1 /* 2 * 3 * Copyright (c) 2011, Microsoft Corporation. 4 * 5 * This program is free software; you can redistribute it and/or modify it 6 * under the terms and conditions of the GNU General Public License, 7 * version 2, as published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 * more details. 13 * 14 * You should have received a copy of the GNU General Public License along with 15 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple 16 * Place - Suite 330, Boston, MA 02111-1307 USA. 17 * 18 * Authors: 19 * Haiyang Zhang <haiyangz@microsoft.com> 20 * Hank Janssen <hjanssen@microsoft.com> 21 * K. Y. Srinivasan <kys@microsoft.com> 22 * 23 */ 24 25 #ifndef _UAPI_HYPERV_H 26 #define _UAPI_HYPERV_H 27 28 #include <linux/uuid.h> 29 30 /* 31 * Framework version for util services. 32 */ 33 #define UTIL_FW_MINOR 0 34 35 #define UTIL_WS2K8_FW_MAJOR 1 36 #define UTIL_WS2K8_FW_VERSION (UTIL_WS2K8_FW_MAJOR << 16 | UTIL_FW_MINOR) 37 38 #define UTIL_FW_MAJOR 3 39 #define UTIL_FW_VERSION (UTIL_FW_MAJOR << 16 | UTIL_FW_MINOR) 40 41 42 /* 43 * Implementation of host controlled snapshot of the guest. 44 */ 45 46 #define VSS_OP_REGISTER 128 47 48 /* 49 Daemon code with full handshake support. 50 */ 51 #define VSS_OP_REGISTER1 129 52 53 enum hv_vss_op { 54 VSS_OP_CREATE = 0, 55 VSS_OP_DELETE, 56 VSS_OP_HOT_BACKUP, 57 VSS_OP_GET_DM_INFO, 58 VSS_OP_BU_COMPLETE, 59 /* 60 * Following operations are only supported with IC version >= 5.0 61 */ 62 VSS_OP_FREEZE, /* Freeze the file systems in the VM */ 63 VSS_OP_THAW, /* Unfreeze the file systems */ 64 VSS_OP_AUTO_RECOVER, 65 VSS_OP_COUNT /* Number of operations, must be last */ 66 }; 67 68 69 /* 70 * Header for all VSS messages. 71 */ 72 struct hv_vss_hdr { 73 __u8 operation; 74 __u8 reserved[7]; 75 } __attribute__((packed)); 76 77 78 /* 79 * Flag values for the hv_vss_check_feature. Linux supports only 80 * one value. 81 */ 82 #define VSS_HBU_NO_AUTO_RECOVERY 0x00000005 83 84 struct hv_vss_check_feature { 85 __u32 flags; 86 } __attribute__((packed)); 87 88 struct hv_vss_check_dm_info { 89 __u32 flags; 90 } __attribute__((packed)); 91 92 struct hv_vss_msg { 93 union { 94 struct hv_vss_hdr vss_hdr; 95 int error; 96 }; 97 union { 98 struct hv_vss_check_feature vss_cf; 99 struct hv_vss_check_dm_info dm_info; 100 }; 101 } __attribute__((packed)); 102 103 /* 104 * Implementation of a host to guest copy facility. 105 */ 106 107 #define FCOPY_VERSION_0 0 108 #define FCOPY_VERSION_1 1 109 #define FCOPY_CURRENT_VERSION FCOPY_VERSION_1 110 #define W_MAX_PATH 260 111 112 enum hv_fcopy_op { 113 START_FILE_COPY = 0, 114 WRITE_TO_FILE, 115 COMPLETE_FCOPY, 116 CANCEL_FCOPY, 117 }; 118 119 struct hv_fcopy_hdr { 120 __u32 operation; 121 uuid_le service_id0; /* currently unused */ 122 uuid_le service_id1; /* currently unused */ 123 } __attribute__((packed)); 124 125 #define OVER_WRITE 0x1 126 #define CREATE_PATH 0x2 127 128 struct hv_start_fcopy { 129 struct hv_fcopy_hdr hdr; 130 __u16 file_name[W_MAX_PATH]; 131 __u16 path_name[W_MAX_PATH]; 132 __u32 copy_flags; 133 __u64 file_size; 134 } __attribute__((packed)); 135 136 /* 137 * The file is chunked into fragments. 138 */ 139 #define DATA_FRAGMENT (6 * 1024) 140 141 struct hv_do_fcopy { 142 struct hv_fcopy_hdr hdr; 143 __u32 pad; 144 __u64 offset; 145 __u32 size; 146 __u8 data[DATA_FRAGMENT]; 147 } __attribute__((packed)); 148 149 /* 150 * An implementation of HyperV key value pair (KVP) functionality for Linux. 151 * 152 * 153 * Copyright (C) 2010, Novell, Inc. 154 * Author : K. Y. Srinivasan <ksrinivasan@novell.com> 155 * 156 */ 157 158 /* 159 * Maximum value size - used for both key names and value data, and includes 160 * any applicable NULL terminators. 161 * 162 * Note: This limit is somewhat arbitrary, but falls easily within what is 163 * supported for all native guests (back to Win 2000) and what is reasonable 164 * for the IC KVP exchange functionality. Note that Windows Me/98/95 are 165 * limited to 255 character key names. 166 * 167 * MSDN recommends not storing data values larger than 2048 bytes in the 168 * registry. 169 * 170 * Note: This value is used in defining the KVP exchange message - this value 171 * cannot be modified without affecting the message size and compatibility. 172 */ 173 174 /* 175 * bytes, including any null terminators 176 */ 177 #define HV_KVP_EXCHANGE_MAX_VALUE_SIZE (2048) 178 179 180 /* 181 * Maximum key size - the registry limit for the length of an entry name 182 * is 256 characters, including the null terminator 183 */ 184 185 #define HV_KVP_EXCHANGE_MAX_KEY_SIZE (512) 186 187 /* 188 * In Linux, we implement the KVP functionality in two components: 189 * 1) The kernel component which is packaged as part of the hv_utils driver 190 * is responsible for communicating with the host and responsible for 191 * implementing the host/guest protocol. 2) A user level daemon that is 192 * responsible for data gathering. 193 * 194 * Host/Guest Protocol: The host iterates over an index and expects the guest 195 * to assign a key name to the index and also return the value corresponding to 196 * the key. The host will have atmost one KVP transaction outstanding at any 197 * given point in time. The host side iteration stops when the guest returns 198 * an error. Microsoft has specified the following mapping of key names to 199 * host specified index: 200 * 201 * Index Key Name 202 * 0 FullyQualifiedDomainName 203 * 1 IntegrationServicesVersion 204 * 2 NetworkAddressIPv4 205 * 3 NetworkAddressIPv6 206 * 4 OSBuildNumber 207 * 5 OSName 208 * 6 OSMajorVersion 209 * 7 OSMinorVersion 210 * 8 OSVersion 211 * 9 ProcessorArchitecture 212 * 213 * The Windows host expects the Key Name and Key Value to be encoded in utf16. 214 * 215 * Guest Kernel/KVP Daemon Protocol: As noted earlier, we implement all of the 216 * data gathering functionality in a user mode daemon. The user level daemon 217 * is also responsible for binding the key name to the index as well. The 218 * kernel and user-level daemon communicate using a connector channel. 219 * 220 * The user mode component first registers with the 221 * the kernel component. Subsequently, the kernel component requests, data 222 * for the specified keys. In response to this message the user mode component 223 * fills in the value corresponding to the specified key. We overload the 224 * sequence field in the cn_msg header to define our KVP message types. 225 * 226 * 227 * The kernel component simply acts as a conduit for communication between the 228 * Windows host and the user-level daemon. The kernel component passes up the 229 * index received from the Host to the user-level daemon. If the index is 230 * valid (supported), the corresponding key as well as its 231 * value (both are strings) is returned. If the index is invalid 232 * (not supported), a NULL key string is returned. 233 */ 234 235 236 /* 237 * Registry value types. 238 */ 239 240 #define REG_SZ 1 241 #define REG_U32 4 242 #define REG_U64 8 243 244 /* 245 * As we look at expanding the KVP functionality to include 246 * IP injection functionality, we need to maintain binary 247 * compatibility with older daemons. 248 * 249 * The KVP opcodes are defined by the host and it was unfortunate 250 * that I chose to treat the registration operation as part of the 251 * KVP operations defined by the host. 252 * Here is the level of compatibility 253 * (between the user level daemon and the kernel KVP driver) that we 254 * will implement: 255 * 256 * An older daemon will always be supported on a newer driver. 257 * A given user level daemon will require a minimal version of the 258 * kernel driver. 259 * If we cannot handle the version differences, we will fail gracefully 260 * (this can happen when we have a user level daemon that is more 261 * advanced than the KVP driver. 262 * 263 * We will use values used in this handshake for determining if we have 264 * workable user level daemon and the kernel driver. We begin by taking the 265 * registration opcode out of the KVP opcode namespace. We will however, 266 * maintain compatibility with the existing user-level daemon code. 267 */ 268 269 /* 270 * Daemon code not supporting IP injection (legacy daemon). 271 */ 272 273 #define KVP_OP_REGISTER 4 274 275 /* 276 * Daemon code supporting IP injection. 277 * The KVP opcode field is used to communicate the 278 * registration information; so define a namespace that 279 * will be distinct from the host defined KVP opcode. 280 */ 281 282 #define KVP_OP_REGISTER1 100 283 284 enum hv_kvp_exchg_op { 285 KVP_OP_GET = 0, 286 KVP_OP_SET, 287 KVP_OP_DELETE, 288 KVP_OP_ENUMERATE, 289 KVP_OP_GET_IP_INFO, 290 KVP_OP_SET_IP_INFO, 291 KVP_OP_COUNT /* Number of operations, must be last. */ 292 }; 293 294 enum hv_kvp_exchg_pool { 295 KVP_POOL_EXTERNAL = 0, 296 KVP_POOL_GUEST, 297 KVP_POOL_AUTO, 298 KVP_POOL_AUTO_EXTERNAL, 299 KVP_POOL_AUTO_INTERNAL, 300 KVP_POOL_COUNT /* Number of pools, must be last. */ 301 }; 302 303 /* 304 * Some Hyper-V status codes. 305 */ 306 307 #define HV_S_OK 0x00000000 308 #define HV_E_FAIL 0x80004005 309 #define HV_S_CONT 0x80070103 310 #define HV_ERROR_NOT_SUPPORTED 0x80070032 311 #define HV_ERROR_MACHINE_LOCKED 0x800704F7 312 #define HV_ERROR_DEVICE_NOT_CONNECTED 0x8007048F 313 #define HV_INVALIDARG 0x80070057 314 #define HV_GUID_NOTFOUND 0x80041002 315 #define HV_ERROR_ALREADY_EXISTS 0x80070050 316 #define HV_ERROR_DISK_FULL 0x80070070 317 318 #define ADDR_FAMILY_NONE 0x00 319 #define ADDR_FAMILY_IPV4 0x01 320 #define ADDR_FAMILY_IPV6 0x02 321 322 #define MAX_ADAPTER_ID_SIZE 128 323 #define MAX_IP_ADDR_SIZE 1024 324 #define MAX_GATEWAY_SIZE 512 325 326 327 struct hv_kvp_ipaddr_value { 328 __u16 adapter_id[MAX_ADAPTER_ID_SIZE]; 329 __u8 addr_family; 330 __u8 dhcp_enabled; 331 __u16 ip_addr[MAX_IP_ADDR_SIZE]; 332 __u16 sub_net[MAX_IP_ADDR_SIZE]; 333 __u16 gate_way[MAX_GATEWAY_SIZE]; 334 __u16 dns_addr[MAX_IP_ADDR_SIZE]; 335 } __attribute__((packed)); 336 337 338 struct hv_kvp_hdr { 339 __u8 operation; 340 __u8 pool; 341 __u16 pad; 342 } __attribute__((packed)); 343 344 struct hv_kvp_exchg_msg_value { 345 __u32 value_type; 346 __u32 key_size; 347 __u32 value_size; 348 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 349 union { 350 __u8 value[HV_KVP_EXCHANGE_MAX_VALUE_SIZE]; 351 __u32 value_u32; 352 __u64 value_u64; 353 }; 354 } __attribute__((packed)); 355 356 struct hv_kvp_msg_enumerate { 357 __u32 index; 358 struct hv_kvp_exchg_msg_value data; 359 } __attribute__((packed)); 360 361 struct hv_kvp_msg_get { 362 struct hv_kvp_exchg_msg_value data; 363 }; 364 365 struct hv_kvp_msg_set { 366 struct hv_kvp_exchg_msg_value data; 367 }; 368 369 struct hv_kvp_msg_delete { 370 __u32 key_size; 371 __u8 key[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 372 }; 373 374 struct hv_kvp_register { 375 __u8 version[HV_KVP_EXCHANGE_MAX_KEY_SIZE]; 376 }; 377 378 struct hv_kvp_msg { 379 union { 380 struct hv_kvp_hdr kvp_hdr; 381 int error; 382 }; 383 union { 384 struct hv_kvp_msg_get kvp_get; 385 struct hv_kvp_msg_set kvp_set; 386 struct hv_kvp_msg_delete kvp_delete; 387 struct hv_kvp_msg_enumerate kvp_enum_data; 388 struct hv_kvp_ipaddr_value kvp_ip_val; 389 struct hv_kvp_register kvp_register; 390 } body; 391 } __attribute__((packed)); 392 393 struct hv_kvp_ip_msg { 394 __u8 operation; 395 __u8 pool; 396 struct hv_kvp_ipaddr_value kvp_ip_val; 397 } __attribute__((packed)); 398 399 #endif /* _UAPI_HYPERV_H */ 400