noError if successful.
513
514 */
515 /**************************************************************************/
516 INT
FDKsbrEnc_resetInvFiltDetector(HANDLE_SBR_INV_FILT_EST hInvFilt,INT * freqBandTableDetector,INT numDetectorBands)517 FDKsbrEnc_resetInvFiltDetector(HANDLE_SBR_INV_FILT_EST hInvFilt, /*!< Handle to the SBR_INV_FILT_EST struct. */
518 INT* freqBandTableDetector, /*!< Frequency band table for the inverse filtering. */
519 INT numDetectorBands) /*!< Number of inverse filtering bands. */
520 {
521
522 hInvFilt->numberOfStrongest = 1;
523 FDKmemcpy(hInvFilt->freqBandTableInvFilt,freqBandTableDetector,(numDetectorBands+1)*sizeof(INT));
524 hInvFilt->noDetectorBands = numDetectorBands;
525
526 return (0);
527 }
528
529
530