/external/apache-commons-math/src/main/java/org/apache/commons/math/analysis/polynomials/ |
D | PolynomialFunction.java | 48 private final double coefficients[]; field in PolynomialFunction 73 this.coefficients = new double[n]; in PolynomialFunction() 74 System.arraycopy(c, 0, this.coefficients, 0, n); in PolynomialFunction() 89 return evaluate(coefficients, x); in value() 99 return coefficients.length - 1; in degree() 111 return coefficients.clone(); in getCoefficients() 124 protected static double evaluate(double[] coefficients, double argument) { in evaluate() argument 125 int n = coefficients.length; in evaluate() 129 double result = coefficients[n - 1]; in evaluate() 131 result = argument * result + coefficients[j]; in evaluate() [all …]
|
D | PolynomialFunctionNewtonForm.java | 44 private double coefficients[]; field in PolynomialFunctionNewtonForm 142 double[] out = new double[coefficients.length]; in getCoefficients() 143 System.arraycopy(coefficients, 0, out, 0, coefficients.length); in getCoefficients() 180 coefficients = new double[n+1]; in computeCoefficients() 182 coefficients[i] = 0.0; in computeCoefficients() 185 coefficients[0] = a[n]; in computeCoefficients() 188 coefficients[j] = coefficients[j-1] - c[i] * coefficients[j]; in computeCoefficients() 190 coefficients[0] = a[i] - c[i] * coefficients[0]; in computeCoefficients()
|
D | PolynomialsUtils.java | 194 final ArrayList<BigFraction> coefficients, 197 final int maxDegree = (int) FastMath.floor(FastMath.sqrt(2 * coefficients.size())) - 1; 200 computeUpToDegree(degree, maxDegree, generator, coefficients); 216 a[i] = coefficients.get(start + i).doubleValue(); 232 final ArrayList<BigFraction> coefficients) { 244 BigFraction ck = coefficients.get(startK); 245 BigFraction ckm1 = coefficients.get(startKm1); 248 coefficients.add(ck.multiply(ai[0]).subtract(ckm1.multiply(ai[2]))); 253 ck = coefficients.get(startK + i); 254 ckm1 = coefficients.get(startKm1 + i); [all …]
|
D | PolynomialFunctionLagrangeForm.java | 45 private double coefficients[]; field in PolynomialFunctionLagrangeForm 141 double[] out = new double[coefficients.length]; in getCoefficients() 142 System.arraycopy(coefficients, 0, out, 0, coefficients.length); in getCoefficients() 224 coefficients = new double[n]; in computeCoefficients() 226 coefficients[i] = 0.0; in computeCoefficients() 264 coefficients[n-1] += t * tc[n-1]; in computeCoefficients() 267 coefficients[j] += t * tc[j]; in computeCoefficients()
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/optimization/linear/ |
D | LinearObjectiveFunction.java | 48 private final transient RealVector coefficients; field in LinearObjectiveFunction 57 public LinearObjectiveFunction(double[] coefficients, double constantTerm) { in LinearObjectiveFunction() argument 58 this(new ArrayRealVector(coefficients), constantTerm); in LinearObjectiveFunction() 65 public LinearObjectiveFunction(RealVector coefficients, double constantTerm) { in LinearObjectiveFunction() argument 66 this.coefficients = coefficients; in LinearObjectiveFunction() 75 return coefficients; in getCoefficients() 92 return coefficients.dotProduct(point) + constantTerm; in getValue() 101 return coefficients.dotProduct(point) + constantTerm; in getValue() 114 return (constantTerm == rhs.constantTerm) && coefficients.equals(rhs.coefficients); in equals() 123 return Double.valueOf(constantTerm).hashCode() ^ coefficients.hashCode(); in hashCode() [all …]
|
D | LinearConstraint.java | 57 private final transient RealVector coefficients; field in LinearConstraint 79 public LinearConstraint(final double[] coefficients, final Relationship relationship, in LinearConstraint() argument 81 this(new ArrayRealVector(coefficients), relationship, value); in LinearConstraint() 98 public LinearConstraint(final RealVector coefficients, final Relationship relationship, in LinearConstraint() argument 100 this.coefficients = coefficients; in LinearConstraint() 131 this.coefficients = new ArrayRealVector(sub, false); in LinearConstraint() 158 this.coefficients = lhsCoefficients.subtract(rhsCoefficients); in LinearConstraint() 168 return coefficients; in getCoefficients() 199 coefficients.equals(rhs.coefficients); in equals() 209 coefficients.hashCode(); in hashCode() [all …]
|
D | SimplexTableau.java | 272 protected static double getInvertedCoeffiecientSum(final RealVector coefficients) { in getInvertedCoeffiecientSum() argument 274 for (double coefficient : coefficients.getData()) { in getInvertedCoeffiecientSum() 374 double[] coefficients = new double[getOriginalNumDecisionVariables()]; in getSolution() local 375 for (int i = 0; i < coefficients.length; i++) { in getSolution() 378 coefficients[i] = 0; in getSolution() 385 coefficients[i] = 0; in getSolution() 388 coefficients[i] = in getSolution() 393 return new RealPointValuePair(coefficients, f.getValue(coefficients)); in getSolution()
|
/external/webrtc/webrtc/common_audio/signal_processing/ |
D | filter_ar_fast_q12_armv7.S | 26 @ r2: &coefficients[0] 34 @ r10: coefficients[j] 36 @ r12: &coefficients[j] 51 sub r12, #4 @ &coefficients[coefficients_length - 2] 63 ldr r10, [r12], #-4 @ coefficients[j - 1], coefficients[j] 65 smlatt r8, r10, r5, r8 @ sum2 += coefficients[j] * data_out[i - j + 1]; 66 smlatb r7, r10, r5, r7 @ sum1 += coefficients[j] * data_out[i - j]; 67 smlabt r7, r10, r5, r7 @ coefficients[j - 1] * data_out[i - j + 1]; 69 smlabb r8, r10, r5, r8 @ coefficients[j - 1] * data_out[i - j + 2]; 74 ldrsh r10, [r12, #2] @ Filter coefficients coefficients[2] [all …]
|
D | downsample_fast_neon.c | 21 const int16_t* __restrict coefficients, in WebRtcSpl_DownsampleFastNeon() argument 50 int32x2_t coeff32 = vld1_dup_s32((int32_t*)&coefficients[j]); in WebRtcSpl_DownsampleFastNeon() 72 int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); in WebRtcSpl_DownsampleFastNeon() 91 int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); in WebRtcSpl_DownsampleFastNeon() 118 int16x4_t coeff16x4 = vld1_s16(&coefficients[j]); in WebRtcSpl_DownsampleFastNeon() 147 int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); in WebRtcSpl_DownsampleFastNeon() 178 int16x4_t coeff16x4 = vld1_dup_s16(&coefficients[j]); in WebRtcSpl_DownsampleFastNeon() 208 out_s32 = WebRtc_MulAccumW16(coefficients[j], data_in[i - j], out_s32); in WebRtcSpl_DownsampleFastNeon()
|
D | filter_ar_fast_q12.c | 18 const int16_t* __restrict coefficients, in WebRtcSpl_FilterARFastQ12() argument 32 sum += coefficients[j] * data_out[i - j]; in WebRtcSpl_FilterARFastQ12() 35 output = coefficients[0] * data_in[i]; in WebRtcSpl_FilterARFastQ12()
|
D | filter_ar_fast_q12_mips.c | 16 const int16_t* __restrict coefficients, in WebRtcSpl_FilterARFastQ12() argument 131 : [coefficients] "r" (coefficients), [data_length] "r" (data_length), in WebRtcSpl_FilterARFastQ12()
|
D | downsample_fast.c | 19 const int16_t* __restrict coefficients, in WebRtcSpl_DownsampleFastC() argument 38 out_s32 += coefficients[j] * data_in[i - j]; // Q12. in WebRtcSpl_DownsampleFastC()
|
/external/webrtc/webrtc/common_audio/ |
D | fir_filter.cc | 25 FIRFilterC(const float* coefficients, 37 FIRFilter* FIRFilter::Create(const float* coefficients, in Create() argument 40 if (!coefficients || coefficients_length <= 0 || max_input_length <= 0) { in Create() 50 new FIRFilterSSE2(coefficients, coefficients_length, max_input_length); in Create() 55 new FIRFilterSSE2(coefficients, coefficients_length, max_input_length); in Create() 57 filter = new FIRFilterC(coefficients, coefficients_length); in Create() 62 new FIRFilterNEON(coefficients, coefficients_length, max_input_length); in Create() 66 new FIRFilterNEON(coefficients, coefficients_length, max_input_length); in Create() 68 filter = new FIRFilterC(coefficients, coefficients_length); in Create() 71 filter = new FIRFilterC(coefficients, coefficients_length); in Create() [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/analysis/solvers/ |
D | LaguerreSolver.java | 231 double coefficients[] = ((PolynomialFunction) f).getCoefficients(); in solve() local 232 Complex c[] = new Complex[coefficients.length]; in solve() 233 for (int i = 0; i < coefficients.length; i++) { in solve() 234 c[i] = new Complex(coefficients[i], 0.0); in solve() 286 public Complex[] solveAll(double coefficients[], double initial) throws in solveAll() argument 289 Complex c[] = new Complex[coefficients.length]; in solveAll() 292 c[i] = new Complex(coefficients[i], 0.0); in solveAll() 311 public Complex[] solveAll(Complex coefficients[], Complex initial) throws in solveAll() argument 314 int n = coefficients.length - 1; in solveAll() 322 c[i] = coefficients[i]; in solveAll() [all …]
|
/external/eigen/doc/special_examples/ |
D | Tutorial_sparse_example.cpp | 7 void buildProblem(std::vector<T>& coefficients, Eigen::VectorXd& b, int n); 18 std::vector<T> coefficients; // list of non-zeros coefficients in main() local 20 buildProblem(coefficients, b, n); in main() 23 A.setFromTriplets(coefficients.begin(), coefficients.end()); in main()
|
D | Tutorial_sparse_example_details.cpp | 19 void buildProblem(std::vector<T>& coefficients, Eigen::VectorXd& b, int n) in buildProblem() argument 28 insertCoefficient(id, i-1,j, -1, coefficients, b, boundary); in buildProblem() 29 insertCoefficient(id, i+1,j, -1, coefficients, b, boundary); in buildProblem() 30 insertCoefficient(id, i,j-1, -1, coefficients, b, boundary); in buildProblem() 31 insertCoefficient(id, i,j+1, -1, coefficients, b, boundary); in buildProblem() 32 insertCoefficient(id, i,j, 4, coefficients, b, boundary); in buildProblem()
|
/external/skia/src/gpu/gl/ |
D | GrGLPathRendering.cpp | 218 float coefficients[3 * 3]; in setProgramPathFragmentInputTransform() local 221 coefficients[0] = SkScalarToFloat(matrix[SkMatrix::kMScaleX]); in setProgramPathFragmentInputTransform() 222 coefficients[1] = SkScalarToFloat(matrix[SkMatrix::kMSkewX]); in setProgramPathFragmentInputTransform() 223 coefficients[2] = SkScalarToFloat(matrix[SkMatrix::kMTransX]); in setProgramPathFragmentInputTransform() 226 coefficients[3] = SkScalarToFloat(matrix[SkMatrix::kMSkewY]); in setProgramPathFragmentInputTransform() 227 coefficients[4] = SkScalarToFloat(matrix[SkMatrix::kMScaleY]); in setProgramPathFragmentInputTransform() 228 coefficients[5] = SkScalarToFloat(matrix[SkMatrix::kMTransY]); in setProgramPathFragmentInputTransform() 232 coefficients[6] = SkScalarToFloat(matrix[SkMatrix::kMPersp0]); in setProgramPathFragmentInputTransform() 233 coefficients[7] = SkScalarToFloat(matrix[SkMatrix::kMPersp1]); in setProgramPathFragmentInputTransform() 234 coefficients[8] = SkScalarToFloat(matrix[SkMatrix::kMPersp2]); in setProgramPathFragmentInputTransform() [all …]
|
/external/apache-commons-math/src/main/java/org/apache/commons/math/analysis/interpolation/ |
D | SplineInterpolator.java | 115 double coefficients[] = new double[4]; in interpolate() local 117 coefficients[0] = y[i]; in interpolate() 118 coefficients[1] = b[i]; in interpolate() 119 coefficients[2] = c[i]; in interpolate() 120 coefficients[3] = d[i]; in interpolate() 121 polynomials[i] = new PolynomialFunction(coefficients); in interpolate()
|
D | LinearInterpolator.java | 66 final double coefficients[] = new double[2]; in interpolate() local 68 coefficients[0] = y[i]; in interpolate() 69 coefficients[1] = m[i]; in interpolate() 70 polynomials[i] = new PolynomialFunction(coefficients); in interpolate()
|
/external/pdfium/xfa/fxbarcode/common/reedsolomon/ |
D | BC_ReedSolomonGF256Poly.cpp | 30 int32_t coefficients) { in CBC_ReedSolomonGF256Poly() argument 35 m_coefficients.Add(coefficients); in CBC_ReedSolomonGF256Poly() 41 CFX_ArrayTemplate<int32_t>* coefficients, in Init() argument 43 if (!coefficients || coefficients->GetSize() == 0) { in Init() 48 int32_t coefficientsLength = coefficients->GetSize(); in Init() 49 if ((coefficientsLength > 1 && (*coefficients)[0] == 0)) { in Init() 52 ((*coefficients)[firstNonZero] == 0)) { in Init() 60 m_coefficients[j] = coefficients->operator[](i); in Init() 64 m_coefficients.Copy(*coefficients); in Init()
|
D | BC_ReedSolomonGF256.cpp | 89 CFX_ArrayTemplate<int32_t> coefficients; in BuildMonomial() local 90 coefficients.SetSize(degree + 1); in BuildMonomial() 91 coefficients[0] = coefficient; in BuildMonomial() 93 temp->Init(this, &coefficients, e); in BuildMonomial()
|
D | BC_ReedSolomon.cpp | 92 CFX_ArrayTemplate<int32_t>* coefficients = remainder->GetCoefficients(); in Encode() local 93 int32_t numZeroCoefficients = ecBytes - coefficients->GetSize(); in Encode() 97 for (int32_t y = 0; y < coefficients->GetSize(); y++) { in Encode() 99 coefficients->operator[](y); in Encode()
|
/external/webrtc/webrtc/modules/audio_processing/transient/ |
D | wpd_node.cc | 24 const float* coefficients, in WPDNode() argument 30 filter_(FIRFilter::Create(coefficients, in WPDNode() 33 assert(length > 0 && coefficients && coefficients_length > 0); in WPDNode()
|
/external/libjpeg-turbo/ |
D | wizard.txt | 28 size, since more bits than necessary are expended on higher AC coefficients. 174 0: 1-2, 0, 0 ; # First two Y AC coefficients 176 1: 1-63, 0, 0 ; # All AC coefficients for Cb 177 2: 1-63, 0, 0 ; # All AC coefficients for Cr 178 0: 6-9, 0, 0 ; # More Y coefficients 179 0: 10-63, 0, 0 ; # Remaining Y coefficients 186 # First AC scan: send first 5 Y AC coefficients, minus 2 lowest bits: 188 # Send all Cr,Cb AC coefficients, minus lowest bit: 193 # Send remaining Y AC coefficients, minus 2 lowest bits: 195 # Send next-to-lowest bit of all Y AC coefficients: [all …]
|
/external/eigen/doc/ |
D | TutorialAdvancedInitialization.dox | 13 Eigen offers a comma initializer syntax which allows the user to easily set all the coefficients of… 14 vector or array. Simply list the coefficients, starting at the top-left corner and moving from left… 16 or too many coefficients, Eigen will complain. 67 used to initialize all coefficients to zero. There are three variants. The first variant takes no a… 82 …tatic method \link DenseBase::Constant() Constant\endlink(value) sets all coefficients to \c value. 85 \endlink fills the matrix or array with random coefficients. The identity matrix can be obtained by… 89 one-dimensional arrays; it yields a vector of the specified size whose coefficients are equally spa… 140 … MatrixXf::Constant(3,3,1.2)</tt> constructs the 3-by-3 matrix expression with all its coefficients
|