1 //===- SPIRVWriter.cpp - Converts LLVM to SPIR-V ----------------*- C++ -*-===//
2 //
3 // The LLVM/SPIR-V Translator
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 // Copyright (c) 2014 Advanced Micro Devices, Inc. All rights reserved.
9 //
10 // Permission is hereby granted, free of charge, to any person obtaining a
11 // copy of this software and associated documentation files (the "Software"),
12 // to deal with the Software without restriction, including without limitation
13 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
14 // and/or sell copies of the Software, and to permit persons to whom the
15 // Software is furnished to do so, subject to the following conditions:
16 //
17 // Redistributions of source code must retain the above copyright notice,
18 // this list of conditions and the following disclaimers.
19 // Redistributions in binary form must reproduce the above copyright notice,
20 // this list of conditions and the following disclaimers in the documentation
21 // and/or other materials provided with the distribution.
22 // Neither the names of Advanced Micro Devices, Inc., nor the names of its
23 // contributors may be used to endorse or promote products derived from this
24 // Software without specific prior written permission.
25 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
26 // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
27 // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
28 // CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
29 // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
30 // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH
31 // THE SOFTWARE.
32 //
33 //===----------------------------------------------------------------------===//
34 /// \file
35 ///
36 /// This file implements conversion of LLVM intermediate language to SPIR-V
37 /// binary.
38 ///
39 //===----------------------------------------------------------------------===//
40
41 #include "SPIRVModule.h"
42 #include "SPIRVEnum.h"
43 #include "SPIRVEntry.h"
44 #include "SPIRVType.h"
45 #include "SPIRVValue.h"
46 #include "SPIRVFunction.h"
47 #include "SPIRVBasicBlock.h"
48 #include "SPIRVInstruction.h"
49 #include "SPIRVExtInst.h"
50 #include "SPIRVUtil.h"
51 #include "SPIRVInternal.h"
52 #include "SPIRVMDWalker.h"
53 #include "OCLTypeToSPIRV.h"
54 #include "OCLUtil.h"
55
56 #include "llvm/ADT/DenseMap.h"
57 #include "llvm/ADT/SetVector.h"
58 #include "llvm/ADT/StringSwitch.h"
59 #include "llvm/ADT/Triple.h"
60 #include "llvm/Bitcode/ReaderWriter.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/DerivedTypes.h"
63 #include "llvm/IR/DebugInfo.h"
64 #include "llvm/IR/Function.h"
65 #include "llvm/IR/InstrTypes.h"
66 #include "llvm/IR/Instructions.h"
67 #include "llvm/IR/Module.h"
68 #include "llvm/IR/Operator.h"
69 #include "llvm/IR/Verifier.h"
70 #include "llvm/Pass.h"
71 #include "llvm/PassSupport.h"
72 #include "llvm/IR/LegacyPassManager.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Support/ToolOutputFile.h"
78 #include "llvm/Transforms/IPO.h"
79
80 #include <iostream>
81 #include <list>
82 #include <memory>
83 #include <set>
84 #include <sstream>
85 #include <vector>
86 #include <functional>
87 #include <cstdlib>
88
89 #define DEBUG_TYPE "spirv"
90
91 using namespace llvm;
92 using namespace SPIRV;
93 using namespace OCLUtil;
94
95 namespace llvm {
96 FunctionPass *createPromoteMemoryToRegisterPass();
97 }
98
99 namespace SPIRV{
100
101 cl::opt<bool> SPIRVMemToReg("spirv-mem2reg", cl::init(true),
102 cl::desc("LLVM/SPIR-V translation enable mem2reg"));
103
104
105 static void
foreachKernelArgMD(MDNode * MD,SPIRVFunction * BF,std::function<void (const std::string & Str,SPIRVFunctionParameter * BA)> Func)106 foreachKernelArgMD(MDNode *MD, SPIRVFunction *BF,
107 std::function<void(const std::string& Str,
108 SPIRVFunctionParameter *BA)>Func) {
109 for (unsigned I = 1, E = MD->getNumOperands(); I != E; ++I) {
110 SPIRVFunctionParameter *BA = BF->getArgument(I-1);
111 Func(getMDOperandAsString(MD, I), BA);
112 }
113 }
114
115 /// Information for translating OCL builtin.
116 struct OCLBuiltinSPIRVTransInfo {
117 std::string UniqName;
118 /// Postprocessor of operands
119 std::function<void(std::vector<SPIRVWord>&)> PostProc;
OCLBuiltinSPIRVTransInfoSPIRV::OCLBuiltinSPIRVTransInfo120 OCLBuiltinSPIRVTransInfo(){
121 PostProc = [](std::vector<SPIRVWord>&){};
122 }
123 };
124
125 class LLVMToSPIRVDbgTran {
126 public:
LLVMToSPIRVDbgTran(Module * TM=nullptr,SPIRVModule * TBM=nullptr)127 LLVMToSPIRVDbgTran(Module *TM = nullptr, SPIRVModule *TBM = nullptr)
128 :BM(TBM), M(TM){
129 }
130
setModule(Module * Mod)131 void setModule(Module *Mod) { M = Mod;}
setSPIRVModule(SPIRVModule * SMod)132 void setSPIRVModule(SPIRVModule *SMod) { BM = SMod;}
133
transDbgInfo(Value * V,SPIRVValue * BV)134 void transDbgInfo(Value *V, SPIRVValue *BV) {
135 if (auto I = dyn_cast<Instruction>(V)) {
136 auto DL = I->getDebugLoc();
137 if (DL.get() != nullptr) {
138 DILocation* DIL = DL.get();
139 auto File = BM->getString(DIL->getFilename().str());
140 // ToDo: SPIR-V rev.31 cannot add debug info for instructions without ids.
141 // This limitation needs to be addressed.
142 if (!BV->hasId())
143 return;
144 BM->addLine(BV, File, DL.getLine(), DL.getCol());
145 }
146 } else if (auto F = dyn_cast<Function>(V)) {
147 if (auto DIS = F->getSubprogram()) {
148 auto File = BM->getString(DIS->getFilename().str());
149 BM->addLine(BV, File, DIS->getLine(), 0);
150 }
151 }
152 }
153
154 private:
155 SPIRVModule *BM;
156 Module *M;
157 };
158
159 class LLVMToSPIRV: public ModulePass {
160 public:
LLVMToSPIRV(SPIRVModule * SMod=nullptr)161 LLVMToSPIRV(SPIRVModule *SMod = nullptr)
162 : ModulePass(ID),
163 M(nullptr),
164 Ctx(nullptr),
165 BM(SMod),
166 ExtSetId(SPIRVID_INVALID),
167 SrcLang(0),
168 SrcLangVer(0),
169 DbgTran(nullptr, SMod){
170 }
171
runOnModule(Module & Mod)172 bool runOnModule(Module &Mod) override {
173 M = &Mod;
174 Ctx = &M->getContext();
175 DbgTran.setModule(M);
176 assert(BM && "SPIR-V module not initialized");
177 translate();
178 return true;
179 }
180
getAnalysisUsage(AnalysisUsage & AU) const181 void getAnalysisUsage(AnalysisUsage &AU) const {
182 AU.addRequired<OCLTypeToSPIRV>();
183 }
184
185 static char ID;
186
187 SPIRVType *transType(Type *T);
188 SPIRVType *transSPIRVOpaqueType(Type *T);
189
190 SPIRVValue *getTranslatedValue(Value *);
191
192 // Translation functions
193 bool transAddressingMode();
194 bool transAlign(Value *V, SPIRVValue *BV);
195 std::vector<SPIRVValue *> transArguments(CallInst *, SPIRVBasicBlock *);
196 std::vector<SPIRVWord> transArguments(CallInst *, SPIRVBasicBlock *,
197 SPIRVEntry *);
198 bool transSourceLanguage();
199 bool transExtension();
200 bool transBuiltinSet();
201 SPIRVValue *transCallInst(CallInst *Call, SPIRVBasicBlock *BB);
202 bool transDecoration(Value *V, SPIRVValue *BV);
203 SPIRVWord transFunctionControlMask(CallInst *);
204 SPIRVWord transFunctionControlMask(Function *);
205 SPIRVFunction *transFunctionDecl(Function *F);
206 bool transGlobalVariables();
207
208 Op transBoolOpCode(SPIRVValue *Opn, Op OC);
209 // Translate LLVM module to SPIR-V module.
210 // Returns true if succeeds.
211 bool translate();
212 bool transExecutionMode();
213 SPIRVValue *transConstant(Value *V);
214 SPIRVValue *transValue(Value *V, SPIRVBasicBlock *BB,
215 bool CreateForward = true);
216 SPIRVValue *transValueWithoutDecoration(Value *V, SPIRVBasicBlock *BB,
217 bool CreateForward = true);
218
219 typedef DenseMap<Type *, SPIRVType *> LLVMToSPIRVTypeMap;
220 typedef DenseMap<Value *, SPIRVValue *> LLVMToSPIRVValueMap;
221 private:
222 Module *M;
223 LLVMContext *Ctx;
224 SPIRVModule *BM;
225 LLVMToSPIRVTypeMap TypeMap;
226 LLVMToSPIRVValueMap ValueMap;
227 //ToDo: support multiple builtin sets. Currently assume one builtin set.
228 SPIRVId ExtSetId;
229 SPIRVWord SrcLang;
230 SPIRVWord SrcLangVer;
231 LLVMToSPIRVDbgTran DbgTran;
232
mapType(Type * T,SPIRVType * BT)233 SPIRVType *mapType(Type *T, SPIRVType *BT) {
234 TypeMap[T] = BT;
235 SPIRVDBG(dbgs() << "[mapType] " << *T << " => ";
236 spvdbgs() << *BT << '\n');
237 return BT;
238 }
239
mapValue(Value * V,SPIRVValue * BV)240 SPIRVValue *mapValue(Value *V, SPIRVValue *BV) {
241 auto Loc = ValueMap.find(V);
242 if (Loc != ValueMap.end()) {
243 if (Loc->second == BV)
244 return BV;
245 assert (Loc->second->isForward() &&
246 "LLVM Value is mapped to different SPIRV Values");
247 auto Forward = static_cast<SPIRVForward *>(Loc->second);
248 BV->setId(Forward->getId());
249 BM->replaceForward(Forward, BV);
250 }
251 ValueMap[V] = BV;
252 SPIRVDBG(dbgs() << "[mapValue] " << *V << " => ";
253 spvdbgs() << *BV << "\n");
254 return BV;
255 }
256
getSPIRVType(Type * T)257 SPIRVType *getSPIRVType(Type *T) {
258 return TypeMap[T];
259 }
260
getSPIRVValue(Value * V)261 SPIRVValue *getSPIRVValue(Value *V) {
262 return ValueMap[V];
263 }
264
getErrorLog()265 SPIRVErrorLog &getErrorLog() {
266 return BM->getErrorLog();
267 }
268
269 llvm::IntegerType* getSizetType();
270 std::vector<SPIRVValue*> transValue(const std::vector<Value *> &Values,
271 SPIRVBasicBlock* BB);
272 std::vector<SPIRVWord> transValue(const std::vector<Value *> &Values,
273 SPIRVBasicBlock* BB, SPIRVEntry *Entry);
274
275 SPIRVInstruction* transBinaryInst(BinaryOperator* B, SPIRVBasicBlock* BB);
276 SPIRVInstruction* transCmpInst(CmpInst* Cmp, SPIRVBasicBlock* BB);
277
278 void dumpUsers(Value *V);
279
280 template<class ExtInstKind>
281 bool oclGetExtInstIndex(const std::string &MangledName,
282 const std::string& DemangledName, SPIRVWord* EntryPoint);
283 void oclGetMutatedArgumentTypesByBuiltin(llvm::FunctionType* FT,
284 std::map<unsigned, Type*>& ChangedType, Function* F);
285
286 bool isBuiltinTransToInst(Function *F);
287 bool isBuiltinTransToExtInst(Function *F,
288 SPIRVExtInstSetKind *BuiltinSet = nullptr,
289 SPIRVWord *EntryPoint = nullptr,
290 SmallVectorImpl<std::string> *Dec = nullptr);
291 bool oclIsKernel(Function *F);
292
293 bool transOCLKernelMetadata();
294
295 SPIRVInstruction *transBuiltinToInst(const std::string& DemangledName,
296 const std::string &MangledName, CallInst* CI, SPIRVBasicBlock* BB);
297 SPIRVInstruction *transBuiltinToInstWithoutDecoration(Op OC,
298 CallInst* CI, SPIRVBasicBlock* BB);
299 void mutateFuncArgType(const std::map<unsigned, Type*>& ChangedType,
300 Function* F);
301
302 SPIRVValue *transSpcvCast(CallInst* CI, SPIRVBasicBlock *BB);
303 SPIRVValue *oclTransSpvcCastSampler(CallInst* CI, SPIRVBasicBlock *BB);
304
305 SPIRV::SPIRVInstruction* transUnaryInst(UnaryInstruction* U,
306 SPIRVBasicBlock* BB);
307
308 /// Add a 32 bit integer constant.
309 /// \return Id of the constant.
310 SPIRVId addInt32(int);
311 void transFunction(Function *I);
312 SPIRV::SPIRVLinkageTypeKind transLinkageType(const GlobalValue* GV);
313 };
314
315
316 SPIRVValue *
getTranslatedValue(Value * V)317 LLVMToSPIRV::getTranslatedValue(Value *V) {
318 LLVMToSPIRVValueMap::iterator Loc = ValueMap.find(V);
319 if (Loc != ValueMap.end())
320 return Loc->second;
321 return nullptr;
322 }
323
324 bool
oclIsKernel(Function * F)325 LLVMToSPIRV::oclIsKernel(Function *F) {
326 if (F->getCallingConv() == CallingConv::SPIR_KERNEL)
327 return true;
328 return false;
329 }
330
331 bool
isBuiltinTransToInst(Function * F)332 LLVMToSPIRV::isBuiltinTransToInst(Function *F) {
333 std::string DemangledName;
334 if (!oclIsBuiltin(F->getName(), &DemangledName) &&
335 !isDecoratedSPIRVFunc(F, &DemangledName))
336 return false;
337 SPIRVDBG(spvdbgs() << "CallInst: demangled name: " << DemangledName << '\n');
338 return getSPIRVFuncOC(DemangledName) != OpNop;
339 }
340
341 bool
isBuiltinTransToExtInst(Function * F,SPIRVExtInstSetKind * ExtSet,SPIRVWord * ExtOp,SmallVectorImpl<std::string> * Dec)342 LLVMToSPIRV::isBuiltinTransToExtInst(Function *F,
343 SPIRVExtInstSetKind *ExtSet,
344 SPIRVWord *ExtOp,
345 SmallVectorImpl<std::string> *Dec) {
346 std::string OrigName = F->getName();
347 std::string DemangledName;
348 if (!oclIsBuiltin(OrigName, &DemangledName))
349 return false;
350 DEBUG(dbgs() << "[oclIsBuiltinTransToExtInst] CallInst: demangled name: "
351 << DemangledName << '\n');
352 StringRef S = DemangledName;
353 if (!S.startswith(kSPIRVName::Prefix))
354 return false;
355 S = S.drop_front(strlen(kSPIRVName::Prefix));
356 auto Loc = S.find(kSPIRVPostfix::Divider);
357 auto ExtSetName = S.substr(0, Loc);
358 SPIRVExtInstSetKind Set = SPIRVEIS_Count;
359 if (!SPIRVExtSetShortNameMap::rfind(ExtSetName, &Set))
360 return false;
361 assert(Set == BM->getBuiltinSet(ExtSetId) &&
362 "Invalid extended instruction set");
363 assert(Set == SPIRVEIS_OpenCL && "Unsupported extended instruction set");
364
365 auto ExtOpName = S.substr(Loc + 1);
366 auto Splited = ExtOpName.split(kSPIRVPostfix::ExtDivider);
367 OCLExtOpKind EOC;
368 if (!OCLExtOpMap::rfind(Splited.first, &EOC))
369 return false;
370
371 if (ExtSet)
372 *ExtSet = Set;
373 if (ExtOp)
374 *ExtOp = EOC;
375 if (Dec) {
376 SmallVector<StringRef, 2> P;
377 Splited.second.split(P, kSPIRVPostfix::Divider);
378 for (auto &I:P)
379 Dec->push_back(I.str());
380 }
381 return true;
382 }
383
384 /// Decode SPIR-V type name in the format spirv.{TypeName}._{Postfixes}
385 /// where Postfixes are strings separated by underscores.
386 /// \return TypeName.
387 /// \param Ops contains the integers decoded from postfixes.
388 static std::string
decodeSPIRVTypeName(StringRef Name,SmallVectorImpl<std::string> & Strs)389 decodeSPIRVTypeName(StringRef Name,
390 SmallVectorImpl<std::string>& Strs) {
391 SmallVector<StringRef, 4> SubStrs;
392 const char Delim[] = { kSPIRVTypeName::Delimiter, 0 };
393 Name.split(SubStrs, Delim, -1, true);
394 assert(SubStrs.size() >= 2 && "Invalid SPIRV type name");
395 assert(SubStrs[0] == kSPIRVTypeName::Prefix && "Invalid prefix");
396 assert((SubStrs.size() == 2 || !SubStrs[2].empty()) && "Invalid postfix");
397
398 if (SubStrs.size() > 2) {
399 const char PostDelim[] = { kSPIRVTypeName::PostfixDelim, 0 };
400 SmallVector<StringRef, 4> Postfixes;
401 SubStrs[2].split(Postfixes, PostDelim, -1, true);
402 assert(Postfixes.size() > 1 && Postfixes[0].empty() && "Invalid postfix");
403 for (unsigned I = 1, E = Postfixes.size(); I != E; ++I)
404 Strs.push_back(std::string(Postfixes[I]).c_str());
405 }
406 return SubStrs[1].str();
407 }
408
recursiveType(const StructType * ST,const Type * Ty)409 static bool recursiveType(const StructType *ST, const Type *Ty) {
410 SmallPtrSet<const StructType *, 4> Seen;
411
412 std::function<bool(const Type *Ty)> Run = [&](const Type *Ty) {
413 if (!isa<CompositeType>(Ty))
414 return false;
415
416 if (auto *StructTy = dyn_cast<StructType>(Ty)) {
417 if (StructTy == ST)
418 return true;
419
420 if (Seen.count(StructTy))
421 return false;
422
423 Seen.insert(StructTy);
424
425 return find_if(StructTy->subtype_begin(), StructTy->subtype_end(), Run) !=
426 StructTy->subtype_end();
427 }
428
429 if (auto *PtrTy = dyn_cast<PointerType>(Ty))
430 return Run(PtrTy->getPointerElementType());
431
432 if (auto *ArrayTy = dyn_cast<ArrayType>(Ty))
433 return Run(ArrayTy->getArrayElementType());
434
435 return false;
436 };
437
438 return Run(Ty);
439 }
440
441 SPIRVType *
transType(Type * T)442 LLVMToSPIRV::transType(Type *T) {
443 LLVMToSPIRVTypeMap::iterator Loc = TypeMap.find(T);
444 if (Loc != TypeMap.end())
445 return Loc->second;
446
447 SPIRVDBG(dbgs() << "[transType] " << *T << '\n');
448 if (T->isVoidTy())
449 return mapType(T, BM->addVoidType());
450
451 if (T->isIntegerTy(1))
452 return mapType(T, BM->addBoolType());
453
454 if (T->isIntegerTy())
455 return mapType(T, BM->addIntegerType(T->getIntegerBitWidth()));
456
457 if (T->isFloatingPointTy())
458 return mapType(T, BM->addFloatType(T->getPrimitiveSizeInBits()));
459
460 // A pointer to image or pipe type in LLVM is translated to a SPIRV
461 // sampler or pipe type.
462 if (T->isPointerTy()) {
463 auto ET = T->getPointerElementType();
464 assert(!ET->isFunctionTy() && "Function pointer type is not allowed");
465 auto ST = dyn_cast<StructType>(ET);
466 auto AddrSpc = T->getPointerAddressSpace();
467 if (ST && !ST->isSized()) {
468 Op OpCode;
469 StringRef STName = ST->getName();
470 // Workaround for non-conformant SPIR binary
471 if (STName == "struct._event_t") {
472 STName = kSPR2TypeName::Event;
473 ST->setName(STName);
474 }
475 assert (!STName.startswith(kSPR2TypeName::Pipe) &&
476 "OpenCL type names should be translated to SPIR-V type names");
477 // ToDo: For SPIR1.2/2.0 there may still be load/store or bitcast
478 // instructions using opencl.* type names. We need to handle these
479 // type names until they are all mapped or FE generates SPIR-V type
480 // names.
481 if (STName.find(kSPR2TypeName::Pipe) == 0) {
482 assert(AddrSpc == SPIRAS_Global);
483 SmallVector<StringRef, 4> SubStrs;
484 const char Delims[] = {kSPR2TypeName::Delimiter, 0};
485 STName.split(SubStrs, Delims);
486 std::string Acc = kAccessQualName::ReadOnly;
487 if (SubStrs.size() > 2) {
488 Acc = SubStrs[2];
489 }
490 auto PipeT = BM->addPipeType();
491 PipeT->setPipeAcessQualifier(SPIRSPIRVAccessQualifierMap::map(Acc));
492 return mapType(T, PipeT);
493 } else if (STName.find(kSPR2TypeName::ImagePrefix) == 0) {
494 assert(AddrSpc == SPIRAS_Global);
495 auto SPIRVImageTy = getSPIRVImageTypeFromOCL(M, T);
496 return mapType(T, transSPIRVOpaqueType(SPIRVImageTy));
497 } else if (STName.startswith(kSPIRVTypeName::PrefixAndDelim))
498 return transSPIRVOpaqueType(T);
499 else if (OCLOpaqueTypeOpCodeMap::find(STName, &OpCode)) {
500 switch (OpCode) {
501 default:
502 return mapType(T, BM->addOpaqueGenericType(OpCode));
503 case OpTypePipe:
504 return mapType(T, BM->addPipeType());
505 case OpTypeDeviceEvent:
506 return mapType(T, BM->addDeviceEventType());
507 case OpTypeQueue:
508 return mapType(T, BM->addQueueType());
509 }
510 } else if (isPointerToOpaqueStructType(T)) {
511 return mapType(T, BM->addPointerType(SPIRSPIRVAddrSpaceMap::map(
512 static_cast<SPIRAddressSpace>(AddrSpc)),
513 transType(ET)));
514 }
515 } else {
516 return mapType(T, BM->addPointerType(SPIRSPIRVAddrSpaceMap::map(
517 static_cast<SPIRAddressSpace>(AddrSpc)),
518 transType(ET)));
519 }
520 }
521
522 if (T->isVectorTy())
523 return mapType(T, BM->addVectorType(transType(T->getVectorElementType()),
524 T->getVectorNumElements()));
525
526 if (T->isArrayTy())
527 return mapType(T, BM->addArrayType(transType(T->getArrayElementType()),
528 static_cast<SPIRVConstant*>(transValue(ConstantInt::get(getSizetType(),
529 T->getArrayNumElements(), false), nullptr))));
530
531 if (T->isStructTy() && !T->isSized()) {
532 auto ST = dyn_cast<StructType>(T);
533 (void) ST;
534 assert(!ST->getName().startswith(kSPR2TypeName::Pipe));
535 assert(!ST->getName().startswith(kSPR2TypeName::ImagePrefix));
536 return mapType(T, BM->addOpaqueType(T->getStructName()));
537 }
538
539 if (auto ST = dyn_cast<StructType>(T)) {
540 assert(ST->isSized());
541
542 std::string Name;
543 if (ST->hasName())
544 Name = ST->getName();
545
546 if(Name == getSPIRVTypeName(kSPIRVTypeName::ConstantSampler))
547 return transType(getSamplerType(M));
548 if (Name == getSPIRVTypeName(kSPIRVTypeName::ConstantPipeStorage))
549 return transType(getPipeStorageType(M));
550
551 auto *Struct = BM->openStructType(T->getStructNumElements(), Name);
552 mapType(T, Struct);
553
554 SmallVector<unsigned, 4> ForwardRefs;
555
556 for (unsigned I = 0, E = T->getStructNumElements(); I != E; ++I) {
557 auto *ElemTy = ST->getElementType(I);
558 if (isa<CompositeType>(ElemTy) && recursiveType(ST, ElemTy))
559 ForwardRefs.push_back(I);
560 else
561 Struct->setMemberType(I, transType(ST->getElementType(I)));
562 }
563
564 BM->closeStructType(Struct, ST->isPacked());
565
566 for (auto I : ForwardRefs)
567 Struct->setMemberType(I, transType(ST->getElementType(I)));
568
569 return Struct;
570 }
571
572 if (FunctionType *FT = dyn_cast<FunctionType>(T)) {
573 SPIRVType *RT = transType(FT->getReturnType());
574 std::vector<SPIRVType *> PT;
575 for (FunctionType::param_iterator I = FT->param_begin(),
576 E = FT->param_end(); I != E; ++I)
577 PT.push_back(transType(*I));
578 return mapType(T, BM->addFunctionType(RT, PT));
579 }
580
581 llvm_unreachable("Not implemented!");
582 return 0;
583 }
584
585 SPIRVType *
transSPIRVOpaqueType(Type * T)586 LLVMToSPIRV::transSPIRVOpaqueType(Type *T) {
587 auto ET = T->getPointerElementType();
588 auto ST = cast<StructType>(ET);
589 auto AddrSpc = T->getPointerAddressSpace();
590 (void)AddrSpc; // prevent warning about unused variable in NDEBUG build
591 auto STName = ST->getStructName();
592 assert (STName.startswith(kSPIRVTypeName::PrefixAndDelim) &&
593 "Invalid SPIR-V opaque type name");
594 SmallVector<std::string, 8> Postfixes;
595 auto TN = decodeSPIRVTypeName(STName, Postfixes);
596 if (TN == kSPIRVTypeName::Pipe) {
597 assert(AddrSpc == SPIRAS_Global);
598 assert(Postfixes.size() == 1 && "Invalid pipe type ops");
599 auto PipeT = BM->addPipeType();
600 PipeT->setPipeAcessQualifier(static_cast<spv::AccessQualifier>(
601 atoi(Postfixes[0].c_str())));
602 return mapType(T, PipeT);
603 } else if (TN == kSPIRVTypeName::Image) {
604 assert(AddrSpc == SPIRAS_Global);
605 // The sampled type needs to be translated through LLVM type to guarantee
606 // uniqueness.
607 auto SampledT = transType(getLLVMTypeForSPIRVImageSampledTypePostfix(
608 Postfixes[0], *Ctx));
609 SmallVector<int, 7> Ops;
610 for (unsigned I = 1; I < 8; ++I)
611 Ops.push_back(atoi(Postfixes[I].c_str()));
612 SPIRVTypeImageDescriptor Desc(static_cast<SPIRVImageDimKind>(Ops[0]),
613 Ops[1], Ops[2], Ops[3], Ops[4], Ops[5]);
614 return mapType(T, BM->addImageType(SampledT, Desc,
615 static_cast<spv::AccessQualifier>(Ops[6])));
616 } else if (TN == kSPIRVTypeName::SampledImg) {
617 return mapType(T, BM->addSampledImageType(
618 static_cast<SPIRVTypeImage *>(
619 transType(getSPIRVTypeByChangeBaseTypeName(M,
620 T, kSPIRVTypeName::SampledImg,
621 kSPIRVTypeName::Image)))));
622 } else if(TN == kSPIRVTypeName::Sampler)
623 return mapType(T, BM->addSamplerType());
624 else if (TN == kSPIRVTypeName::DeviceEvent)
625 return mapType(T, BM->addDeviceEventType());
626 else if (TN == kSPIRVTypeName::Queue)
627 return mapType(T, BM->addQueueType());
628 else if (TN == kSPIRVTypeName::PipeStorage)
629 return mapType(T, BM->addPipeStorageType());
630 else
631 return mapType(T, BM->addOpaqueGenericType(
632 SPIRVOpaqueTypeOpCodeMap::map(TN)));
633 }
634
635 SPIRVFunction *
transFunctionDecl(Function * F)636 LLVMToSPIRV::transFunctionDecl(Function *F) {
637 if (auto BF= getTranslatedValue(F))
638 return static_cast<SPIRVFunction *>(BF);
639
640 SPIRVTypeFunction *BFT = static_cast<SPIRVTypeFunction *>(transType(
641 getAnalysis<OCLTypeToSPIRV>().getAdaptedType(F)));
642 SPIRVFunction *BF = static_cast<SPIRVFunction *>(mapValue(F,
643 BM->addFunction(BFT)));
644 BF->setFunctionControlMask(transFunctionControlMask(F));
645 if (F->hasName())
646 BM->setName(BF, F->getName());
647 if (oclIsKernel(F))
648 BM->addEntryPoint(ExecutionModelKernel, BF->getId());
649 else if (F->getLinkage() != GlobalValue::InternalLinkage)
650 BF->setLinkageType(transLinkageType(F));
651 auto Attrs = F->getAttributes();
652 for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E;
653 ++I) {
654 auto ArgNo = I->getArgNo();
655 SPIRVFunctionParameter *BA = BF->getArgument(ArgNo);
656 if (I->hasName())
657 BM->setName(BA, I->getName());
658 if (I->hasByValAttr())
659 BA->addAttr(FunctionParameterAttributeByVal);
660 if (I->hasNoAliasAttr())
661 BA->addAttr(FunctionParameterAttributeNoAlias);
662 if (I->hasNoCaptureAttr())
663 BA->addAttr(FunctionParameterAttributeNoCapture);
664 if (I->hasStructRetAttr())
665 BA->addAttr(FunctionParameterAttributeSret);
666 if (Attrs.hasAttribute(ArgNo + 1, Attribute::ZExt))
667 BA->addAttr(FunctionParameterAttributeZext);
668 if (Attrs.hasAttribute(ArgNo + 1, Attribute::SExt))
669 BA->addAttr(FunctionParameterAttributeSext);
670 if (Attrs.hasAttribute(ArgNo + 1, Attribute::Dereferenceable))
671 BA->addDecorate(DecorationMaxByteOffset,
672 Attrs.getAttribute(ArgNo + 1, Attribute::Dereferenceable)
673 .getDereferenceableBytes());
674 }
675 if (Attrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
676 BF->addDecorate(DecorationFuncParamAttr, FunctionParameterAttributeZext);
677 if (Attrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
678 BF->addDecorate(DecorationFuncParamAttr, FunctionParameterAttributeSext);
679 DbgTran.transDbgInfo(F, BF);
680 SPIRVDBG(dbgs() << "[transFunction] " << *F << " => ";
681 spvdbgs() << *BF << '\n';)
682 return BF;
683 }
684
685 #define _SPIRV_OPL(x) OpLogical##x
686
687 #define _SPIRV_OPB(x) OpBitwise##x
688
689 SPIRVValue *
transConstant(Value * V)690 LLVMToSPIRV::transConstant(Value *V) {
691 if (auto CPNull = dyn_cast<ConstantPointerNull>(V))
692 return BM->addNullConstant(bcast<SPIRVTypePointer>(transType(
693 CPNull->getType())));
694
695 if (auto CAZero = dyn_cast<ConstantAggregateZero>(V)) {
696 Type *AggType = CAZero->getType();
697 if (const StructType* ST = dyn_cast<StructType>(AggType))
698 if (ST->getName() == getSPIRVTypeName(kSPIRVTypeName::ConstantSampler))
699 return BM->addSamplerConstant(transType(AggType), 0,0,0);
700
701 return BM->addNullConstant(transType(AggType));
702 }
703
704 if (auto ConstI = dyn_cast<ConstantInt>(V))
705 return BM->addConstant(transType(V->getType()), ConstI->getZExtValue());
706
707 if (auto ConstFP = dyn_cast<ConstantFP>(V)) {
708 auto BT = static_cast<SPIRVType *>(transType(V->getType()));
709 return BM->addConstant(BT,
710 ConstFP->getValueAPF().bitcastToAPInt().getZExtValue());
711 }
712
713 if (auto ConstDA = dyn_cast<ConstantDataArray>(V)) {
714 std::vector<SPIRVValue *> BV;
715 for (unsigned I = 0, E = ConstDA->getNumElements(); I != E; ++I)
716 BV.push_back(transValue(ConstDA->getElementAsConstant(I), nullptr));
717 return BM->addCompositeConstant(transType(V->getType()), BV);
718 }
719
720 if (auto ConstA = dyn_cast<ConstantArray>(V)) {
721 std::vector<SPIRVValue *> BV;
722 for (auto I = ConstA->op_begin(), E = ConstA->op_end(); I != E; ++I)
723 BV.push_back(transValue(*I, nullptr));
724 return BM->addCompositeConstant(transType(V->getType()), BV);
725 }
726
727 if (auto ConstDV = dyn_cast<ConstantDataVector>(V)) {
728 std::vector<SPIRVValue *> BV;
729 for (unsigned I = 0, E = ConstDV->getNumElements(); I != E; ++I)
730 BV.push_back(transValue(ConstDV->getElementAsConstant(I), nullptr));
731 return BM->addCompositeConstant(transType(V->getType()), BV);
732 }
733
734 if (auto ConstV = dyn_cast<ConstantVector>(V)) {
735 std::vector<SPIRVValue *> BV;
736 for (auto I = ConstV->op_begin(), E = ConstV->op_end(); I != E; ++I)
737 BV.push_back(transValue(*I, nullptr));
738 return BM->addCompositeConstant(transType(V->getType()), BV);
739 }
740
741 if (auto ConstV = dyn_cast<ConstantStruct>(V)) {
742 if (ConstV->getType()->getName() ==
743 getSPIRVTypeName(kSPIRVTypeName::ConstantSampler)) {
744 assert(ConstV->getNumOperands() == 3);
745 SPIRVWord
746 AddrMode = ConstV->getOperand(0)->getUniqueInteger().getZExtValue(),
747 Normalized = ConstV->getOperand(1)->getUniqueInteger().getZExtValue(),
748 FilterMode = ConstV->getOperand(2)->getUniqueInteger().getZExtValue();
749 assert(AddrMode < 5 && "Invalid addressing mode");
750 assert(Normalized < 2 && "Invalid value of normalized coords");
751 assert(FilterMode < 2 && "Invalid filter mode");
752 SPIRVType* SamplerTy = transType(ConstV->getType());
753 return BM->addSamplerConstant(SamplerTy,
754 AddrMode, Normalized, FilterMode);
755 }
756 if (ConstV->getType()->getName() ==
757 getSPIRVTypeName(kSPIRVTypeName::ConstantPipeStorage)) {
758 assert(ConstV->getNumOperands() == 3);
759 SPIRVWord
760 PacketSize = ConstV->getOperand(0)->getUniqueInteger().getZExtValue(),
761 PacketAlign = ConstV->getOperand(1)->getUniqueInteger().getZExtValue(),
762 Capacity = ConstV->getOperand(2)->getUniqueInteger().getZExtValue();
763 assert(PacketAlign >= 1 && "Invalid packet alignment");
764 assert(PacketSize >= PacketAlign && PacketSize % PacketAlign == 0 &&
765 "Invalid packet size and/or alignment.");
766 SPIRVType* PipeStorageTy = transType(ConstV->getType());
767 return BM->addPipeStorageConstant(PipeStorageTy, PacketSize, PacketAlign,
768 Capacity);
769 }
770 std::vector<SPIRVValue *> BV;
771 for (auto I = ConstV->op_begin(), E = ConstV->op_end(); I != E; ++I)
772 BV.push_back(transValue(*I, nullptr));
773 return BM->addCompositeConstant(transType(V->getType()), BV);
774 }
775
776 if (auto ConstUE = dyn_cast<ConstantExpr>(V)) {
777 auto Inst = ConstUE->getAsInstruction();
778 SPIRVDBG(dbgs() << "ConstantExpr: " << *ConstUE << '\n';
779 dbgs() << "Instruction: " << *Inst << '\n';)
780 auto BI = transValue(Inst, nullptr, false);
781 Inst->dropAllReferences();
782 return BI;
783 }
784
785 if (isa<UndefValue>(V)) {
786 return BM->addUndef(transType(V->getType()));
787 }
788
789 return nullptr;
790 }
791
792 SPIRVValue *
transValue(Value * V,SPIRVBasicBlock * BB,bool CreateForward)793 LLVMToSPIRV::transValue(Value *V, SPIRVBasicBlock *BB, bool CreateForward) {
794 LLVMToSPIRVValueMap::iterator Loc = ValueMap.find(V);
795 if (Loc != ValueMap.end() && (!Loc->second->isForward() || CreateForward))
796 return Loc->second;
797
798 SPIRVDBG(dbgs() << "[transValue] " << *V << '\n');
799 assert ((!isa<Instruction>(V) || isa<GetElementPtrInst>(V) ||
800 isa<CastInst>(V) || BB) &&
801 "Invalid SPIRV BB");
802
803 auto BV = transValueWithoutDecoration(V, BB, CreateForward);
804 std::string name = V->getName();
805 if (!name.empty()) // Don't erase the name, which BM might already have
806 BM->setName(BV, name);
807 if(!transDecoration(V, BV))
808 return nullptr;
809 return BV;
810 }
811
812 SPIRVInstruction*
transBinaryInst(BinaryOperator * B,SPIRVBasicBlock * BB)813 LLVMToSPIRV::transBinaryInst(BinaryOperator* B, SPIRVBasicBlock* BB) {
814 unsigned LLVMOC = B->getOpcode();
815 auto Op0 = transValue(B->getOperand(0), BB);
816 SPIRVInstruction* BI = BM->addBinaryInst(
817 transBoolOpCode(Op0, OpCodeMap::map(LLVMOC)),
818 transType(B->getType()), Op0, transValue(B->getOperand(1), BB), BB);
819 return BI;
820 }
821
822 SPIRVInstruction*
transCmpInst(CmpInst * Cmp,SPIRVBasicBlock * BB)823 LLVMToSPIRV::transCmpInst(CmpInst* Cmp, SPIRVBasicBlock* BB) {
824 auto Op0 = transValue(Cmp->getOperand(0), BB);
825 SPIRVInstruction* BI = BM->addCmpInst(
826 transBoolOpCode(Op0, CmpMap::map(Cmp->getPredicate())),
827 transType(Cmp->getType()), Op0,
828 transValue(Cmp->getOperand(1), BB), BB);
829 return BI;
830 }
831
transUnaryInst(UnaryInstruction * U,SPIRVBasicBlock * BB)832 SPIRV::SPIRVInstruction *LLVMToSPIRV::transUnaryInst(UnaryInstruction *U,
833 SPIRVBasicBlock *BB) {
834 Op BOC = OpNop;
835 if (auto Cast = dyn_cast<AddrSpaceCastInst>(U)) {
836 if (Cast->getDestTy()->getPointerAddressSpace() == SPIRAS_Generic) {
837 assert(Cast->getSrcTy()->getPointerAddressSpace() != SPIRAS_Constant &&
838 "Casts from constant address space to generic are illegal");
839 BOC = OpPtrCastToGeneric;
840 } else {
841 assert(Cast->getDestTy()->getPointerAddressSpace() != SPIRAS_Constant &&
842 "Casts from generic address space to constant are illegal");
843 assert(Cast->getSrcTy()->getPointerAddressSpace() == SPIRAS_Generic);
844 BOC = OpGenericCastToPtr;
845 }
846 } else {
847 auto OpCode = U->getOpcode();
848 BOC = OpCodeMap::map(OpCode);
849 }
850
851 auto Op = transValue(U->getOperand(0), BB);
852 return BM->addUnaryInst(transBoolOpCode(Op, BOC),
853 transType(U->getType()), Op, BB);
854 }
855
856 /// An instruction may use an instruction from another BB which has not been
857 /// translated. SPIRVForward should be created as place holder for these
858 /// instructions and replaced later by the real instructions.
859 /// Use CreateForward = true to indicate such situation.
860 SPIRVValue *
transValueWithoutDecoration(Value * V,SPIRVBasicBlock * BB,bool CreateForward)861 LLVMToSPIRV::transValueWithoutDecoration(Value *V, SPIRVBasicBlock *BB,
862 bool CreateForward) {
863 if (auto LBB = dyn_cast<BasicBlock>(V)) {
864 auto BF = static_cast<SPIRVFunction *>(getTranslatedValue(LBB->getParent()));
865 assert (BF && "Function not translated");
866 BB = static_cast<SPIRVBasicBlock *>(mapValue(V, BM->addBasicBlock(BF)));
867 BM->setName(BB, LBB->getName());
868 return BB;
869 }
870
871 if (auto F = dyn_cast<Function>(V))
872 return transFunctionDecl(F);
873
874 if (auto GV = dyn_cast<GlobalVariable>(V)) {
875 llvm::PointerType * Ty = GV->getType();
876 // Though variables with common linkage type are initialized by 0,
877 // they can be represented in SPIR-V as uninitialized variables with
878 // 'Export' linkage type, just as tentative definitions look in C
879 llvm::Value *Init = GV->hasInitializer() && !GV->hasCommonLinkage() ?
880 GV->getInitializer() : nullptr;
881 StructType *ST = Init ? dyn_cast<StructType>(Init->getType()) : nullptr;
882 if (ST && ST->hasName() && isSPIRVConstantName(ST->getName())) {
883 auto BV = transConstant(Init);
884 assert(BV);
885 return mapValue(V, BV);
886 } else if (ConstantExpr *ConstUE = dyn_cast_or_null<ConstantExpr>(Init)) {
887 Instruction * Inst = ConstUE->getAsInstruction();
888 if (isSpecialTypeInitializer(Inst)) {
889 Init = Inst->getOperand(0);
890 Ty = static_cast<PointerType*>(Init->getType());
891 }
892 Inst->dropAllReferences();
893 }
894 auto BVar = static_cast<SPIRVVariable *>(BM->addVariable(
895 transType(Ty), GV->isConstant(),
896 transLinkageType(GV),
897 Init ? transValue(Init, nullptr) : nullptr,
898 GV->getName(),
899 SPIRSPIRVAddrSpaceMap::map(
900 static_cast<SPIRAddressSpace>(Ty->getAddressSpace())),
901 nullptr
902 ));
903 mapValue(V, BVar);
904 spv::BuiltIn Builtin = spv::BuiltInPosition;
905 if (!GV->hasName() || !getSPIRVBuiltin(GV->getName().str(), Builtin))
906 return BVar;
907 BVar->setBuiltin(Builtin);
908 return BVar;
909 }
910
911 if (isa<Constant>(V)) {
912 auto BV = transConstant(V);
913 assert(BV);
914 return mapValue(V, BV);
915 }
916
917 if (auto Arg = dyn_cast<Argument>(V)) {
918 unsigned ArgNo = Arg->getArgNo();
919 SPIRVFunction *BF = BB->getParent();
920 //assert(BF->existArgument(ArgNo));
921 return mapValue(V, BF->getArgument(ArgNo));
922 }
923
924 if (CreateForward)
925 return mapValue(V, BM->addForward(transType(V->getType())));
926
927 if (StoreInst *ST = dyn_cast<StoreInst>(V)) {
928 std::vector<SPIRVWord> MemoryAccess(1,0);
929 if (ST->isVolatile())
930 MemoryAccess[0] |= MemoryAccessVolatileMask;
931 if (ST->getAlignment()) {
932 MemoryAccess[0] |= MemoryAccessAlignedMask;
933 MemoryAccess.push_back(ST->getAlignment());
934 }
935 if (ST->getMetadata(LLVMContext::MD_nontemporal))
936 MemoryAccess[0] |= MemoryAccessNontemporalMask;
937 if (MemoryAccess.front() == 0)
938 MemoryAccess.clear();
939 return mapValue(V, BM->addStoreInst(
940 transValue(ST->getPointerOperand(), BB),
941 transValue(ST->getValueOperand(), BB),
942 MemoryAccess, BB));
943 }
944
945 if (LoadInst *LD = dyn_cast<LoadInst>(V)) {
946 std::vector<SPIRVWord> MemoryAccess(1,0);
947 if (LD->isVolatile())
948 MemoryAccess[0] |= MemoryAccessVolatileMask;
949 if (LD->getAlignment()) {
950 MemoryAccess[0] |= MemoryAccessAlignedMask;
951 MemoryAccess.push_back(LD->getAlignment());
952 }
953 if (LD->getMetadata(LLVMContext::MD_nontemporal))
954 MemoryAccess[0] |= MemoryAccessNontemporalMask;
955 if (MemoryAccess.front() == 0)
956 MemoryAccess.clear();
957 return mapValue(V, BM->addLoadInst(
958 transValue(LD->getPointerOperand(), BB),
959 MemoryAccess, BB));
960 }
961
962 if (BinaryOperator *B = dyn_cast<BinaryOperator>(V)) {
963 SPIRVInstruction* BI = transBinaryInst(B, BB);
964 return mapValue(V, BI);
965 }
966
967 if (auto RI = dyn_cast<ReturnInst>(V)) {
968 if (auto RV = RI->getReturnValue())
969 return mapValue(V, BM->addReturnValueInst(
970 transValue(RV, BB), BB));
971 return mapValue(V, BM->addReturnInst(BB));
972 }
973
974 if (CmpInst *Cmp = dyn_cast<CmpInst>(V)) {
975 SPIRVInstruction* BI = transCmpInst(Cmp, BB);
976 return mapValue(V, BI);
977 }
978
979 if (SelectInst *Sel = dyn_cast<SelectInst>(V))
980 return mapValue(V, BM->addSelectInst(
981 transValue(Sel->getCondition(), BB),
982 transValue(Sel->getTrueValue(), BB),
983 transValue(Sel->getFalseValue(), BB),BB));
984
985 if (AllocaInst *Alc = dyn_cast<AllocaInst>(V))
986 return mapValue(V, BM->addVariable(
987 transType(Alc->getType()), false,
988 SPIRVLinkageTypeKind::LinkageTypeInternal,
989 nullptr, Alc->getName(),
990 StorageClassFunction, BB));
991
992 if (auto *Switch = dyn_cast<SwitchInst>(V)) {
993 std::vector<std::pair<SPIRVWord, SPIRVBasicBlock *>> Pairs;
994 for (auto I = Switch->case_begin(), E = Switch->case_end(); I != E; ++I)
995 Pairs.push_back(std::make_pair(I.getCaseValue()->getZExtValue(),
996 static_cast<SPIRVBasicBlock*>(transValue(I.getCaseSuccessor(),
997 nullptr))));
998 return mapValue(V, BM->addSwitchInst(
999 transValue(Switch->getCondition(), BB),
1000 static_cast<SPIRVBasicBlock*>(transValue(Switch->getDefaultDest(),
1001 nullptr)), Pairs, BB));
1002 }
1003
1004 if (auto Branch = dyn_cast<BranchInst>(V)) {
1005 if (Branch->isUnconditional())
1006 return mapValue(V, BM->addBranchInst(
1007 static_cast<SPIRVLabel*>(transValue(Branch->getSuccessor(0), BB)),
1008 BB));
1009 return mapValue(V, BM->addBranchConditionalInst(
1010 transValue(Branch->getCondition(), BB),
1011 static_cast<SPIRVLabel*>(transValue(Branch->getSuccessor(0), BB)),
1012 static_cast<SPIRVLabel*>(transValue(Branch->getSuccessor(1), BB)),
1013 BB));
1014 }
1015
1016 if (auto Phi = dyn_cast<PHINode>(V)) {
1017 std::vector<SPIRVValue *> IncomingPairs;
1018 for (size_t I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
1019 IncomingPairs.push_back(transValue(Phi->getIncomingValue(I), BB));
1020 IncomingPairs.push_back(transValue(Phi->getIncomingBlock(I), nullptr));
1021 }
1022 return mapValue(V, BM->addPhiInst(transType(Phi->getType()), IncomingPairs,
1023 BB));
1024 }
1025
1026 if (auto Ext = dyn_cast<ExtractValueInst>(V)) {
1027 return mapValue(V, BM->addCompositeExtractInst(
1028 transType(Ext->getType()),
1029 transValue(Ext->getAggregateOperand(), BB),
1030 Ext->getIndices(), BB));
1031 }
1032
1033 if (auto Ins = dyn_cast<InsertValueInst>(V)) {
1034 return mapValue(V, BM->addCompositeInsertInst(
1035 transValue(Ins->getInsertedValueOperand(), BB),
1036 transValue(Ins->getAggregateOperand(), BB),
1037 Ins->getIndices(), BB));
1038 }
1039
1040 if (UnaryInstruction *U = dyn_cast<UnaryInstruction>(V)) {
1041 if (isSpecialTypeInitializer(U))
1042 return mapValue(V, transValue(U->getOperand(0), BB));
1043 return mapValue(V, transUnaryInst(U, BB));
1044 }
1045
1046 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) {
1047 std::vector<SPIRVValue *> Indices;
1048 for (unsigned i = 0, e = GEP->getNumIndices(); i != e; ++i)
1049 Indices.push_back(transValue(GEP->getOperand(i+1), BB));
1050 return mapValue(V, BM->addPtrAccessChainInst(
1051 transType(GEP->getType()),
1052 transValue(GEP->getPointerOperand(), BB),
1053 Indices, BB, GEP->isInBounds()));
1054 }
1055
1056 if (auto Ext = dyn_cast<ExtractElementInst>(V)) {
1057 auto Index = Ext->getIndexOperand();
1058 if (auto Const = dyn_cast<ConstantInt>(Index))
1059 return mapValue(V, BM->addCompositeExtractInst(
1060 transType(Ext->getType()),
1061 transValue(Ext->getVectorOperand(), BB),
1062 std::vector<SPIRVWord>(1, Const->getZExtValue()),
1063 BB));
1064 else
1065 return mapValue(V, BM->addVectorExtractDynamicInst(
1066 transValue(Ext->getVectorOperand(), BB),
1067 transValue(Index, BB),
1068 BB));
1069 }
1070
1071 if (auto Ins = dyn_cast<InsertElementInst>(V)) {
1072 auto Index = Ins->getOperand(2);
1073 if (auto Const = dyn_cast<ConstantInt>(Index))
1074 return mapValue(V, BM->addCompositeInsertInst(
1075 transValue(Ins->getOperand(1), BB),
1076 transValue(Ins->getOperand(0), BB),
1077 std::vector<SPIRVWord>(1, Const->getZExtValue()),
1078 BB));
1079 else
1080 return mapValue(V, BM->addVectorInsertDynamicInst(
1081 transValue(Ins->getOperand(0), BB),
1082 transValue(Ins->getOperand(1), BB),
1083 transValue(Index, BB),
1084 BB));
1085 }
1086
1087 if (auto SF = dyn_cast<ShuffleVectorInst>(V)) {
1088 std::vector<SPIRVWord> Comp;
1089 for (auto &I:SF->getShuffleMask())
1090 Comp.push_back(I);
1091 return mapValue(V, BM->addVectorShuffleInst(
1092 transType(SF->getType()),
1093 transValue(SF->getOperand(0), BB),
1094 transValue(SF->getOperand(1), BB),
1095 Comp,
1096 BB));
1097 }
1098
1099 if (CallInst *CI = dyn_cast<CallInst>(V))
1100 return mapValue(V, transCallInst(CI, BB));
1101
1102 llvm_unreachable("Not implemented");
1103 return nullptr;
1104 }
1105
1106 bool
transDecoration(Value * V,SPIRVValue * BV)1107 LLVMToSPIRV::transDecoration(Value *V, SPIRVValue *BV) {
1108 if (!transAlign(V, BV))
1109 return false;
1110 if ((isa<AtomicCmpXchgInst>(V) &&
1111 cast<AtomicCmpXchgInst>(V)->isVolatile()) ||
1112 (isa<AtomicRMWInst>(V) && cast<AtomicRMWInst>(V)->isVolatile()))
1113 BV->setVolatile(true);
1114 DbgTran.transDbgInfo(V, BV);
1115 return true;
1116 }
1117
1118 bool
transAlign(Value * V,SPIRVValue * BV)1119 LLVMToSPIRV::transAlign(Value *V, SPIRVValue *BV) {
1120 if (auto AL = dyn_cast<AllocaInst>(V)) {
1121 BM->setAlignment(BV, AL->getAlignment());
1122 return true;
1123 }
1124 if (auto GV = dyn_cast<GlobalVariable>(V)) {
1125 BM->setAlignment(BV, GV->getAlignment());
1126 return true;
1127 }
1128 return true;
1129 }
1130
1131 /// Do this after source language is set.
1132 bool
transBuiltinSet()1133 LLVMToSPIRV::transBuiltinSet() {
1134 SPIRVWord Ver = 0;
1135 SourceLanguage Kind = BM->getSourceLanguage(&Ver);
1136 (void) Kind;
1137 assert((Kind == SourceLanguageOpenCL_C ||
1138 Kind == SourceLanguageOpenCL_CPP ) && "not supported");
1139 std::stringstream SS;
1140 SS << "OpenCL.std";
1141 return BM->importBuiltinSet(SS.str(), &ExtSetId);
1142 }
1143
1144 /// Transform sampler* spcv.cast(i32 arg)
1145 /// Only two cases are possible:
1146 /// arg = ConstantInt x -> SPIRVConstantSampler
1147 /// arg = i32 argument -> transValue(arg)
1148 /// arg = load from sampler -> look through load
1149 SPIRVValue *
oclTransSpvcCastSampler(CallInst * CI,SPIRVBasicBlock * BB)1150 LLVMToSPIRV::oclTransSpvcCastSampler(CallInst* CI, SPIRVBasicBlock *BB) {
1151 llvm::Function* F = CI->getCalledFunction();
1152 auto FT = F->getFunctionType();
1153 auto RT = FT->getReturnType();
1154 assert(FT->getNumParams() == 1);
1155 assert(isSPIRVType(RT, kSPIRVTypeName::Sampler) &&
1156 FT->getParamType(0)->isIntegerTy() && "Invalid sampler type");
1157 auto Arg = CI->getArgOperand(0);
1158
1159 auto GetSamplerConstant = [&](uint64_t SamplerValue) {
1160 auto AddrMode = (SamplerValue & 0xE) >> 1;
1161 auto Param = SamplerValue & 0x1;
1162 auto Filter = ((SamplerValue & 0x30) >> 4) - 1;
1163 auto BV = BM->addSamplerConstant(transType(RT), AddrMode, Param, Filter);
1164 return BV;
1165 };
1166
1167 if (auto Const = dyn_cast<ConstantInt>(Arg)) {
1168 // Sampler is declared as a kernel scope constant
1169 return GetSamplerConstant(Const->getZExtValue());
1170 } else if (auto Load = dyn_cast<LoadInst>(Arg)) {
1171 // If value of the sampler is loaded from a global constant, use its
1172 // initializer for initialization of the sampler.
1173 auto Op = Load->getPointerOperand();
1174 assert(isa<GlobalVariable>(Op) && "Unknown sampler pattern!");
1175 auto GV = cast<GlobalVariable>(Op);
1176 assert(GV->isConstant() ||
1177 GV->getType()->getPointerAddressSpace() == SPIRAS_Constant);
1178 auto Initializer = GV->getInitializer();
1179 assert(isa<ConstantInt>(Initializer) && "sampler not constant int?");
1180 return GetSamplerConstant(cast<ConstantInt>(Initializer)->getZExtValue());
1181 }
1182 // Sampler is a function argument
1183 auto BV = transValue(Arg, BB);
1184 assert(BV && BV->getType() == transType(RT));
1185 return BV;
1186 }
1187
1188 SPIRVValue *
transSpcvCast(CallInst * CI,SPIRVBasicBlock * BB)1189 LLVMToSPIRV::transSpcvCast(CallInst* CI, SPIRVBasicBlock *BB) {
1190 return oclTransSpvcCastSampler(CI, BB);
1191 }
1192
1193 SPIRVValue *
transCallInst(CallInst * CI,SPIRVBasicBlock * BB)1194 LLVMToSPIRV::transCallInst(CallInst *CI, SPIRVBasicBlock *BB) {
1195 SPIRVExtInstSetKind ExtSetKind = SPIRVEIS_Count;
1196 SPIRVWord ExtOp = SPIRVWORD_MAX;
1197 llvm::Function* F = CI->getCalledFunction();
1198 auto MangledName = F->getName();
1199 std::string DemangledName;
1200
1201 if (MangledName.startswith(SPCV_CAST))
1202 return transSpcvCast(CI, BB);
1203
1204 if (MangledName.startswith("llvm.memcpy")) {
1205 std::vector<SPIRVWord> MemoryAccess;
1206
1207 if (isa<ConstantInt>(CI->getOperand(4)) &&
1208 dyn_cast<ConstantInt>(CI->getOperand(4))
1209 ->getZExtValue() == 1)
1210 MemoryAccess.push_back(MemoryAccessVolatileMask);
1211 if (isa<ConstantInt>(CI->getOperand(3))) {
1212 MemoryAccess.push_back(MemoryAccessAlignedMask);
1213 MemoryAccess.push_back(dyn_cast<ConstantInt>(CI->getOperand(3))
1214 ->getZExtValue());
1215 }
1216
1217 return BM->addCopyMemorySizedInst(
1218 transValue(CI->getOperand(0), BB),
1219 transValue(CI->getOperand(1), BB),
1220 transValue(CI->getOperand(2), BB),
1221 MemoryAccess,
1222 BB);
1223 }
1224
1225 if (oclIsBuiltin(MangledName, &DemangledName) ||
1226 isDecoratedSPIRVFunc(F, &DemangledName))
1227 if (auto BV = transBuiltinToInst(DemangledName, MangledName, CI, BB))
1228 return BV;
1229
1230 SmallVector<std::string, 2> Dec;
1231 if (isBuiltinTransToExtInst(CI->getCalledFunction(), &ExtSetKind,
1232 &ExtOp, &Dec))
1233 return addDecorations(BM->addExtInst(
1234 transType(CI->getType()),
1235 ExtSetId,
1236 ExtOp,
1237 transArguments(CI, BB, SPIRVEntry::create_unique(ExtSetKind, ExtOp).get()),
1238 BB), Dec);
1239
1240 return BM->addCallInst(
1241 transFunctionDecl(CI->getCalledFunction()),
1242 transArguments(CI, BB, SPIRVEntry::create_unique(OpFunctionCall).get()),
1243 BB);
1244 }
1245
1246 bool
transAddressingMode()1247 LLVMToSPIRV::transAddressingMode() {
1248 Triple TargetTriple(M->getTargetTriple());
1249 Triple::ArchType Arch = TargetTriple.getArch();
1250
1251 SPIRVCKRT(Arch == Triple::spir || Arch == Triple::spir64,
1252 InvalidTargetTriple,
1253 "Actual target triple is " + M->getTargetTriple());
1254
1255 if (Arch == Triple::spir)
1256 BM->setAddressingModel(AddressingModelPhysical32);
1257 else
1258 BM->setAddressingModel(AddressingModelPhysical64);
1259 // Physical addressing model requires Addresses capability
1260 BM->addCapability(CapabilityAddresses);
1261 return true;
1262 }
1263 std::vector<SPIRVValue*>
transValue(const std::vector<Value * > & Args,SPIRVBasicBlock * BB)1264 LLVMToSPIRV::transValue(const std::vector<Value *> &Args, SPIRVBasicBlock* BB) {
1265 std::vector<SPIRVValue*> BArgs;
1266 for (auto &I: Args)
1267 BArgs.push_back(transValue(I, BB));
1268 return BArgs;
1269 }
1270
1271 std::vector<SPIRVValue*>
transArguments(CallInst * CI,SPIRVBasicBlock * BB)1272 LLVMToSPIRV::transArguments(CallInst *CI, SPIRVBasicBlock *BB) {
1273 return transValue(getArguments(CI), BB);
1274 }
1275
1276 std::vector<SPIRVWord>
transValue(const std::vector<Value * > & Args,SPIRVBasicBlock * BB,SPIRVEntry * Entry)1277 LLVMToSPIRV::transValue(const std::vector<Value *> &Args, SPIRVBasicBlock* BB,
1278 SPIRVEntry *Entry) {
1279 std::vector<SPIRVWord> Operands;
1280 for (size_t I = 0, E = Args.size(); I != E; ++I) {
1281 Operands.push_back(Entry->isOperandLiteral(I) ?
1282 cast<ConstantInt>(Args[I])->getZExtValue() :
1283 transValue(Args[I], BB)->getId());
1284 }
1285 return Operands;
1286 }
1287
1288 std::vector<SPIRVWord>
transArguments(CallInst * CI,SPIRVBasicBlock * BB,SPIRVEntry * Entry)1289 LLVMToSPIRV::transArguments(CallInst *CI, SPIRVBasicBlock *BB, SPIRVEntry *Entry) {
1290 return transValue(getArguments(CI), BB, Entry);
1291 }
1292
1293 SPIRVWord
transFunctionControlMask(CallInst * CI)1294 LLVMToSPIRV::transFunctionControlMask(CallInst *CI) {
1295 SPIRVWord FCM = 0;
1296 SPIRSPIRVFuncCtlMaskMap::foreach([&](Attribute::AttrKind Attr,
1297 SPIRVFunctionControlMaskKind Mask){
1298 if (CI->hasFnAttr(Attr))
1299 FCM |= Mask;
1300 });
1301 return FCM;
1302 }
1303
1304 SPIRVWord
transFunctionControlMask(Function * F)1305 LLVMToSPIRV::transFunctionControlMask(Function *F) {
1306 SPIRVWord FCM = 0;
1307 SPIRSPIRVFuncCtlMaskMap::foreach([&](Attribute::AttrKind Attr,
1308 SPIRVFunctionControlMaskKind Mask){
1309 if (F->hasFnAttribute(Attr))
1310 FCM |= Mask;
1311 });
1312 return FCM;
1313 }
1314
1315 bool
transGlobalVariables()1316 LLVMToSPIRV::transGlobalVariables() {
1317 for (auto I = M->global_begin(),
1318 E = M->global_end(); I != E; ++I) {
1319 if (!transValue(static_cast<GlobalVariable*>(I), nullptr))
1320 return false;
1321 }
1322 return true;
1323 }
1324
1325 void
mutateFuncArgType(const std::map<unsigned,Type * > & ChangedType,Function * F)1326 LLVMToSPIRV::mutateFuncArgType(const std::map<unsigned, Type*>& ChangedType,
1327 Function* F) {
1328 for (auto &I : ChangedType) {
1329 for (auto UI = F->user_begin(), UE = F->user_end(); UI != UE; ++UI) {
1330 auto Call = dyn_cast<CallInst>(*UI);
1331 if (!Call)
1332 continue;
1333 auto Arg = Call->getArgOperand(I.first);
1334 auto OrigTy = Arg->getType();
1335 if (OrigTy == I.second)
1336 continue;
1337 SPIRVDBG(dbgs() << "[mutate arg type] " << *Call << ", " << *Arg << '\n');
1338 auto CastF = M->getOrInsertFunction(SPCV_CAST, I.second, OrigTy, nullptr);
1339 std::vector<Value *> Args;
1340 Args.push_back(Arg);
1341 auto Cast = CallInst::Create(CastF, Args, "", Call);
1342 Call->replaceUsesOfWith(Arg, Cast);
1343 SPIRVDBG(dbgs() << "[mutate arg type] -> " << *Cast << '\n');
1344 }
1345 }
1346 }
1347
1348 void
transFunction(Function * I)1349 LLVMToSPIRV::transFunction(Function *I) {
1350 transFunctionDecl(I);
1351 // Creating all basic blocks before creating any instruction.
1352 for (Function::iterator FI = I->begin(), FE = I->end(); FI != FE; ++FI) {
1353 transValue(static_cast<BasicBlock*>(FI), nullptr);
1354 }
1355 for (Function::iterator FI = I->begin(), FE = I->end(); FI != FE; ++FI) {
1356 SPIRVBasicBlock* BB = static_cast<SPIRVBasicBlock*>(transValue(static_cast<BasicBlock*>(FI), nullptr));
1357 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); BI != BE;
1358 ++BI) {
1359 transValue(static_cast<Instruction*>(BI), BB, false);
1360 }
1361 }
1362 }
1363
1364 bool
translate()1365 LLVMToSPIRV::translate() {
1366 BM->setGeneratorVer(kTranslatorVer);
1367
1368 if (!transSourceLanguage())
1369 return false;
1370 if (!transExtension())
1371 return false;
1372 if (!transBuiltinSet())
1373 return false;
1374 if (!transAddressingMode())
1375 return false;
1376 if (!transGlobalVariables())
1377 return false;
1378
1379 for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
1380 Function *F = static_cast<Function*>(I);
1381 auto FT = F->getFunctionType();
1382 std::map<unsigned, Type *> ChangedType;
1383 oclGetMutatedArgumentTypesByBuiltin(FT, ChangedType, F);
1384 mutateFuncArgType(ChangedType, F);
1385 }
1386
1387 // SPIR-V logical layout requires all function declarations go before
1388 // function definitions.
1389 std::vector<Function *> Decls, Defs;
1390 for (Module::iterator I1 = M->begin(), E = M->end(); I1 != E; ++I1) {
1391 auto I = static_cast<Function*>(I1);
1392 if (isBuiltinTransToInst(I) || isBuiltinTransToExtInst(I)
1393 || I->getName().startswith(SPCV_CAST) ||
1394 I->getName().startswith(LLVM_MEMCPY))
1395 continue;
1396 if (I->isDeclaration())
1397 Decls.push_back(I);
1398 else
1399 Defs.push_back(I);
1400 }
1401 for (auto I:Decls)
1402 transFunctionDecl(I);
1403 for (auto I:Defs)
1404 transFunction(I);
1405
1406 if (!transOCLKernelMetadata())
1407 return false;
1408 if (!transExecutionMode())
1409 return false;
1410
1411 BM->optimizeDecorates();
1412 BM->resolveUnknownStructFields();
1413 BM->createForwardPointers();
1414 return true;
1415 }
1416
getSizetType()1417 llvm::IntegerType* LLVMToSPIRV::getSizetType() {
1418 return IntegerType::getIntNTy(M->getContext(),
1419 M->getDataLayout().getPointerSizeInBits());
1420 }
1421
1422 void
oclGetMutatedArgumentTypesByBuiltin(llvm::FunctionType * FT,std::map<unsigned,Type * > & ChangedType,Function * F)1423 LLVMToSPIRV::oclGetMutatedArgumentTypesByBuiltin(
1424 llvm::FunctionType* FT, std::map<unsigned, Type*>& ChangedType,
1425 Function* F) {
1426 auto Name = F->getName();
1427 std::string Demangled;
1428 if (!oclIsBuiltin(Name, &Demangled))
1429 return;
1430 if (Demangled.find(kSPIRVName::SampledImage) == std::string::npos)
1431 return;
1432 if (FT->getParamType(1)->isIntegerTy())
1433 ChangedType[1] = getSamplerType(F->getParent());
1434 }
1435
1436 SPIRVInstruction *
transBuiltinToInst(const std::string & DemangledName,const std::string & MangledName,CallInst * CI,SPIRVBasicBlock * BB)1437 LLVMToSPIRV::transBuiltinToInst(const std::string& DemangledName,
1438 const std::string &MangledName, CallInst* CI, SPIRVBasicBlock* BB) {
1439 SmallVector<std::string, 2> Dec;
1440 auto OC = getSPIRVFuncOC(DemangledName, &Dec);
1441
1442 if (OC == OpNop)
1443 return nullptr;
1444
1445 auto Inst = transBuiltinToInstWithoutDecoration(OC, CI, BB);
1446 addDecorations(Inst, Dec);
1447 return Inst;
1448 }
1449
1450 bool
transExecutionMode()1451 LLVMToSPIRV::transExecutionMode() {
1452 if (auto NMD = SPIRVMDWalker(*M).getNamedMD(kSPIRVMD::ExecutionMode)) {
1453 while (!NMD.atEnd()) {
1454 unsigned EMode = ~0U;
1455 Function *F = nullptr;
1456 auto N = NMD.nextOp(); /* execution mode MDNode */
1457 N.get(F).get(EMode);
1458
1459 SPIRVFunction *BF = static_cast<SPIRVFunction *>(getTranslatedValue(F));
1460 assert(BF && "Invalid kernel function");
1461 if (!BF)
1462 return false;
1463
1464 switch (EMode) {
1465 case spv::ExecutionModeContractionOff:
1466 case spv::ExecutionModeInitializer:
1467 case spv::ExecutionModeFinalizer:
1468 BF->addExecutionMode(new SPIRVExecutionMode(BF,
1469 static_cast<ExecutionMode>(EMode)));
1470 break;
1471 case spv::ExecutionModeLocalSize:
1472 case spv::ExecutionModeLocalSizeHint: {
1473 unsigned X, Y, Z;
1474 N.get(X).get(Y).get(Z);
1475 BF->addExecutionMode(new SPIRVExecutionMode(BF,
1476 static_cast<ExecutionMode>(EMode), X, Y, Z));
1477 }
1478 break;
1479 case spv::ExecutionModeVecTypeHint:
1480 case spv::ExecutionModeSubgroupSize:
1481 case spv::ExecutionModeSubgroupsPerWorkgroup: {
1482 unsigned X;
1483 N.get(X);
1484 BF->addExecutionMode(new SPIRVExecutionMode(BF,
1485 static_cast<ExecutionMode>(EMode), X));
1486 }
1487 break;
1488 default:
1489 llvm_unreachable("invalid execution mode");
1490 }
1491 }
1492 }
1493 return true;
1494 }
1495
1496 bool
transOCLKernelMetadata()1497 LLVMToSPIRV::transOCLKernelMetadata() {
1498 NamedMDNode *KernelMDs = M->getNamedMetadata(SPIR_MD_KERNELS);
1499 std::vector<std::string> argAccessQual;
1500 if (!KernelMDs)
1501 return true;
1502
1503 for (unsigned I = 0, E = KernelMDs->getNumOperands(); I < E; ++I) {
1504 MDNode *KernelMD = KernelMDs->getOperand(I);
1505 if (KernelMD->getNumOperands() == 0)
1506 continue;
1507 Function *Kernel = mdconst::dyn_extract<Function>(KernelMD->getOperand(0));
1508
1509 SPIRVFunction *BF = static_cast<SPIRVFunction *>(getTranslatedValue(Kernel));
1510 assert(BF && "Kernel function should be translated first");
1511 assert(Kernel && oclIsKernel(Kernel)
1512 && "Invalid kernel calling convention or metadata");
1513 for (unsigned MI = 1, ME = KernelMD->getNumOperands(); MI < ME; ++MI) {
1514 MDNode *MD = dyn_cast<MDNode>(KernelMD->getOperand(MI));
1515 if (!MD)
1516 continue;
1517 MDString *NameMD = dyn_cast<MDString>(MD->getOperand(0));
1518 if (!NameMD)
1519 continue;
1520 StringRef Name = NameMD->getString();
1521 if (Name == SPIR_MD_KERNEL_ARG_TYPE_QUAL) {
1522 foreachKernelArgMD(MD, BF,
1523 [](const std::string &Str, SPIRVFunctionParameter *BA){
1524 if (Str.find("volatile") != std::string::npos)
1525 BA->addDecorate(new SPIRVDecorate(DecorationVolatile, BA));
1526 if (Str.find("restrict") != std::string::npos)
1527 BA->addDecorate(new SPIRVDecorate(DecorationFuncParamAttr,
1528 BA, FunctionParameterAttributeNoAlias));
1529 if (Str.find("const") != std::string::npos)
1530 BA->addDecorate(new SPIRVDecorate(DecorationFuncParamAttr,
1531 BA, FunctionParameterAttributeNoWrite));
1532 });
1533 } else if (Name == SPIR_MD_KERNEL_ARG_NAME) {
1534 foreachKernelArgMD(MD, BF,
1535 [=](const std::string &Str, SPIRVFunctionParameter *BA){
1536 BM->setName(BA, Str);
1537 });
1538 }
1539 }
1540 }
1541 return true;
1542 }
1543
1544 bool
transSourceLanguage()1545 LLVMToSPIRV::transSourceLanguage() {
1546 auto Src = getSPIRVSource(M);
1547 SrcLang = std::get<0>(Src);
1548 SrcLangVer = std::get<1>(Src);
1549 BM->setSourceLanguage(static_cast<SourceLanguage>(SrcLang), SrcLangVer);
1550 return true;
1551 }
1552
1553 bool
transExtension()1554 LLVMToSPIRV::transExtension() {
1555 if (auto N = SPIRVMDWalker(*M).getNamedMD(kSPIRVMD::Extension)) {
1556 while (!N.atEnd()) {
1557 std::string S;
1558 N.nextOp().get(S);
1559 assert(!S.empty() && "Invalid extension");
1560 BM->getExtension().insert(S);
1561 }
1562 }
1563 if (auto N = SPIRVMDWalker(*M).getNamedMD(kSPIRVMD::SourceExtension)) {
1564 while (!N.atEnd()) {
1565 std::string S;
1566 N.nextOp().get(S);
1567 assert(!S.empty() && "Invalid extension");
1568 BM->getSourceExtension().insert(S);
1569 }
1570 }
1571 for (auto &I:map<SPIRVCapabilityKind>(rmap<OclExt::Kind>(BM->getExtension())))
1572 BM->addCapability(I);
1573
1574 return true;
1575 }
1576
1577 void
dumpUsers(Value * V)1578 LLVMToSPIRV::dumpUsers(Value* V) {
1579 SPIRVDBG(dbgs() << "Users of " << *V << " :\n");
1580 for (auto UI = V->user_begin(), UE = V->user_end();
1581 UI != UE; ++UI)
1582 SPIRVDBG(dbgs() << " " << **UI << '\n');
1583 }
1584
1585 Op
transBoolOpCode(SPIRVValue * Opn,Op OC)1586 LLVMToSPIRV::transBoolOpCode(SPIRVValue* Opn, Op OC) {
1587 if (!Opn->getType()->isTypeVectorOrScalarBool())
1588 return OC;
1589 IntBoolOpMap::find(OC, &OC);
1590 return OC;
1591 }
1592
1593 SPIRVInstruction *
transBuiltinToInstWithoutDecoration(Op OC,CallInst * CI,SPIRVBasicBlock * BB)1594 LLVMToSPIRV::transBuiltinToInstWithoutDecoration(Op OC,
1595 CallInst* CI, SPIRVBasicBlock* BB) {
1596 if (isGroupOpCode(OC))
1597 BM->addCapability(CapabilityGroups);
1598 switch (OC) {
1599 case OpControlBarrier: {
1600 auto BArgs = transValue(getArguments(CI), BB);
1601 return BM->addControlBarrierInst(
1602 BArgs[0], BArgs[1], BArgs[2], BB);
1603 }
1604 break;
1605 case OpGroupAsyncCopy: {
1606 auto BArgs = transValue(getArguments(CI), BB);
1607 return BM->addAsyncGroupCopy(BArgs[0], BArgs[1], BArgs[2], BArgs[3],
1608 BArgs[4], BArgs[5], BB);
1609 }
1610 break;
1611 default: {
1612 if (isCvtOpCode(OC) && OC != OpGenericCastToPtrExplicit) {
1613 return BM->addUnaryInst(OC, transType(CI->getType()),
1614 transValue(CI->getArgOperand(0), BB), BB);
1615 } else if (isCmpOpCode(OC)) {
1616 assert(CI && CI->getNumArgOperands() == 2 && "Invalid call inst");
1617 auto ResultTy = CI->getType();
1618 Type *BoolTy = IntegerType::getInt1Ty(M->getContext());
1619 auto IsVector = ResultTy->isVectorTy();
1620 if (IsVector)
1621 BoolTy = VectorType::get(BoolTy, ResultTy->getVectorNumElements());
1622 auto BBT = transType(BoolTy);
1623 auto Cmp = BM->addCmpInst(OC, BBT,
1624 transValue(CI->getArgOperand(0), BB),
1625 transValue(CI->getArgOperand(1), BB), BB);
1626 auto Zero = transValue(Constant::getNullValue(ResultTy), BB);
1627 auto One = transValue(
1628 IsVector ? Constant::getAllOnesValue(ResultTy) : getInt32(M, 1), BB);
1629 return BM->addSelectInst(Cmp, One, Zero, BB);
1630 } else if (isBinaryOpCode(OC)) {
1631 assert(CI && CI->getNumArgOperands() == 2 && "Invalid call inst");
1632 return BM->addBinaryInst(OC, transType(CI->getType()),
1633 transValue(CI->getArgOperand(0), BB),
1634 transValue(CI->getArgOperand(1), BB), BB);
1635 } else if (CI->getNumArgOperands() == 1 &&
1636 !CI->getType()->isVoidTy() &&
1637 !hasExecScope(OC) &&
1638 !isAtomicOpCode(OC)) {
1639 return BM->addUnaryInst(OC, transType(CI->getType()),
1640 transValue(CI->getArgOperand(0), BB), BB);
1641 } else {
1642 auto Args = getArguments(CI);
1643 SPIRVType *SPRetTy = nullptr;
1644 Type *RetTy = CI->getType();
1645 auto F = CI->getCalledFunction();
1646 if (!RetTy->isVoidTy()) {
1647 SPRetTy = transType(RetTy);
1648 } else if (Args.size() > 0 && F->arg_begin()->hasStructRetAttr()) {
1649 SPRetTy = transType(F->arg_begin()->getType()->getPointerElementType());
1650 Args.erase(Args.begin());
1651 }
1652 auto SPI = BM->addInstTemplate(OC, BB, SPRetTy);
1653 std::vector<SPIRVWord> SPArgs;
1654 for (size_t I = 0, E = Args.size(); I != E; ++I) {
1655 assert((!isFunctionPointerType(Args[I]->getType()) ||
1656 isa<Function>(Args[I])) &&
1657 "Invalid function pointer argument");
1658 SPArgs.push_back(SPI->isOperandLiteral(I) ?
1659 cast<ConstantInt>(Args[I])->getZExtValue() :
1660 transValue(Args[I], BB)->getId());
1661 }
1662 SPI->setOpWordsAndValidate(SPArgs);
1663 if (!SPRetTy || !SPRetTy->isTypeStruct())
1664 return SPI;
1665 std::vector<SPIRVWord> Mem;
1666 SPIRVDBG(spvdbgs() << *SPI << '\n');
1667 return BM->addStoreInst(transValue(CI->getArgOperand(0), BB), SPI,
1668 Mem, BB);
1669 }
1670 }
1671 }
1672 return nullptr;
1673 }
1674
1675
1676 SPIRVId
addInt32(int I)1677 LLVMToSPIRV::addInt32(int I) {
1678 return transValue(getInt32(M, I), nullptr, false)->getId();
1679 }
1680
1681 SPIRV::SPIRVLinkageTypeKind
transLinkageType(const GlobalValue * GV)1682 LLVMToSPIRV::transLinkageType(const GlobalValue* GV) {
1683 if(GV->isDeclarationForLinker())
1684 return SPIRVLinkageTypeKind::LinkageTypeImport;
1685 if(GV->hasInternalLinkage() || GV->hasPrivateLinkage())
1686 return SPIRVLinkageTypeKind::LinkageTypeInternal;
1687 return SPIRVLinkageTypeKind::LinkageTypeExport;
1688 }
1689 } // end of SPIRV namespace
1690
1691 char LLVMToSPIRV::ID = 0;
1692
1693 INITIALIZE_PASS_BEGIN(LLVMToSPIRV, "llvmtospv", "Translate LLVM to SPIR-V",
1694 false, false)
INITIALIZE_PASS_DEPENDENCY(OCLTypeToSPIRV)1695 INITIALIZE_PASS_DEPENDENCY(OCLTypeToSPIRV)
1696 INITIALIZE_PASS_END(LLVMToSPIRV, "llvmtospv", "Translate LLVM to SPIR-V",
1697 false, false)
1698
1699 ModulePass *llvm::createLLVMToSPIRV(SPIRVModule *SMod) {
1700 return new LLVMToSPIRV(SMod);
1701 }
1702
1703 void
addPassesForSPIRV(legacy::PassManager & PassMgr)1704 addPassesForSPIRV(legacy::PassManager &PassMgr) {
1705 if (SPIRVMemToReg)
1706 PassMgr.add(createPromoteMemoryToRegisterPass());
1707 PassMgr.add(createTransOCLMD());
1708 PassMgr.add(createOCL21ToSPIRV());
1709 PassMgr.add(createSPIRVLowerOCLBlocks());
1710 PassMgr.add(createOCLTypeToSPIRV());
1711 PassMgr.add(createOCL20ToSPIRV());
1712 PassMgr.add(createSPIRVRegularizeLLVM());
1713 PassMgr.add(createSPIRVLowerConstExpr());
1714 PassMgr.add(createSPIRVLowerBool());
1715 }
1716
1717 bool
WriteSPIRV(Module * M,llvm::raw_ostream & OS,std::string & ErrMsg)1718 llvm::WriteSPIRV(Module *M, llvm::raw_ostream &OS, std::string &ErrMsg) {
1719 std::unique_ptr<SPIRVModule> BM(SPIRVModule::createSPIRVModule());
1720 legacy::PassManager PassMgr;
1721 addPassesForSPIRV(PassMgr);
1722 PassMgr.add(createLLVMToSPIRV(BM.get()));
1723 PassMgr.run(*M);
1724
1725 if (BM->getError(ErrMsg) != SPIRVEC_Success)
1726 return false;
1727 OS << *BM;
1728 return true;
1729 }
1730
1731 bool
RegularizeLLVMForSPIRV(Module * M,std::string & ErrMsg)1732 llvm::RegularizeLLVMForSPIRV(Module *M, std::string &ErrMsg) {
1733 std::unique_ptr<SPIRVModule> BM(SPIRVModule::createSPIRVModule());
1734 legacy::PassManager PassMgr;
1735 addPassesForSPIRV(PassMgr);
1736 PassMgr.run(*M);
1737 return true;
1738 }
1739