1 //=== RecordLayoutBuilder.cpp - Helper class for building record layouts ---==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "clang/AST/RecordLayout.h"
11 #include "clang/AST/ASTContext.h"
12 #include "clang/AST/Attr.h"
13 #include "clang/AST/CXXInheritance.h"
14 #include "clang/AST/Decl.h"
15 #include "clang/AST/DeclCXX.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/Support/Format.h"
22 #include "llvm/Support/MathExtras.h"
23
24 using namespace clang;
25
26 namespace {
27
28 /// BaseSubobjectInfo - Represents a single base subobject in a complete class.
29 /// For a class hierarchy like
30 ///
31 /// class A { };
32 /// class B : A { };
33 /// class C : A, B { };
34 ///
35 /// The BaseSubobjectInfo graph for C will have three BaseSubobjectInfo
36 /// instances, one for B and two for A.
37 ///
38 /// If a base is virtual, it will only have one BaseSubobjectInfo allocated.
39 struct BaseSubobjectInfo {
40 /// Class - The class for this base info.
41 const CXXRecordDecl *Class;
42
43 /// IsVirtual - Whether the BaseInfo represents a virtual base or not.
44 bool IsVirtual;
45
46 /// Bases - Information about the base subobjects.
47 SmallVector<BaseSubobjectInfo*, 4> Bases;
48
49 /// PrimaryVirtualBaseInfo - Holds the base info for the primary virtual base
50 /// of this base info (if one exists).
51 BaseSubobjectInfo *PrimaryVirtualBaseInfo;
52
53 // FIXME: Document.
54 const BaseSubobjectInfo *Derived;
55 };
56
57 /// \brief Externally provided layout. Typically used when the AST source, such
58 /// as DWARF, lacks all the information that was available at compile time, such
59 /// as alignment attributes on fields and pragmas in effect.
60 struct ExternalLayout {
ExternalLayout__anona2f417160111::ExternalLayout61 ExternalLayout() : Size(0), Align(0) {}
62
63 /// \brief Overall record size in bits.
64 uint64_t Size;
65
66 /// \brief Overall record alignment in bits.
67 uint64_t Align;
68
69 /// \brief Record field offsets in bits.
70 llvm::DenseMap<const FieldDecl *, uint64_t> FieldOffsets;
71
72 /// \brief Direct, non-virtual base offsets.
73 llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsets;
74
75 /// \brief Virtual base offsets.
76 llvm::DenseMap<const CXXRecordDecl *, CharUnits> VirtualBaseOffsets;
77
78 /// Get the offset of the given field. The external source must provide
79 /// entries for all fields in the record.
getExternalFieldOffset__anona2f417160111::ExternalLayout80 uint64_t getExternalFieldOffset(const FieldDecl *FD) {
81 assert(FieldOffsets.count(FD) &&
82 "Field does not have an external offset");
83 return FieldOffsets[FD];
84 }
85
getExternalNVBaseOffset__anona2f417160111::ExternalLayout86 bool getExternalNVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
87 auto Known = BaseOffsets.find(RD);
88 if (Known == BaseOffsets.end())
89 return false;
90 BaseOffset = Known->second;
91 return true;
92 }
93
getExternalVBaseOffset__anona2f417160111::ExternalLayout94 bool getExternalVBaseOffset(const CXXRecordDecl *RD, CharUnits &BaseOffset) {
95 auto Known = VirtualBaseOffsets.find(RD);
96 if (Known == VirtualBaseOffsets.end())
97 return false;
98 BaseOffset = Known->second;
99 return true;
100 }
101 };
102
103 /// EmptySubobjectMap - Keeps track of which empty subobjects exist at different
104 /// offsets while laying out a C++ class.
105 class EmptySubobjectMap {
106 const ASTContext &Context;
107 uint64_t CharWidth;
108
109 /// Class - The class whose empty entries we're keeping track of.
110 const CXXRecordDecl *Class;
111
112 /// EmptyClassOffsets - A map from offsets to empty record decls.
113 typedef llvm::TinyPtrVector<const CXXRecordDecl *> ClassVectorTy;
114 typedef llvm::DenseMap<CharUnits, ClassVectorTy> EmptyClassOffsetsMapTy;
115 EmptyClassOffsetsMapTy EmptyClassOffsets;
116
117 /// MaxEmptyClassOffset - The highest offset known to contain an empty
118 /// base subobject.
119 CharUnits MaxEmptyClassOffset;
120
121 /// ComputeEmptySubobjectSizes - Compute the size of the largest base or
122 /// member subobject that is empty.
123 void ComputeEmptySubobjectSizes();
124
125 void AddSubobjectAtOffset(const CXXRecordDecl *RD, CharUnits Offset);
126
127 void UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
128 CharUnits Offset, bool PlacingEmptyBase);
129
130 void UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
131 const CXXRecordDecl *Class,
132 CharUnits Offset);
133 void UpdateEmptyFieldSubobjects(const FieldDecl *FD, CharUnits Offset);
134
135 /// AnyEmptySubobjectsBeyondOffset - Returns whether there are any empty
136 /// subobjects beyond the given offset.
AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const137 bool AnyEmptySubobjectsBeyondOffset(CharUnits Offset) const {
138 return Offset <= MaxEmptyClassOffset;
139 }
140
141 CharUnits
getFieldOffset(const ASTRecordLayout & Layout,unsigned FieldNo) const142 getFieldOffset(const ASTRecordLayout &Layout, unsigned FieldNo) const {
143 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo);
144 assert(FieldOffset % CharWidth == 0 &&
145 "Field offset not at char boundary!");
146
147 return Context.toCharUnitsFromBits(FieldOffset);
148 }
149
150 protected:
151 bool CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
152 CharUnits Offset) const;
153
154 bool CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
155 CharUnits Offset);
156
157 bool CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
158 const CXXRecordDecl *Class,
159 CharUnits Offset) const;
160 bool CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
161 CharUnits Offset) const;
162
163 public:
164 /// This holds the size of the largest empty subobject (either a base
165 /// or a member). Will be zero if the record being built doesn't contain
166 /// any empty classes.
167 CharUnits SizeOfLargestEmptySubobject;
168
EmptySubobjectMap(const ASTContext & Context,const CXXRecordDecl * Class)169 EmptySubobjectMap(const ASTContext &Context, const CXXRecordDecl *Class)
170 : Context(Context), CharWidth(Context.getCharWidth()), Class(Class) {
171 ComputeEmptySubobjectSizes();
172 }
173
174 /// CanPlaceBaseAtOffset - Return whether the given base class can be placed
175 /// at the given offset.
176 /// Returns false if placing the record will result in two components
177 /// (direct or indirect) of the same type having the same offset.
178 bool CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
179 CharUnits Offset);
180
181 /// CanPlaceFieldAtOffset - Return whether a field can be placed at the given
182 /// offset.
183 bool CanPlaceFieldAtOffset(const FieldDecl *FD, CharUnits Offset);
184 };
185
ComputeEmptySubobjectSizes()186 void EmptySubobjectMap::ComputeEmptySubobjectSizes() {
187 // Check the bases.
188 for (const CXXBaseSpecifier &Base : Class->bases()) {
189 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
190
191 CharUnits EmptySize;
192 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
193 if (BaseDecl->isEmpty()) {
194 // If the class decl is empty, get its size.
195 EmptySize = Layout.getSize();
196 } else {
197 // Otherwise, we get the largest empty subobject for the decl.
198 EmptySize = Layout.getSizeOfLargestEmptySubobject();
199 }
200
201 if (EmptySize > SizeOfLargestEmptySubobject)
202 SizeOfLargestEmptySubobject = EmptySize;
203 }
204
205 // Check the fields.
206 for (const FieldDecl *FD : Class->fields()) {
207 const RecordType *RT =
208 Context.getBaseElementType(FD->getType())->getAs<RecordType>();
209
210 // We only care about record types.
211 if (!RT)
212 continue;
213
214 CharUnits EmptySize;
215 const CXXRecordDecl *MemberDecl = RT->getAsCXXRecordDecl();
216 const ASTRecordLayout &Layout = Context.getASTRecordLayout(MemberDecl);
217 if (MemberDecl->isEmpty()) {
218 // If the class decl is empty, get its size.
219 EmptySize = Layout.getSize();
220 } else {
221 // Otherwise, we get the largest empty subobject for the decl.
222 EmptySize = Layout.getSizeOfLargestEmptySubobject();
223 }
224
225 if (EmptySize > SizeOfLargestEmptySubobject)
226 SizeOfLargestEmptySubobject = EmptySize;
227 }
228 }
229
230 bool
CanPlaceSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset) const231 EmptySubobjectMap::CanPlaceSubobjectAtOffset(const CXXRecordDecl *RD,
232 CharUnits Offset) const {
233 // We only need to check empty bases.
234 if (!RD->isEmpty())
235 return true;
236
237 EmptyClassOffsetsMapTy::const_iterator I = EmptyClassOffsets.find(Offset);
238 if (I == EmptyClassOffsets.end())
239 return true;
240
241 const ClassVectorTy &Classes = I->second;
242 if (std::find(Classes.begin(), Classes.end(), RD) == Classes.end())
243 return true;
244
245 // There is already an empty class of the same type at this offset.
246 return false;
247 }
248
AddSubobjectAtOffset(const CXXRecordDecl * RD,CharUnits Offset)249 void EmptySubobjectMap::AddSubobjectAtOffset(const CXXRecordDecl *RD,
250 CharUnits Offset) {
251 // We only care about empty bases.
252 if (!RD->isEmpty())
253 return;
254
255 // If we have empty structures inside a union, we can assign both
256 // the same offset. Just avoid pushing them twice in the list.
257 ClassVectorTy &Classes = EmptyClassOffsets[Offset];
258 if (std::find(Classes.begin(), Classes.end(), RD) != Classes.end())
259 return;
260
261 Classes.push_back(RD);
262
263 // Update the empty class offset.
264 if (Offset > MaxEmptyClassOffset)
265 MaxEmptyClassOffset = Offset;
266 }
267
268 bool
CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)269 EmptySubobjectMap::CanPlaceBaseSubobjectAtOffset(const BaseSubobjectInfo *Info,
270 CharUnits Offset) {
271 // We don't have to keep looking past the maximum offset that's known to
272 // contain an empty class.
273 if (!AnyEmptySubobjectsBeyondOffset(Offset))
274 return true;
275
276 if (!CanPlaceSubobjectAtOffset(Info->Class, Offset))
277 return false;
278
279 // Traverse all non-virtual bases.
280 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
281 for (const BaseSubobjectInfo *Base : Info->Bases) {
282 if (Base->IsVirtual)
283 continue;
284
285 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
286
287 if (!CanPlaceBaseSubobjectAtOffset(Base, BaseOffset))
288 return false;
289 }
290
291 if (Info->PrimaryVirtualBaseInfo) {
292 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
293
294 if (Info == PrimaryVirtualBaseInfo->Derived) {
295 if (!CanPlaceBaseSubobjectAtOffset(PrimaryVirtualBaseInfo, Offset))
296 return false;
297 }
298 }
299
300 // Traverse all member variables.
301 unsigned FieldNo = 0;
302 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
303 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
304 if (I->isBitField())
305 continue;
306
307 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
308 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
309 return false;
310 }
311
312 return true;
313 }
314
UpdateEmptyBaseSubobjects(const BaseSubobjectInfo * Info,CharUnits Offset,bool PlacingEmptyBase)315 void EmptySubobjectMap::UpdateEmptyBaseSubobjects(const BaseSubobjectInfo *Info,
316 CharUnits Offset,
317 bool PlacingEmptyBase) {
318 if (!PlacingEmptyBase && Offset >= SizeOfLargestEmptySubobject) {
319 // We know that the only empty subobjects that can conflict with empty
320 // subobject of non-empty bases, are empty bases that can be placed at
321 // offset zero. Because of this, we only need to keep track of empty base
322 // subobjects with offsets less than the size of the largest empty
323 // subobject for our class.
324 return;
325 }
326
327 AddSubobjectAtOffset(Info->Class, Offset);
328
329 // Traverse all non-virtual bases.
330 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
331 for (const BaseSubobjectInfo *Base : Info->Bases) {
332 if (Base->IsVirtual)
333 continue;
334
335 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
336 UpdateEmptyBaseSubobjects(Base, BaseOffset, PlacingEmptyBase);
337 }
338
339 if (Info->PrimaryVirtualBaseInfo) {
340 BaseSubobjectInfo *PrimaryVirtualBaseInfo = Info->PrimaryVirtualBaseInfo;
341
342 if (Info == PrimaryVirtualBaseInfo->Derived)
343 UpdateEmptyBaseSubobjects(PrimaryVirtualBaseInfo, Offset,
344 PlacingEmptyBase);
345 }
346
347 // Traverse all member variables.
348 unsigned FieldNo = 0;
349 for (CXXRecordDecl::field_iterator I = Info->Class->field_begin(),
350 E = Info->Class->field_end(); I != E; ++I, ++FieldNo) {
351 if (I->isBitField())
352 continue;
353
354 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
355 UpdateEmptyFieldSubobjects(*I, FieldOffset);
356 }
357 }
358
CanPlaceBaseAtOffset(const BaseSubobjectInfo * Info,CharUnits Offset)359 bool EmptySubobjectMap::CanPlaceBaseAtOffset(const BaseSubobjectInfo *Info,
360 CharUnits Offset) {
361 // If we know this class doesn't have any empty subobjects we don't need to
362 // bother checking.
363 if (SizeOfLargestEmptySubobject.isZero())
364 return true;
365
366 if (!CanPlaceBaseSubobjectAtOffset(Info, Offset))
367 return false;
368
369 // We are able to place the base at this offset. Make sure to update the
370 // empty base subobject map.
371 UpdateEmptyBaseSubobjects(Info, Offset, Info->Class->isEmpty());
372 return true;
373 }
374
375 bool
CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset) const376 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const CXXRecordDecl *RD,
377 const CXXRecordDecl *Class,
378 CharUnits Offset) const {
379 // We don't have to keep looking past the maximum offset that's known to
380 // contain an empty class.
381 if (!AnyEmptySubobjectsBeyondOffset(Offset))
382 return true;
383
384 if (!CanPlaceSubobjectAtOffset(RD, Offset))
385 return false;
386
387 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
388
389 // Traverse all non-virtual bases.
390 for (const CXXBaseSpecifier &Base : RD->bases()) {
391 if (Base.isVirtual())
392 continue;
393
394 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
395
396 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
397 if (!CanPlaceFieldSubobjectAtOffset(BaseDecl, Class, BaseOffset))
398 return false;
399 }
400
401 if (RD == Class) {
402 // This is the most derived class, traverse virtual bases as well.
403 for (const CXXBaseSpecifier &Base : RD->vbases()) {
404 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
405
406 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
407 if (!CanPlaceFieldSubobjectAtOffset(VBaseDecl, Class, VBaseOffset))
408 return false;
409 }
410 }
411
412 // Traverse all member variables.
413 unsigned FieldNo = 0;
414 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
415 I != E; ++I, ++FieldNo) {
416 if (I->isBitField())
417 continue;
418
419 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
420
421 if (!CanPlaceFieldSubobjectAtOffset(*I, FieldOffset))
422 return false;
423 }
424
425 return true;
426 }
427
428 bool
CanPlaceFieldSubobjectAtOffset(const FieldDecl * FD,CharUnits Offset) const429 EmptySubobjectMap::CanPlaceFieldSubobjectAtOffset(const FieldDecl *FD,
430 CharUnits Offset) const {
431 // We don't have to keep looking past the maximum offset that's known to
432 // contain an empty class.
433 if (!AnyEmptySubobjectsBeyondOffset(Offset))
434 return true;
435
436 QualType T = FD->getType();
437 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
438 return CanPlaceFieldSubobjectAtOffset(RD, RD, Offset);
439
440 // If we have an array type we need to look at every element.
441 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
442 QualType ElemTy = Context.getBaseElementType(AT);
443 const RecordType *RT = ElemTy->getAs<RecordType>();
444 if (!RT)
445 return true;
446
447 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
448 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
449
450 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
451 CharUnits ElementOffset = Offset;
452 for (uint64_t I = 0; I != NumElements; ++I) {
453 // We don't have to keep looking past the maximum offset that's known to
454 // contain an empty class.
455 if (!AnyEmptySubobjectsBeyondOffset(ElementOffset))
456 return true;
457
458 if (!CanPlaceFieldSubobjectAtOffset(RD, RD, ElementOffset))
459 return false;
460
461 ElementOffset += Layout.getSize();
462 }
463 }
464
465 return true;
466 }
467
468 bool
CanPlaceFieldAtOffset(const FieldDecl * FD,CharUnits Offset)469 EmptySubobjectMap::CanPlaceFieldAtOffset(const FieldDecl *FD,
470 CharUnits Offset) {
471 if (!CanPlaceFieldSubobjectAtOffset(FD, Offset))
472 return false;
473
474 // We are able to place the member variable at this offset.
475 // Make sure to update the empty base subobject map.
476 UpdateEmptyFieldSubobjects(FD, Offset);
477 return true;
478 }
479
UpdateEmptyFieldSubobjects(const CXXRecordDecl * RD,const CXXRecordDecl * Class,CharUnits Offset)480 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const CXXRecordDecl *RD,
481 const CXXRecordDecl *Class,
482 CharUnits Offset) {
483 // We know that the only empty subobjects that can conflict with empty
484 // field subobjects are subobjects of empty bases that can be placed at offset
485 // zero. Because of this, we only need to keep track of empty field
486 // subobjects with offsets less than the size of the largest empty
487 // subobject for our class.
488 if (Offset >= SizeOfLargestEmptySubobject)
489 return;
490
491 AddSubobjectAtOffset(RD, Offset);
492
493 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
494
495 // Traverse all non-virtual bases.
496 for (const CXXBaseSpecifier &Base : RD->bases()) {
497 if (Base.isVirtual())
498 continue;
499
500 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
501
502 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(BaseDecl);
503 UpdateEmptyFieldSubobjects(BaseDecl, Class, BaseOffset);
504 }
505
506 if (RD == Class) {
507 // This is the most derived class, traverse virtual bases as well.
508 for (const CXXBaseSpecifier &Base : RD->vbases()) {
509 const CXXRecordDecl *VBaseDecl = Base.getType()->getAsCXXRecordDecl();
510
511 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBaseDecl);
512 UpdateEmptyFieldSubobjects(VBaseDecl, Class, VBaseOffset);
513 }
514 }
515
516 // Traverse all member variables.
517 unsigned FieldNo = 0;
518 for (CXXRecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
519 I != E; ++I, ++FieldNo) {
520 if (I->isBitField())
521 continue;
522
523 CharUnits FieldOffset = Offset + getFieldOffset(Layout, FieldNo);
524
525 UpdateEmptyFieldSubobjects(*I, FieldOffset);
526 }
527 }
528
UpdateEmptyFieldSubobjects(const FieldDecl * FD,CharUnits Offset)529 void EmptySubobjectMap::UpdateEmptyFieldSubobjects(const FieldDecl *FD,
530 CharUnits Offset) {
531 QualType T = FD->getType();
532 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) {
533 UpdateEmptyFieldSubobjects(RD, RD, Offset);
534 return;
535 }
536
537 // If we have an array type we need to update every element.
538 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(T)) {
539 QualType ElemTy = Context.getBaseElementType(AT);
540 const RecordType *RT = ElemTy->getAs<RecordType>();
541 if (!RT)
542 return;
543
544 const CXXRecordDecl *RD = RT->getAsCXXRecordDecl();
545 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
546
547 uint64_t NumElements = Context.getConstantArrayElementCount(AT);
548 CharUnits ElementOffset = Offset;
549
550 for (uint64_t I = 0; I != NumElements; ++I) {
551 // We know that the only empty subobjects that can conflict with empty
552 // field subobjects are subobjects of empty bases that can be placed at
553 // offset zero. Because of this, we only need to keep track of empty field
554 // subobjects with offsets less than the size of the largest empty
555 // subobject for our class.
556 if (ElementOffset >= SizeOfLargestEmptySubobject)
557 return;
558
559 UpdateEmptyFieldSubobjects(RD, RD, ElementOffset);
560 ElementOffset += Layout.getSize();
561 }
562 }
563 }
564
565 typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> ClassSetTy;
566
567 class ItaniumRecordLayoutBuilder {
568 protected:
569 // FIXME: Remove this and make the appropriate fields public.
570 friend class clang::ASTContext;
571
572 const ASTContext &Context;
573
574 EmptySubobjectMap *EmptySubobjects;
575
576 /// Size - The current size of the record layout.
577 uint64_t Size;
578
579 /// Alignment - The current alignment of the record layout.
580 CharUnits Alignment;
581
582 /// \brief The alignment if attribute packed is not used.
583 CharUnits UnpackedAlignment;
584
585 SmallVector<uint64_t, 16> FieldOffsets;
586
587 /// \brief Whether the external AST source has provided a layout for this
588 /// record.
589 unsigned UseExternalLayout : 1;
590
591 /// \brief Whether we need to infer alignment, even when we have an
592 /// externally-provided layout.
593 unsigned InferAlignment : 1;
594
595 /// Packed - Whether the record is packed or not.
596 unsigned Packed : 1;
597
598 unsigned IsUnion : 1;
599
600 unsigned IsMac68kAlign : 1;
601
602 unsigned IsMsStruct : 1;
603
604 /// UnfilledBitsInLastUnit - If the last field laid out was a bitfield,
605 /// this contains the number of bits in the last unit that can be used for
606 /// an adjacent bitfield if necessary. The unit in question is usually
607 /// a byte, but larger units are used if IsMsStruct.
608 unsigned char UnfilledBitsInLastUnit;
609 /// LastBitfieldTypeSize - If IsMsStruct, represents the size of the type
610 /// of the previous field if it was a bitfield.
611 unsigned char LastBitfieldTypeSize;
612
613 /// MaxFieldAlignment - The maximum allowed field alignment. This is set by
614 /// #pragma pack.
615 CharUnits MaxFieldAlignment;
616
617 /// DataSize - The data size of the record being laid out.
618 uint64_t DataSize;
619
620 CharUnits NonVirtualSize;
621 CharUnits NonVirtualAlignment;
622
623 /// PrimaryBase - the primary base class (if one exists) of the class
624 /// we're laying out.
625 const CXXRecordDecl *PrimaryBase;
626
627 /// PrimaryBaseIsVirtual - Whether the primary base of the class we're laying
628 /// out is virtual.
629 bool PrimaryBaseIsVirtual;
630
631 /// HasOwnVFPtr - Whether the class provides its own vtable/vftbl
632 /// pointer, as opposed to inheriting one from a primary base class.
633 bool HasOwnVFPtr;
634
635 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
636
637 /// Bases - base classes and their offsets in the record.
638 BaseOffsetsMapTy Bases;
639
640 // VBases - virtual base classes and their offsets in the record.
641 ASTRecordLayout::VBaseOffsetsMapTy VBases;
642
643 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
644 /// primary base classes for some other direct or indirect base class.
645 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
646
647 /// FirstNearlyEmptyVBase - The first nearly empty virtual base class in
648 /// inheritance graph order. Used for determining the primary base class.
649 const CXXRecordDecl *FirstNearlyEmptyVBase;
650
651 /// VisitedVirtualBases - A set of all the visited virtual bases, used to
652 /// avoid visiting virtual bases more than once.
653 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases;
654
655 /// Valid if UseExternalLayout is true.
656 ExternalLayout External;
657
ItaniumRecordLayoutBuilder(const ASTContext & Context,EmptySubobjectMap * EmptySubobjects)658 ItaniumRecordLayoutBuilder(const ASTContext &Context,
659 EmptySubobjectMap *EmptySubobjects)
660 : Context(Context), EmptySubobjects(EmptySubobjects), Size(0),
661 Alignment(CharUnits::One()), UnpackedAlignment(CharUnits::One()),
662 UseExternalLayout(false), InferAlignment(false), Packed(false),
663 IsUnion(false), IsMac68kAlign(false), IsMsStruct(false),
664 UnfilledBitsInLastUnit(0), LastBitfieldTypeSize(0),
665 MaxFieldAlignment(CharUnits::Zero()), DataSize(0),
666 NonVirtualSize(CharUnits::Zero()),
667 NonVirtualAlignment(CharUnits::One()), PrimaryBase(nullptr),
668 PrimaryBaseIsVirtual(false), HasOwnVFPtr(false),
669 FirstNearlyEmptyVBase(nullptr) {}
670
671 void Layout(const RecordDecl *D);
672 void Layout(const CXXRecordDecl *D);
673 void Layout(const ObjCInterfaceDecl *D);
674
675 void LayoutFields(const RecordDecl *D);
676 void LayoutField(const FieldDecl *D, bool InsertExtraPadding);
677 void LayoutWideBitField(uint64_t FieldSize, uint64_t TypeSize,
678 bool FieldPacked, const FieldDecl *D);
679 void LayoutBitField(const FieldDecl *D);
680
getCXXABI() const681 TargetCXXABI getCXXABI() const {
682 return Context.getTargetInfo().getCXXABI();
683 }
684
685 /// BaseSubobjectInfoAllocator - Allocator for BaseSubobjectInfo objects.
686 llvm::SpecificBumpPtrAllocator<BaseSubobjectInfo> BaseSubobjectInfoAllocator;
687
688 typedef llvm::DenseMap<const CXXRecordDecl *, BaseSubobjectInfo *>
689 BaseSubobjectInfoMapTy;
690
691 /// VirtualBaseInfo - Map from all the (direct or indirect) virtual bases
692 /// of the class we're laying out to their base subobject info.
693 BaseSubobjectInfoMapTy VirtualBaseInfo;
694
695 /// NonVirtualBaseInfo - Map from all the direct non-virtual bases of the
696 /// class we're laying out to their base subobject info.
697 BaseSubobjectInfoMapTy NonVirtualBaseInfo;
698
699 /// ComputeBaseSubobjectInfo - Compute the base subobject information for the
700 /// bases of the given class.
701 void ComputeBaseSubobjectInfo(const CXXRecordDecl *RD);
702
703 /// ComputeBaseSubobjectInfo - Compute the base subobject information for a
704 /// single class and all of its base classes.
705 BaseSubobjectInfo *ComputeBaseSubobjectInfo(const CXXRecordDecl *RD,
706 bool IsVirtual,
707 BaseSubobjectInfo *Derived);
708
709 /// DeterminePrimaryBase - Determine the primary base of the given class.
710 void DeterminePrimaryBase(const CXXRecordDecl *RD);
711
712 void SelectPrimaryVBase(const CXXRecordDecl *RD);
713
714 void EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign);
715
716 /// LayoutNonVirtualBases - Determines the primary base class (if any) and
717 /// lays it out. Will then proceed to lay out all non-virtual base clasess.
718 void LayoutNonVirtualBases(const CXXRecordDecl *RD);
719
720 /// LayoutNonVirtualBase - Lays out a single non-virtual base.
721 void LayoutNonVirtualBase(const BaseSubobjectInfo *Base);
722
723 void AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo *Info,
724 CharUnits Offset);
725
726 /// LayoutVirtualBases - Lays out all the virtual bases.
727 void LayoutVirtualBases(const CXXRecordDecl *RD,
728 const CXXRecordDecl *MostDerivedClass);
729
730 /// LayoutVirtualBase - Lays out a single virtual base.
731 void LayoutVirtualBase(const BaseSubobjectInfo *Base);
732
733 /// LayoutBase - Will lay out a base and return the offset where it was
734 /// placed, in chars.
735 CharUnits LayoutBase(const BaseSubobjectInfo *Base);
736
737 /// InitializeLayout - Initialize record layout for the given record decl.
738 void InitializeLayout(const Decl *D);
739
740 /// FinishLayout - Finalize record layout. Adjust record size based on the
741 /// alignment.
742 void FinishLayout(const NamedDecl *D);
743
744 void UpdateAlignment(CharUnits NewAlignment, CharUnits UnpackedNewAlignment);
UpdateAlignment(CharUnits NewAlignment)745 void UpdateAlignment(CharUnits NewAlignment) {
746 UpdateAlignment(NewAlignment, NewAlignment);
747 }
748
749 /// \brief Retrieve the externally-supplied field offset for the given
750 /// field.
751 ///
752 /// \param Field The field whose offset is being queried.
753 /// \param ComputedOffset The offset that we've computed for this field.
754 uint64_t updateExternalFieldOffset(const FieldDecl *Field,
755 uint64_t ComputedOffset);
756
757 void CheckFieldPadding(uint64_t Offset, uint64_t UnpaddedOffset,
758 uint64_t UnpackedOffset, unsigned UnpackedAlign,
759 bool isPacked, const FieldDecl *D);
760
761 DiagnosticBuilder Diag(SourceLocation Loc, unsigned DiagID);
762
getSize() const763 CharUnits getSize() const {
764 assert(Size % Context.getCharWidth() == 0);
765 return Context.toCharUnitsFromBits(Size);
766 }
getSizeInBits() const767 uint64_t getSizeInBits() const { return Size; }
768
setSize(CharUnits NewSize)769 void setSize(CharUnits NewSize) { Size = Context.toBits(NewSize); }
setSize(uint64_t NewSize)770 void setSize(uint64_t NewSize) { Size = NewSize; }
771
getAligment() const772 CharUnits getAligment() const { return Alignment; }
773
getDataSize() const774 CharUnits getDataSize() const {
775 assert(DataSize % Context.getCharWidth() == 0);
776 return Context.toCharUnitsFromBits(DataSize);
777 }
getDataSizeInBits() const778 uint64_t getDataSizeInBits() const { return DataSize; }
779
setDataSize(CharUnits NewSize)780 void setDataSize(CharUnits NewSize) { DataSize = Context.toBits(NewSize); }
setDataSize(uint64_t NewSize)781 void setDataSize(uint64_t NewSize) { DataSize = NewSize; }
782
783 ItaniumRecordLayoutBuilder(const ItaniumRecordLayoutBuilder &) = delete;
784 void operator=(const ItaniumRecordLayoutBuilder &) = delete;
785 };
786 } // end anonymous namespace
787
SelectPrimaryVBase(const CXXRecordDecl * RD)788 void ItaniumRecordLayoutBuilder::SelectPrimaryVBase(const CXXRecordDecl *RD) {
789 for (const auto &I : RD->bases()) {
790 assert(!I.getType()->isDependentType() &&
791 "Cannot layout class with dependent bases.");
792
793 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
794
795 // Check if this is a nearly empty virtual base.
796 if (I.isVirtual() && Context.isNearlyEmpty(Base)) {
797 // If it's not an indirect primary base, then we've found our primary
798 // base.
799 if (!IndirectPrimaryBases.count(Base)) {
800 PrimaryBase = Base;
801 PrimaryBaseIsVirtual = true;
802 return;
803 }
804
805 // Is this the first nearly empty virtual base?
806 if (!FirstNearlyEmptyVBase)
807 FirstNearlyEmptyVBase = Base;
808 }
809
810 SelectPrimaryVBase(Base);
811 if (PrimaryBase)
812 return;
813 }
814 }
815
816 /// DeterminePrimaryBase - Determine the primary base of the given class.
DeterminePrimaryBase(const CXXRecordDecl * RD)817 void ItaniumRecordLayoutBuilder::DeterminePrimaryBase(const CXXRecordDecl *RD) {
818 // If the class isn't dynamic, it won't have a primary base.
819 if (!RD->isDynamicClass())
820 return;
821
822 // Compute all the primary virtual bases for all of our direct and
823 // indirect bases, and record all their primary virtual base classes.
824 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
825
826 // If the record has a dynamic base class, attempt to choose a primary base
827 // class. It is the first (in direct base class order) non-virtual dynamic
828 // base class, if one exists.
829 for (const auto &I : RD->bases()) {
830 // Ignore virtual bases.
831 if (I.isVirtual())
832 continue;
833
834 const CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
835
836 if (Base->isDynamicClass()) {
837 // We found it.
838 PrimaryBase = Base;
839 PrimaryBaseIsVirtual = false;
840 return;
841 }
842 }
843
844 // Under the Itanium ABI, if there is no non-virtual primary base class,
845 // try to compute the primary virtual base. The primary virtual base is
846 // the first nearly empty virtual base that is not an indirect primary
847 // virtual base class, if one exists.
848 if (RD->getNumVBases() != 0) {
849 SelectPrimaryVBase(RD);
850 if (PrimaryBase)
851 return;
852 }
853
854 // Otherwise, it is the first indirect primary base class, if one exists.
855 if (FirstNearlyEmptyVBase) {
856 PrimaryBase = FirstNearlyEmptyVBase;
857 PrimaryBaseIsVirtual = true;
858 return;
859 }
860
861 assert(!PrimaryBase && "Should not get here with a primary base!");
862 }
863
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD,bool IsVirtual,BaseSubobjectInfo * Derived)864 BaseSubobjectInfo *ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
865 const CXXRecordDecl *RD, bool IsVirtual, BaseSubobjectInfo *Derived) {
866 BaseSubobjectInfo *Info;
867
868 if (IsVirtual) {
869 // Check if we already have info about this virtual base.
870 BaseSubobjectInfo *&InfoSlot = VirtualBaseInfo[RD];
871 if (InfoSlot) {
872 assert(InfoSlot->Class == RD && "Wrong class for virtual base info!");
873 return InfoSlot;
874 }
875
876 // We don't, create it.
877 InfoSlot = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
878 Info = InfoSlot;
879 } else {
880 Info = new (BaseSubobjectInfoAllocator.Allocate()) BaseSubobjectInfo;
881 }
882
883 Info->Class = RD;
884 Info->IsVirtual = IsVirtual;
885 Info->Derived = nullptr;
886 Info->PrimaryVirtualBaseInfo = nullptr;
887
888 const CXXRecordDecl *PrimaryVirtualBase = nullptr;
889 BaseSubobjectInfo *PrimaryVirtualBaseInfo = nullptr;
890
891 // Check if this base has a primary virtual base.
892 if (RD->getNumVBases()) {
893 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
894 if (Layout.isPrimaryBaseVirtual()) {
895 // This base does have a primary virtual base.
896 PrimaryVirtualBase = Layout.getPrimaryBase();
897 assert(PrimaryVirtualBase && "Didn't have a primary virtual base!");
898
899 // Now check if we have base subobject info about this primary base.
900 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
901
902 if (PrimaryVirtualBaseInfo) {
903 if (PrimaryVirtualBaseInfo->Derived) {
904 // We did have info about this primary base, and it turns out that it
905 // has already been claimed as a primary virtual base for another
906 // base.
907 PrimaryVirtualBase = nullptr;
908 } else {
909 // We can claim this base as our primary base.
910 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
911 PrimaryVirtualBaseInfo->Derived = Info;
912 }
913 }
914 }
915 }
916
917 // Now go through all direct bases.
918 for (const auto &I : RD->bases()) {
919 bool IsVirtual = I.isVirtual();
920
921 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
922
923 Info->Bases.push_back(ComputeBaseSubobjectInfo(BaseDecl, IsVirtual, Info));
924 }
925
926 if (PrimaryVirtualBase && !PrimaryVirtualBaseInfo) {
927 // Traversing the bases must have created the base info for our primary
928 // virtual base.
929 PrimaryVirtualBaseInfo = VirtualBaseInfo.lookup(PrimaryVirtualBase);
930 assert(PrimaryVirtualBaseInfo &&
931 "Did not create a primary virtual base!");
932
933 // Claim the primary virtual base as our primary virtual base.
934 Info->PrimaryVirtualBaseInfo = PrimaryVirtualBaseInfo;
935 PrimaryVirtualBaseInfo->Derived = Info;
936 }
937
938 return Info;
939 }
940
ComputeBaseSubobjectInfo(const CXXRecordDecl * RD)941 void ItaniumRecordLayoutBuilder::ComputeBaseSubobjectInfo(
942 const CXXRecordDecl *RD) {
943 for (const auto &I : RD->bases()) {
944 bool IsVirtual = I.isVirtual();
945
946 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
947
948 // Compute the base subobject info for this base.
949 BaseSubobjectInfo *Info = ComputeBaseSubobjectInfo(BaseDecl, IsVirtual,
950 nullptr);
951
952 if (IsVirtual) {
953 // ComputeBaseInfo has already added this base for us.
954 assert(VirtualBaseInfo.count(BaseDecl) &&
955 "Did not add virtual base!");
956 } else {
957 // Add the base info to the map of non-virtual bases.
958 assert(!NonVirtualBaseInfo.count(BaseDecl) &&
959 "Non-virtual base already exists!");
960 NonVirtualBaseInfo.insert(std::make_pair(BaseDecl, Info));
961 }
962 }
963 }
964
EnsureVTablePointerAlignment(CharUnits UnpackedBaseAlign)965 void ItaniumRecordLayoutBuilder::EnsureVTablePointerAlignment(
966 CharUnits UnpackedBaseAlign) {
967 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
968
969 // The maximum field alignment overrides base align.
970 if (!MaxFieldAlignment.isZero()) {
971 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
972 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
973 }
974
975 // Round up the current record size to pointer alignment.
976 setSize(getSize().alignTo(BaseAlign));
977 setDataSize(getSize());
978
979 // Update the alignment.
980 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
981 }
982
LayoutNonVirtualBases(const CXXRecordDecl * RD)983 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBases(
984 const CXXRecordDecl *RD) {
985 // Then, determine the primary base class.
986 DeterminePrimaryBase(RD);
987
988 // Compute base subobject info.
989 ComputeBaseSubobjectInfo(RD);
990
991 // If we have a primary base class, lay it out.
992 if (PrimaryBase) {
993 if (PrimaryBaseIsVirtual) {
994 // If the primary virtual base was a primary virtual base of some other
995 // base class we'll have to steal it.
996 BaseSubobjectInfo *PrimaryBaseInfo = VirtualBaseInfo.lookup(PrimaryBase);
997 PrimaryBaseInfo->Derived = nullptr;
998
999 // We have a virtual primary base, insert it as an indirect primary base.
1000 IndirectPrimaryBases.insert(PrimaryBase);
1001
1002 assert(!VisitedVirtualBases.count(PrimaryBase) &&
1003 "vbase already visited!");
1004 VisitedVirtualBases.insert(PrimaryBase);
1005
1006 LayoutVirtualBase(PrimaryBaseInfo);
1007 } else {
1008 BaseSubobjectInfo *PrimaryBaseInfo =
1009 NonVirtualBaseInfo.lookup(PrimaryBase);
1010 assert(PrimaryBaseInfo &&
1011 "Did not find base info for non-virtual primary base!");
1012
1013 LayoutNonVirtualBase(PrimaryBaseInfo);
1014 }
1015
1016 // If this class needs a vtable/vf-table and didn't get one from a
1017 // primary base, add it in now.
1018 } else if (RD->isDynamicClass()) {
1019 assert(DataSize == 0 && "Vtable pointer must be at offset zero!");
1020 CharUnits PtrWidth =
1021 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
1022 CharUnits PtrAlign =
1023 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
1024 EnsureVTablePointerAlignment(PtrAlign);
1025 HasOwnVFPtr = true;
1026 setSize(getSize() + PtrWidth);
1027 setDataSize(getSize());
1028 }
1029
1030 // Now lay out the non-virtual bases.
1031 for (const auto &I : RD->bases()) {
1032
1033 // Ignore virtual bases.
1034 if (I.isVirtual())
1035 continue;
1036
1037 const CXXRecordDecl *BaseDecl = I.getType()->getAsCXXRecordDecl();
1038
1039 // Skip the primary base, because we've already laid it out. The
1040 // !PrimaryBaseIsVirtual check is required because we might have a
1041 // non-virtual base of the same type as a primary virtual base.
1042 if (BaseDecl == PrimaryBase && !PrimaryBaseIsVirtual)
1043 continue;
1044
1045 // Lay out the base.
1046 BaseSubobjectInfo *BaseInfo = NonVirtualBaseInfo.lookup(BaseDecl);
1047 assert(BaseInfo && "Did not find base info for non-virtual base!");
1048
1049 LayoutNonVirtualBase(BaseInfo);
1050 }
1051 }
1052
LayoutNonVirtualBase(const BaseSubobjectInfo * Base)1053 void ItaniumRecordLayoutBuilder::LayoutNonVirtualBase(
1054 const BaseSubobjectInfo *Base) {
1055 // Layout the base.
1056 CharUnits Offset = LayoutBase(Base);
1057
1058 // Add its base class offset.
1059 assert(!Bases.count(Base->Class) && "base offset already exists!");
1060 Bases.insert(std::make_pair(Base->Class, Offset));
1061
1062 AddPrimaryVirtualBaseOffsets(Base, Offset);
1063 }
1064
AddPrimaryVirtualBaseOffsets(const BaseSubobjectInfo * Info,CharUnits Offset)1065 void ItaniumRecordLayoutBuilder::AddPrimaryVirtualBaseOffsets(
1066 const BaseSubobjectInfo *Info, CharUnits Offset) {
1067 // This base isn't interesting, it has no virtual bases.
1068 if (!Info->Class->getNumVBases())
1069 return;
1070
1071 // First, check if we have a virtual primary base to add offsets for.
1072 if (Info->PrimaryVirtualBaseInfo) {
1073 assert(Info->PrimaryVirtualBaseInfo->IsVirtual &&
1074 "Primary virtual base is not virtual!");
1075 if (Info->PrimaryVirtualBaseInfo->Derived == Info) {
1076 // Add the offset.
1077 assert(!VBases.count(Info->PrimaryVirtualBaseInfo->Class) &&
1078 "primary vbase offset already exists!");
1079 VBases.insert(std::make_pair(Info->PrimaryVirtualBaseInfo->Class,
1080 ASTRecordLayout::VBaseInfo(Offset, false)));
1081
1082 // Traverse the primary virtual base.
1083 AddPrimaryVirtualBaseOffsets(Info->PrimaryVirtualBaseInfo, Offset);
1084 }
1085 }
1086
1087 // Now go through all direct non-virtual bases.
1088 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Info->Class);
1089 for (const BaseSubobjectInfo *Base : Info->Bases) {
1090 if (Base->IsVirtual)
1091 continue;
1092
1093 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base->Class);
1094 AddPrimaryVirtualBaseOffsets(Base, BaseOffset);
1095 }
1096 }
1097
LayoutVirtualBases(const CXXRecordDecl * RD,const CXXRecordDecl * MostDerivedClass)1098 void ItaniumRecordLayoutBuilder::LayoutVirtualBases(
1099 const CXXRecordDecl *RD, const CXXRecordDecl *MostDerivedClass) {
1100 const CXXRecordDecl *PrimaryBase;
1101 bool PrimaryBaseIsVirtual;
1102
1103 if (MostDerivedClass == RD) {
1104 PrimaryBase = this->PrimaryBase;
1105 PrimaryBaseIsVirtual = this->PrimaryBaseIsVirtual;
1106 } else {
1107 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1108 PrimaryBase = Layout.getPrimaryBase();
1109 PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual();
1110 }
1111
1112 for (const CXXBaseSpecifier &Base : RD->bases()) {
1113 assert(!Base.getType()->isDependentType() &&
1114 "Cannot layout class with dependent bases.");
1115
1116 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1117
1118 if (Base.isVirtual()) {
1119 if (PrimaryBase != BaseDecl || !PrimaryBaseIsVirtual) {
1120 bool IndirectPrimaryBase = IndirectPrimaryBases.count(BaseDecl);
1121
1122 // Only lay out the virtual base if it's not an indirect primary base.
1123 if (!IndirectPrimaryBase) {
1124 // Only visit virtual bases once.
1125 if (!VisitedVirtualBases.insert(BaseDecl).second)
1126 continue;
1127
1128 const BaseSubobjectInfo *BaseInfo = VirtualBaseInfo.lookup(BaseDecl);
1129 assert(BaseInfo && "Did not find virtual base info!");
1130 LayoutVirtualBase(BaseInfo);
1131 }
1132 }
1133 }
1134
1135 if (!BaseDecl->getNumVBases()) {
1136 // This base isn't interesting since it doesn't have any virtual bases.
1137 continue;
1138 }
1139
1140 LayoutVirtualBases(BaseDecl, MostDerivedClass);
1141 }
1142 }
1143
LayoutVirtualBase(const BaseSubobjectInfo * Base)1144 void ItaniumRecordLayoutBuilder::LayoutVirtualBase(
1145 const BaseSubobjectInfo *Base) {
1146 assert(!Base->Derived && "Trying to lay out a primary virtual base!");
1147
1148 // Layout the base.
1149 CharUnits Offset = LayoutBase(Base);
1150
1151 // Add its base class offset.
1152 assert(!VBases.count(Base->Class) && "vbase offset already exists!");
1153 VBases.insert(std::make_pair(Base->Class,
1154 ASTRecordLayout::VBaseInfo(Offset, false)));
1155
1156 AddPrimaryVirtualBaseOffsets(Base, Offset);
1157 }
1158
1159 CharUnits
LayoutBase(const BaseSubobjectInfo * Base)1160 ItaniumRecordLayoutBuilder::LayoutBase(const BaseSubobjectInfo *Base) {
1161 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base->Class);
1162
1163
1164 CharUnits Offset;
1165
1166 // Query the external layout to see if it provides an offset.
1167 bool HasExternalLayout = false;
1168 if (UseExternalLayout) {
1169 llvm::DenseMap<const CXXRecordDecl *, CharUnits>::iterator Known;
1170 if (Base->IsVirtual)
1171 HasExternalLayout = External.getExternalNVBaseOffset(Base->Class, Offset);
1172 else
1173 HasExternalLayout = External.getExternalVBaseOffset(Base->Class, Offset);
1174 }
1175
1176 CharUnits UnpackedBaseAlign = Layout.getNonVirtualAlignment();
1177 CharUnits BaseAlign = (Packed) ? CharUnits::One() : UnpackedBaseAlign;
1178
1179 // If we have an empty base class, try to place it at offset 0.
1180 if (Base->Class->isEmpty() &&
1181 (!HasExternalLayout || Offset == CharUnits::Zero()) &&
1182 EmptySubobjects->CanPlaceBaseAtOffset(Base, CharUnits::Zero())) {
1183 setSize(std::max(getSize(), Layout.getSize()));
1184 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1185
1186 return CharUnits::Zero();
1187 }
1188
1189 // The maximum field alignment overrides base align.
1190 if (!MaxFieldAlignment.isZero()) {
1191 BaseAlign = std::min(BaseAlign, MaxFieldAlignment);
1192 UnpackedBaseAlign = std::min(UnpackedBaseAlign, MaxFieldAlignment);
1193 }
1194
1195 if (!HasExternalLayout) {
1196 // Round up the current record size to the base's alignment boundary.
1197 Offset = getDataSize().alignTo(BaseAlign);
1198
1199 // Try to place the base.
1200 while (!EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset))
1201 Offset += BaseAlign;
1202 } else {
1203 bool Allowed = EmptySubobjects->CanPlaceBaseAtOffset(Base, Offset);
1204 (void)Allowed;
1205 assert(Allowed && "Base subobject externally placed at overlapping offset");
1206
1207 if (InferAlignment && Offset < getDataSize().alignTo(BaseAlign)) {
1208 // The externally-supplied base offset is before the base offset we
1209 // computed. Assume that the structure is packed.
1210 Alignment = CharUnits::One();
1211 InferAlignment = false;
1212 }
1213 }
1214
1215 if (!Base->Class->isEmpty()) {
1216 // Update the data size.
1217 setDataSize(Offset + Layout.getNonVirtualSize());
1218
1219 setSize(std::max(getSize(), getDataSize()));
1220 } else
1221 setSize(std::max(getSize(), Offset + Layout.getSize()));
1222
1223 // Remember max struct/class alignment.
1224 UpdateAlignment(BaseAlign, UnpackedBaseAlign);
1225
1226 return Offset;
1227 }
1228
InitializeLayout(const Decl * D)1229 void ItaniumRecordLayoutBuilder::InitializeLayout(const Decl *D) {
1230 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1231 IsUnion = RD->isUnion();
1232 IsMsStruct = RD->isMsStruct(Context);
1233 }
1234
1235 Packed = D->hasAttr<PackedAttr>();
1236
1237 // Honor the default struct packing maximum alignment flag.
1238 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct) {
1239 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
1240 }
1241
1242 // mac68k alignment supersedes maximum field alignment and attribute aligned,
1243 // and forces all structures to have 2-byte alignment. The IBM docs on it
1244 // allude to additional (more complicated) semantics, especially with regard
1245 // to bit-fields, but gcc appears not to follow that.
1246 if (D->hasAttr<AlignMac68kAttr>()) {
1247 IsMac68kAlign = true;
1248 MaxFieldAlignment = CharUnits::fromQuantity(2);
1249 Alignment = CharUnits::fromQuantity(2);
1250 } else {
1251 if (const MaxFieldAlignmentAttr *MFAA = D->getAttr<MaxFieldAlignmentAttr>())
1252 MaxFieldAlignment = Context.toCharUnitsFromBits(MFAA->getAlignment());
1253
1254 if (unsigned MaxAlign = D->getMaxAlignment())
1255 UpdateAlignment(Context.toCharUnitsFromBits(MaxAlign));
1256 }
1257
1258 // If there is an external AST source, ask it for the various offsets.
1259 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D))
1260 if (ExternalASTSource *Source = Context.getExternalSource()) {
1261 UseExternalLayout = Source->layoutRecordType(
1262 RD, External.Size, External.Align, External.FieldOffsets,
1263 External.BaseOffsets, External.VirtualBaseOffsets);
1264
1265 // Update based on external alignment.
1266 if (UseExternalLayout) {
1267 if (External.Align > 0) {
1268 Alignment = Context.toCharUnitsFromBits(External.Align);
1269 } else {
1270 // The external source didn't have alignment information; infer it.
1271 InferAlignment = true;
1272 }
1273 }
1274 }
1275 }
1276
Layout(const RecordDecl * D)1277 void ItaniumRecordLayoutBuilder::Layout(const RecordDecl *D) {
1278 InitializeLayout(D);
1279 LayoutFields(D);
1280
1281 // Finally, round the size of the total struct up to the alignment of the
1282 // struct itself.
1283 FinishLayout(D);
1284 }
1285
Layout(const CXXRecordDecl * RD)1286 void ItaniumRecordLayoutBuilder::Layout(const CXXRecordDecl *RD) {
1287 InitializeLayout(RD);
1288
1289 // Lay out the vtable and the non-virtual bases.
1290 LayoutNonVirtualBases(RD);
1291
1292 LayoutFields(RD);
1293
1294 NonVirtualSize = Context.toCharUnitsFromBits(
1295 llvm::alignTo(getSizeInBits(), Context.getTargetInfo().getCharAlign()));
1296 NonVirtualAlignment = Alignment;
1297
1298 // Lay out the virtual bases and add the primary virtual base offsets.
1299 LayoutVirtualBases(RD, RD);
1300
1301 // Finally, round the size of the total struct up to the alignment
1302 // of the struct itself.
1303 FinishLayout(RD);
1304
1305 #ifndef NDEBUG
1306 // Check that we have base offsets for all bases.
1307 for (const CXXBaseSpecifier &Base : RD->bases()) {
1308 if (Base.isVirtual())
1309 continue;
1310
1311 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1312
1313 assert(Bases.count(BaseDecl) && "Did not find base offset!");
1314 }
1315
1316 // And all virtual bases.
1317 for (const CXXBaseSpecifier &Base : RD->vbases()) {
1318 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
1319
1320 assert(VBases.count(BaseDecl) && "Did not find base offset!");
1321 }
1322 #endif
1323 }
1324
Layout(const ObjCInterfaceDecl * D)1325 void ItaniumRecordLayoutBuilder::Layout(const ObjCInterfaceDecl *D) {
1326 if (ObjCInterfaceDecl *SD = D->getSuperClass()) {
1327 const ASTRecordLayout &SL = Context.getASTObjCInterfaceLayout(SD);
1328
1329 UpdateAlignment(SL.getAlignment());
1330
1331 // We start laying out ivars not at the end of the superclass
1332 // structure, but at the next byte following the last field.
1333 setSize(SL.getDataSize());
1334 setDataSize(getSize());
1335 }
1336
1337 InitializeLayout(D);
1338 // Layout each ivar sequentially.
1339 for (const ObjCIvarDecl *IVD = D->all_declared_ivar_begin(); IVD;
1340 IVD = IVD->getNextIvar())
1341 LayoutField(IVD, false);
1342
1343 // Finally, round the size of the total struct up to the alignment of the
1344 // struct itself.
1345 FinishLayout(D);
1346 }
1347
LayoutFields(const RecordDecl * D)1348 void ItaniumRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
1349 // Layout each field, for now, just sequentially, respecting alignment. In
1350 // the future, this will need to be tweakable by targets.
1351 bool InsertExtraPadding = D->mayInsertExtraPadding(/*EmitRemark=*/true);
1352 bool HasFlexibleArrayMember = D->hasFlexibleArrayMember();
1353 for (auto I = D->field_begin(), End = D->field_end(); I != End; ++I) {
1354 auto Next(I);
1355 ++Next;
1356 LayoutField(*I,
1357 InsertExtraPadding && (Next != End || !HasFlexibleArrayMember));
1358 }
1359 }
1360
1361 // Rounds the specified size to have it a multiple of the char size.
1362 static uint64_t
roundUpSizeToCharAlignment(uint64_t Size,const ASTContext & Context)1363 roundUpSizeToCharAlignment(uint64_t Size,
1364 const ASTContext &Context) {
1365 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1366 return llvm::alignTo(Size, CharAlignment);
1367 }
1368
LayoutWideBitField(uint64_t FieldSize,uint64_t TypeSize,bool FieldPacked,const FieldDecl * D)1369 void ItaniumRecordLayoutBuilder::LayoutWideBitField(uint64_t FieldSize,
1370 uint64_t TypeSize,
1371 bool FieldPacked,
1372 const FieldDecl *D) {
1373 assert(Context.getLangOpts().CPlusPlus &&
1374 "Can only have wide bit-fields in C++!");
1375
1376 // Itanium C++ ABI 2.4:
1377 // If sizeof(T)*8 < n, let T' be the largest integral POD type with
1378 // sizeof(T')*8 <= n.
1379
1380 QualType IntegralPODTypes[] = {
1381 Context.UnsignedCharTy, Context.UnsignedShortTy, Context.UnsignedIntTy,
1382 Context.UnsignedLongTy, Context.UnsignedLongLongTy
1383 };
1384
1385 QualType Type;
1386 for (const QualType &QT : IntegralPODTypes) {
1387 uint64_t Size = Context.getTypeSize(QT);
1388
1389 if (Size > FieldSize)
1390 break;
1391
1392 Type = QT;
1393 }
1394 assert(!Type.isNull() && "Did not find a type!");
1395
1396 CharUnits TypeAlign = Context.getTypeAlignInChars(Type);
1397
1398 // We're not going to use any of the unfilled bits in the last byte.
1399 UnfilledBitsInLastUnit = 0;
1400 LastBitfieldTypeSize = 0;
1401
1402 uint64_t FieldOffset;
1403 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1404
1405 if (IsUnion) {
1406 uint64_t RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize,
1407 Context);
1408 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1409 FieldOffset = 0;
1410 } else {
1411 // The bitfield is allocated starting at the next offset aligned
1412 // appropriately for T', with length n bits.
1413 FieldOffset = llvm::alignTo(getDataSizeInBits(), Context.toBits(TypeAlign));
1414
1415 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1416
1417 setDataSize(
1418 llvm::alignTo(NewSizeInBits, Context.getTargetInfo().getCharAlign()));
1419 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1420 }
1421
1422 // Place this field at the current location.
1423 FieldOffsets.push_back(FieldOffset);
1424
1425 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, FieldOffset,
1426 Context.toBits(TypeAlign), FieldPacked, D);
1427
1428 // Update the size.
1429 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1430
1431 // Remember max struct/class alignment.
1432 UpdateAlignment(TypeAlign);
1433 }
1434
LayoutBitField(const FieldDecl * D)1435 void ItaniumRecordLayoutBuilder::LayoutBitField(const FieldDecl *D) {
1436 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1437 uint64_t FieldSize = D->getBitWidthValue(Context);
1438 TypeInfo FieldInfo = Context.getTypeInfo(D->getType());
1439 uint64_t TypeSize = FieldInfo.Width;
1440 unsigned FieldAlign = FieldInfo.Align;
1441
1442 // UnfilledBitsInLastUnit is the difference between the end of the
1443 // last allocated bitfield (i.e. the first bit offset available for
1444 // bitfields) and the end of the current data size in bits (i.e. the
1445 // first bit offset available for non-bitfields). The current data
1446 // size in bits is always a multiple of the char size; additionally,
1447 // for ms_struct records it's also a multiple of the
1448 // LastBitfieldTypeSize (if set).
1449
1450 // The struct-layout algorithm is dictated by the platform ABI,
1451 // which in principle could use almost any rules it likes. In
1452 // practice, UNIXy targets tend to inherit the algorithm described
1453 // in the System V generic ABI. The basic bitfield layout rule in
1454 // System V is to place bitfields at the next available bit offset
1455 // where the entire bitfield would fit in an aligned storage unit of
1456 // the declared type; it's okay if an earlier or later non-bitfield
1457 // is allocated in the same storage unit. However, some targets
1458 // (those that !useBitFieldTypeAlignment(), e.g. ARM APCS) don't
1459 // require this storage unit to be aligned, and therefore always put
1460 // the bitfield at the next available bit offset.
1461
1462 // ms_struct basically requests a complete replacement of the
1463 // platform ABI's struct-layout algorithm, with the high-level goal
1464 // of duplicating MSVC's layout. For non-bitfields, this follows
1465 // the standard algorithm. The basic bitfield layout rule is to
1466 // allocate an entire unit of the bitfield's declared type
1467 // (e.g. 'unsigned long'), then parcel it up among successive
1468 // bitfields whose declared types have the same size, making a new
1469 // unit as soon as the last can no longer store the whole value.
1470 // Since it completely replaces the platform ABI's algorithm,
1471 // settings like !useBitFieldTypeAlignment() do not apply.
1472
1473 // A zero-width bitfield forces the use of a new storage unit for
1474 // later bitfields. In general, this occurs by rounding up the
1475 // current size of the struct as if the algorithm were about to
1476 // place a non-bitfield of the field's formal type. Usually this
1477 // does not change the alignment of the struct itself, but it does
1478 // on some targets (those that useZeroLengthBitfieldAlignment(),
1479 // e.g. ARM). In ms_struct layout, zero-width bitfields are
1480 // ignored unless they follow a non-zero-width bitfield.
1481
1482 // A field alignment restriction (e.g. from #pragma pack) or
1483 // specification (e.g. from __attribute__((aligned))) changes the
1484 // formal alignment of the field. For System V, this alters the
1485 // required alignment of the notional storage unit that must contain
1486 // the bitfield. For ms_struct, this only affects the placement of
1487 // new storage units. In both cases, the effect of #pragma pack is
1488 // ignored on zero-width bitfields.
1489
1490 // On System V, a packed field (e.g. from #pragma pack or
1491 // __attribute__((packed))) always uses the next available bit
1492 // offset.
1493
1494 // In an ms_struct struct, the alignment of a fundamental type is
1495 // always equal to its size. This is necessary in order to mimic
1496 // the i386 alignment rules on targets which might not fully align
1497 // all types (e.g. Darwin PPC32, where alignof(long long) == 4).
1498
1499 // First, some simple bookkeeping to perform for ms_struct structs.
1500 if (IsMsStruct) {
1501 // The field alignment for integer types is always the size.
1502 FieldAlign = TypeSize;
1503
1504 // If the previous field was not a bitfield, or was a bitfield
1505 // with a different storage unit size, we're done with that
1506 // storage unit.
1507 if (LastBitfieldTypeSize != TypeSize) {
1508 // Also, ignore zero-length bitfields after non-bitfields.
1509 if (!LastBitfieldTypeSize && !FieldSize)
1510 FieldAlign = 1;
1511
1512 UnfilledBitsInLastUnit = 0;
1513 LastBitfieldTypeSize = 0;
1514 }
1515 }
1516
1517 // If the field is wider than its declared type, it follows
1518 // different rules in all cases.
1519 if (FieldSize > TypeSize) {
1520 LayoutWideBitField(FieldSize, TypeSize, FieldPacked, D);
1521 return;
1522 }
1523
1524 // Compute the next available bit offset.
1525 uint64_t FieldOffset =
1526 IsUnion ? 0 : (getDataSizeInBits() - UnfilledBitsInLastUnit);
1527
1528 // Handle targets that don't honor bitfield type alignment.
1529 if (!IsMsStruct && !Context.getTargetInfo().useBitFieldTypeAlignment()) {
1530 // Some such targets do honor it on zero-width bitfields.
1531 if (FieldSize == 0 &&
1532 Context.getTargetInfo().useZeroLengthBitfieldAlignment()) {
1533 // The alignment to round up to is the max of the field's natural
1534 // alignment and a target-specific fixed value (sometimes zero).
1535 unsigned ZeroLengthBitfieldBoundary =
1536 Context.getTargetInfo().getZeroLengthBitfieldBoundary();
1537 FieldAlign = std::max(FieldAlign, ZeroLengthBitfieldBoundary);
1538
1539 // If that doesn't apply, just ignore the field alignment.
1540 } else {
1541 FieldAlign = 1;
1542 }
1543 }
1544
1545 // Remember the alignment we would have used if the field were not packed.
1546 unsigned UnpackedFieldAlign = FieldAlign;
1547
1548 // Ignore the field alignment if the field is packed unless it has zero-size.
1549 if (!IsMsStruct && FieldPacked && FieldSize != 0)
1550 FieldAlign = 1;
1551
1552 // But, if there's an 'aligned' attribute on the field, honor that.
1553 unsigned ExplicitFieldAlign = D->getMaxAlignment();
1554 if (ExplicitFieldAlign) {
1555 FieldAlign = std::max(FieldAlign, ExplicitFieldAlign);
1556 UnpackedFieldAlign = std::max(UnpackedFieldAlign, ExplicitFieldAlign);
1557 }
1558
1559 // But, if there's a #pragma pack in play, that takes precedent over
1560 // even the 'aligned' attribute, for non-zero-width bitfields.
1561 unsigned MaxFieldAlignmentInBits = Context.toBits(MaxFieldAlignment);
1562 if (!MaxFieldAlignment.isZero() && FieldSize) {
1563 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignmentInBits);
1564 if (FieldPacked)
1565 FieldAlign = UnpackedFieldAlign;
1566 else
1567 FieldAlign = std::min(FieldAlign, MaxFieldAlignmentInBits);
1568 }
1569
1570 // But, ms_struct just ignores all of that in unions, even explicit
1571 // alignment attributes.
1572 if (IsMsStruct && IsUnion) {
1573 FieldAlign = UnpackedFieldAlign = 1;
1574 }
1575
1576 // For purposes of diagnostics, we're going to simultaneously
1577 // compute the field offsets that we would have used if we weren't
1578 // adding any alignment padding or if the field weren't packed.
1579 uint64_t UnpaddedFieldOffset = FieldOffset;
1580 uint64_t UnpackedFieldOffset = FieldOffset;
1581
1582 // Check if we need to add padding to fit the bitfield within an
1583 // allocation unit with the right size and alignment. The rules are
1584 // somewhat different here for ms_struct structs.
1585 if (IsMsStruct) {
1586 // If it's not a zero-width bitfield, and we can fit the bitfield
1587 // into the active storage unit (and we haven't already decided to
1588 // start a new storage unit), just do so, regardless of any other
1589 // other consideration. Otherwise, round up to the right alignment.
1590 if (FieldSize == 0 || FieldSize > UnfilledBitsInLastUnit) {
1591 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1592 UnpackedFieldOffset =
1593 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1594 UnfilledBitsInLastUnit = 0;
1595 }
1596
1597 } else {
1598 // #pragma pack, with any value, suppresses the insertion of padding.
1599 bool AllowPadding = MaxFieldAlignment.isZero();
1600
1601 // Compute the real offset.
1602 if (FieldSize == 0 ||
1603 (AllowPadding &&
1604 (FieldOffset & (FieldAlign-1)) + FieldSize > TypeSize)) {
1605 FieldOffset = llvm::alignTo(FieldOffset, FieldAlign);
1606 } else if (ExplicitFieldAlign &&
1607 (MaxFieldAlignmentInBits == 0 ||
1608 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1609 Context.getTargetInfo().useExplicitBitFieldAlignment()) {
1610 // TODO: figure it out what needs to be done on targets that don't honor
1611 // bit-field type alignment like ARM APCS ABI.
1612 FieldOffset = llvm::alignTo(FieldOffset, ExplicitFieldAlign);
1613 }
1614
1615 // Repeat the computation for diagnostic purposes.
1616 if (FieldSize == 0 ||
1617 (AllowPadding &&
1618 (UnpackedFieldOffset & (UnpackedFieldAlign-1)) + FieldSize > TypeSize))
1619 UnpackedFieldOffset =
1620 llvm::alignTo(UnpackedFieldOffset, UnpackedFieldAlign);
1621 else if (ExplicitFieldAlign &&
1622 (MaxFieldAlignmentInBits == 0 ||
1623 ExplicitFieldAlign <= MaxFieldAlignmentInBits) &&
1624 Context.getTargetInfo().useExplicitBitFieldAlignment())
1625 UnpackedFieldOffset =
1626 llvm::alignTo(UnpackedFieldOffset, ExplicitFieldAlign);
1627 }
1628
1629 // If we're using external layout, give the external layout a chance
1630 // to override this information.
1631 if (UseExternalLayout)
1632 FieldOffset = updateExternalFieldOffset(D, FieldOffset);
1633
1634 // Okay, place the bitfield at the calculated offset.
1635 FieldOffsets.push_back(FieldOffset);
1636
1637 // Bookkeeping:
1638
1639 // Anonymous members don't affect the overall record alignment,
1640 // except on targets where they do.
1641 if (!IsMsStruct &&
1642 !Context.getTargetInfo().useZeroLengthBitfieldAlignment() &&
1643 !D->getIdentifier())
1644 FieldAlign = UnpackedFieldAlign = 1;
1645
1646 // Diagnose differences in layout due to padding or packing.
1647 if (!UseExternalLayout)
1648 CheckFieldPadding(FieldOffset, UnpaddedFieldOffset, UnpackedFieldOffset,
1649 UnpackedFieldAlign, FieldPacked, D);
1650
1651 // Update DataSize to include the last byte containing (part of) the bitfield.
1652
1653 // For unions, this is just a max operation, as usual.
1654 if (IsUnion) {
1655 // For ms_struct, allocate the entire storage unit --- unless this
1656 // is a zero-width bitfield, in which case just use a size of 1.
1657 uint64_t RoundedFieldSize;
1658 if (IsMsStruct) {
1659 RoundedFieldSize =
1660 (FieldSize ? TypeSize : Context.getTargetInfo().getCharWidth());
1661
1662 // Otherwise, allocate just the number of bytes required to store
1663 // the bitfield.
1664 } else {
1665 RoundedFieldSize = roundUpSizeToCharAlignment(FieldSize, Context);
1666 }
1667 setDataSize(std::max(getDataSizeInBits(), RoundedFieldSize));
1668
1669 // For non-zero-width bitfields in ms_struct structs, allocate a new
1670 // storage unit if necessary.
1671 } else if (IsMsStruct && FieldSize) {
1672 // We should have cleared UnfilledBitsInLastUnit in every case
1673 // where we changed storage units.
1674 if (!UnfilledBitsInLastUnit) {
1675 setDataSize(FieldOffset + TypeSize);
1676 UnfilledBitsInLastUnit = TypeSize;
1677 }
1678 UnfilledBitsInLastUnit -= FieldSize;
1679 LastBitfieldTypeSize = TypeSize;
1680
1681 // Otherwise, bump the data size up to include the bitfield,
1682 // including padding up to char alignment, and then remember how
1683 // bits we didn't use.
1684 } else {
1685 uint64_t NewSizeInBits = FieldOffset + FieldSize;
1686 uint64_t CharAlignment = Context.getTargetInfo().getCharAlign();
1687 setDataSize(llvm::alignTo(NewSizeInBits, CharAlignment));
1688 UnfilledBitsInLastUnit = getDataSizeInBits() - NewSizeInBits;
1689
1690 // The only time we can get here for an ms_struct is if this is a
1691 // zero-width bitfield, which doesn't count as anything for the
1692 // purposes of unfilled bits.
1693 LastBitfieldTypeSize = 0;
1694 }
1695
1696 // Update the size.
1697 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1698
1699 // Remember max struct/class alignment.
1700 UpdateAlignment(Context.toCharUnitsFromBits(FieldAlign),
1701 Context.toCharUnitsFromBits(UnpackedFieldAlign));
1702 }
1703
LayoutField(const FieldDecl * D,bool InsertExtraPadding)1704 void ItaniumRecordLayoutBuilder::LayoutField(const FieldDecl *D,
1705 bool InsertExtraPadding) {
1706 if (D->isBitField()) {
1707 LayoutBitField(D);
1708 return;
1709 }
1710
1711 uint64_t UnpaddedFieldOffset = getDataSizeInBits() - UnfilledBitsInLastUnit;
1712
1713 // Reset the unfilled bits.
1714 UnfilledBitsInLastUnit = 0;
1715 LastBitfieldTypeSize = 0;
1716
1717 bool FieldPacked = Packed || D->hasAttr<PackedAttr>();
1718 CharUnits FieldOffset =
1719 IsUnion ? CharUnits::Zero() : getDataSize();
1720 CharUnits FieldSize;
1721 CharUnits FieldAlign;
1722
1723 if (D->getType()->isIncompleteArrayType()) {
1724 // This is a flexible array member; we can't directly
1725 // query getTypeInfo about these, so we figure it out here.
1726 // Flexible array members don't have any size, but they
1727 // have to be aligned appropriately for their element type.
1728 FieldSize = CharUnits::Zero();
1729 const ArrayType* ATy = Context.getAsArrayType(D->getType());
1730 FieldAlign = Context.getTypeAlignInChars(ATy->getElementType());
1731 } else if (const ReferenceType *RT = D->getType()->getAs<ReferenceType>()) {
1732 unsigned AS = RT->getPointeeType().getAddressSpace();
1733 FieldSize =
1734 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(AS));
1735 FieldAlign =
1736 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(AS));
1737 } else {
1738 std::pair<CharUnits, CharUnits> FieldInfo =
1739 Context.getTypeInfoInChars(D->getType());
1740 FieldSize = FieldInfo.first;
1741 FieldAlign = FieldInfo.second;
1742
1743 if (IsMsStruct) {
1744 // If MS bitfield layout is required, figure out what type is being
1745 // laid out and align the field to the width of that type.
1746
1747 // Resolve all typedefs down to their base type and round up the field
1748 // alignment if necessary.
1749 QualType T = Context.getBaseElementType(D->getType());
1750 if (const BuiltinType *BTy = T->getAs<BuiltinType>()) {
1751 CharUnits TypeSize = Context.getTypeSizeInChars(BTy);
1752 if (TypeSize > FieldAlign)
1753 FieldAlign = TypeSize;
1754 }
1755 }
1756 }
1757
1758 // The align if the field is not packed. This is to check if the attribute
1759 // was unnecessary (-Wpacked).
1760 CharUnits UnpackedFieldAlign = FieldAlign;
1761 CharUnits UnpackedFieldOffset = FieldOffset;
1762
1763 if (FieldPacked)
1764 FieldAlign = CharUnits::One();
1765 CharUnits MaxAlignmentInChars =
1766 Context.toCharUnitsFromBits(D->getMaxAlignment());
1767 FieldAlign = std::max(FieldAlign, MaxAlignmentInChars);
1768 UnpackedFieldAlign = std::max(UnpackedFieldAlign, MaxAlignmentInChars);
1769
1770 // The maximum field alignment overrides the aligned attribute.
1771 if (!MaxFieldAlignment.isZero()) {
1772 FieldAlign = std::min(FieldAlign, MaxFieldAlignment);
1773 UnpackedFieldAlign = std::min(UnpackedFieldAlign, MaxFieldAlignment);
1774 }
1775
1776 // Round up the current record size to the field's alignment boundary.
1777 FieldOffset = FieldOffset.alignTo(FieldAlign);
1778 UnpackedFieldOffset = UnpackedFieldOffset.alignTo(UnpackedFieldAlign);
1779
1780 if (UseExternalLayout) {
1781 FieldOffset = Context.toCharUnitsFromBits(
1782 updateExternalFieldOffset(D, Context.toBits(FieldOffset)));
1783
1784 if (!IsUnion && EmptySubobjects) {
1785 // Record the fact that we're placing a field at this offset.
1786 bool Allowed = EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset);
1787 (void)Allowed;
1788 assert(Allowed && "Externally-placed field cannot be placed here");
1789 }
1790 } else {
1791 if (!IsUnion && EmptySubobjects) {
1792 // Check if we can place the field at this offset.
1793 while (!EmptySubobjects->CanPlaceFieldAtOffset(D, FieldOffset)) {
1794 // We couldn't place the field at the offset. Try again at a new offset.
1795 FieldOffset += FieldAlign;
1796 }
1797 }
1798 }
1799
1800 // Place this field at the current location.
1801 FieldOffsets.push_back(Context.toBits(FieldOffset));
1802
1803 if (!UseExternalLayout)
1804 CheckFieldPadding(Context.toBits(FieldOffset), UnpaddedFieldOffset,
1805 Context.toBits(UnpackedFieldOffset),
1806 Context.toBits(UnpackedFieldAlign), FieldPacked, D);
1807
1808 if (InsertExtraPadding) {
1809 CharUnits ASanAlignment = CharUnits::fromQuantity(8);
1810 CharUnits ExtraSizeForAsan = ASanAlignment;
1811 if (FieldSize % ASanAlignment)
1812 ExtraSizeForAsan +=
1813 ASanAlignment - CharUnits::fromQuantity(FieldSize % ASanAlignment);
1814 FieldSize += ExtraSizeForAsan;
1815 }
1816
1817 // Reserve space for this field.
1818 uint64_t FieldSizeInBits = Context.toBits(FieldSize);
1819 if (IsUnion)
1820 setDataSize(std::max(getDataSizeInBits(), FieldSizeInBits));
1821 else
1822 setDataSize(FieldOffset + FieldSize);
1823
1824 // Update the size.
1825 setSize(std::max(getSizeInBits(), getDataSizeInBits()));
1826
1827 // Remember max struct/class alignment.
1828 UpdateAlignment(FieldAlign, UnpackedFieldAlign);
1829 }
1830
FinishLayout(const NamedDecl * D)1831 void ItaniumRecordLayoutBuilder::FinishLayout(const NamedDecl *D) {
1832 // In C++, records cannot be of size 0.
1833 if (Context.getLangOpts().CPlusPlus && getSizeInBits() == 0) {
1834 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D)) {
1835 // Compatibility with gcc requires a class (pod or non-pod)
1836 // which is not empty but of size 0; such as having fields of
1837 // array of zero-length, remains of Size 0
1838 if (RD->isEmpty())
1839 setSize(CharUnits::One());
1840 }
1841 else
1842 setSize(CharUnits::One());
1843 }
1844
1845 // Finally, round the size of the record up to the alignment of the
1846 // record itself.
1847 uint64_t UnpaddedSize = getSizeInBits() - UnfilledBitsInLastUnit;
1848 uint64_t UnpackedSizeInBits =
1849 llvm::alignTo(getSizeInBits(), Context.toBits(UnpackedAlignment));
1850 CharUnits UnpackedSize = Context.toCharUnitsFromBits(UnpackedSizeInBits);
1851 uint64_t RoundedSize =
1852 llvm::alignTo(getSizeInBits(), Context.toBits(Alignment));
1853
1854 if (UseExternalLayout) {
1855 // If we're inferring alignment, and the external size is smaller than
1856 // our size after we've rounded up to alignment, conservatively set the
1857 // alignment to 1.
1858 if (InferAlignment && External.Size < RoundedSize) {
1859 Alignment = CharUnits::One();
1860 InferAlignment = false;
1861 }
1862 setSize(External.Size);
1863 return;
1864 }
1865
1866 // Set the size to the final size.
1867 setSize(RoundedSize);
1868
1869 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1870 if (const RecordDecl *RD = dyn_cast<RecordDecl>(D)) {
1871 // Warn if padding was introduced to the struct/class/union.
1872 if (getSizeInBits() > UnpaddedSize) {
1873 unsigned PadSize = getSizeInBits() - UnpaddedSize;
1874 bool InBits = true;
1875 if (PadSize % CharBitNum == 0) {
1876 PadSize = PadSize / CharBitNum;
1877 InBits = false;
1878 }
1879 Diag(RD->getLocation(), diag::warn_padded_struct_size)
1880 << Context.getTypeDeclType(RD)
1881 << PadSize
1882 << (InBits ? 1 : 0); // (byte|bit)
1883 }
1884
1885 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1886 // bother since there won't be alignment issues.
1887 if (Packed && UnpackedAlignment > CharUnits::One() &&
1888 getSize() == UnpackedSize)
1889 Diag(D->getLocation(), diag::warn_unnecessary_packed)
1890 << Context.getTypeDeclType(RD);
1891 }
1892 }
1893
UpdateAlignment(CharUnits NewAlignment,CharUnits UnpackedNewAlignment)1894 void ItaniumRecordLayoutBuilder::UpdateAlignment(
1895 CharUnits NewAlignment, CharUnits UnpackedNewAlignment) {
1896 // The alignment is not modified when using 'mac68k' alignment or when
1897 // we have an externally-supplied layout that also provides overall alignment.
1898 if (IsMac68kAlign || (UseExternalLayout && !InferAlignment))
1899 return;
1900
1901 if (NewAlignment > Alignment) {
1902 assert(llvm::isPowerOf2_64(NewAlignment.getQuantity()) &&
1903 "Alignment not a power of 2");
1904 Alignment = NewAlignment;
1905 }
1906
1907 if (UnpackedNewAlignment > UnpackedAlignment) {
1908 assert(llvm::isPowerOf2_64(UnpackedNewAlignment.getQuantity()) &&
1909 "Alignment not a power of 2");
1910 UnpackedAlignment = UnpackedNewAlignment;
1911 }
1912 }
1913
1914 uint64_t
updateExternalFieldOffset(const FieldDecl * Field,uint64_t ComputedOffset)1915 ItaniumRecordLayoutBuilder::updateExternalFieldOffset(const FieldDecl *Field,
1916 uint64_t ComputedOffset) {
1917 uint64_t ExternalFieldOffset = External.getExternalFieldOffset(Field);
1918
1919 if (InferAlignment && ExternalFieldOffset < ComputedOffset) {
1920 // The externally-supplied field offset is before the field offset we
1921 // computed. Assume that the structure is packed.
1922 Alignment = CharUnits::One();
1923 InferAlignment = false;
1924 }
1925
1926 // Use the externally-supplied field offset.
1927 return ExternalFieldOffset;
1928 }
1929
1930 /// \brief Get diagnostic %select index for tag kind for
1931 /// field padding diagnostic message.
1932 /// WARNING: Indexes apply to particular diagnostics only!
1933 ///
1934 /// \returns diagnostic %select index.
getPaddingDiagFromTagKind(TagTypeKind Tag)1935 static unsigned getPaddingDiagFromTagKind(TagTypeKind Tag) {
1936 switch (Tag) {
1937 case TTK_Struct: return 0;
1938 case TTK_Interface: return 1;
1939 case TTK_Class: return 2;
1940 default: llvm_unreachable("Invalid tag kind for field padding diagnostic!");
1941 }
1942 }
1943
CheckFieldPadding(uint64_t Offset,uint64_t UnpaddedOffset,uint64_t UnpackedOffset,unsigned UnpackedAlign,bool isPacked,const FieldDecl * D)1944 void ItaniumRecordLayoutBuilder::CheckFieldPadding(
1945 uint64_t Offset, uint64_t UnpaddedOffset, uint64_t UnpackedOffset,
1946 unsigned UnpackedAlign, bool isPacked, const FieldDecl *D) {
1947 // We let objc ivars without warning, objc interfaces generally are not used
1948 // for padding tricks.
1949 if (isa<ObjCIvarDecl>(D))
1950 return;
1951
1952 // Don't warn about structs created without a SourceLocation. This can
1953 // be done by clients of the AST, such as codegen.
1954 if (D->getLocation().isInvalid())
1955 return;
1956
1957 unsigned CharBitNum = Context.getTargetInfo().getCharWidth();
1958
1959 // Warn if padding was introduced to the struct/class.
1960 if (!IsUnion && Offset > UnpaddedOffset) {
1961 unsigned PadSize = Offset - UnpaddedOffset;
1962 bool InBits = true;
1963 if (PadSize % CharBitNum == 0) {
1964 PadSize = PadSize / CharBitNum;
1965 InBits = false;
1966 }
1967 if (D->getIdentifier())
1968 Diag(D->getLocation(), diag::warn_padded_struct_field)
1969 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1970 << Context.getTypeDeclType(D->getParent())
1971 << PadSize
1972 << (InBits ? 1 : 0) // (byte|bit)
1973 << D->getIdentifier();
1974 else
1975 Diag(D->getLocation(), diag::warn_padded_struct_anon_field)
1976 << getPaddingDiagFromTagKind(D->getParent()->getTagKind())
1977 << Context.getTypeDeclType(D->getParent())
1978 << PadSize
1979 << (InBits ? 1 : 0); // (byte|bit)
1980 }
1981
1982 // Warn if we packed it unnecessarily. If the alignment is 1 byte don't
1983 // bother since there won't be alignment issues.
1984 if (isPacked && UnpackedAlign > CharBitNum && Offset == UnpackedOffset)
1985 Diag(D->getLocation(), diag::warn_unnecessary_packed)
1986 << D->getIdentifier();
1987 }
1988
computeKeyFunction(ASTContext & Context,const CXXRecordDecl * RD)1989 static const CXXMethodDecl *computeKeyFunction(ASTContext &Context,
1990 const CXXRecordDecl *RD) {
1991 // If a class isn't polymorphic it doesn't have a key function.
1992 if (!RD->isPolymorphic())
1993 return nullptr;
1994
1995 // A class that is not externally visible doesn't have a key function. (Or
1996 // at least, there's no point to assigning a key function to such a class;
1997 // this doesn't affect the ABI.)
1998 if (!RD->isExternallyVisible())
1999 return nullptr;
2000
2001 // Template instantiations don't have key functions per Itanium C++ ABI 5.2.6.
2002 // Same behavior as GCC.
2003 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
2004 if (TSK == TSK_ImplicitInstantiation ||
2005 TSK == TSK_ExplicitInstantiationDeclaration ||
2006 TSK == TSK_ExplicitInstantiationDefinition)
2007 return nullptr;
2008
2009 bool allowInlineFunctions =
2010 Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline();
2011
2012 for (const CXXMethodDecl *MD : RD->methods()) {
2013 if (!MD->isVirtual())
2014 continue;
2015
2016 if (MD->isPure())
2017 continue;
2018
2019 // Ignore implicit member functions, they are always marked as inline, but
2020 // they don't have a body until they're defined.
2021 if (MD->isImplicit())
2022 continue;
2023
2024 if (MD->isInlineSpecified())
2025 continue;
2026
2027 if (MD->hasInlineBody())
2028 continue;
2029
2030 // Ignore inline deleted or defaulted functions.
2031 if (!MD->isUserProvided())
2032 continue;
2033
2034 // In certain ABIs, ignore functions with out-of-line inline definitions.
2035 if (!allowInlineFunctions) {
2036 const FunctionDecl *Def;
2037 if (MD->hasBody(Def) && Def->isInlineSpecified())
2038 continue;
2039 }
2040
2041 if (Context.getLangOpts().CUDA) {
2042 // While compiler may see key method in this TU, during CUDA
2043 // compilation we should ignore methods that are not accessible
2044 // on this side of compilation.
2045 if (Context.getLangOpts().CUDAIsDevice) {
2046 // In device mode ignore methods without __device__ attribute.
2047 if (!MD->hasAttr<CUDADeviceAttr>())
2048 continue;
2049 } else {
2050 // In host mode ignore __device__-only methods.
2051 if (!MD->hasAttr<CUDAHostAttr>() && MD->hasAttr<CUDADeviceAttr>())
2052 continue;
2053 }
2054 }
2055
2056 // If the key function is dllimport but the class isn't, then the class has
2057 // no key function. The DLL that exports the key function won't export the
2058 // vtable in this case.
2059 if (MD->hasAttr<DLLImportAttr>() && !RD->hasAttr<DLLImportAttr>())
2060 return nullptr;
2061
2062 // We found it.
2063 return MD;
2064 }
2065
2066 return nullptr;
2067 }
2068
Diag(SourceLocation Loc,unsigned DiagID)2069 DiagnosticBuilder ItaniumRecordLayoutBuilder::Diag(SourceLocation Loc,
2070 unsigned DiagID) {
2071 return Context.getDiagnostics().Report(Loc, DiagID);
2072 }
2073
2074 /// Does the target C++ ABI require us to skip over the tail-padding
2075 /// of the given class (considering it as a base class) when allocating
2076 /// objects?
mustSkipTailPadding(TargetCXXABI ABI,const CXXRecordDecl * RD)2077 static bool mustSkipTailPadding(TargetCXXABI ABI, const CXXRecordDecl *RD) {
2078 switch (ABI.getTailPaddingUseRules()) {
2079 case TargetCXXABI::AlwaysUseTailPadding:
2080 return false;
2081
2082 case TargetCXXABI::UseTailPaddingUnlessPOD03:
2083 // FIXME: To the extent that this is meant to cover the Itanium ABI
2084 // rules, we should implement the restrictions about over-sized
2085 // bitfields:
2086 //
2087 // http://mentorembedded.github.com/cxx-abi/abi.html#POD :
2088 // In general, a type is considered a POD for the purposes of
2089 // layout if it is a POD type (in the sense of ISO C++
2090 // [basic.types]). However, a POD-struct or POD-union (in the
2091 // sense of ISO C++ [class]) with a bitfield member whose
2092 // declared width is wider than the declared type of the
2093 // bitfield is not a POD for the purpose of layout. Similarly,
2094 // an array type is not a POD for the purpose of layout if the
2095 // element type of the array is not a POD for the purpose of
2096 // layout.
2097 //
2098 // Where references to the ISO C++ are made in this paragraph,
2099 // the Technical Corrigendum 1 version of the standard is
2100 // intended.
2101 return RD->isPOD();
2102
2103 case TargetCXXABI::UseTailPaddingUnlessPOD11:
2104 // This is equivalent to RD->getTypeForDecl().isCXX11PODType(),
2105 // but with a lot of abstraction penalty stripped off. This does
2106 // assume that these properties are set correctly even in C++98
2107 // mode; fortunately, that is true because we want to assign
2108 // consistently semantics to the type-traits intrinsics (or at
2109 // least as many of them as possible).
2110 return RD->isTrivial() && RD->isStandardLayout();
2111 }
2112
2113 llvm_unreachable("bad tail-padding use kind");
2114 }
2115
isMsLayout(const ASTContext & Context)2116 static bool isMsLayout(const ASTContext &Context) {
2117 return Context.getTargetInfo().getCXXABI().isMicrosoft();
2118 }
2119
2120 // This section contains an implementation of struct layout that is, up to the
2121 // included tests, compatible with cl.exe (2013). The layout produced is
2122 // significantly different than those produced by the Itanium ABI. Here we note
2123 // the most important differences.
2124 //
2125 // * The alignment of bitfields in unions is ignored when computing the
2126 // alignment of the union.
2127 // * The existence of zero-width bitfield that occurs after anything other than
2128 // a non-zero length bitfield is ignored.
2129 // * There is no explicit primary base for the purposes of layout. All bases
2130 // with vfptrs are laid out first, followed by all bases without vfptrs.
2131 // * The Itanium equivalent vtable pointers are split into a vfptr (virtual
2132 // function pointer) and a vbptr (virtual base pointer). They can each be
2133 // shared with a, non-virtual bases. These bases need not be the same. vfptrs
2134 // always occur at offset 0. vbptrs can occur at an arbitrary offset and are
2135 // placed after the lexicographically last non-virtual base. This placement
2136 // is always before fields but can be in the middle of the non-virtual bases
2137 // due to the two-pass layout scheme for non-virtual-bases.
2138 // * Virtual bases sometimes require a 'vtordisp' field that is laid out before
2139 // the virtual base and is used in conjunction with virtual overrides during
2140 // construction and destruction. This is always a 4 byte value and is used as
2141 // an alternative to constructor vtables.
2142 // * vtordisps are allocated in a block of memory with size and alignment equal
2143 // to the alignment of the completed structure (before applying __declspec(
2144 // align())). The vtordisp always occur at the end of the allocation block,
2145 // immediately prior to the virtual base.
2146 // * vfptrs are injected after all bases and fields have been laid out. In
2147 // order to guarantee proper alignment of all fields, the vfptr injection
2148 // pushes all bases and fields back by the alignment imposed by those bases
2149 // and fields. This can potentially add a significant amount of padding.
2150 // vfptrs are always injected at offset 0.
2151 // * vbptrs are injected after all bases and fields have been laid out. In
2152 // order to guarantee proper alignment of all fields, the vfptr injection
2153 // pushes all bases and fields back by the alignment imposed by those bases
2154 // and fields. This can potentially add a significant amount of padding.
2155 // vbptrs are injected immediately after the last non-virtual base as
2156 // lexicographically ordered in the code. If this site isn't pointer aligned
2157 // the vbptr is placed at the next properly aligned location. Enough padding
2158 // is added to guarantee a fit.
2159 // * The last zero sized non-virtual base can be placed at the end of the
2160 // struct (potentially aliasing another object), or may alias with the first
2161 // field, even if they are of the same type.
2162 // * The last zero size virtual base may be placed at the end of the struct
2163 // potentially aliasing another object.
2164 // * The ABI attempts to avoid aliasing of zero sized bases by adding padding
2165 // between bases or vbases with specific properties. The criteria for
2166 // additional padding between two bases is that the first base is zero sized
2167 // or ends with a zero sized subobject and the second base is zero sized or
2168 // trails with a zero sized base or field (sharing of vfptrs can reorder the
2169 // layout of the so the leading base is not always the first one declared).
2170 // This rule does take into account fields that are not records, so padding
2171 // will occur even if the last field is, e.g. an int. The padding added for
2172 // bases is 1 byte. The padding added between vbases depends on the alignment
2173 // of the object but is at least 4 bytes (in both 32 and 64 bit modes).
2174 // * There is no concept of non-virtual alignment, non-virtual alignment and
2175 // alignment are always identical.
2176 // * There is a distinction between alignment and required alignment.
2177 // __declspec(align) changes the required alignment of a struct. This
2178 // alignment is _always_ obeyed, even in the presence of #pragma pack. A
2179 // record inherits required alignment from all of its fields and bases.
2180 // * __declspec(align) on bitfields has the effect of changing the bitfield's
2181 // alignment instead of its required alignment. This is the only known way
2182 // to make the alignment of a struct bigger than 8. Interestingly enough
2183 // this alignment is also immune to the effects of #pragma pack and can be
2184 // used to create structures with large alignment under #pragma pack.
2185 // However, because it does not impact required alignment, such a structure,
2186 // when used as a field or base, will not be aligned if #pragma pack is
2187 // still active at the time of use.
2188 //
2189 // Known incompatibilities:
2190 // * all: #pragma pack between fields in a record
2191 // * 2010 and back: If the last field in a record is a bitfield, every object
2192 // laid out after the record will have extra padding inserted before it. The
2193 // extra padding will have size equal to the size of the storage class of the
2194 // bitfield. 0 sized bitfields don't exhibit this behavior and the extra
2195 // padding can be avoided by adding a 0 sized bitfield after the non-zero-
2196 // sized bitfield.
2197 // * 2012 and back: In 64-bit mode, if the alignment of a record is 16 or
2198 // greater due to __declspec(align()) then a second layout phase occurs after
2199 // The locations of the vf and vb pointers are known. This layout phase
2200 // suffers from the "last field is a bitfield" bug in 2010 and results in
2201 // _every_ field getting padding put in front of it, potentially including the
2202 // vfptr, leaving the vfprt at a non-zero location which results in a fault if
2203 // anything tries to read the vftbl. The second layout phase also treats
2204 // bitfields as separate entities and gives them each storage rather than
2205 // packing them. Additionally, because this phase appears to perform a
2206 // (an unstable) sort on the members before laying them out and because merged
2207 // bitfields have the same address, the bitfields end up in whatever order
2208 // the sort left them in, a behavior we could never hope to replicate.
2209
2210 namespace {
2211 struct MicrosoftRecordLayoutBuilder {
2212 struct ElementInfo {
2213 CharUnits Size;
2214 CharUnits Alignment;
2215 };
2216 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> BaseOffsetsMapTy;
MicrosoftRecordLayoutBuilder__anona2f417160211::MicrosoftRecordLayoutBuilder2217 MicrosoftRecordLayoutBuilder(const ASTContext &Context) : Context(Context) {}
2218 private:
2219 MicrosoftRecordLayoutBuilder(const MicrosoftRecordLayoutBuilder &) = delete;
2220 void operator=(const MicrosoftRecordLayoutBuilder &) = delete;
2221 public:
2222 void layout(const RecordDecl *RD);
2223 void cxxLayout(const CXXRecordDecl *RD);
2224 /// \brief Initializes size and alignment and honors some flags.
2225 void initializeLayout(const RecordDecl *RD);
2226 /// \brief Initialized C++ layout, compute alignment and virtual alignment and
2227 /// existence of vfptrs and vbptrs. Alignment is needed before the vfptr is
2228 /// laid out.
2229 void initializeCXXLayout(const CXXRecordDecl *RD);
2230 void layoutNonVirtualBases(const CXXRecordDecl *RD);
2231 void layoutNonVirtualBase(const CXXRecordDecl *RD,
2232 const CXXRecordDecl *BaseDecl,
2233 const ASTRecordLayout &BaseLayout,
2234 const ASTRecordLayout *&PreviousBaseLayout);
2235 void injectVFPtr(const CXXRecordDecl *RD);
2236 void injectVBPtr(const CXXRecordDecl *RD);
2237 /// \brief Lays out the fields of the record. Also rounds size up to
2238 /// alignment.
2239 void layoutFields(const RecordDecl *RD);
2240 void layoutField(const FieldDecl *FD);
2241 void layoutBitField(const FieldDecl *FD);
2242 /// \brief Lays out a single zero-width bit-field in the record and handles
2243 /// special cases associated with zero-width bit-fields.
2244 void layoutZeroWidthBitField(const FieldDecl *FD);
2245 void layoutVirtualBases(const CXXRecordDecl *RD);
2246 void finalizeLayout(const RecordDecl *RD);
2247 /// \brief Gets the size and alignment of a base taking pragma pack and
2248 /// __declspec(align) into account.
2249 ElementInfo getAdjustedElementInfo(const ASTRecordLayout &Layout);
2250 /// \brief Gets the size and alignment of a field taking pragma pack and
2251 /// __declspec(align) into account. It also updates RequiredAlignment as a
2252 /// side effect because it is most convenient to do so here.
2253 ElementInfo getAdjustedElementInfo(const FieldDecl *FD);
2254 /// \brief Places a field at an offset in CharUnits.
placeFieldAtOffset__anona2f417160211::MicrosoftRecordLayoutBuilder2255 void placeFieldAtOffset(CharUnits FieldOffset) {
2256 FieldOffsets.push_back(Context.toBits(FieldOffset));
2257 }
2258 /// \brief Places a bitfield at a bit offset.
placeFieldAtBitOffset__anona2f417160211::MicrosoftRecordLayoutBuilder2259 void placeFieldAtBitOffset(uint64_t FieldOffset) {
2260 FieldOffsets.push_back(FieldOffset);
2261 }
2262 /// \brief Compute the set of virtual bases for which vtordisps are required.
2263 void computeVtorDispSet(
2264 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtorDispSet,
2265 const CXXRecordDecl *RD) const;
2266 const ASTContext &Context;
2267 /// \brief The size of the record being laid out.
2268 CharUnits Size;
2269 /// \brief The non-virtual size of the record layout.
2270 CharUnits NonVirtualSize;
2271 /// \brief The data size of the record layout.
2272 CharUnits DataSize;
2273 /// \brief The current alignment of the record layout.
2274 CharUnits Alignment;
2275 /// \brief The maximum allowed field alignment. This is set by #pragma pack.
2276 CharUnits MaxFieldAlignment;
2277 /// \brief The alignment that this record must obey. This is imposed by
2278 /// __declspec(align()) on the record itself or one of its fields or bases.
2279 CharUnits RequiredAlignment;
2280 /// \brief The size of the allocation of the currently active bitfield.
2281 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield
2282 /// is true.
2283 CharUnits CurrentBitfieldSize;
2284 /// \brief Offset to the virtual base table pointer (if one exists).
2285 CharUnits VBPtrOffset;
2286 /// \brief Minimum record size possible.
2287 CharUnits MinEmptyStructSize;
2288 /// \brief The size and alignment info of a pointer.
2289 ElementInfo PointerInfo;
2290 /// \brief The primary base class (if one exists).
2291 const CXXRecordDecl *PrimaryBase;
2292 /// \brief The class we share our vb-pointer with.
2293 const CXXRecordDecl *SharedVBPtrBase;
2294 /// \brief The collection of field offsets.
2295 SmallVector<uint64_t, 16> FieldOffsets;
2296 /// \brief Base classes and their offsets in the record.
2297 BaseOffsetsMapTy Bases;
2298 /// \brief virtual base classes and their offsets in the record.
2299 ASTRecordLayout::VBaseOffsetsMapTy VBases;
2300 /// \brief The number of remaining bits in our last bitfield allocation.
2301 /// This value isn't meaningful unless LastFieldIsNonZeroWidthBitfield is
2302 /// true.
2303 unsigned RemainingBitsInField;
2304 bool IsUnion : 1;
2305 /// \brief True if the last field laid out was a bitfield and was not 0
2306 /// width.
2307 bool LastFieldIsNonZeroWidthBitfield : 1;
2308 /// \brief True if the class has its own vftable pointer.
2309 bool HasOwnVFPtr : 1;
2310 /// \brief True if the class has a vbtable pointer.
2311 bool HasVBPtr : 1;
2312 /// \brief True if the last sub-object within the type is zero sized or the
2313 /// object itself is zero sized. This *does not* count members that are not
2314 /// records. Only used for MS-ABI.
2315 bool EndsWithZeroSizedObject : 1;
2316 /// \brief True if this class is zero sized or first base is zero sized or
2317 /// has this property. Only used for MS-ABI.
2318 bool LeadsWithZeroSizedBase : 1;
2319
2320 /// \brief True if the external AST source provided a layout for this record.
2321 bool UseExternalLayout : 1;
2322
2323 /// \brief The layout provided by the external AST source. Only active if
2324 /// UseExternalLayout is true.
2325 ExternalLayout External;
2326 };
2327 } // namespace
2328
2329 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const ASTRecordLayout & Layout)2330 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2331 const ASTRecordLayout &Layout) {
2332 ElementInfo Info;
2333 Info.Alignment = Layout.getAlignment();
2334 // Respect pragma pack.
2335 if (!MaxFieldAlignment.isZero())
2336 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2337 // Track zero-sized subobjects here where it's already available.
2338 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2339 // Respect required alignment, this is necessary because we may have adjusted
2340 // the alignment in the case of pragam pack. Note that the required alignment
2341 // doesn't actually apply to the struct alignment at this point.
2342 Alignment = std::max(Alignment, Info.Alignment);
2343 RequiredAlignment = std::max(RequiredAlignment, Layout.getRequiredAlignment());
2344 Info.Alignment = std::max(Info.Alignment, Layout.getRequiredAlignment());
2345 Info.Size = Layout.getNonVirtualSize();
2346 return Info;
2347 }
2348
2349 MicrosoftRecordLayoutBuilder::ElementInfo
getAdjustedElementInfo(const FieldDecl * FD)2350 MicrosoftRecordLayoutBuilder::getAdjustedElementInfo(
2351 const FieldDecl *FD) {
2352 // Get the alignment of the field type's natural alignment, ignore any
2353 // alignment attributes.
2354 ElementInfo Info;
2355 std::tie(Info.Size, Info.Alignment) =
2356 Context.getTypeInfoInChars(FD->getType()->getUnqualifiedDesugaredType());
2357 // Respect align attributes on the field.
2358 CharUnits FieldRequiredAlignment =
2359 Context.toCharUnitsFromBits(FD->getMaxAlignment());
2360 // Respect align attributes on the type.
2361 if (Context.isAlignmentRequired(FD->getType()))
2362 FieldRequiredAlignment = std::max(
2363 Context.getTypeAlignInChars(FD->getType()), FieldRequiredAlignment);
2364 // Respect attributes applied to subobjects of the field.
2365 if (FD->isBitField())
2366 // For some reason __declspec align impacts alignment rather than required
2367 // alignment when it is applied to bitfields.
2368 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2369 else {
2370 if (auto RT =
2371 FD->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
2372 auto const &Layout = Context.getASTRecordLayout(RT->getDecl());
2373 EndsWithZeroSizedObject = Layout.endsWithZeroSizedObject();
2374 FieldRequiredAlignment = std::max(FieldRequiredAlignment,
2375 Layout.getRequiredAlignment());
2376 }
2377 // Capture required alignment as a side-effect.
2378 RequiredAlignment = std::max(RequiredAlignment, FieldRequiredAlignment);
2379 }
2380 // Respect pragma pack, attribute pack and declspec align
2381 if (!MaxFieldAlignment.isZero())
2382 Info.Alignment = std::min(Info.Alignment, MaxFieldAlignment);
2383 if (FD->hasAttr<PackedAttr>())
2384 Info.Alignment = CharUnits::One();
2385 Info.Alignment = std::max(Info.Alignment, FieldRequiredAlignment);
2386 return Info;
2387 }
2388
layout(const RecordDecl * RD)2389 void MicrosoftRecordLayoutBuilder::layout(const RecordDecl *RD) {
2390 // For C record layout, zero-sized records always have size 4.
2391 MinEmptyStructSize = CharUnits::fromQuantity(4);
2392 initializeLayout(RD);
2393 layoutFields(RD);
2394 DataSize = Size = Size.alignTo(Alignment);
2395 RequiredAlignment = std::max(
2396 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2397 finalizeLayout(RD);
2398 }
2399
cxxLayout(const CXXRecordDecl * RD)2400 void MicrosoftRecordLayoutBuilder::cxxLayout(const CXXRecordDecl *RD) {
2401 // The C++ standard says that empty structs have size 1.
2402 MinEmptyStructSize = CharUnits::One();
2403 initializeLayout(RD);
2404 initializeCXXLayout(RD);
2405 layoutNonVirtualBases(RD);
2406 layoutFields(RD);
2407 injectVBPtr(RD);
2408 injectVFPtr(RD);
2409 if (HasOwnVFPtr || (HasVBPtr && !SharedVBPtrBase))
2410 Alignment = std::max(Alignment, PointerInfo.Alignment);
2411 auto RoundingAlignment = Alignment;
2412 if (!MaxFieldAlignment.isZero())
2413 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2414 NonVirtualSize = Size = Size.alignTo(RoundingAlignment);
2415 RequiredAlignment = std::max(
2416 RequiredAlignment, Context.toCharUnitsFromBits(RD->getMaxAlignment()));
2417 layoutVirtualBases(RD);
2418 finalizeLayout(RD);
2419 }
2420
initializeLayout(const RecordDecl * RD)2421 void MicrosoftRecordLayoutBuilder::initializeLayout(const RecordDecl *RD) {
2422 IsUnion = RD->isUnion();
2423 Size = CharUnits::Zero();
2424 Alignment = CharUnits::One();
2425 // In 64-bit mode we always perform an alignment step after laying out vbases.
2426 // In 32-bit mode we do not. The check to see if we need to perform alignment
2427 // checks the RequiredAlignment field and performs alignment if it isn't 0.
2428 RequiredAlignment = Context.getTargetInfo().getTriple().isArch64Bit()
2429 ? CharUnits::One()
2430 : CharUnits::Zero();
2431 // Compute the maximum field alignment.
2432 MaxFieldAlignment = CharUnits::Zero();
2433 // Honor the default struct packing maximum alignment flag.
2434 if (unsigned DefaultMaxFieldAlignment = Context.getLangOpts().PackStruct)
2435 MaxFieldAlignment = CharUnits::fromQuantity(DefaultMaxFieldAlignment);
2436 // Honor the packing attribute. The MS-ABI ignores pragma pack if its larger
2437 // than the pointer size.
2438 if (const MaxFieldAlignmentAttr *MFAA = RD->getAttr<MaxFieldAlignmentAttr>()){
2439 unsigned PackedAlignment = MFAA->getAlignment();
2440 if (PackedAlignment <= Context.getTargetInfo().getPointerWidth(0))
2441 MaxFieldAlignment = Context.toCharUnitsFromBits(PackedAlignment);
2442 }
2443 // Packed attribute forces max field alignment to be 1.
2444 if (RD->hasAttr<PackedAttr>())
2445 MaxFieldAlignment = CharUnits::One();
2446
2447 // Try to respect the external layout if present.
2448 UseExternalLayout = false;
2449 if (ExternalASTSource *Source = Context.getExternalSource())
2450 UseExternalLayout = Source->layoutRecordType(
2451 RD, External.Size, External.Align, External.FieldOffsets,
2452 External.BaseOffsets, External.VirtualBaseOffsets);
2453 }
2454
2455 void
initializeCXXLayout(const CXXRecordDecl * RD)2456 MicrosoftRecordLayoutBuilder::initializeCXXLayout(const CXXRecordDecl *RD) {
2457 EndsWithZeroSizedObject = false;
2458 LeadsWithZeroSizedBase = false;
2459 HasOwnVFPtr = false;
2460 HasVBPtr = false;
2461 PrimaryBase = nullptr;
2462 SharedVBPtrBase = nullptr;
2463 // Calculate pointer size and alignment. These are used for vfptr and vbprt
2464 // injection.
2465 PointerInfo.Size =
2466 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
2467 PointerInfo.Alignment =
2468 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerAlign(0));
2469 // Respect pragma pack.
2470 if (!MaxFieldAlignment.isZero())
2471 PointerInfo.Alignment = std::min(PointerInfo.Alignment, MaxFieldAlignment);
2472 }
2473
2474 void
layoutNonVirtualBases(const CXXRecordDecl * RD)2475 MicrosoftRecordLayoutBuilder::layoutNonVirtualBases(const CXXRecordDecl *RD) {
2476 // The MS-ABI lays out all bases that contain leading vfptrs before it lays
2477 // out any bases that do not contain vfptrs. We implement this as two passes
2478 // over the bases. This approach guarantees that the primary base is laid out
2479 // first. We use these passes to calculate some additional aggregated
2480 // information about the bases, such as required alignment and the presence of
2481 // zero sized members.
2482 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2483 // Iterate through the bases and lay out the non-virtual ones.
2484 for (const CXXBaseSpecifier &Base : RD->bases()) {
2485 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2486 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2487 // Mark and skip virtual bases.
2488 if (Base.isVirtual()) {
2489 HasVBPtr = true;
2490 continue;
2491 }
2492 // Check for a base to share a VBPtr with.
2493 if (!SharedVBPtrBase && BaseLayout.hasVBPtr()) {
2494 SharedVBPtrBase = BaseDecl;
2495 HasVBPtr = true;
2496 }
2497 // Only lay out bases with extendable VFPtrs on the first pass.
2498 if (!BaseLayout.hasExtendableVFPtr())
2499 continue;
2500 // If we don't have a primary base, this one qualifies.
2501 if (!PrimaryBase) {
2502 PrimaryBase = BaseDecl;
2503 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2504 }
2505 // Lay out the base.
2506 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2507 }
2508 // Figure out if we need a fresh VFPtr for this class.
2509 if (!PrimaryBase && RD->isDynamicClass())
2510 for (CXXRecordDecl::method_iterator i = RD->method_begin(),
2511 e = RD->method_end();
2512 !HasOwnVFPtr && i != e; ++i)
2513 HasOwnVFPtr = i->isVirtual() && i->size_overridden_methods() == 0;
2514 // If we don't have a primary base then we have a leading object that could
2515 // itself lead with a zero-sized object, something we track.
2516 bool CheckLeadingLayout = !PrimaryBase;
2517 // Iterate through the bases and lay out the non-virtual ones.
2518 for (const CXXBaseSpecifier &Base : RD->bases()) {
2519 if (Base.isVirtual())
2520 continue;
2521 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2522 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2523 // Only lay out bases without extendable VFPtrs on the second pass.
2524 if (BaseLayout.hasExtendableVFPtr()) {
2525 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2526 continue;
2527 }
2528 // If this is the first layout, check to see if it leads with a zero sized
2529 // object. If it does, so do we.
2530 if (CheckLeadingLayout) {
2531 CheckLeadingLayout = false;
2532 LeadsWithZeroSizedBase = BaseLayout.leadsWithZeroSizedBase();
2533 }
2534 // Lay out the base.
2535 layoutNonVirtualBase(RD, BaseDecl, BaseLayout, PreviousBaseLayout);
2536 VBPtrOffset = Bases[BaseDecl] + BaseLayout.getNonVirtualSize();
2537 }
2538 // Set our VBPtroffset if we know it at this point.
2539 if (!HasVBPtr)
2540 VBPtrOffset = CharUnits::fromQuantity(-1);
2541 else if (SharedVBPtrBase) {
2542 const ASTRecordLayout &Layout = Context.getASTRecordLayout(SharedVBPtrBase);
2543 VBPtrOffset = Bases[SharedVBPtrBase] + Layout.getVBPtrOffset();
2544 }
2545 }
2546
recordUsesEBO(const RecordDecl * RD)2547 static bool recordUsesEBO(const RecordDecl *RD) {
2548 if (!isa<CXXRecordDecl>(RD))
2549 return false;
2550 if (RD->hasAttr<EmptyBasesAttr>())
2551 return true;
2552 if (auto *LVA = RD->getAttr<LayoutVersionAttr>())
2553 // TODO: Double check with the next version of MSVC.
2554 if (LVA->getVersion() <= LangOptions::MSVC2015)
2555 return false;
2556 // TODO: Some later version of MSVC will change the default behavior of the
2557 // compiler to enable EBO by default. When this happens, we will need an
2558 // additional isCompatibleWithMSVC check.
2559 return false;
2560 }
2561
layoutNonVirtualBase(const CXXRecordDecl * RD,const CXXRecordDecl * BaseDecl,const ASTRecordLayout & BaseLayout,const ASTRecordLayout * & PreviousBaseLayout)2562 void MicrosoftRecordLayoutBuilder::layoutNonVirtualBase(
2563 const CXXRecordDecl *RD,
2564 const CXXRecordDecl *BaseDecl,
2565 const ASTRecordLayout &BaseLayout,
2566 const ASTRecordLayout *&PreviousBaseLayout) {
2567 // Insert padding between two bases if the left first one is zero sized or
2568 // contains a zero sized subobject and the right is zero sized or one leads
2569 // with a zero sized base.
2570 bool MDCUsesEBO = recordUsesEBO(RD);
2571 if (PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2572 BaseLayout.leadsWithZeroSizedBase() && !MDCUsesEBO)
2573 Size++;
2574 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2575 CharUnits BaseOffset;
2576
2577 // Respect the external AST source base offset, if present.
2578 bool FoundBase = false;
2579 if (UseExternalLayout) {
2580 FoundBase = External.getExternalNVBaseOffset(BaseDecl, BaseOffset);
2581 if (FoundBase) {
2582 assert(BaseOffset >= Size && "base offset already allocated");
2583 Size = BaseOffset;
2584 }
2585 }
2586
2587 if (!FoundBase) {
2588 if (MDCUsesEBO && BaseDecl->isEmpty() &&
2589 BaseLayout.getNonVirtualSize() == CharUnits::Zero()) {
2590 BaseOffset = CharUnits::Zero();
2591 } else {
2592 // Otherwise, lay the base out at the end of the MDC.
2593 BaseOffset = Size = Size.alignTo(Info.Alignment);
2594 }
2595 }
2596 Bases.insert(std::make_pair(BaseDecl, BaseOffset));
2597 Size += BaseLayout.getNonVirtualSize();
2598 PreviousBaseLayout = &BaseLayout;
2599 }
2600
layoutFields(const RecordDecl * RD)2601 void MicrosoftRecordLayoutBuilder::layoutFields(const RecordDecl *RD) {
2602 LastFieldIsNonZeroWidthBitfield = false;
2603 for (const FieldDecl *Field : RD->fields())
2604 layoutField(Field);
2605 }
2606
layoutField(const FieldDecl * FD)2607 void MicrosoftRecordLayoutBuilder::layoutField(const FieldDecl *FD) {
2608 if (FD->isBitField()) {
2609 layoutBitField(FD);
2610 return;
2611 }
2612 LastFieldIsNonZeroWidthBitfield = false;
2613 ElementInfo Info = getAdjustedElementInfo(FD);
2614 Alignment = std::max(Alignment, Info.Alignment);
2615 if (IsUnion) {
2616 placeFieldAtOffset(CharUnits::Zero());
2617 Size = std::max(Size, Info.Size);
2618 } else {
2619 CharUnits FieldOffset;
2620 if (UseExternalLayout) {
2621 FieldOffset =
2622 Context.toCharUnitsFromBits(External.getExternalFieldOffset(FD));
2623 assert(FieldOffset >= Size && "field offset already allocated");
2624 } else {
2625 FieldOffset = Size.alignTo(Info.Alignment);
2626 }
2627 placeFieldAtOffset(FieldOffset);
2628 Size = FieldOffset + Info.Size;
2629 }
2630 }
2631
layoutBitField(const FieldDecl * FD)2632 void MicrosoftRecordLayoutBuilder::layoutBitField(const FieldDecl *FD) {
2633 unsigned Width = FD->getBitWidthValue(Context);
2634 if (Width == 0) {
2635 layoutZeroWidthBitField(FD);
2636 return;
2637 }
2638 ElementInfo Info = getAdjustedElementInfo(FD);
2639 // Clamp the bitfield to a containable size for the sake of being able
2640 // to lay them out. Sema will throw an error.
2641 if (Width > Context.toBits(Info.Size))
2642 Width = Context.toBits(Info.Size);
2643 // Check to see if this bitfield fits into an existing allocation. Note:
2644 // MSVC refuses to pack bitfields of formal types with different sizes
2645 // into the same allocation.
2646 if (!IsUnion && LastFieldIsNonZeroWidthBitfield &&
2647 CurrentBitfieldSize == Info.Size && Width <= RemainingBitsInField) {
2648 placeFieldAtBitOffset(Context.toBits(Size) - RemainingBitsInField);
2649 RemainingBitsInField -= Width;
2650 return;
2651 }
2652 LastFieldIsNonZeroWidthBitfield = true;
2653 CurrentBitfieldSize = Info.Size;
2654 if (IsUnion) {
2655 placeFieldAtOffset(CharUnits::Zero());
2656 Size = std::max(Size, Info.Size);
2657 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2658 } else {
2659 // Allocate a new block of memory and place the bitfield in it.
2660 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2661 placeFieldAtOffset(FieldOffset);
2662 Size = FieldOffset + Info.Size;
2663 Alignment = std::max(Alignment, Info.Alignment);
2664 RemainingBitsInField = Context.toBits(Info.Size) - Width;
2665 }
2666 }
2667
2668 void
layoutZeroWidthBitField(const FieldDecl * FD)2669 MicrosoftRecordLayoutBuilder::layoutZeroWidthBitField(const FieldDecl *FD) {
2670 // Zero-width bitfields are ignored unless they follow a non-zero-width
2671 // bitfield.
2672 if (!LastFieldIsNonZeroWidthBitfield) {
2673 placeFieldAtOffset(IsUnion ? CharUnits::Zero() : Size);
2674 // TODO: Add a Sema warning that MS ignores alignment for zero
2675 // sized bitfields that occur after zero-size bitfields or non-bitfields.
2676 return;
2677 }
2678 LastFieldIsNonZeroWidthBitfield = false;
2679 ElementInfo Info = getAdjustedElementInfo(FD);
2680 if (IsUnion) {
2681 placeFieldAtOffset(CharUnits::Zero());
2682 Size = std::max(Size, Info.Size);
2683 // TODO: Add a Sema warning that MS ignores bitfield alignment in unions.
2684 } else {
2685 // Round up the current record size to the field's alignment boundary.
2686 CharUnits FieldOffset = Size.alignTo(Info.Alignment);
2687 placeFieldAtOffset(FieldOffset);
2688 Size = FieldOffset;
2689 Alignment = std::max(Alignment, Info.Alignment);
2690 }
2691 }
2692
injectVBPtr(const CXXRecordDecl * RD)2693 void MicrosoftRecordLayoutBuilder::injectVBPtr(const CXXRecordDecl *RD) {
2694 if (!HasVBPtr || SharedVBPtrBase)
2695 return;
2696 // Inject the VBPointer at the injection site.
2697 CharUnits InjectionSite = VBPtrOffset;
2698 // But before we do, make sure it's properly aligned.
2699 VBPtrOffset = VBPtrOffset.alignTo(PointerInfo.Alignment);
2700 // Shift everything after the vbptr down, unless we're using an external
2701 // layout.
2702 if (UseExternalLayout)
2703 return;
2704 // Determine where the first field should be laid out after the vbptr.
2705 CharUnits FieldStart = VBPtrOffset + PointerInfo.Size;
2706 // Make sure that the amount we push the fields back by is a multiple of the
2707 // alignment.
2708 CharUnits Offset = (FieldStart - InjectionSite)
2709 .alignTo(std::max(RequiredAlignment, Alignment));
2710 Size += Offset;
2711 for (uint64_t &FieldOffset : FieldOffsets)
2712 FieldOffset += Context.toBits(Offset);
2713 for (BaseOffsetsMapTy::value_type &Base : Bases)
2714 if (Base.second >= InjectionSite)
2715 Base.second += Offset;
2716 }
2717
injectVFPtr(const CXXRecordDecl * RD)2718 void MicrosoftRecordLayoutBuilder::injectVFPtr(const CXXRecordDecl *RD) {
2719 if (!HasOwnVFPtr)
2720 return;
2721 // Make sure that the amount we push the struct back by is a multiple of the
2722 // alignment.
2723 CharUnits Offset =
2724 PointerInfo.Size.alignTo(std::max(RequiredAlignment, Alignment));
2725 // Push back the vbptr, but increase the size of the object and push back
2726 // regular fields by the offset only if not using external record layout.
2727 if (HasVBPtr)
2728 VBPtrOffset += Offset;
2729
2730 if (UseExternalLayout)
2731 return;
2732
2733 Size += Offset;
2734
2735 // If we're using an external layout, the fields offsets have already
2736 // accounted for this adjustment.
2737 for (uint64_t &FieldOffset : FieldOffsets)
2738 FieldOffset += Context.toBits(Offset);
2739 for (BaseOffsetsMapTy::value_type &Base : Bases)
2740 Base.second += Offset;
2741 }
2742
layoutVirtualBases(const CXXRecordDecl * RD)2743 void MicrosoftRecordLayoutBuilder::layoutVirtualBases(const CXXRecordDecl *RD) {
2744 if (!HasVBPtr)
2745 return;
2746 // Vtordisps are always 4 bytes (even in 64-bit mode)
2747 CharUnits VtorDispSize = CharUnits::fromQuantity(4);
2748 CharUnits VtorDispAlignment = VtorDispSize;
2749 // vtordisps respect pragma pack.
2750 if (!MaxFieldAlignment.isZero())
2751 VtorDispAlignment = std::min(VtorDispAlignment, MaxFieldAlignment);
2752 // The alignment of the vtordisp is at least the required alignment of the
2753 // entire record. This requirement may be present to support vtordisp
2754 // injection.
2755 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2756 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2757 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2758 RequiredAlignment =
2759 std::max(RequiredAlignment, BaseLayout.getRequiredAlignment());
2760 }
2761 VtorDispAlignment = std::max(VtorDispAlignment, RequiredAlignment);
2762 // Compute the vtordisp set.
2763 llvm::SmallPtrSet<const CXXRecordDecl *, 2> HasVtorDispSet;
2764 computeVtorDispSet(HasVtorDispSet, RD);
2765 // Iterate through the virtual bases and lay them out.
2766 const ASTRecordLayout *PreviousBaseLayout = nullptr;
2767 for (const CXXBaseSpecifier &VBase : RD->vbases()) {
2768 const CXXRecordDecl *BaseDecl = VBase.getType()->getAsCXXRecordDecl();
2769 const ASTRecordLayout &BaseLayout = Context.getASTRecordLayout(BaseDecl);
2770 bool HasVtordisp = HasVtorDispSet.count(BaseDecl) > 0;
2771 // Insert padding between two bases if the left first one is zero sized or
2772 // contains a zero sized subobject and the right is zero sized or one leads
2773 // with a zero sized base. The padding between virtual bases is 4
2774 // bytes (in both 32 and 64 bits modes) and always involves rounding up to
2775 // the required alignment, we don't know why.
2776 if ((PreviousBaseLayout && PreviousBaseLayout->endsWithZeroSizedObject() &&
2777 BaseLayout.leadsWithZeroSizedBase() && !recordUsesEBO(RD)) ||
2778 HasVtordisp) {
2779 Size = Size.alignTo(VtorDispAlignment) + VtorDispSize;
2780 Alignment = std::max(VtorDispAlignment, Alignment);
2781 }
2782 // Insert the virtual base.
2783 ElementInfo Info = getAdjustedElementInfo(BaseLayout);
2784 CharUnits BaseOffset;
2785
2786 // Respect the external AST source base offset, if present.
2787 bool FoundBase = false;
2788 if (UseExternalLayout) {
2789 FoundBase = External.getExternalVBaseOffset(BaseDecl, BaseOffset);
2790 if (FoundBase)
2791 assert(BaseOffset >= Size && "base offset already allocated");
2792 }
2793 if (!FoundBase)
2794 BaseOffset = Size.alignTo(Info.Alignment);
2795
2796 VBases.insert(std::make_pair(BaseDecl,
2797 ASTRecordLayout::VBaseInfo(BaseOffset, HasVtordisp)));
2798 Size = BaseOffset + BaseLayout.getNonVirtualSize();
2799 PreviousBaseLayout = &BaseLayout;
2800 }
2801 }
2802
finalizeLayout(const RecordDecl * RD)2803 void MicrosoftRecordLayoutBuilder::finalizeLayout(const RecordDecl *RD) {
2804 // Respect required alignment. Note that in 32-bit mode Required alignment
2805 // may be 0 and cause size not to be updated.
2806 DataSize = Size;
2807 if (!RequiredAlignment.isZero()) {
2808 Alignment = std::max(Alignment, RequiredAlignment);
2809 auto RoundingAlignment = Alignment;
2810 if (!MaxFieldAlignment.isZero())
2811 RoundingAlignment = std::min(RoundingAlignment, MaxFieldAlignment);
2812 RoundingAlignment = std::max(RoundingAlignment, RequiredAlignment);
2813 Size = Size.alignTo(RoundingAlignment);
2814 }
2815 if (Size.isZero()) {
2816 if (!recordUsesEBO(RD) || !cast<CXXRecordDecl>(RD)->isEmpty()) {
2817 EndsWithZeroSizedObject = true;
2818 LeadsWithZeroSizedBase = true;
2819 }
2820 // Zero-sized structures have size equal to their alignment if a
2821 // __declspec(align) came into play.
2822 if (RequiredAlignment >= MinEmptyStructSize)
2823 Size = Alignment;
2824 else
2825 Size = MinEmptyStructSize;
2826 }
2827
2828 if (UseExternalLayout) {
2829 Size = Context.toCharUnitsFromBits(External.Size);
2830 if (External.Align)
2831 Alignment = Context.toCharUnitsFromBits(External.Align);
2832 }
2833 }
2834
2835 // Recursively walks the non-virtual bases of a class and determines if any of
2836 // them are in the bases with overridden methods set.
2837 static bool
RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl * > & BasesWithOverriddenMethods,const CXXRecordDecl * RD)2838 RequiresVtordisp(const llvm::SmallPtrSetImpl<const CXXRecordDecl *> &
2839 BasesWithOverriddenMethods,
2840 const CXXRecordDecl *RD) {
2841 if (BasesWithOverriddenMethods.count(RD))
2842 return true;
2843 // If any of a virtual bases non-virtual bases (recursively) requires a
2844 // vtordisp than so does this virtual base.
2845 for (const CXXBaseSpecifier &Base : RD->bases())
2846 if (!Base.isVirtual() &&
2847 RequiresVtordisp(BasesWithOverriddenMethods,
2848 Base.getType()->getAsCXXRecordDecl()))
2849 return true;
2850 return false;
2851 }
2852
computeVtorDispSet(llvm::SmallPtrSetImpl<const CXXRecordDecl * > & HasVtordispSet,const CXXRecordDecl * RD) const2853 void MicrosoftRecordLayoutBuilder::computeVtorDispSet(
2854 llvm::SmallPtrSetImpl<const CXXRecordDecl *> &HasVtordispSet,
2855 const CXXRecordDecl *RD) const {
2856 // /vd2 or #pragma vtordisp(2): Always use vtordisps for virtual bases with
2857 // vftables.
2858 if (RD->getMSVtorDispMode() == MSVtorDispAttr::ForVFTable) {
2859 for (const CXXBaseSpecifier &Base : RD->vbases()) {
2860 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2861 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2862 if (Layout.hasExtendableVFPtr())
2863 HasVtordispSet.insert(BaseDecl);
2864 }
2865 return;
2866 }
2867
2868 // If any of our bases need a vtordisp for this type, so do we. Check our
2869 // direct bases for vtordisp requirements.
2870 for (const CXXBaseSpecifier &Base : RD->bases()) {
2871 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2872 const ASTRecordLayout &Layout = Context.getASTRecordLayout(BaseDecl);
2873 for (const auto &bi : Layout.getVBaseOffsetsMap())
2874 if (bi.second.hasVtorDisp())
2875 HasVtordispSet.insert(bi.first);
2876 }
2877 // We don't introduce any additional vtordisps if either:
2878 // * A user declared constructor or destructor aren't declared.
2879 // * #pragma vtordisp(0) or the /vd0 flag are in use.
2880 if ((!RD->hasUserDeclaredConstructor() && !RD->hasUserDeclaredDestructor()) ||
2881 RD->getMSVtorDispMode() == MSVtorDispAttr::Never)
2882 return;
2883 // /vd1 or #pragma vtordisp(1): Try to guess based on whether we think it's
2884 // possible for a partially constructed object with virtual base overrides to
2885 // escape a non-trivial constructor.
2886 assert(RD->getMSVtorDispMode() == MSVtorDispAttr::ForVBaseOverride);
2887 // Compute a set of base classes which define methods we override. A virtual
2888 // base in this set will require a vtordisp. A virtual base that transitively
2889 // contains one of these bases as a non-virtual base will also require a
2890 // vtordisp.
2891 llvm::SmallPtrSet<const CXXMethodDecl *, 8> Work;
2892 llvm::SmallPtrSet<const CXXRecordDecl *, 2> BasesWithOverriddenMethods;
2893 // Seed the working set with our non-destructor, non-pure virtual methods.
2894 for (const CXXMethodDecl *MD : RD->methods())
2895 if (MD->isVirtual() && !isa<CXXDestructorDecl>(MD) && !MD->isPure())
2896 Work.insert(MD);
2897 while (!Work.empty()) {
2898 const CXXMethodDecl *MD = *Work.begin();
2899 CXXMethodDecl::method_iterator i = MD->begin_overridden_methods(),
2900 e = MD->end_overridden_methods();
2901 // If a virtual method has no-overrides it lives in its parent's vtable.
2902 if (i == e)
2903 BasesWithOverriddenMethods.insert(MD->getParent());
2904 else
2905 Work.insert(i, e);
2906 // We've finished processing this element, remove it from the working set.
2907 Work.erase(MD);
2908 }
2909 // For each of our virtual bases, check if it is in the set of overridden
2910 // bases or if it transitively contains a non-virtual base that is.
2911 for (const CXXBaseSpecifier &Base : RD->vbases()) {
2912 const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
2913 if (!HasVtordispSet.count(BaseDecl) &&
2914 RequiresVtordisp(BasesWithOverriddenMethods, BaseDecl))
2915 HasVtordispSet.insert(BaseDecl);
2916 }
2917 }
2918
2919 /// getASTRecordLayout - Get or compute information about the layout of the
2920 /// specified record (struct/union/class), which indicates its size and field
2921 /// position information.
2922 const ASTRecordLayout &
getASTRecordLayout(const RecordDecl * D) const2923 ASTContext::getASTRecordLayout(const RecordDecl *D) const {
2924 // These asserts test different things. A record has a definition
2925 // as soon as we begin to parse the definition. That definition is
2926 // not a complete definition (which is what isDefinition() tests)
2927 // until we *finish* parsing the definition.
2928
2929 if (D->hasExternalLexicalStorage() && !D->getDefinition())
2930 getExternalSource()->CompleteType(const_cast<RecordDecl*>(D));
2931
2932 D = D->getDefinition();
2933 assert(D && "Cannot get layout of forward declarations!");
2934 assert(!D->isInvalidDecl() && "Cannot get layout of invalid decl!");
2935 assert(D->isCompleteDefinition() && "Cannot layout type before complete!");
2936
2937 // Look up this layout, if already laid out, return what we have.
2938 // Note that we can't save a reference to the entry because this function
2939 // is recursive.
2940 const ASTRecordLayout *Entry = ASTRecordLayouts[D];
2941 if (Entry) return *Entry;
2942
2943 const ASTRecordLayout *NewEntry = nullptr;
2944
2945 if (isMsLayout(*this)) {
2946 MicrosoftRecordLayoutBuilder Builder(*this);
2947 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
2948 Builder.cxxLayout(RD);
2949 NewEntry = new (*this) ASTRecordLayout(
2950 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2951 Builder.HasOwnVFPtr, Builder.HasOwnVFPtr || Builder.PrimaryBase,
2952 Builder.VBPtrOffset, Builder.DataSize, Builder.FieldOffsets,
2953 Builder.NonVirtualSize, Builder.Alignment, CharUnits::Zero(),
2954 Builder.PrimaryBase, false, Builder.SharedVBPtrBase,
2955 Builder.EndsWithZeroSizedObject, Builder.LeadsWithZeroSizedBase,
2956 Builder.Bases, Builder.VBases);
2957 } else {
2958 Builder.layout(D);
2959 NewEntry = new (*this) ASTRecordLayout(
2960 *this, Builder.Size, Builder.Alignment, Builder.RequiredAlignment,
2961 Builder.Size, Builder.FieldOffsets);
2962 }
2963 } else {
2964 if (const auto *RD = dyn_cast<CXXRecordDecl>(D)) {
2965 EmptySubobjectMap EmptySubobjects(*this, RD);
2966 ItaniumRecordLayoutBuilder Builder(*this, &EmptySubobjects);
2967 Builder.Layout(RD);
2968
2969 // In certain situations, we are allowed to lay out objects in the
2970 // tail-padding of base classes. This is ABI-dependent.
2971 // FIXME: this should be stored in the record layout.
2972 bool skipTailPadding =
2973 mustSkipTailPadding(getTargetInfo().getCXXABI(), RD);
2974
2975 // FIXME: This should be done in FinalizeLayout.
2976 CharUnits DataSize =
2977 skipTailPadding ? Builder.getSize() : Builder.getDataSize();
2978 CharUnits NonVirtualSize =
2979 skipTailPadding ? DataSize : Builder.NonVirtualSize;
2980 NewEntry = new (*this) ASTRecordLayout(
2981 *this, Builder.getSize(), Builder.Alignment,
2982 /*RequiredAlignment : used by MS-ABI)*/
2983 Builder.Alignment, Builder.HasOwnVFPtr, RD->isDynamicClass(),
2984 CharUnits::fromQuantity(-1), DataSize, Builder.FieldOffsets,
2985 NonVirtualSize, Builder.NonVirtualAlignment,
2986 EmptySubobjects.SizeOfLargestEmptySubobject, Builder.PrimaryBase,
2987 Builder.PrimaryBaseIsVirtual, nullptr, false, false, Builder.Bases,
2988 Builder.VBases);
2989 } else {
2990 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
2991 Builder.Layout(D);
2992
2993 NewEntry = new (*this) ASTRecordLayout(
2994 *this, Builder.getSize(), Builder.Alignment,
2995 /*RequiredAlignment : used by MS-ABI)*/
2996 Builder.Alignment, Builder.getSize(), Builder.FieldOffsets);
2997 }
2998 }
2999
3000 ASTRecordLayouts[D] = NewEntry;
3001
3002 if (getLangOpts().DumpRecordLayouts) {
3003 llvm::outs() << "\n*** Dumping AST Record Layout\n";
3004 DumpRecordLayout(D, llvm::outs(), getLangOpts().DumpRecordLayoutsSimple);
3005 }
3006
3007 return *NewEntry;
3008 }
3009
getCurrentKeyFunction(const CXXRecordDecl * RD)3010 const CXXMethodDecl *ASTContext::getCurrentKeyFunction(const CXXRecordDecl *RD) {
3011 if (!getTargetInfo().getCXXABI().hasKeyFunctions())
3012 return nullptr;
3013
3014 assert(RD->getDefinition() && "Cannot get key function for forward decl!");
3015 RD = cast<CXXRecordDecl>(RD->getDefinition());
3016
3017 // Beware:
3018 // 1) computing the key function might trigger deserialization, which might
3019 // invalidate iterators into KeyFunctions
3020 // 2) 'get' on the LazyDeclPtr might also trigger deserialization and
3021 // invalidate the LazyDeclPtr within the map itself
3022 LazyDeclPtr Entry = KeyFunctions[RD];
3023 const Decl *Result =
3024 Entry ? Entry.get(getExternalSource()) : computeKeyFunction(*this, RD);
3025
3026 // Store it back if it changed.
3027 if (Entry.isOffset() || Entry.isValid() != bool(Result))
3028 KeyFunctions[RD] = const_cast<Decl*>(Result);
3029
3030 return cast_or_null<CXXMethodDecl>(Result);
3031 }
3032
setNonKeyFunction(const CXXMethodDecl * Method)3033 void ASTContext::setNonKeyFunction(const CXXMethodDecl *Method) {
3034 assert(Method == Method->getFirstDecl() &&
3035 "not working with method declaration from class definition");
3036
3037 // Look up the cache entry. Since we're working with the first
3038 // declaration, its parent must be the class definition, which is
3039 // the correct key for the KeyFunctions hash.
3040 const auto &Map = KeyFunctions;
3041 auto I = Map.find(Method->getParent());
3042
3043 // If it's not cached, there's nothing to do.
3044 if (I == Map.end()) return;
3045
3046 // If it is cached, check whether it's the target method, and if so,
3047 // remove it from the cache. Note, the call to 'get' might invalidate
3048 // the iterator and the LazyDeclPtr object within the map.
3049 LazyDeclPtr Ptr = I->second;
3050 if (Ptr.get(getExternalSource()) == Method) {
3051 // FIXME: remember that we did this for module / chained PCH state?
3052 KeyFunctions.erase(Method->getParent());
3053 }
3054 }
3055
getFieldOffset(const ASTContext & C,const FieldDecl * FD)3056 static uint64_t getFieldOffset(const ASTContext &C, const FieldDecl *FD) {
3057 const ASTRecordLayout &Layout = C.getASTRecordLayout(FD->getParent());
3058 return Layout.getFieldOffset(FD->getFieldIndex());
3059 }
3060
getFieldOffset(const ValueDecl * VD) const3061 uint64_t ASTContext::getFieldOffset(const ValueDecl *VD) const {
3062 uint64_t OffsetInBits;
3063 if (const FieldDecl *FD = dyn_cast<FieldDecl>(VD)) {
3064 OffsetInBits = ::getFieldOffset(*this, FD);
3065 } else {
3066 const IndirectFieldDecl *IFD = cast<IndirectFieldDecl>(VD);
3067
3068 OffsetInBits = 0;
3069 for (const NamedDecl *ND : IFD->chain())
3070 OffsetInBits += ::getFieldOffset(*this, cast<FieldDecl>(ND));
3071 }
3072
3073 return OffsetInBits;
3074 }
3075
3076 /// getObjCLayout - Get or compute information about the layout of the
3077 /// given interface.
3078 ///
3079 /// \param Impl - If given, also include the layout of the interface's
3080 /// implementation. This may differ by including synthesized ivars.
3081 const ASTRecordLayout &
getObjCLayout(const ObjCInterfaceDecl * D,const ObjCImplementationDecl * Impl) const3082 ASTContext::getObjCLayout(const ObjCInterfaceDecl *D,
3083 const ObjCImplementationDecl *Impl) const {
3084 // Retrieve the definition
3085 if (D->hasExternalLexicalStorage() && !D->getDefinition())
3086 getExternalSource()->CompleteType(const_cast<ObjCInterfaceDecl*>(D));
3087 D = D->getDefinition();
3088 assert(D && D->isThisDeclarationADefinition() && "Invalid interface decl!");
3089
3090 // Look up this layout, if already laid out, return what we have.
3091 const ObjCContainerDecl *Key =
3092 Impl ? (const ObjCContainerDecl*) Impl : (const ObjCContainerDecl*) D;
3093 if (const ASTRecordLayout *Entry = ObjCLayouts[Key])
3094 return *Entry;
3095
3096 // Add in synthesized ivar count if laying out an implementation.
3097 if (Impl) {
3098 unsigned SynthCount = CountNonClassIvars(D);
3099 // If there aren't any synthesized ivars then reuse the interface
3100 // entry. Note we can't cache this because we simply free all
3101 // entries later; however we shouldn't look up implementations
3102 // frequently.
3103 if (SynthCount == 0)
3104 return getObjCLayout(D, nullptr);
3105 }
3106
3107 ItaniumRecordLayoutBuilder Builder(*this, /*EmptySubobjects=*/nullptr);
3108 Builder.Layout(D);
3109
3110 const ASTRecordLayout *NewEntry =
3111 new (*this) ASTRecordLayout(*this, Builder.getSize(),
3112 Builder.Alignment,
3113 /*RequiredAlignment : used by MS-ABI)*/
3114 Builder.Alignment,
3115 Builder.getDataSize(),
3116 Builder.FieldOffsets);
3117
3118 ObjCLayouts[Key] = NewEntry;
3119
3120 return *NewEntry;
3121 }
3122
PrintOffset(raw_ostream & OS,CharUnits Offset,unsigned IndentLevel)3123 static void PrintOffset(raw_ostream &OS,
3124 CharUnits Offset, unsigned IndentLevel) {
3125 OS << llvm::format("%10" PRId64 " | ", (int64_t)Offset.getQuantity());
3126 OS.indent(IndentLevel * 2);
3127 }
3128
PrintBitFieldOffset(raw_ostream & OS,CharUnits Offset,unsigned Begin,unsigned Width,unsigned IndentLevel)3129 static void PrintBitFieldOffset(raw_ostream &OS, CharUnits Offset,
3130 unsigned Begin, unsigned Width,
3131 unsigned IndentLevel) {
3132 llvm::SmallString<10> Buffer;
3133 {
3134 llvm::raw_svector_ostream BufferOS(Buffer);
3135 BufferOS << Offset.getQuantity() << ':';
3136 if (Width == 0) {
3137 BufferOS << '-';
3138 } else {
3139 BufferOS << Begin << '-' << (Begin + Width - 1);
3140 }
3141 }
3142
3143 OS << llvm::right_justify(Buffer, 10) << " | ";
3144 OS.indent(IndentLevel * 2);
3145 }
3146
PrintIndentNoOffset(raw_ostream & OS,unsigned IndentLevel)3147 static void PrintIndentNoOffset(raw_ostream &OS, unsigned IndentLevel) {
3148 OS << " | ";
3149 OS.indent(IndentLevel * 2);
3150 }
3151
DumpRecordLayout(raw_ostream & OS,const RecordDecl * RD,const ASTContext & C,CharUnits Offset,unsigned IndentLevel,const char * Description,bool PrintSizeInfo,bool IncludeVirtualBases)3152 static void DumpRecordLayout(raw_ostream &OS, const RecordDecl *RD,
3153 const ASTContext &C,
3154 CharUnits Offset,
3155 unsigned IndentLevel,
3156 const char* Description,
3157 bool PrintSizeInfo,
3158 bool IncludeVirtualBases) {
3159 const ASTRecordLayout &Layout = C.getASTRecordLayout(RD);
3160 auto CXXRD = dyn_cast<CXXRecordDecl>(RD);
3161
3162 PrintOffset(OS, Offset, IndentLevel);
3163 OS << C.getTypeDeclType(const_cast<RecordDecl*>(RD)).getAsString();
3164 if (Description)
3165 OS << ' ' << Description;
3166 if (CXXRD && CXXRD->isEmpty())
3167 OS << " (empty)";
3168 OS << '\n';
3169
3170 IndentLevel++;
3171
3172 // Dump bases.
3173 if (CXXRD) {
3174 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
3175 bool HasOwnVFPtr = Layout.hasOwnVFPtr();
3176 bool HasOwnVBPtr = Layout.hasOwnVBPtr();
3177
3178 // Vtable pointer.
3179 if (CXXRD->isDynamicClass() && !PrimaryBase && !isMsLayout(C)) {
3180 PrintOffset(OS, Offset, IndentLevel);
3181 OS << '(' << *RD << " vtable pointer)\n";
3182 } else if (HasOwnVFPtr) {
3183 PrintOffset(OS, Offset, IndentLevel);
3184 // vfptr (for Microsoft C++ ABI)
3185 OS << '(' << *RD << " vftable pointer)\n";
3186 }
3187
3188 // Collect nvbases.
3189 SmallVector<const CXXRecordDecl *, 4> Bases;
3190 for (const CXXBaseSpecifier &Base : CXXRD->bases()) {
3191 assert(!Base.getType()->isDependentType() &&
3192 "Cannot layout class with dependent bases.");
3193 if (!Base.isVirtual())
3194 Bases.push_back(Base.getType()->getAsCXXRecordDecl());
3195 }
3196
3197 // Sort nvbases by offset.
3198 std::stable_sort(Bases.begin(), Bases.end(),
3199 [&](const CXXRecordDecl *L, const CXXRecordDecl *R) {
3200 return Layout.getBaseClassOffset(L) < Layout.getBaseClassOffset(R);
3201 });
3202
3203 // Dump (non-virtual) bases
3204 for (const CXXRecordDecl *Base : Bases) {
3205 CharUnits BaseOffset = Offset + Layout.getBaseClassOffset(Base);
3206 DumpRecordLayout(OS, Base, C, BaseOffset, IndentLevel,
3207 Base == PrimaryBase ? "(primary base)" : "(base)",
3208 /*PrintSizeInfo=*/false,
3209 /*IncludeVirtualBases=*/false);
3210 }
3211
3212 // vbptr (for Microsoft C++ ABI)
3213 if (HasOwnVBPtr) {
3214 PrintOffset(OS, Offset + Layout.getVBPtrOffset(), IndentLevel);
3215 OS << '(' << *RD << " vbtable pointer)\n";
3216 }
3217 }
3218
3219 // Dump fields.
3220 uint64_t FieldNo = 0;
3221 for (RecordDecl::field_iterator I = RD->field_begin(),
3222 E = RD->field_end(); I != E; ++I, ++FieldNo) {
3223 const FieldDecl &Field = **I;
3224 uint64_t LocalFieldOffsetInBits = Layout.getFieldOffset(FieldNo);
3225 CharUnits FieldOffset =
3226 Offset + C.toCharUnitsFromBits(LocalFieldOffsetInBits);
3227
3228 // Recursively dump fields of record type.
3229 if (auto RT = Field.getType()->getAs<RecordType>()) {
3230 DumpRecordLayout(OS, RT->getDecl(), C, FieldOffset, IndentLevel,
3231 Field.getName().data(),
3232 /*PrintSizeInfo=*/false,
3233 /*IncludeVirtualBases=*/true);
3234 continue;
3235 }
3236
3237 if (Field.isBitField()) {
3238 uint64_t LocalFieldByteOffsetInBits = C.toBits(FieldOffset - Offset);
3239 unsigned Begin = LocalFieldOffsetInBits - LocalFieldByteOffsetInBits;
3240 unsigned Width = Field.getBitWidthValue(C);
3241 PrintBitFieldOffset(OS, FieldOffset, Begin, Width, IndentLevel);
3242 } else {
3243 PrintOffset(OS, FieldOffset, IndentLevel);
3244 }
3245 OS << Field.getType().getAsString() << ' ' << Field << '\n';
3246 }
3247
3248 // Dump virtual bases.
3249 if (CXXRD && IncludeVirtualBases) {
3250 const ASTRecordLayout::VBaseOffsetsMapTy &VtorDisps =
3251 Layout.getVBaseOffsetsMap();
3252
3253 for (const CXXBaseSpecifier &Base : CXXRD->vbases()) {
3254 assert(Base.isVirtual() && "Found non-virtual class!");
3255 const CXXRecordDecl *VBase = Base.getType()->getAsCXXRecordDecl();
3256
3257 CharUnits VBaseOffset = Offset + Layout.getVBaseClassOffset(VBase);
3258
3259 if (VtorDisps.find(VBase)->second.hasVtorDisp()) {
3260 PrintOffset(OS, VBaseOffset - CharUnits::fromQuantity(4), IndentLevel);
3261 OS << "(vtordisp for vbase " << *VBase << ")\n";
3262 }
3263
3264 DumpRecordLayout(OS, VBase, C, VBaseOffset, IndentLevel,
3265 VBase == Layout.getPrimaryBase() ?
3266 "(primary virtual base)" : "(virtual base)",
3267 /*PrintSizeInfo=*/false,
3268 /*IncludeVirtualBases=*/false);
3269 }
3270 }
3271
3272 if (!PrintSizeInfo) return;
3273
3274 PrintIndentNoOffset(OS, IndentLevel - 1);
3275 OS << "[sizeof=" << Layout.getSize().getQuantity();
3276 if (CXXRD && !isMsLayout(C))
3277 OS << ", dsize=" << Layout.getDataSize().getQuantity();
3278 OS << ", align=" << Layout.getAlignment().getQuantity();
3279
3280 if (CXXRD) {
3281 OS << ",\n";
3282 PrintIndentNoOffset(OS, IndentLevel - 1);
3283 OS << " nvsize=" << Layout.getNonVirtualSize().getQuantity();
3284 OS << ", nvalign=" << Layout.getNonVirtualAlignment().getQuantity();
3285 }
3286 OS << "]\n";
3287 }
3288
DumpRecordLayout(const RecordDecl * RD,raw_ostream & OS,bool Simple) const3289 void ASTContext::DumpRecordLayout(const RecordDecl *RD,
3290 raw_ostream &OS,
3291 bool Simple) const {
3292 if (!Simple) {
3293 ::DumpRecordLayout(OS, RD, *this, CharUnits(), 0, nullptr,
3294 /*PrintSizeInfo*/true,
3295 /*IncludeVirtualBases=*/true);
3296 return;
3297 }
3298
3299 // The "simple" format is designed to be parsed by the
3300 // layout-override testing code. There shouldn't be any external
3301 // uses of this format --- when LLDB overrides a layout, it sets up
3302 // the data structures directly --- so feel free to adjust this as
3303 // you like as long as you also update the rudimentary parser for it
3304 // in libFrontend.
3305
3306 const ASTRecordLayout &Info = getASTRecordLayout(RD);
3307 OS << "Type: " << getTypeDeclType(RD).getAsString() << "\n";
3308 OS << "\nLayout: ";
3309 OS << "<ASTRecordLayout\n";
3310 OS << " Size:" << toBits(Info.getSize()) << "\n";
3311 if (!isMsLayout(*this))
3312 OS << " DataSize:" << toBits(Info.getDataSize()) << "\n";
3313 OS << " Alignment:" << toBits(Info.getAlignment()) << "\n";
3314 OS << " FieldOffsets: [";
3315 for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i) {
3316 if (i) OS << ", ";
3317 OS << Info.getFieldOffset(i);
3318 }
3319 OS << "]>\n";
3320 }
3321