1 #ifndef _DEINT32_H
2 #define _DEINT32_H
3 /*-------------------------------------------------------------------------
4 * drawElements Base Portability Library
5 * -------------------------------------
6 *
7 * Copyright 2014 The Android Open Source Project
8 *
9 * Licensed under the Apache License, Version 2.0 (the "License");
10 * you may not use this file except in compliance with the License.
11 * You may obtain a copy of the License at
12 *
13 * http://www.apache.org/licenses/LICENSE-2.0
14 *
15 * Unless required by applicable law or agreed to in writing, software
16 * distributed under the License is distributed on an "AS IS" BASIS,
17 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18 * See the License for the specific language governing permissions and
19 * limitations under the License.
20 *
21 *//*!
22 * \file
23 * \brief 32-bit integer math.
24 *//*--------------------------------------------------------------------*/
25
26 #include "deDefs.h"
27
28 #if (DE_COMPILER == DE_COMPILER_MSC)
29 # include <intrin.h>
30 #endif
31
32 DE_BEGIN_EXTERN_C
33
34 enum
35 {
36 DE_RCP_FRAC_BITS = 30 /*!< Number of fractional bits in deRcp32() result. */
37 };
38
39 void deRcp32 (deUint32 a, deUint32* rcp, int* exp);
40 void deInt32_computeLUTs (void);
41 void deInt32_selfTest (void);
42
43 /*--------------------------------------------------------------------*//*!
44 * \brief Compute the absolute of an int.
45 * \param a Input value.
46 * \return Absolute of the input value.
47 *
48 * \note The input 0x80000000u (for which the abs value cannot be
49 * represented), is asserted and returns the value itself.
50 *//*--------------------------------------------------------------------*/
deAbs32(int a)51 DE_INLINE int deAbs32 (int a)
52 {
53 DE_ASSERT((unsigned int) a != 0x80000000u);
54 return (a < 0) ? -a : a;
55 }
56
57 /*--------------------------------------------------------------------*//*!
58 * \brief Compute the signed minimum of two values.
59 * \param a First input value.
60 * \param b Second input value.
61 * \return The smallest of the two input values.
62 *//*--------------------------------------------------------------------*/
deMin32(int a,int b)63 DE_INLINE int deMin32 (int a, int b)
64 {
65 return (a <= b) ? a : b;
66 }
67
68 /*--------------------------------------------------------------------*//*!
69 * \brief Compute the signed maximum of two values.
70 * \param a First input value.
71 * \param b Second input value.
72 * \return The largest of the two input values.
73 *//*--------------------------------------------------------------------*/
deMax32(int a,int b)74 DE_INLINE int deMax32 (int a, int b)
75 {
76 return (a >= b) ? a : b;
77 }
78
79 /*--------------------------------------------------------------------*//*!
80 * \brief Compute the unsigned minimum of two values.
81 * \param a First input value.
82 * \param b Second input value.
83 * \return The smallest of the two input values.
84 *//*--------------------------------------------------------------------*/
deMinu32(deUint32 a,deUint32 b)85 DE_INLINE deUint32 deMinu32 (deUint32 a, deUint32 b)
86 {
87 return (a <= b) ? a : b;
88 }
89
90 /*--------------------------------------------------------------------*//*!
91 * \brief Compute the unsigned maximum of two values.
92 * \param a First input value.
93 * \param b Second input value.
94 * \return The largest of the two input values.
95 *//*--------------------------------------------------------------------*/
deMaxu32(deUint32 a,deUint32 b)96 DE_INLINE deUint32 deMaxu32 (deUint32 a, deUint32 b)
97 {
98 return (a >= b) ? a : b;
99 }
100
101 /*--------------------------------------------------------------------*//*!
102 * \brief Check if a value is in the <b>inclusive<b> range [mn, mx].
103 * \param a Value to check for range.
104 * \param mn Range minimum value.
105 * \param mx Range maximum value.
106 * \return True if (a >= mn) and (a <= mx), false otherwise.
107 *
108 * \see deInBounds32()
109 *//*--------------------------------------------------------------------*/
deInRange32(int a,int mn,int mx)110 DE_INLINE deBool deInRange32 (int a, int mn, int mx)
111 {
112 return (a >= mn) && (a <= mx);
113 }
114
115 /*--------------------------------------------------------------------*//*!
116 * \brief Check if a value is in the half-inclusive bounds [mn, mx[.
117 * \param a Value to check for range.
118 * \param mn Range minimum value.
119 * \param mx Range maximum value.
120 * \return True if (a >= mn) and (a < mx), false otherwise.
121 *
122 * \see deInRange32()
123 *//*--------------------------------------------------------------------*/
deInBounds32(int a,int mn,int mx)124 DE_INLINE deBool deInBounds32 (int a, int mn, int mx)
125 {
126 return (a >= mn) && (a < mx);
127 }
128
129 /*--------------------------------------------------------------------*//*!
130 * \brief Clamp a value into the range [mn, mx].
131 * \param a Value to clamp.
132 * \param mn Minimum value.
133 * \param mx Maximum value.
134 * \return The clamped value in [mn, mx] range.
135 *//*--------------------------------------------------------------------*/
deClamp32(int a,int mn,int mx)136 DE_INLINE int deClamp32 (int a, int mn, int mx)
137 {
138 DE_ASSERT(mn <= mx);
139 if (a < mn) return mn;
140 if (a > mx) return mx;
141 return a;
142 }
143
144 /*--------------------------------------------------------------------*//*!
145 * \brief Get the sign of an integer.
146 * \param a Input value.
147 * \return +1 if a>0, 0 if a==0, -1 if a<0.
148 *//*--------------------------------------------------------------------*/
deSign32(int a)149 DE_INLINE int deSign32 (int a)
150 {
151 if (a > 0) return +1;
152 if (a < 0) return -1;
153 return 0;
154 }
155
156 /*--------------------------------------------------------------------*//*!
157 * \brief Extract the sign bit of a.
158 * \param a Input value.
159 * \return 0x80000000 if a<0, 0 otherwise.
160 *//*--------------------------------------------------------------------*/
deSignBit32(deInt32 a)161 DE_INLINE deInt32 deSignBit32 (deInt32 a)
162 {
163 return (deInt32)((deUint32)a & 0x80000000u);
164 }
165
166 /*--------------------------------------------------------------------*//*!
167 * \brief Integer rotate right.
168 * \param val Value to rotate.
169 * \param r Number of bits to rotate (in range [0, 32]).
170 * \return The rotated value.
171 *//*--------------------------------------------------------------------*/
deRor32(int val,int r)172 DE_INLINE int deRor32 (int val, int r)
173 {
174 DE_ASSERT(r >= 0 && r <= 32);
175 if (r == 0 || r == 32)
176 return val;
177 else
178 return (int)(((deUint32)val >> r) | ((deUint32)val << (32-r)));
179 }
180
181 /*--------------------------------------------------------------------*//*!
182 * \brief Integer rotate left.
183 * \param val Value to rotate.
184 * \param r Number of bits to rotate (in range [0, 32]).
185 * \return The rotated value.
186 *//*--------------------------------------------------------------------*/
deRol32(int val,int r)187 DE_INLINE int deRol32 (int val, int r)
188 {
189 DE_ASSERT(r >= 0 && r <= 32);
190 if (r == 0 || r == 32)
191 return val;
192 else
193 return (int)(((deUint32)val << r) | ((deUint32)val >> (32-r)));
194 }
195
196 /*--------------------------------------------------------------------*//*!
197 * \brief Check if a value is a power-of-two.
198 * \param a Input value.
199 * \return True if input is a power-of-two value, false otherwise.
200 *
201 * \note Also returns true for zero.
202 *//*--------------------------------------------------------------------*/
deIsPowerOfTwo32(int a)203 DE_INLINE deBool deIsPowerOfTwo32 (int a)
204 {
205 return ((a & (a - 1)) == 0);
206 }
207
208 /*--------------------------------------------------------------------*//*!
209 * \brief Check if a value is a power-of-two.
210 * \param a Input value.
211 * \return True if input is a power-of-two value, false otherwise.
212 *
213 * \note Also returns true for zero.
214 *//*--------------------------------------------------------------------*/
deIsPowerOfTwo64(deUint64 a)215 DE_INLINE deBool deIsPowerOfTwo64 (deUint64 a)
216 {
217 return ((a & (a - 1ull)) == 0);
218 }
219
220 /*--------------------------------------------------------------------*//*!
221 * \brief Check if a value is a power-of-two.
222 * \param a Input value.
223 * \return True if input is a power-of-two value, false otherwise.
224 *
225 * \note Also returns true for zero.
226 *//*--------------------------------------------------------------------*/
deIsPowerOfTwoSize(size_t a)227 DE_INLINE deBool deIsPowerOfTwoSize (size_t a)
228 {
229 #if (DE_PTR_SIZE == 4)
230 return deIsPowerOfTwo32(a);
231 #elif (DE_PTR_SIZE == 8)
232 return deIsPowerOfTwo64(a);
233 #else
234 # error "Invalid DE_PTR_SIZE"
235 #endif
236 }
237
238 /*--------------------------------------------------------------------*//*!
239 * \brief Roud a value up to a power-of-two.
240 * \param a Input value.
241 * \return Smallest power-of-two value that is greater or equal to an input value.
242 *//*--------------------------------------------------------------------*/
deSmallestGreaterOrEquallPowerOfTwoU32(deUint32 a)243 DE_INLINE deUint32 deSmallestGreaterOrEquallPowerOfTwoU32 (deUint32 a)
244 {
245 --a;
246 a |= a >> 1u;
247 a |= a >> 2u;
248 a |= a >> 4u;
249 a |= a >> 8u;
250 a |= a >> 16u;
251 return ++a;
252 }
253
254 /*--------------------------------------------------------------------*//*!
255 * \brief Roud a value up to a power-of-two.
256 * \param a Input value.
257 * \return Smallest power-of-two value that is greater or equal to an input value.
258 *//*--------------------------------------------------------------------*/
deSmallestGreaterOrEquallPowerOfTwoU64(deUint64 a)259 DE_INLINE deUint64 deSmallestGreaterOrEquallPowerOfTwoU64 (deUint64 a)
260 {
261 --a;
262 a |= a >> 1u;
263 a |= a >> 2u;
264 a |= a >> 4u;
265 a |= a >> 8u;
266 a |= a >> 16u;
267 a |= a >> 32u;
268 return ++a;
269 }
270
271 /*--------------------------------------------------------------------*//*!
272 * \brief Roud a value up to a power-of-two.
273 * \param a Input value.
274 * \return Smallest power-of-two value that is greater or equal to an input value.
275 *//*--------------------------------------------------------------------*/
deSmallestGreaterOrEquallPowerOfTwoSize(size_t a)276 DE_INLINE size_t deSmallestGreaterOrEquallPowerOfTwoSize (size_t a)
277 {
278 #if (DE_PTR_SIZE == 4)
279 return deSmallestGreaterOrEquallPowerOfTwoU32(a);
280 #elif (DE_PTR_SIZE == 8)
281 return deSmallestGreaterOrEquallPowerOfTwoU64(a);
282 #else
283 # error "Invalid DE_PTR_SIZE"
284 #endif
285 }
286
287 /*--------------------------------------------------------------------*//*!
288 * \brief Check if an integer is aligned to given power-of-two size.
289 * \param a Input value.
290 * \param align Alignment to check for.
291 * \return True if input is aligned, false otherwise.
292 *//*--------------------------------------------------------------------*/
deIsAligned32(int a,int align)293 DE_INLINE deBool deIsAligned32 (int a, int align)
294 {
295 DE_ASSERT(deIsPowerOfTwo32(align));
296 return ((a & (align-1)) == 0);
297 }
298
299 /*--------------------------------------------------------------------*//*!
300 * \brief Check if an integer is aligned to given power-of-two size.
301 * \param a Input value.
302 * \param align Alignment to check for.
303 * \return True if input is aligned, false otherwise.
304 *//*--------------------------------------------------------------------*/
deIsAligned64(deInt64 a,deInt64 align)305 DE_INLINE deBool deIsAligned64 (deInt64 a, deInt64 align)
306 {
307 DE_ASSERT(deIsPowerOfTwo64(align));
308 return ((a & (align-1)) == 0);
309 }
310
311 /*--------------------------------------------------------------------*//*!
312 * \brief Check if a pointer is aligned to given power-of-two size.
313 * \param ptr Input pointer.
314 * \param align Alignment to check for (power-of-two).
315 * \return True if input is aligned, false otherwise.
316 *//*--------------------------------------------------------------------*/
deIsAlignedPtr(const void * ptr,deUintptr align)317 DE_INLINE deBool deIsAlignedPtr (const void* ptr, deUintptr align)
318 {
319 DE_ASSERT((align & (align-1)) == 0); /* power of two */
320 return (((deUintptr)ptr & (align-1)) == 0);
321 }
322
323 /*--------------------------------------------------------------------*//*!
324 * \brief Align an integer to given power-of-two size.
325 * \param val Input to align.
326 * \param align Alignment to check for (power-of-two).
327 * \return The aligned value (larger or equal to input).
328 *//*--------------------------------------------------------------------*/
deAlign32(deInt32 val,deInt32 align)329 DE_INLINE deInt32 deAlign32 (deInt32 val, deInt32 align)
330 {
331 DE_ASSERT(deIsPowerOfTwo32(align));
332 return (val + align - 1) & ~(align - 1);
333 }
334
335 /*--------------------------------------------------------------------*//*!
336 * \brief Align an integer to given power-of-two size.
337 * \param val Input to align.
338 * \param align Alignment to check for (power-of-two).
339 * \return The aligned value (larger or equal to input).
340 *//*--------------------------------------------------------------------*/
deAlign64(deInt64 val,deInt64 align)341 DE_INLINE deInt64 deAlign64 (deInt64 val, deInt64 align)
342 {
343 DE_ASSERT(deIsPowerOfTwo64(align));
344 return (val + align - 1) & ~(align - 1);
345 }
346
347 /*--------------------------------------------------------------------*//*!
348 * \brief Align a pointer to given power-of-two size.
349 * \param ptr Input pointer to align.
350 * \param align Alignment to check for (power-of-two).
351 * \return The aligned pointer (larger or equal to input).
352 *//*--------------------------------------------------------------------*/
deAlignPtr(void * ptr,deUintptr align)353 DE_INLINE void* deAlignPtr (void* ptr, deUintptr align)
354 {
355 deUintptr val = (deUintptr)ptr;
356 DE_ASSERT((align & (align-1)) == 0); /* power of two */
357 return (void*)((val + align - 1) & ~(align - 1));
358 }
359
360 /*--------------------------------------------------------------------*//*!
361 * \brief Align a size_t value to given power-of-two size.
362 * \param ptr Input value to align.
363 * \param align Alignment to check for (power-of-two).
364 * \return The aligned size (larger or equal to input).
365 *//*--------------------------------------------------------------------*/
deAlignSize(size_t val,size_t align)366 DE_INLINE size_t deAlignSize (size_t val, size_t align)
367 {
368 DE_ASSERT(deIsPowerOfTwoSize(align));
369 return (val + align - 1) & ~(align - 1);
370 }
371
372 extern const deInt8 g_clzLUT[256];
373
374 /*--------------------------------------------------------------------*//*!
375 * \brief Compute number of leading zeros in an integer.
376 * \param a Input value.
377 * \return The number of leading zero bits in the input.
378 *//*--------------------------------------------------------------------*/
deClz32(deUint32 a)379 DE_INLINE int deClz32 (deUint32 a)
380 {
381 #if (DE_COMPILER == DE_COMPILER_MSC)
382 unsigned long i;
383 if (_BitScanReverse(&i, (unsigned long)a) == 0)
384 return 32;
385 else
386 return 31-i;
387 #elif (DE_COMPILER == DE_COMPILER_GCC) || (DE_COMPILER == DE_COMPILER_CLANG)
388 if (a == 0)
389 return 32;
390 else
391 return __builtin_clz((unsigned int)a);
392 #else
393 if ((a & 0xFF000000u) != 0)
394 return (int)g_clzLUT[a >> 24];
395 if ((a & 0x00FF0000u) != 0)
396 return 8 + (int)g_clzLUT[a >> 16];
397 if ((a & 0x0000FF00u) != 0)
398 return 16 + (int)g_clzLUT[a >> 8];
399 return 24 + (int)g_clzLUT[a];
400 #endif
401 }
402
403 extern const deInt8 g_ctzLUT[256];
404
405 /*--------------------------------------------------------------------*//*!
406 * \brief Compute number of trailing zeros in an integer.
407 * \param a Input value.
408 * \return The number of trailing zero bits in the input.
409 *//*--------------------------------------------------------------------*/
deCtz32(deUint32 a)410 DE_INLINE int deCtz32 (deUint32 a)
411 {
412 #if (DE_COMPILER == DE_COMPILER_MSC)
413 unsigned long i;
414 if (_BitScanForward(&i, (unsigned long)a) == 0)
415 return 32;
416 else
417 return i;
418 #elif (DE_COMPILER == DE_COMPILER_GCC) || (DE_COMPILER == DE_COMPILER_CLANG)
419 if (a == 0)
420 return 32;
421 else
422 return __builtin_ctz((unsigned int)a);
423 #else
424 if ((a & 0x00FFFFFFu) == 0)
425 return (int)g_ctzLUT[a >> 24] + 24;
426 if ((a & 0x0000FFFFu) == 0)
427 return (int)g_ctzLUT[(a >> 16) & 0xffu] + 16;
428 if ((a & 0x000000FFu) == 0)
429 return (int)g_ctzLUT[(a >> 8) & 0xffu] + 8;
430 return (int)g_ctzLUT[a & 0xffu];
431 #endif
432 }
433
434 /*--------------------------------------------------------------------*//*!
435 * \brief Compute integer 'floor' of 'log2' for a positive integer.
436 * \param a Input value.
437 * \return floor(log2(a)).
438 *//*--------------------------------------------------------------------*/
deLog2Floor32(deInt32 a)439 DE_INLINE int deLog2Floor32 (deInt32 a)
440 {
441 DE_ASSERT(a > 0);
442 return 31 - deClz32((deUint32)a);
443 }
444
445 /*--------------------------------------------------------------------*//*!
446 * \brief Compute integer 'ceil' of 'log2' for a positive integer.
447 * \param a Input value.
448 * \return ceil(log2(a)).
449 *//*--------------------------------------------------------------------*/
deLog2Ceil32(deInt32 a)450 DE_INLINE int deLog2Ceil32 (deInt32 a)
451 {
452 int log2floor = deLog2Floor32(a);
453 if (deIsPowerOfTwo32(a))
454 return log2floor;
455 else
456 return log2floor+1;
457 }
458
459 /*--------------------------------------------------------------------*//*!
460 * \brief Compute the bit population count of an integer.
461 * \param a Input value.
462 * \return The number of one bits in the input.
463 *//*--------------------------------------------------------------------*/
dePop32(deUint32 a)464 DE_INLINE int dePop32 (deUint32 a)
465 {
466 deUint32 mask0 = 0x55555555; /* 1-bit values. */
467 deUint32 mask1 = 0x33333333; /* 2-bit values. */
468 deUint32 mask2 = 0x0f0f0f0f; /* 4-bit values. */
469 deUint32 mask3 = 0x00ff00ff; /* 8-bit values. */
470 deUint32 mask4 = 0x0000ffff; /* 16-bit values. */
471 deUint32 t = (deUint32)a;
472 t = (t & mask0) + ((t>>1) & mask0);
473 t = (t & mask1) + ((t>>2) & mask1);
474 t = (t & mask2) + ((t>>4) & mask2);
475 t = (t & mask3) + ((t>>8) & mask3);
476 t = (t & mask4) + (t>>16);
477 return (int)t;
478 }
479
dePop64(deUint64 a)480 DE_INLINE int dePop64 (deUint64 a)
481 {
482 return dePop32((deUint32)(a & 0xffffffffull)) + dePop32((deUint32)(a >> 32));
483 }
484
485 /*--------------------------------------------------------------------*//*!
486 * \brief Reverse bytes in 32-bit integer (for example MSB -> LSB).
487 * \param a Input value.
488 * \return The input with bytes reversed
489 *//*--------------------------------------------------------------------*/
deReverseBytes32(deUint32 v)490 DE_INLINE deUint32 deReverseBytes32 (deUint32 v)
491 {
492 deUint32 b0 = v << 24;
493 deUint32 b1 = (v & 0x0000ff00) << 8;
494 deUint32 b2 = (v & 0x00ff0000) >> 8;
495 deUint32 b3 = v >> 24;
496 return b0|b1|b2|b3;
497 }
498
499 /*--------------------------------------------------------------------*//*!
500 * \brief Reverse bytes in 16-bit integer (for example MSB -> LSB).
501 * \param a Input value.
502 * \return The input with bytes reversed
503 *//*--------------------------------------------------------------------*/
deReverseBytes16(deUint16 v)504 DE_INLINE deUint16 deReverseBytes16 (deUint16 v)
505 {
506 return (deUint16)((v << 8) | (v >> 8));
507 }
508
deSafeMul32(deInt32 a,deInt32 b)509 DE_INLINE deInt32 deSafeMul32 (deInt32 a, deInt32 b)
510 {
511 deInt32 res = a * b;
512 DE_ASSERT((deInt64)res == ((deInt64)a * (deInt64)b));
513 return res;
514 }
515
deSafeAdd32(deInt32 a,deInt32 b)516 DE_INLINE deInt32 deSafeAdd32 (deInt32 a, deInt32 b)
517 {
518 DE_ASSERT((deInt64)a + (deInt64)b == (deInt64)(a + b));
519 return (a + b);
520 }
521
deDivRoundUp32(deInt32 a,deInt32 b)522 DE_INLINE deInt32 deDivRoundUp32 (deInt32 a, deInt32 b)
523 {
524 return a/b + ((a%b) ? 1 : 0);
525 }
526
527 /* \todo [petri] Move to deInt64.h? */
528
deMulAsr32(deInt32 a,deInt32 b,int shift)529 DE_INLINE deInt32 deMulAsr32 (deInt32 a, deInt32 b, int shift)
530 {
531 return (deInt32)(((deInt64)a * (deInt64)b) >> shift);
532 }
533
deSafeMulAsr32(deInt32 a,deInt32 b,int shift)534 DE_INLINE deInt32 deSafeMulAsr32 (deInt32 a, deInt32 b, int shift)
535 {
536 deInt64 res = ((deInt64)a * (deInt64)b) >> shift;
537 DE_ASSERT(res == (deInt64)(deInt32)res);
538 return (deInt32)res;
539 }
540
deSafeMuluAsr32(deUint32 a,deUint32 b,int shift)541 DE_INLINE deUint32 deSafeMuluAsr32 (deUint32 a, deUint32 b, int shift)
542 {
543 deUint64 res = ((deUint64)a * (deUint64)b) >> shift;
544 DE_ASSERT(res == (deUint64)(deUint32)res);
545 return (deUint32)res;
546 }
547
deMul32_32_64(deInt32 a,deInt32 b)548 DE_INLINE deInt64 deMul32_32_64 (deInt32 a, deInt32 b)
549 {
550 return ((deInt64)a * (deInt64)b);
551 }
552
deAbs64(deInt64 a)553 DE_INLINE deInt64 deAbs64 (deInt64 a)
554 {
555 DE_ASSERT((deUint64) a != 0x8000000000000000LL);
556 return (a >= 0) ? a : -a;
557 }
558
deClz64(deUint64 a)559 DE_INLINE int deClz64 (deUint64 a)
560 {
561 if ((a >> 32) != 0)
562 return deClz32((deUint32)(a >> 32));
563 return deClz32((deUint32)a) + 32;
564 }
565
566 /* Common hash & compare functions. */
567
deInt32Hash(deInt32 a)568 DE_INLINE deUint32 deInt32Hash (deInt32 a)
569 {
570 /* From: http://www.concentric.net/~Ttwang/tech/inthash.htm */
571 deUint32 key = (deUint32)a;
572 key = (key ^ 61) ^ (key >> 16);
573 key = key + (key << 3);
574 key = key ^ (key >> 4);
575 key = key * 0x27d4eb2d; /* prime/odd constant */
576 key = key ^ (key >> 15);
577 return key;
578 }
579
deInt64Hash(deInt64 a)580 DE_INLINE deUint32 deInt64Hash (deInt64 a)
581 {
582 /* From: http://www.concentric.net/~Ttwang/tech/inthash.htm */
583 deUint64 key = (deUint64)a;
584 key = (~key) + (key << 21); /* key = (key << 21) - key - 1; */
585 key = key ^ (key >> 24);
586 key = (key + (key << 3)) + (key << 8); /* key * 265 */
587 key = key ^ (key >> 14);
588 key = (key + (key << 2)) + (key << 4); /* key * 21 */
589 key = key ^ (key >> 28);
590 key = key + (key << 31);
591 return (deUint32)key;
592 }
593
deInt16Hash(deInt16 v)594 DE_INLINE deUint32 deInt16Hash (deInt16 v) { return deInt32Hash(v); }
deUint16Hash(deUint16 v)595 DE_INLINE deUint32 deUint16Hash (deUint16 v) { return deInt32Hash((deInt32)v); }
deUint32Hash(deUint32 v)596 DE_INLINE deUint32 deUint32Hash (deUint32 v) { return deInt32Hash((deInt32)v); }
deUint64Hash(deUint64 v)597 DE_INLINE deUint32 deUint64Hash (deUint64 v) { return deInt64Hash((deInt64)v); }
598
deInt16Equal(deInt16 a,deInt16 b)599 DE_INLINE deBool deInt16Equal (deInt16 a, deInt16 b) { return (a == b); }
deUint16Equal(deUint16 a,deUint16 b)600 DE_INLINE deBool deUint16Equal (deUint16 a, deUint16 b) { return (a == b); }
deInt32Equal(deInt32 a,deInt32 b)601 DE_INLINE deBool deInt32Equal (deInt32 a, deInt32 b) { return (a == b); }
deUint32Equal(deUint32 a,deUint32 b)602 DE_INLINE deBool deUint32Equal (deUint32 a, deUint32 b) { return (a == b); }
deInt64Equal(deInt64 a,deInt64 b)603 DE_INLINE deBool deInt64Equal (deInt64 a, deInt64 b) { return (a == b); }
deUint64Equal(deUint64 a,deUint64 b)604 DE_INLINE deBool deUint64Equal (deUint64 a, deUint64 b) { return (a == b); }
605
dePointerHash(const void * ptr)606 DE_INLINE deUint32 dePointerHash (const void* ptr)
607 {
608 deUintptr val = (deUintptr)ptr;
609 #if (DE_PTR_SIZE == 4)
610 return deInt32Hash((int)val);
611 #elif (DE_PTR_SIZE == 8)
612 return deInt64Hash((deInt64)val);
613 #else
614 # error Unsupported pointer size.
615 #endif
616 }
617
dePointerEqual(const void * a,const void * b)618 DE_INLINE deBool dePointerEqual (const void* a, const void* b)
619 {
620 return (a == b);
621 }
622
623 /**
624 * \brief Modulo that generates the same sign as divisor and rounds toward
625 * negative infinity -- assuming c99 %-operator.
626 */
deInt32ModF(deInt32 n,deInt32 d)627 DE_INLINE deInt32 deInt32ModF (deInt32 n, deInt32 d)
628 {
629 deInt32 r = n%d;
630 if ((r > 0 && d < 0) || (r < 0 && d > 0)) r = r+d;
631 return r;
632 }
633
deInt64InInt32Range(deInt64 x)634 DE_INLINE deBool deInt64InInt32Range (deInt64 x)
635 {
636 return ((x >= (((deInt64)((deInt32)(-0x7FFFFFFF - 1))))) && (x <= ((1ll<<31)-1)));
637 }
638
639
deBitMask32(int leastSignificantBitNdx,int numBits)640 DE_INLINE deUint32 deBitMask32 (int leastSignificantBitNdx, int numBits)
641 {
642 DE_ASSERT(deInRange32(leastSignificantBitNdx, 0, 32));
643 DE_ASSERT(deInRange32(numBits, 0, 32));
644 DE_ASSERT(deInRange32(leastSignificantBitNdx+numBits, 0, 32));
645
646 if (numBits < 32 && leastSignificantBitNdx < 32)
647 return ((1u<<numBits)-1u) << (deUint32)leastSignificantBitNdx;
648 else if (numBits == 0 && leastSignificantBitNdx == 32)
649 return 0u;
650 else
651 {
652 DE_ASSERT(numBits == 32 && leastSignificantBitNdx == 0);
653 return 0xFFFFFFFFu;
654 }
655 }
656
deUintMaxValue32(int numBits)657 DE_INLINE deUint32 deUintMaxValue32 (int numBits)
658 {
659 DE_ASSERT(deInRange32(numBits, 1, 32));
660 if (numBits < 32)
661 return ((1u<<numBits)-1u);
662 else
663 return 0xFFFFFFFFu;
664 }
665
deIntMaxValue32(int numBits)666 DE_INLINE deInt32 deIntMaxValue32 (int numBits)
667 {
668 DE_ASSERT(deInRange32(numBits, 1, 32));
669 if (numBits < 32)
670 return ((deInt32)1 << (numBits - 1)) - 1;
671 else
672 {
673 /* avoid undefined behavior of int overflow when shifting */
674 return 0x7FFFFFFF;
675 }
676 }
677
deIntMinValue32(int numBits)678 DE_INLINE deInt32 deIntMinValue32 (int numBits)
679 {
680 DE_ASSERT(deInRange32(numBits, 1, 32));
681 if (numBits < 32)
682 return -((deInt32)1 << (numBits - 1));
683 else
684 {
685 /* avoid undefined behavior of int overflow when shifting */
686 return (deInt32)(-0x7FFFFFFF - 1);
687 }
688 }
689
deSignExtendTo32(deInt32 value,int numBits)690 DE_INLINE deInt32 deSignExtendTo32 (deInt32 value, int numBits)
691 {
692 DE_ASSERT(deInRange32(numBits, 1, 32));
693
694 if (numBits < 32)
695 {
696 deBool signSet = ((deUint32)value & (1u<<(numBits-1))) != 0;
697 deUint32 signMask = deBitMask32(numBits, 32-numBits);
698
699 DE_ASSERT(((deUint32)value & signMask) == 0u);
700
701 return (deInt32)((deUint32)value | (signSet ? signMask : 0u));
702 }
703 else
704 return value;
705 }
706
707 DE_END_EXTERN_C
708
709 #endif /* _DEINT32_H */
710