1 //===-- MachinePipeliner.cpp - Machine Software Pipeliner Pass ------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11 //
12 // Software pipelining (SWP) is an instruction scheduling technique for loops
13 // that overlap loop iterations and explioits ILP via a compiler transformation.
14 //
15 // Swing Modulo Scheduling is an implementation of software pipelining
16 // that generates schedules that are near optimal in terms of initiation
17 // interval, register requirements, and stage count. See the papers:
18 //
19 // "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20 // A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21 // Conference on Parallel Architectures and Compilation Techiniques.
22 //
23 // "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24 // Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25 // Transactions on Computers, Vol. 50, No. 3, 2001.
26 //
27 // "An Implementation of Swing Modulo Scheduling With Extensions for
28 // Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29 // Urbana-Chambpain, 2005.
30 //
31 //
32 // The SMS algorithm consists of three main steps after computing the minimal
33 // initiation interval (MII).
34 // 1) Analyze the dependence graph and compute information about each
35 // instruction in the graph.
36 // 2) Order the nodes (instructions) by priority based upon the heuristics
37 // described in the algorithm.
38 // 3) Attempt to schedule the nodes in the specified order using the MII.
39 //
40 // This SMS implementation is a target-independent back-end pass. When enabled,
41 // the pass runs just prior to the register allocation pass, while the machine
42 // IR is in SSA form. If software pipelining is successful, then the original
43 // loop is replaced by the optimized loop. The optimized loop contains one or
44 // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45 // the instructions cannot be scheduled in a given MII, we increase the MII by
46 // one and try again.
47 //
48 // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49 // represent loop carried dependences in the DAG as order edges to the Phi
50 // nodes. We also perform several passes over the DAG to eliminate unnecessary
51 // edges that inhibit the ability to pipeline. The implementation uses the
52 // DFAPacketizer class to compute the minimum initiation interval and the check
53 // where an instruction may be inserted in the pipelined schedule.
54 //
55 // In order for the SMS pass to work, several target specific hooks need to be
56 // implemented to get information about the loop structure and to rewrite
57 // instructions.
58 //
59 //===----------------------------------------------------------------------===//
60
61 #include "llvm/ADT/DenseMap.h"
62 #include "llvm/ADT/MapVector.h"
63 #include "llvm/ADT/PriorityQueue.h"
64 #include "llvm/ADT/SetVector.h"
65 #include "llvm/ADT/SmallPtrSet.h"
66 #include "llvm/ADT/SmallSet.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/Analysis/AliasAnalysis.h"
69 #include "llvm/Analysis/ValueTracking.h"
70 #include "llvm/CodeGen/DFAPacketizer.h"
71 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
72 #include "llvm/CodeGen/MachineBasicBlock.h"
73 #include "llvm/CodeGen/MachineDominators.h"
74 #include "llvm/CodeGen/MachineInstrBuilder.h"
75 #include "llvm/CodeGen/MachineLoopInfo.h"
76 #include "llvm/CodeGen/MachineRegisterInfo.h"
77 #include "llvm/CodeGen/Passes.h"
78 #include "llvm/CodeGen/RegisterClassInfo.h"
79 #include "llvm/CodeGen/RegisterPressure.h"
80 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
81 #include "llvm/MC/MCInstrItineraries.h"
82 #include "llvm/Support/CommandLine.h"
83 #include "llvm/Support/Debug.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetInstrInfo.h"
86 #include "llvm/Target/TargetMachine.h"
87 #include "llvm/Target/TargetRegisterInfo.h"
88 #include "llvm/Target/TargetSubtargetInfo.h"
89 #include <climits>
90 #include <deque>
91 #include <map>
92
93 using namespace llvm;
94
95 #define DEBUG_TYPE "pipeliner"
96
97 STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
98 STATISTIC(NumPipelined, "Number of loops software pipelined");
99
100 /// A command line option to turn software pipelining on or off.
101 cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
102 cl::ZeroOrMore, cl::desc("Enable Software Pipelining"));
103
104 /// A command line option to enable SWP at -Os.
105 static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
106 cl::desc("Enable SWP at Os."), cl::Hidden,
107 cl::init(false));
108
109 /// A command line argument to limit minimum initial interval for pipelining.
110 static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
111 cl::desc("Size limit for the the MII."),
112 cl::Hidden, cl::init(27));
113
114 /// A command line argument to limit the number of stages in the pipeline.
115 static cl::opt<int>
116 SwpMaxStages("pipeliner-max-stages",
117 cl::desc("Maximum stages allowed in the generated scheduled."),
118 cl::Hidden, cl::init(3));
119
120 /// A command line option to disable the pruning of chain dependences due to
121 /// an unrelated Phi.
122 static cl::opt<bool>
123 SwpPruneDeps("pipeliner-prune-deps",
124 cl::desc("Prune dependences between unrelated Phi nodes."),
125 cl::Hidden, cl::init(true));
126
127 /// A command line option to disable the pruning of loop carried order
128 /// dependences.
129 static cl::opt<bool>
130 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
131 cl::desc("Prune loop carried order dependences."),
132 cl::Hidden, cl::init(true));
133
134 #ifndef NDEBUG
135 static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
136 #endif
137
138 static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
139 cl::ReallyHidden, cl::init(false),
140 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
141
142 namespace {
143
144 class NodeSet;
145 class SMSchedule;
146 class SwingSchedulerDAG;
147
148 /// The main class in the implementation of the target independent
149 /// software pipeliner pass.
150 class MachinePipeliner : public MachineFunctionPass {
151 public:
152 MachineFunction *MF = nullptr;
153 const MachineLoopInfo *MLI = nullptr;
154 const MachineDominatorTree *MDT = nullptr;
155 const InstrItineraryData *InstrItins;
156 const TargetInstrInfo *TII = nullptr;
157 RegisterClassInfo RegClassInfo;
158
159 #ifndef NDEBUG
160 static int NumTries;
161 #endif
162 /// Cache the target analysis information about the loop.
163 struct LoopInfo {
164 MachineBasicBlock *TBB = nullptr;
165 MachineBasicBlock *FBB = nullptr;
166 SmallVector<MachineOperand, 4> BrCond;
167 MachineInstr *LoopInductionVar = nullptr;
168 MachineInstr *LoopCompare = nullptr;
169 };
170 LoopInfo LI;
171
172 static char ID;
MachinePipeliner()173 MachinePipeliner() : MachineFunctionPass(ID) {
174 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
175 }
176
177 virtual bool runOnMachineFunction(MachineFunction &MF);
178
getAnalysisUsage(AnalysisUsage & AU) const179 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
180 AU.addRequired<AAResultsWrapperPass>();
181 AU.addPreserved<AAResultsWrapperPass>();
182 AU.addRequired<MachineLoopInfo>();
183 AU.addRequired<MachineDominatorTree>();
184 AU.addRequired<LiveIntervals>();
185 MachineFunctionPass::getAnalysisUsage(AU);
186 }
187
188 private:
189 bool canPipelineLoop(MachineLoop &L);
190 bool scheduleLoop(MachineLoop &L);
191 bool swingModuloScheduler(MachineLoop &L);
192 };
193
194 /// This class builds the dependence graph for the instructions in a loop,
195 /// and attempts to schedule the instructions using the SMS algorithm.
196 class SwingSchedulerDAG : public ScheduleDAGInstrs {
197 MachinePipeliner &Pass;
198 /// The minimum initiation interval between iterations for this schedule.
199 unsigned MII;
200 /// Set to true if a valid pipelined schedule is found for the loop.
201 bool Scheduled;
202 MachineLoop &Loop;
203 LiveIntervals &LIS;
204 const RegisterClassInfo &RegClassInfo;
205
206 /// A toplogical ordering of the SUnits, which is needed for changing
207 /// dependences and iterating over the SUnits.
208 ScheduleDAGTopologicalSort Topo;
209
210 struct NodeInfo {
211 int ASAP;
212 int ALAP;
NodeInfo__anonfa3445320111::SwingSchedulerDAG::NodeInfo213 NodeInfo() : ASAP(0), ALAP(0) {}
214 };
215 /// Computed properties for each node in the graph.
216 std::vector<NodeInfo> ScheduleInfo;
217
218 enum OrderKind { BottomUp = 0, TopDown = 1 };
219 /// Computed node ordering for scheduling.
220 SetVector<SUnit *> NodeOrder;
221
222 typedef SmallVector<NodeSet, 8> NodeSetType;
223 typedef DenseMap<unsigned, unsigned> ValueMapTy;
224 typedef SmallVectorImpl<MachineBasicBlock *> MBBVectorTy;
225 typedef DenseMap<MachineInstr *, MachineInstr *> InstrMapTy;
226
227 /// Instructions to change when emitting the final schedule.
228 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
229
230 /// We may create a new instruction, so remember it because it
231 /// must be deleted when the pass is finished.
232 SmallPtrSet<MachineInstr *, 4> NewMIs;
233
234 /// Helper class to implement Johnson's circuit finding algorithm.
235 class Circuits {
236 std::vector<SUnit> &SUnits;
237 SetVector<SUnit *> Stack;
238 BitVector Blocked;
239 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
240 SmallVector<SmallVector<int, 4>, 16> AdjK;
241 unsigned NumPaths;
242 static unsigned MaxPaths;
243
244 public:
Circuits(std::vector<SUnit> & SUs)245 Circuits(std::vector<SUnit> &SUs)
246 : SUnits(SUs), Stack(), Blocked(SUs.size()), B(SUs.size()),
247 AdjK(SUs.size()) {}
248 /// Reset the data structures used in the circuit algorithm.
reset()249 void reset() {
250 Stack.clear();
251 Blocked.reset();
252 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
253 NumPaths = 0;
254 }
255 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
256 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
257 void unblock(int U);
258 };
259
260 public:
SwingSchedulerDAG(MachinePipeliner & P,MachineLoop & L,LiveIntervals & lis,const RegisterClassInfo & rci)261 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
262 const RegisterClassInfo &rci)
263 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), MII(0),
264 Scheduled(false), Loop(L), LIS(lis), RegClassInfo(rci),
265 Topo(SUnits, &ExitSU) {}
266
267 void schedule();
268 void finishBlock();
269
270 /// Return true if the loop kernel has been scheduled.
hasNewSchedule()271 bool hasNewSchedule() { return Scheduled; }
272
273 /// Return the earliest time an instruction may be scheduled.
getASAP(SUnit * Node)274 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
275
276 /// Return the latest time an instruction my be scheduled.
getALAP(SUnit * Node)277 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
278
279 /// The mobility function, which the the number of slots in which
280 /// an instruction may be scheduled.
getMOV(SUnit * Node)281 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
282
283 /// The depth, in the dependence graph, for a node.
getDepth(SUnit * Node)284 int getDepth(SUnit *Node) { return Node->getDepth(); }
285
286 /// The height, in the dependence graph, for a node.
getHeight(SUnit * Node)287 int getHeight(SUnit *Node) { return Node->getHeight(); }
288
289 /// Return true if the dependence is a back-edge in the data dependence graph.
290 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
291 /// using an anti dependence from a Phi to an instruction.
isBackedge(SUnit * Source,const SDep & Dep)292 bool isBackedge(SUnit *Source, const SDep &Dep) {
293 if (Dep.getKind() != SDep::Anti)
294 return false;
295 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
296 }
297
298 /// Return true if the dependence is an order dependence between non-Phis.
isOrder(SUnit * Source,const SDep & Dep)299 static bool isOrder(SUnit *Source, const SDep &Dep) {
300 if (Dep.getKind() != SDep::Order)
301 return false;
302 return (!Source->getInstr()->isPHI() &&
303 !Dep.getSUnit()->getInstr()->isPHI());
304 }
305
306 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
307
308 /// The latency of the dependence.
getLatency(SUnit * Source,const SDep & Dep)309 unsigned getLatency(SUnit *Source, const SDep &Dep) {
310 // Anti dependences represent recurrences, so use the latency of the
311 // instruction on the back-edge.
312 if (Dep.getKind() == SDep::Anti) {
313 if (Source->getInstr()->isPHI())
314 return Dep.getSUnit()->Latency;
315 if (Dep.getSUnit()->getInstr()->isPHI())
316 return Source->Latency;
317 return Dep.getLatency();
318 }
319 return Dep.getLatency();
320 }
321
322 /// The distance function, which indicates that operation V of iteration I
323 /// depends on operations U of iteration I-distance.
getDistance(SUnit * U,SUnit * V,const SDep & Dep)324 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
325 // Instructions that feed a Phi have a distance of 1. Computing larger
326 // values for arrays requires data dependence information.
327 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
328 return 1;
329 return 0;
330 }
331
332 /// Set the Minimum Initiation Interval for this schedule attempt.
setMII(unsigned mii)333 void setMII(unsigned mii) { MII = mii; }
334
335 MachineInstr *applyInstrChange(MachineInstr *MI, SMSchedule &Schedule,
336 bool UpdateDAG = false);
337
338 /// Return the new base register that was stored away for the changed
339 /// instruction.
getInstrBaseReg(SUnit * SU)340 unsigned getInstrBaseReg(SUnit *SU) {
341 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
342 InstrChanges.find(SU);
343 if (It != InstrChanges.end())
344 return It->second.first;
345 return 0;
346 }
347
348 private:
349 void addLoopCarriedDependences(AliasAnalysis *AA);
350 void updatePhiDependences();
351 void changeDependences();
352 unsigned calculateResMII();
353 unsigned calculateRecMII(NodeSetType &RecNodeSets);
354 void findCircuits(NodeSetType &NodeSets);
355 void fuseRecs(NodeSetType &NodeSets);
356 void removeDuplicateNodes(NodeSetType &NodeSets);
357 void computeNodeFunctions(NodeSetType &NodeSets);
358 void registerPressureFilter(NodeSetType &NodeSets);
359 void colocateNodeSets(NodeSetType &NodeSets);
360 void checkNodeSets(NodeSetType &NodeSets);
361 void groupRemainingNodes(NodeSetType &NodeSets);
362 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
363 SetVector<SUnit *> &NodesAdded);
364 void computeNodeOrder(NodeSetType &NodeSets);
365 bool schedulePipeline(SMSchedule &Schedule);
366 void generatePipelinedLoop(SMSchedule &Schedule);
367 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
368 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
369 MBBVectorTy &PrologBBs);
370 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
371 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
372 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
373 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
374 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
375 SMSchedule &Schedule, ValueMapTy *VRMap,
376 InstrMapTy &InstrMap, unsigned LastStageNum,
377 unsigned CurStageNum, bool IsLast);
378 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
379 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
380 SMSchedule &Schedule, ValueMapTy *VRMap,
381 InstrMapTy &InstrMap, unsigned LastStageNum,
382 unsigned CurStageNum, bool IsLast);
383 void removeDeadInstructions(MachineBasicBlock *KernelBB,
384 MBBVectorTy &EpilogBBs);
385 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
386 SMSchedule &Schedule);
387 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
388 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
389 ValueMapTy *VRMap);
390 bool computeDelta(MachineInstr &MI, unsigned &Delta);
391 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
392 unsigned Num);
393 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
394 unsigned InstStageNum);
395 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
396 unsigned InstStageNum,
397 SMSchedule &Schedule);
398 void updateInstruction(MachineInstr *NewMI, bool LastDef,
399 unsigned CurStageNum, unsigned InstStageNum,
400 SMSchedule &Schedule, ValueMapTy *VRMap);
401 MachineInstr *findDefInLoop(unsigned Reg);
402 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
403 unsigned LoopStage, ValueMapTy *VRMap,
404 MachineBasicBlock *BB);
405 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
406 SMSchedule &Schedule, ValueMapTy *VRMap,
407 InstrMapTy &InstrMap);
408 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
409 InstrMapTy &InstrMap, unsigned CurStageNum,
410 unsigned PhiNum, MachineInstr *Phi,
411 unsigned OldReg, unsigned NewReg,
412 unsigned PrevReg = 0);
413 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
414 unsigned &OffsetPos, unsigned &NewBase,
415 int64_t &NewOffset);
416 };
417
418 /// A NodeSet contains a set of SUnit DAG nodes with additional information
419 /// that assigns a priority to the set.
420 class NodeSet {
421 SetVector<SUnit *> Nodes;
422 bool HasRecurrence;
423 unsigned RecMII = 0;
424 int MaxMOV = 0;
425 int MaxDepth = 0;
426 unsigned Colocate = 0;
427 SUnit *ExceedPressure = nullptr;
428
429 public:
430 typedef SetVector<SUnit *>::const_iterator iterator;
431
NodeSet()432 NodeSet() : Nodes(), HasRecurrence(false) {}
433
NodeSet(iterator S,iterator E)434 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
435
insert(SUnit * SU)436 bool insert(SUnit *SU) { return Nodes.insert(SU); }
437
insert(iterator S,iterator E)438 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
439
remove_if(UnaryPredicate P)440 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
441 return Nodes.remove_if(P);
442 }
443
count(SUnit * SU) const444 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
445
hasRecurrence()446 bool hasRecurrence() { return HasRecurrence; };
447
size() const448 unsigned size() const { return Nodes.size(); }
449
empty() const450 bool empty() const { return Nodes.empty(); }
451
getNode(unsigned i) const452 SUnit *getNode(unsigned i) const { return Nodes[i]; };
453
setRecMII(unsigned mii)454 void setRecMII(unsigned mii) { RecMII = mii; };
455
setColocate(unsigned c)456 void setColocate(unsigned c) { Colocate = c; };
457
setExceedPressure(SUnit * SU)458 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
459
isExceedSU(SUnit * SU)460 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
461
compareRecMII(NodeSet & RHS)462 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
463
getRecMII()464 int getRecMII() { return RecMII; }
465
466 /// Summarize node functions for the entire node set.
computeNodeSetInfo(SwingSchedulerDAG * SSD)467 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
468 for (SUnit *SU : *this) {
469 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
470 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
471 }
472 }
473
clear()474 void clear() {
475 Nodes.clear();
476 RecMII = 0;
477 HasRecurrence = false;
478 MaxMOV = 0;
479 MaxDepth = 0;
480 Colocate = 0;
481 ExceedPressure = nullptr;
482 }
483
operator SetVector<SUnit*>&()484 operator SetVector<SUnit *> &() { return Nodes; }
485
486 /// Sort the node sets by importance. First, rank them by recurrence MII,
487 /// then by mobility (least mobile done first), and finally by depth.
488 /// Each node set may contain a colocate value which is used as the first
489 /// tie breaker, if it's set.
operator >(const NodeSet & RHS) const490 bool operator>(const NodeSet &RHS) const {
491 if (RecMII == RHS.RecMII) {
492 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
493 return Colocate < RHS.Colocate;
494 if (MaxMOV == RHS.MaxMOV)
495 return MaxDepth > RHS.MaxDepth;
496 return MaxMOV < RHS.MaxMOV;
497 }
498 return RecMII > RHS.RecMII;
499 }
500
operator ==(const NodeSet & RHS) const501 bool operator==(const NodeSet &RHS) const {
502 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
503 MaxDepth == RHS.MaxDepth;
504 }
505
operator !=(const NodeSet & RHS) const506 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
507
begin()508 iterator begin() { return Nodes.begin(); }
end()509 iterator end() { return Nodes.end(); }
510
print(raw_ostream & os) const511 void print(raw_ostream &os) const {
512 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
513 << " depth " << MaxDepth << " col " << Colocate << "\n";
514 for (const auto &I : Nodes)
515 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
516 os << "\n";
517 }
518
dump() const519 void dump() const { print(dbgs()); }
520 };
521
522 /// This class repesents the scheduled code. The main data structure is a
523 /// map from scheduled cycle to instructions. During scheduling, the
524 /// data structure explicitly represents all stages/iterations. When
525 /// the algorithm finshes, the schedule is collapsed into a single stage,
526 /// which represents instructions from different loop iterations.
527 ///
528 /// The SMS algorithm allows negative values for cycles, so the first cycle
529 /// in the schedule is the smallest cycle value.
530 class SMSchedule {
531 private:
532 /// Map from execution cycle to instructions.
533 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
534
535 /// Map from instruction to execution cycle.
536 std::map<SUnit *, int> InstrToCycle;
537
538 /// Map for each register and the max difference between its uses and def.
539 /// The first element in the pair is the max difference in stages. The
540 /// second is true if the register defines a Phi value and loop value is
541 /// scheduled before the Phi.
542 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
543
544 /// Keep track of the first cycle value in the schedule. It starts
545 /// as zero, but the algorithm allows negative values.
546 int FirstCycle;
547
548 /// Keep track of the last cycle value in the schedule.
549 int LastCycle;
550
551 /// The initiation interval (II) for the schedule.
552 int InitiationInterval;
553
554 /// Target machine information.
555 const TargetSubtargetInfo &ST;
556
557 /// Virtual register information.
558 MachineRegisterInfo &MRI;
559
560 DFAPacketizer *Resources;
561
562 public:
SMSchedule(MachineFunction * mf)563 SMSchedule(MachineFunction *mf)
564 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
565 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {
566 FirstCycle = 0;
567 LastCycle = 0;
568 InitiationInterval = 0;
569 }
570
~SMSchedule()571 ~SMSchedule() {
572 ScheduledInstrs.clear();
573 InstrToCycle.clear();
574 RegToStageDiff.clear();
575 delete Resources;
576 }
577
reset()578 void reset() {
579 ScheduledInstrs.clear();
580 InstrToCycle.clear();
581 RegToStageDiff.clear();
582 FirstCycle = 0;
583 LastCycle = 0;
584 InitiationInterval = 0;
585 }
586
587 /// Set the initiation interval for this schedule.
setInitiationInterval(int ii)588 void setInitiationInterval(int ii) { InitiationInterval = ii; }
589
590 /// Return the first cycle in the completed schedule. This
591 /// can be a negative value.
getFirstCycle() const592 int getFirstCycle() const { return FirstCycle; }
593
594 /// Return the last cycle in the finalized schedule.
getFinalCycle() const595 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
596
597 /// Return the cycle of the earliest scheduled instruction in the dependence
598 /// chain.
599 int earliestCycleInChain(const SDep &Dep);
600
601 /// Return the cycle of the latest scheduled instruction in the dependence
602 /// chain.
603 int latestCycleInChain(const SDep &Dep);
604
605 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
606 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
607 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
608
609 /// Iterators for the cycle to instruction map.
610 typedef DenseMap<int, std::deque<SUnit *>>::iterator sched_iterator;
611 typedef DenseMap<int, std::deque<SUnit *>>::const_iterator
612 const_sched_iterator;
613
614 /// Return true if the instruction is scheduled at the specified stage.
isScheduledAtStage(SUnit * SU,unsigned StageNum)615 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
616 return (stageScheduled(SU) == (int)StageNum);
617 }
618
619 /// Return the stage for a scheduled instruction. Return -1 if
620 /// the instruction has not been scheduled.
stageScheduled(SUnit * SU) const621 int stageScheduled(SUnit *SU) const {
622 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
623 if (it == InstrToCycle.end())
624 return -1;
625 return (it->second - FirstCycle) / InitiationInterval;
626 }
627
628 /// Return the cycle for a scheduled instruction. This function normalizes
629 /// the first cycle to be 0.
cycleScheduled(SUnit * SU) const630 unsigned cycleScheduled(SUnit *SU) const {
631 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
632 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.");
633 return (it->second - FirstCycle) % InitiationInterval;
634 }
635
636 /// Return the maximum stage count needed for this schedule.
getMaxStageCount()637 unsigned getMaxStageCount() {
638 return (LastCycle - FirstCycle) / InitiationInterval;
639 }
640
641 /// Return the max. number of stages/iterations that can occur between a
642 /// register definition and its uses.
getStagesForReg(int Reg,unsigned CurStage)643 unsigned getStagesForReg(int Reg, unsigned CurStage) {
644 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
645 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
646 return 1;
647 return Stages.first;
648 }
649
650 /// The number of stages for a Phi is a little different than other
651 /// instructions. The minimum value computed in RegToStageDiff is 1
652 /// because we assume the Phi is needed for at least 1 iteration.
653 /// This is not the case if the loop value is scheduled prior to the
654 /// Phi in the same stage. This function returns the number of stages
655 /// or iterations needed between the Phi definition and any uses.
getStagesForPhi(int Reg)656 unsigned getStagesForPhi(int Reg) {
657 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
658 if (Stages.second)
659 return Stages.first;
660 return Stages.first - 1;
661 }
662
663 /// Return the instructions that are scheduled at the specified cycle.
getInstructions(int cycle)664 std::deque<SUnit *> &getInstructions(int cycle) {
665 return ScheduledInstrs[cycle];
666 }
667
668 bool isValidSchedule(SwingSchedulerDAG *SSD);
669 void finalizeSchedule(SwingSchedulerDAG *SSD);
670 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
671 std::deque<SUnit *> &Insts);
672 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
673 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
674 MachineOperand &MO);
675 void print(raw_ostream &os) const;
676 void dump() const;
677 };
678
679 } // end anonymous namespace
680
681 unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
682 char MachinePipeliner::ID = 0;
683 #ifndef NDEBUG
684 int MachinePipeliner::NumTries = 0;
685 #endif
686 char &llvm::MachinePipelinerID = MachinePipeliner::ID;
687 INITIALIZE_PASS_BEGIN(MachinePipeliner, "pipeliner",
688 "Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)689 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
690 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
691 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
692 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
693 INITIALIZE_PASS_END(MachinePipeliner, "pipeliner",
694 "Modulo Software Pipelining", false, false)
695
696 /// The "main" function for implementing Swing Modulo Scheduling.
697 bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
698 if (skipFunction(*mf.getFunction()))
699 return false;
700
701 if (!EnableSWP)
702 return false;
703
704 if (mf.getFunction()->getAttributes().hasAttribute(
705 AttributeSet::FunctionIndex, Attribute::OptimizeForSize) &&
706 !EnableSWPOptSize.getPosition())
707 return false;
708
709 MF = &mf;
710 MLI = &getAnalysis<MachineLoopInfo>();
711 MDT = &getAnalysis<MachineDominatorTree>();
712 TII = MF->getSubtarget().getInstrInfo();
713 RegClassInfo.runOnMachineFunction(*MF);
714
715 for (auto &L : *MLI)
716 scheduleLoop(*L);
717
718 return false;
719 }
720
721 /// Attempt to perform the SMS algorithm on the specified loop. This function is
722 /// the main entry point for the algorithm. The function identifies candidate
723 /// loops, calculates the minimum initiation interval, and attempts to schedule
724 /// the loop.
scheduleLoop(MachineLoop & L)725 bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
726 bool Changed = false;
727 for (auto &InnerLoop : L)
728 Changed |= scheduleLoop(*InnerLoop);
729
730 #ifndef NDEBUG
731 // Stop trying after reaching the limit (if any).
732 int Limit = SwpLoopLimit;
733 if (Limit >= 0) {
734 if (NumTries >= SwpLoopLimit)
735 return Changed;
736 NumTries++;
737 }
738 #endif
739
740 if (!canPipelineLoop(L))
741 return Changed;
742
743 ++NumTrytoPipeline;
744
745 Changed = swingModuloScheduler(L);
746
747 return Changed;
748 }
749
750 /// Return true if the loop can be software pipelined. The algorithm is
751 /// restricted to loops with a single basic block. Make sure that the
752 /// branch in the loop can be analyzed.
canPipelineLoop(MachineLoop & L)753 bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
754 if (L.getNumBlocks() != 1)
755 return false;
756
757 // Check if the branch can't be understood because we can't do pipelining
758 // if that's the case.
759 LI.TBB = nullptr;
760 LI.FBB = nullptr;
761 LI.BrCond.clear();
762 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
763 return false;
764
765 LI.LoopInductionVar = nullptr;
766 LI.LoopCompare = nullptr;
767 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
768 return false;
769
770 if (!L.getLoopPreheader())
771 return false;
772
773 // If any of the Phis contain subregs, then we can't pipeline
774 // because we don't know how to maintain subreg information in the
775 // VMap structure.
776 MachineBasicBlock *MBB = L.getHeader();
777 for (MachineBasicBlock::iterator BBI = MBB->instr_begin(),
778 BBE = MBB->getFirstNonPHI();
779 BBI != BBE; ++BBI)
780 for (unsigned i = 1; i != BBI->getNumOperands(); i += 2)
781 if (BBI->getOperand(i).getSubReg() != 0)
782 return false;
783
784 return true;
785 }
786
787 /// The SMS algorithm consists of the following main steps:
788 /// 1. Computation and analysis of the dependence graph.
789 /// 2. Ordering of the nodes (instructions).
790 /// 3. Attempt to Schedule the loop.
swingModuloScheduler(MachineLoop & L)791 bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
792 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
793
794 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
795
796 MachineBasicBlock *MBB = L.getHeader();
797 // The kernel should not include any terminator instructions. These
798 // will be added back later.
799 SMS.startBlock(MBB);
800
801 // Compute the number of 'real' instructions in the basic block by
802 // ignoring terminators.
803 unsigned size = MBB->size();
804 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
805 E = MBB->instr_end();
806 I != E; ++I, --size)
807 ;
808
809 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
810 SMS.schedule();
811 SMS.exitRegion();
812
813 SMS.finishBlock();
814 return SMS.hasNewSchedule();
815 }
816
817 /// We override the schedule function in ScheduleDAGInstrs to implement the
818 /// scheduling part of the Swing Modulo Scheduling algorithm.
schedule()819 void SwingSchedulerDAG::schedule() {
820 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
821 buildSchedGraph(AA);
822 addLoopCarriedDependences(AA);
823 updatePhiDependences();
824 Topo.InitDAGTopologicalSorting();
825 changeDependences();
826 DEBUG({
827 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
828 SUnits[su].dumpAll(this);
829 });
830
831 NodeSetType NodeSets;
832 findCircuits(NodeSets);
833
834 // Calculate the MII.
835 unsigned ResMII = calculateResMII();
836 unsigned RecMII = calculateRecMII(NodeSets);
837
838 fuseRecs(NodeSets);
839
840 // This flag is used for testing and can cause correctness problems.
841 if (SwpIgnoreRecMII)
842 RecMII = 0;
843
844 MII = std::max(ResMII, RecMII);
845 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMII
846 << ")\n");
847
848 // Can't schedule a loop without a valid MII.
849 if (MII == 0)
850 return;
851
852 // Don't pipeline large loops.
853 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
854 return;
855
856 computeNodeFunctions(NodeSets);
857
858 registerPressureFilter(NodeSets);
859
860 colocateNodeSets(NodeSets);
861
862 checkNodeSets(NodeSets);
863
864 DEBUG({
865 for (auto &I : NodeSets) {
866 dbgs() << " Rec NodeSet ";
867 I.dump();
868 }
869 });
870
871 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
872
873 groupRemainingNodes(NodeSets);
874
875 removeDuplicateNodes(NodeSets);
876
877 DEBUG({
878 for (auto &I : NodeSets) {
879 dbgs() << " NodeSet ";
880 I.dump();
881 }
882 });
883
884 computeNodeOrder(NodeSets);
885
886 SMSchedule Schedule(Pass.MF);
887 Scheduled = schedulePipeline(Schedule);
888
889 if (!Scheduled)
890 return;
891
892 unsigned numStages = Schedule.getMaxStageCount();
893 // No need to generate pipeline if there are no overlapped iterations.
894 if (numStages == 0)
895 return;
896
897 // Check that the maximum stage count is less than user-defined limit.
898 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
899 return;
900
901 generatePipelinedLoop(Schedule);
902 ++NumPipelined;
903 }
904
905 /// Clean up after the software pipeliner runs.
finishBlock()906 void SwingSchedulerDAG::finishBlock() {
907 for (MachineInstr *I : NewMIs)
908 MF.DeleteMachineInstr(I);
909 NewMIs.clear();
910
911 // Call the superclass.
912 ScheduleDAGInstrs::finishBlock();
913 }
914
915 /// Return the register values for the operands of a Phi instruction.
916 /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)917 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
918 unsigned &InitVal, unsigned &LoopVal) {
919 assert(Phi.isPHI() && "Expecting a Phi.");
920
921 InitVal = 0;
922 LoopVal = 0;
923 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
924 if (Phi.getOperand(i + 1).getMBB() != Loop)
925 InitVal = Phi.getOperand(i).getReg();
926 else if (Phi.getOperand(i + 1).getMBB() == Loop)
927 LoopVal = Phi.getOperand(i).getReg();
928
929 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
930 }
931
932 /// Return the Phi register value that comes from the incoming block.
getInitPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)933 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
934 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
935 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
936 return Phi.getOperand(i).getReg();
937 return 0;
938 }
939
940 /// Return the Phi register value that comes the the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)941 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
942 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
943 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
944 return Phi.getOperand(i).getReg();
945 return 0;
946 }
947
948 /// Return true if SUb can be reached from SUa following the chain edges.
isSuccOrder(SUnit * SUa,SUnit * SUb)949 static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
950 SmallPtrSet<SUnit *, 8> Visited;
951 SmallVector<SUnit *, 8> Worklist;
952 Worklist.push_back(SUa);
953 while (!Worklist.empty()) {
954 const SUnit *SU = Worklist.pop_back_val();
955 for (auto &SI : SU->Succs) {
956 SUnit *SuccSU = SI.getSUnit();
957 if (SI.getKind() == SDep::Order) {
958 if (Visited.count(SuccSU))
959 continue;
960 if (SuccSU == SUb)
961 return true;
962 Worklist.push_back(SuccSU);
963 Visited.insert(SuccSU);
964 }
965 }
966 }
967 return false;
968 }
969
970 /// Return true if the instruction causes a chain between memory
971 /// references before and after it.
isDependenceBarrier(MachineInstr & MI,AliasAnalysis * AA)972 static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
973 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
974 (MI.hasOrderedMemoryRef() &&
975 (!MI.mayLoad() || !MI.isInvariantLoad(AA)));
976 }
977
978 /// Return the underlying objects for the memory references of an instruction.
979 /// This function calls the code in ValueTracking, but first checks that the
980 /// instruction has a memory operand.
getUnderlyingObjects(MachineInstr * MI,SmallVectorImpl<Value * > & Objs,const DataLayout & DL)981 static void getUnderlyingObjects(MachineInstr *MI,
982 SmallVectorImpl<Value *> &Objs,
983 const DataLayout &DL) {
984 if (!MI->hasOneMemOperand())
985 return;
986 MachineMemOperand *MM = *MI->memoperands_begin();
987 if (!MM->getValue())
988 return;
989 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
990 }
991
992 /// Add a chain edge between a load and store if the store can be an
993 /// alias of the load on a subsequent iteration, i.e., a loop carried
994 /// dependence. This code is very similar to the code in ScheduleDAGInstrs
995 /// but that code doesn't create loop carried dependences.
addLoopCarriedDependences(AliasAnalysis * AA)996 void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
997 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
998 for (auto &SU : SUnits) {
999 MachineInstr &MI = *SU.getInstr();
1000 if (isDependenceBarrier(MI, AA))
1001 PendingLoads.clear();
1002 else if (MI.mayLoad()) {
1003 SmallVector<Value *, 4> Objs;
1004 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1005 for (auto V : Objs) {
1006 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1007 SUs.push_back(&SU);
1008 }
1009 } else if (MI.mayStore()) {
1010 SmallVector<Value *, 4> Objs;
1011 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1012 for (auto V : Objs) {
1013 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1014 PendingLoads.find(V);
1015 if (I == PendingLoads.end())
1016 continue;
1017 for (auto Load : I->second) {
1018 if (isSuccOrder(Load, &SU))
1019 continue;
1020 MachineInstr &LdMI = *Load->getInstr();
1021 // First, perform the cheaper check that compares the base register.
1022 // If they are the same and the load offset is less than the store
1023 // offset, then mark the dependence as loop carried potentially.
1024 unsigned BaseReg1, BaseReg2;
1025 int64_t Offset1, Offset2;
1026 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
1027 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1028 SU.addPred(SDep(Load, SDep::Barrier));
1029 continue;
1030 }
1031 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1032 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&
1033 "What happened to the chain edge?");
1034 SU.addPred(SDep(Load, SDep::Barrier));
1035 continue;
1036 }
1037 // Second, the more expensive check that uses alias analysis on the
1038 // base registers. If they alias, and the load offset is less than
1039 // the store offset, the mark the dependence as loop carried.
1040 if (!AA) {
1041 SU.addPred(SDep(Load, SDep::Barrier));
1042 continue;
1043 }
1044 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1045 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1046 if (!MMO1->getValue() || !MMO2->getValue()) {
1047 SU.addPred(SDep(Load, SDep::Barrier));
1048 continue;
1049 }
1050 if (MMO1->getValue() == MMO2->getValue() &&
1051 MMO1->getOffset() <= MMO2->getOffset()) {
1052 SU.addPred(SDep(Load, SDep::Barrier));
1053 continue;
1054 }
1055 AliasResult AAResult = AA->alias(
1056 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1057 MMO1->getAAInfo()),
1058 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1059 MMO2->getAAInfo()));
1060
1061 if (AAResult != NoAlias)
1062 SU.addPred(SDep(Load, SDep::Barrier));
1063 }
1064 }
1065 }
1066 }
1067 }
1068
1069 /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1070 /// processes dependences for PHIs. This function adds true dependences
1071 /// from a PHI to a use, and a loop carried dependence from the use to the
1072 /// PHI. The loop carried dependence is represented as an anti dependence
1073 /// edge. This function also removes chain dependences between unrelated
1074 /// PHIs.
updatePhiDependences()1075 void SwingSchedulerDAG::updatePhiDependences() {
1076 SmallVector<SDep, 4> RemoveDeps;
1077 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1078
1079 // Iterate over each DAG node.
1080 for (SUnit &I : SUnits) {
1081 RemoveDeps.clear();
1082 // Set to true if the instruction has an operand defined by a Phi.
1083 unsigned HasPhiUse = 0;
1084 unsigned HasPhiDef = 0;
1085 MachineInstr *MI = I.getInstr();
1086 // Iterate over each operand, and we process the definitions.
1087 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1088 MOE = MI->operands_end();
1089 MOI != MOE; ++MOI) {
1090 if (!MOI->isReg())
1091 continue;
1092 unsigned Reg = MOI->getReg();
1093 if (MOI->isDef()) {
1094 // If the register is used by a Phi, then create an anti dependence.
1095 for (MachineRegisterInfo::use_instr_iterator
1096 UI = MRI.use_instr_begin(Reg),
1097 UE = MRI.use_instr_end();
1098 UI != UE; ++UI) {
1099 MachineInstr *UseMI = &*UI;
1100 SUnit *SU = getSUnit(UseMI);
1101 if (SU != 0 && UseMI->isPHI()) {
1102 if (!MI->isPHI()) {
1103 SDep Dep(SU, SDep::Anti, Reg);
1104 I.addPred(Dep);
1105 } else {
1106 HasPhiDef = Reg;
1107 // Add a chain edge to a dependent Phi that isn't an existing
1108 // predecessor.
1109 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1110 I.addPred(SDep(SU, SDep::Barrier));
1111 }
1112 }
1113 }
1114 } else if (MOI->isUse()) {
1115 // If the register is defined by a Phi, then create a true dependence.
1116 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
1117 if (DefMI == 0)
1118 continue;
1119 SUnit *SU = getSUnit(DefMI);
1120 if (SU != 0 && DefMI->isPHI()) {
1121 if (!MI->isPHI()) {
1122 SDep Dep(SU, SDep::Data, Reg);
1123 Dep.setLatency(0);
1124 ST.adjustSchedDependency(SU, &I, Dep);
1125 I.addPred(Dep);
1126 } else {
1127 HasPhiUse = Reg;
1128 // Add a chain edge to a dependent Phi that isn't an existing
1129 // predecessor.
1130 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1131 I.addPred(SDep(SU, SDep::Barrier));
1132 }
1133 }
1134 }
1135 }
1136 // Remove order dependences from an unrelated Phi.
1137 if (!SwpPruneDeps)
1138 continue;
1139 for (auto &PI : I.Preds) {
1140 MachineInstr *PMI = PI.getSUnit()->getInstr();
1141 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1142 if (I.getInstr()->isPHI()) {
1143 if (PMI->getOperand(0).getReg() == HasPhiUse)
1144 continue;
1145 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1146 continue;
1147 }
1148 RemoveDeps.push_back(PI);
1149 }
1150 }
1151 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1152 I.removePred(RemoveDeps[i]);
1153 }
1154 }
1155
1156 /// Iterate over each DAG node and see if we can change any dependences
1157 /// in order to reduce the recurrence MII.
changeDependences()1158 void SwingSchedulerDAG::changeDependences() {
1159 // See if an instruction can use a value from the previous iteration.
1160 // If so, we update the base and offset of the instruction and change
1161 // the dependences.
1162 for (SUnit &I : SUnits) {
1163 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1164 int64_t NewOffset = 0;
1165 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1166 NewOffset))
1167 continue;
1168
1169 // Get the MI and SUnit for the instruction that defines the original base.
1170 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1171 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1172 if (!DefMI)
1173 continue;
1174 SUnit *DefSU = getSUnit(DefMI);
1175 if (!DefSU)
1176 continue;
1177 // Get the MI and SUnit for the instruction that defins the new base.
1178 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1179 if (!LastMI)
1180 continue;
1181 SUnit *LastSU = getSUnit(LastMI);
1182 if (!LastSU)
1183 continue;
1184
1185 if (Topo.IsReachable(&I, LastSU))
1186 continue;
1187
1188 // Remove the dependence. The value now depends on a prior iteration.
1189 SmallVector<SDep, 4> Deps;
1190 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1191 ++P)
1192 if (P->getSUnit() == DefSU)
1193 Deps.push_back(*P);
1194 for (int i = 0, e = Deps.size(); i != e; i++) {
1195 Topo.RemovePred(&I, Deps[i].getSUnit());
1196 I.removePred(Deps[i]);
1197 }
1198 // Remove the chain dependence between the instructions.
1199 Deps.clear();
1200 for (auto &P : LastSU->Preds)
1201 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1202 Deps.push_back(P);
1203 for (int i = 0, e = Deps.size(); i != e; i++) {
1204 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1205 LastSU->removePred(Deps[i]);
1206 }
1207
1208 // Add a dependence between the new instruction and the instruction
1209 // that defines the new base.
1210 SDep Dep(&I, SDep::Anti, NewBase);
1211 LastSU->addPred(Dep);
1212
1213 // Remember the base and offset information so that we can update the
1214 // instruction during code generation.
1215 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1216 }
1217 }
1218
1219 namespace {
1220 // FuncUnitSorter - Comparison operator used to sort instructions by
1221 // the number of functional unit choices.
1222 struct FuncUnitSorter {
1223 const InstrItineraryData *InstrItins;
1224 DenseMap<unsigned, unsigned> Resources;
1225
1226 // Compute the number of functional unit alternatives needed
1227 // at each stage, and take the minimum value. We prioritize the
1228 // instructions by the least number of choices first.
minFuncUnits__anonfa3445320211::FuncUnitSorter1229 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1230 unsigned schedClass = Inst->getDesc().getSchedClass();
1231 unsigned min = UINT_MAX;
1232 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1233 *IE = InstrItins->endStage(schedClass);
1234 IS != IE; ++IS) {
1235 unsigned funcUnits = IS->getUnits();
1236 unsigned numAlternatives = countPopulation(funcUnits);
1237 if (numAlternatives < min) {
1238 min = numAlternatives;
1239 F = funcUnits;
1240 }
1241 }
1242 return min;
1243 }
1244
1245 // Compute the critical resources needed by the instruction. This
1246 // function records the functional units needed by instructions that
1247 // must use only one functional unit. We use this as a tie breaker
1248 // for computing the resource MII. The instrutions that require
1249 // the same, highly used, functional unit have high priority.
calcCriticalResources__anonfa3445320211::FuncUnitSorter1250 void calcCriticalResources(MachineInstr &MI) {
1251 unsigned SchedClass = MI.getDesc().getSchedClass();
1252 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1253 *IE = InstrItins->endStage(SchedClass);
1254 IS != IE; ++IS) {
1255 unsigned FuncUnits = IS->getUnits();
1256 if (countPopulation(FuncUnits) == 1)
1257 Resources[FuncUnits]++;
1258 }
1259 }
1260
FuncUnitSorter__anonfa3445320211::FuncUnitSorter1261 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1262 /// Return true if IS1 has less priority than IS2.
operator ()__anonfa3445320211::FuncUnitSorter1263 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1264 unsigned F1 = 0, F2 = 0;
1265 unsigned MFUs1 = minFuncUnits(IS1, F1);
1266 unsigned MFUs2 = minFuncUnits(IS2, F2);
1267 if (MFUs1 == 1 && MFUs2 == 1)
1268 return Resources.lookup(F1) < Resources.lookup(F2);
1269 return MFUs1 > MFUs2;
1270 }
1271 };
1272 }
1273
1274 /// Calculate the resource constrained minimum initiation interval for the
1275 /// specified loop. We use the DFA to model the resources needed for
1276 /// each instruction, and we ignore dependences. A different DFA is created
1277 /// for each cycle that is required. When adding a new instruction, we attempt
1278 /// to add it to each existing DFA, until a legal space is found. If the
1279 /// instruction cannot be reserved in an existing DFA, we create a new one.
calculateResMII()1280 unsigned SwingSchedulerDAG::calculateResMII() {
1281 SmallVector<DFAPacketizer *, 8> Resources;
1282 MachineBasicBlock *MBB = Loop.getHeader();
1283 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1284
1285 // Sort the instructions by the number of available choices for scheduling,
1286 // least to most. Use the number of critical resources as the tie breaker.
1287 FuncUnitSorter FUS =
1288 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1289 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1290 E = MBB->getFirstTerminator();
1291 I != E; ++I)
1292 FUS.calcCriticalResources(*I);
1293 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1294 FuncUnitOrder(FUS);
1295
1296 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1297 E = MBB->getFirstTerminator();
1298 I != E; ++I)
1299 FuncUnitOrder.push(&*I);
1300
1301 while (!FuncUnitOrder.empty()) {
1302 MachineInstr *MI = FuncUnitOrder.top();
1303 FuncUnitOrder.pop();
1304 if (TII->isZeroCost(MI->getOpcode()))
1305 continue;
1306 // Attempt to reserve the instruction in an existing DFA. At least one
1307 // DFA is needed for each cycle.
1308 unsigned NumCycles = getSUnit(MI)->Latency;
1309 unsigned ReservedCycles = 0;
1310 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1311 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1312 for (unsigned C = 0; C < NumCycles; ++C)
1313 while (RI != RE) {
1314 if ((*RI++)->canReserveResources(*MI)) {
1315 ++ReservedCycles;
1316 break;
1317 }
1318 }
1319 // Start reserving resources using existing DFAs.
1320 for (unsigned C = 0; C < ReservedCycles; ++C) {
1321 --RI;
1322 (*RI)->reserveResources(*MI);
1323 }
1324 // Add new DFAs, if needed, to reserve resources.
1325 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1326 DFAPacketizer *NewResource =
1327 TII->CreateTargetScheduleState(MF.getSubtarget());
1328 assert(NewResource->canReserveResources(*MI) && "Reserve error.");
1329 NewResource->reserveResources(*MI);
1330 Resources.push_back(NewResource);
1331 }
1332 }
1333 int Resmii = Resources.size();
1334 // Delete the memory for each of the DFAs that were created earlier.
1335 for (DFAPacketizer *RI : Resources) {
1336 DFAPacketizer *D = RI;
1337 delete D;
1338 }
1339 Resources.clear();
1340 return Resmii;
1341 }
1342
1343 /// Calculate the recurrence-constrainted minimum initiation interval.
1344 /// Iterate over each circuit. Compute the delay(c) and distance(c)
1345 /// for each circuit. The II needs to satisfy the inequality
1346 /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1347 /// II that satistifies the inequality, and the RecMII is the maximum
1348 /// of those values.
calculateRecMII(NodeSetType & NodeSets)1349 unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1350 unsigned RecMII = 0;
1351
1352 for (NodeSet &Nodes : NodeSets) {
1353 if (Nodes.size() == 0)
1354 continue;
1355
1356 unsigned Delay = Nodes.size() - 1;
1357 unsigned Distance = 1;
1358
1359 // ii = ceil(delay / distance)
1360 unsigned CurMII = (Delay + Distance - 1) / Distance;
1361 Nodes.setRecMII(CurMII);
1362 if (CurMII > RecMII)
1363 RecMII = CurMII;
1364 }
1365
1366 return RecMII;
1367 }
1368
1369 /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1370 /// but we do this to find the circuits, and then change them back.
swapAntiDependences(std::vector<SUnit> & SUnits)1371 static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1372 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1373 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1374 SUnit *SU = &SUnits[i];
1375 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1376 IP != EP; ++IP) {
1377 if (IP->getKind() != SDep::Anti)
1378 continue;
1379 DepsAdded.push_back(std::make_pair(SU, *IP));
1380 }
1381 }
1382 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1383 E = DepsAdded.end();
1384 I != E; ++I) {
1385 // Remove this anti dependency and add one in the reverse direction.
1386 SUnit *SU = I->first;
1387 SDep &D = I->second;
1388 SUnit *TargetSU = D.getSUnit();
1389 unsigned Reg = D.getReg();
1390 unsigned Lat = D.getLatency();
1391 SU->removePred(D);
1392 SDep Dep(SU, SDep::Anti, Reg);
1393 Dep.setLatency(Lat);
1394 TargetSU->addPred(Dep);
1395 }
1396 }
1397
1398 /// Create the adjacency structure of the nodes in the graph.
createAdjacencyStructure(SwingSchedulerDAG * DAG)1399 void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1400 SwingSchedulerDAG *DAG) {
1401 BitVector Added(SUnits.size());
1402 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1403 Added.reset();
1404 // Add any successor to the adjacency matrix and exclude duplicates.
1405 for (auto &SI : SUnits[i].Succs) {
1406 // Do not process a boundary node and a back-edge is processed only
1407 // if it goes to a Phi.
1408 if (SI.getSUnit()->isBoundaryNode() ||
1409 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1410 continue;
1411 int N = SI.getSUnit()->NodeNum;
1412 if (!Added.test(N)) {
1413 AdjK[i].push_back(N);
1414 Added.set(N);
1415 }
1416 }
1417 // A chain edge between a store and a load is treated as a back-edge in the
1418 // adjacency matrix.
1419 for (auto &PI : SUnits[i].Preds) {
1420 if (!SUnits[i].getInstr()->mayStore() ||
1421 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
1422 continue;
1423 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1424 int N = PI.getSUnit()->NodeNum;
1425 if (!Added.test(N)) {
1426 AdjK[i].push_back(N);
1427 Added.set(N);
1428 }
1429 }
1430 }
1431 }
1432 }
1433
1434 /// Identify an elementary circuit in the dependence graph starting at the
1435 /// specified node.
circuit(int V,int S,NodeSetType & NodeSets,bool HasBackedge)1436 bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1437 bool HasBackedge) {
1438 SUnit *SV = &SUnits[V];
1439 bool F = false;
1440 Stack.insert(SV);
1441 Blocked.set(V);
1442
1443 for (auto W : AdjK[V]) {
1444 if (NumPaths > MaxPaths)
1445 break;
1446 if (W < S)
1447 continue;
1448 if (W == S) {
1449 if (!HasBackedge)
1450 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1451 F = true;
1452 ++NumPaths;
1453 break;
1454 } else if (!Blocked.test(W)) {
1455 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1456 F = true;
1457 }
1458 }
1459
1460 if (F)
1461 unblock(V);
1462 else {
1463 for (auto W : AdjK[V]) {
1464 if (W < S)
1465 continue;
1466 if (B[W].count(SV) == 0)
1467 B[W].insert(SV);
1468 }
1469 }
1470 Stack.pop_back();
1471 return F;
1472 }
1473
1474 /// Unblock a node in the circuit finding algorithm.
unblock(int U)1475 void SwingSchedulerDAG::Circuits::unblock(int U) {
1476 Blocked.reset(U);
1477 SmallPtrSet<SUnit *, 4> &BU = B[U];
1478 while (!BU.empty()) {
1479 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1480 assert(SI != BU.end() && "Invalid B set.");
1481 SUnit *W = *SI;
1482 BU.erase(W);
1483 if (Blocked.test(W->NodeNum))
1484 unblock(W->NodeNum);
1485 }
1486 }
1487
1488 /// Identify all the elementary circuits in the dependence graph using
1489 /// Johnson's circuit algorithm.
findCircuits(NodeSetType & NodeSets)1490 void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1491 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1492 // but we do this to find the circuits, and then change them back.
1493 swapAntiDependences(SUnits);
1494
1495 Circuits Cir(SUnits);
1496 // Create the adjacency structure.
1497 Cir.createAdjacencyStructure(this);
1498 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1499 Cir.reset();
1500 Cir.circuit(i, i, NodeSets);
1501 }
1502
1503 // Change the dependences back so that we've created a DAG again.
1504 swapAntiDependences(SUnits);
1505 }
1506
1507 /// Return true for DAG nodes that we ignore when computing the cost functions.
1508 /// We ignore the back-edge recurrence in order to avoid unbounded recurison
1509 /// in the calculation of the ASAP, ALAP, etc functions.
ignoreDependence(const SDep & D,bool isPred)1510 static bool ignoreDependence(const SDep &D, bool isPred) {
1511 if (D.isArtificial())
1512 return true;
1513 return D.getKind() == SDep::Anti && isPred;
1514 }
1515
1516 /// Compute several functions need to order the nodes for scheduling.
1517 /// ASAP - Earliest time to schedule a node.
1518 /// ALAP - Latest time to schedule a node.
1519 /// MOV - Mobility function, difference between ALAP and ASAP.
1520 /// D - Depth of each node.
1521 /// H - Height of each node.
computeNodeFunctions(NodeSetType & NodeSets)1522 void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1523
1524 ScheduleInfo.resize(SUnits.size());
1525
1526 DEBUG({
1527 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1528 E = Topo.end();
1529 I != E; ++I) {
1530 SUnit *SU = &SUnits[*I];
1531 SU->dump(this);
1532 }
1533 });
1534
1535 int maxASAP = 0;
1536 // Compute ASAP.
1537 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1538 E = Topo.end();
1539 I != E; ++I) {
1540 int asap = 0;
1541 SUnit *SU = &SUnits[*I];
1542 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1543 EP = SU->Preds.end();
1544 IP != EP; ++IP) {
1545 if (ignoreDependence(*IP, true))
1546 continue;
1547 SUnit *pred = IP->getSUnit();
1548 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
1549 getDistance(pred, SU, *IP) * MII));
1550 }
1551 maxASAP = std::max(maxASAP, asap);
1552 ScheduleInfo[*I].ASAP = asap;
1553 }
1554
1555 // Compute ALAP and MOV.
1556 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1557 E = Topo.rend();
1558 I != E; ++I) {
1559 int alap = maxASAP;
1560 SUnit *SU = &SUnits[*I];
1561 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1562 ES = SU->Succs.end();
1563 IS != ES; ++IS) {
1564 if (ignoreDependence(*IS, true))
1565 continue;
1566 SUnit *succ = IS->getSUnit();
1567 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
1568 getDistance(SU, succ, *IS) * MII));
1569 }
1570
1571 ScheduleInfo[*I].ALAP = alap;
1572 }
1573
1574 // After computing the node functions, compute the summary for each node set.
1575 for (NodeSet &I : NodeSets)
1576 I.computeNodeSetInfo(this);
1577
1578 DEBUG({
1579 for (unsigned i = 0; i < SUnits.size(); i++) {
1580 dbgs() << "\tNode " << i << ":\n";
1581 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
1582 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
1583 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
1584 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
1585 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
1586 }
1587 });
1588 }
1589
1590 /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1591 /// as the predecessors of the elements of NodeOrder that are not also in
1592 /// NodeOrder.
pred_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Preds,const NodeSet * S=nullptr)1593 static bool pred_L(SetVector<SUnit *> &NodeOrder,
1594 SmallSetVector<SUnit *, 8> &Preds,
1595 const NodeSet *S = nullptr) {
1596 Preds.clear();
1597 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1598 I != E; ++I) {
1599 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1600 PI != PE; ++PI) {
1601 if (S && S->count(PI->getSUnit()) == 0)
1602 continue;
1603 if (ignoreDependence(*PI, true))
1604 continue;
1605 if (NodeOrder.count(PI->getSUnit()) == 0)
1606 Preds.insert(PI->getSUnit());
1607 }
1608 // Back-edges are predecessors with an anti-dependence.
1609 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1610 ES = (*I)->Succs.end();
1611 IS != ES; ++IS) {
1612 if (IS->getKind() != SDep::Anti)
1613 continue;
1614 if (S && S->count(IS->getSUnit()) == 0)
1615 continue;
1616 if (NodeOrder.count(IS->getSUnit()) == 0)
1617 Preds.insert(IS->getSUnit());
1618 }
1619 }
1620 return Preds.size() > 0;
1621 }
1622
1623 /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1624 /// as the successors of the elements of NodeOrder that are not also in
1625 /// NodeOrder.
succ_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Succs,const NodeSet * S=nullptr)1626 static bool succ_L(SetVector<SUnit *> &NodeOrder,
1627 SmallSetVector<SUnit *, 8> &Succs,
1628 const NodeSet *S = nullptr) {
1629 Succs.clear();
1630 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1631 I != E; ++I) {
1632 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1633 SI != SE; ++SI) {
1634 if (S && S->count(SI->getSUnit()) == 0)
1635 continue;
1636 if (ignoreDependence(*SI, false))
1637 continue;
1638 if (NodeOrder.count(SI->getSUnit()) == 0)
1639 Succs.insert(SI->getSUnit());
1640 }
1641 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1642 PE = (*I)->Preds.end();
1643 PI != PE; ++PI) {
1644 if (PI->getKind() != SDep::Anti)
1645 continue;
1646 if (S && S->count(PI->getSUnit()) == 0)
1647 continue;
1648 if (NodeOrder.count(PI->getSUnit()) == 0)
1649 Succs.insert(PI->getSUnit());
1650 }
1651 }
1652 return Succs.size() > 0;
1653 }
1654
1655 /// Return true if there is a path from the specified node to any of the nodes
1656 /// in DestNodes. Keep track and return the nodes in any path.
computePath(SUnit * Cur,SetVector<SUnit * > & Path,SetVector<SUnit * > & DestNodes,SetVector<SUnit * > & Exclude,SmallPtrSet<SUnit *,8> & Visited)1657 static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1658 SetVector<SUnit *> &DestNodes,
1659 SetVector<SUnit *> &Exclude,
1660 SmallPtrSet<SUnit *, 8> &Visited) {
1661 if (Cur->isBoundaryNode())
1662 return false;
1663 if (Exclude.count(Cur) != 0)
1664 return false;
1665 if (DestNodes.count(Cur) != 0)
1666 return true;
1667 if (!Visited.insert(Cur).second)
1668 return Path.count(Cur) != 0;
1669 bool FoundPath = false;
1670 for (auto &SI : Cur->Succs)
1671 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1672 for (auto &PI : Cur->Preds)
1673 if (PI.getKind() == SDep::Anti)
1674 FoundPath |=
1675 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1676 if (FoundPath)
1677 Path.insert(Cur);
1678 return FoundPath;
1679 }
1680
1681 /// Return true if Set1 is a subset of Set2.
isSubset(S1Ty & Set1,S2Ty & Set2)1682 template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1683 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1684 if (Set2.count(*I) == 0)
1685 return false;
1686 return true;
1687 }
1688
1689 /// Compute the live-out registers for the instructions in a node-set.
1690 /// The live-out registers are those that are defined in the node-set,
1691 /// but not used. Except for use operands of Phis.
computeLiveOuts(MachineFunction & MF,RegPressureTracker & RPTracker,NodeSet & NS)1692 static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1693 NodeSet &NS) {
1694 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1695 MachineRegisterInfo &MRI = MF.getRegInfo();
1696 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1697 SmallSet<unsigned, 4> Uses;
1698 for (SUnit *SU : NS) {
1699 const MachineInstr *MI = SU->getInstr();
1700 if (MI->isPHI())
1701 continue;
1702 for (ConstMIOperands MO(*MI); MO.isValid(); ++MO)
1703 if (MO->isReg() && MO->isUse()) {
1704 unsigned Reg = MO->getReg();
1705 if (TargetRegisterInfo::isVirtualRegister(Reg))
1706 Uses.insert(Reg);
1707 else if (MRI.isAllocatable(Reg))
1708 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1709 Uses.insert(*Units);
1710 }
1711 }
1712 for (SUnit *SU : NS)
1713 for (ConstMIOperands MO(*SU->getInstr()); MO.isValid(); ++MO)
1714 if (MO->isReg() && MO->isDef() && !MO->isDead()) {
1715 unsigned Reg = MO->getReg();
1716 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1717 if (!Uses.count(Reg))
1718 LiveOutRegs.push_back(RegisterMaskPair(Reg, 0));
1719 } else if (MRI.isAllocatable(Reg)) {
1720 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1721 if (!Uses.count(*Units))
1722 LiveOutRegs.push_back(RegisterMaskPair(*Units, 0));
1723 }
1724 }
1725 RPTracker.addLiveRegs(LiveOutRegs);
1726 }
1727
1728 /// A heuristic to filter nodes in recurrent node-sets if the register
1729 /// pressure of a set is too high.
registerPressureFilter(NodeSetType & NodeSets)1730 void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1731 for (auto &NS : NodeSets) {
1732 // Skip small node-sets since they won't cause register pressure problems.
1733 if (NS.size() <= 2)
1734 continue;
1735 IntervalPressure RecRegPressure;
1736 RegPressureTracker RecRPTracker(RecRegPressure);
1737 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1738 computeLiveOuts(MF, RecRPTracker, NS);
1739 RecRPTracker.closeBottom();
1740
1741 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1742 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1743 return A->NodeNum > B->NodeNum;
1744 });
1745
1746 for (auto &SU : SUnits) {
1747 // Since we're computing the register pressure for a subset of the
1748 // instructions in a block, we need to set the tracker for each
1749 // instruction in the node-set. The tracker is set to the instruction
1750 // just after the one we're interested in.
1751 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1752 RecRPTracker.setPos(std::next(CurInstI));
1753
1754 RegPressureDelta RPDelta;
1755 ArrayRef<PressureChange> CriticalPSets;
1756 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1757 CriticalPSets,
1758 RecRegPressure.MaxSetPressure);
1759 if (RPDelta.Excess.isValid()) {
1760 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
1761 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
1762 << ":" << RPDelta.Excess.getUnitInc());
1763 NS.setExceedPressure(SU);
1764 break;
1765 }
1766 RecRPTracker.recede();
1767 }
1768 }
1769 }
1770
1771 /// A heuristic to colocate node sets that have the same set of
1772 /// successors.
colocateNodeSets(NodeSetType & NodeSets)1773 void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1774 unsigned Colocate = 0;
1775 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1776 NodeSet &N1 = NodeSets[i];
1777 SmallSetVector<SUnit *, 8> S1;
1778 if (N1.empty() || !succ_L(N1, S1))
1779 continue;
1780 for (int j = i + 1; j < e; ++j) {
1781 NodeSet &N2 = NodeSets[j];
1782 if (N1.compareRecMII(N2) != 0)
1783 continue;
1784 SmallSetVector<SUnit *, 8> S2;
1785 if (N2.empty() || !succ_L(N2, S2))
1786 continue;
1787 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1788 N1.setColocate(++Colocate);
1789 N2.setColocate(Colocate);
1790 break;
1791 }
1792 }
1793 }
1794 }
1795
1796 /// Check if the existing node-sets are profitable. If not, then ignore the
1797 /// recurrent node-sets, and attempt to schedule all nodes together. This is
1798 /// a heuristic. If the MII is large and there is a non-recurrent node with
1799 /// a large depth compared to the MII, then it's best to try and schedule
1800 /// all instruction together instead of starting with the recurrent node-sets.
checkNodeSets(NodeSetType & NodeSets)1801 void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1802 // Look for loops with a large MII.
1803 if (MII <= 20)
1804 return;
1805 // Check if the node-set contains only a simple add recurrence.
1806 for (auto &NS : NodeSets)
1807 if (NS.size() > 2)
1808 return;
1809 // If the depth of any instruction is significantly larger than the MII, then
1810 // ignore the recurrent node-sets and treat all instructions equally.
1811 for (auto &SU : SUnits)
1812 if (SU.getDepth() > MII * 1.5) {
1813 NodeSets.clear();
1814 DEBUG(dbgs() << "Clear recurrence node-sets\n");
1815 return;
1816 }
1817 }
1818
1819 /// Add the nodes that do not belong to a recurrence set into groups
1820 /// based upon connected componenets.
groupRemainingNodes(NodeSetType & NodeSets)1821 void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1822 SetVector<SUnit *> NodesAdded;
1823 SmallPtrSet<SUnit *, 8> Visited;
1824 // Add the nodes that are on a path between the previous node sets and
1825 // the current node set.
1826 for (NodeSet &I : NodeSets) {
1827 SmallSetVector<SUnit *, 8> N;
1828 // Add the nodes from the current node set to the previous node set.
1829 if (succ_L(I, N)) {
1830 SetVector<SUnit *> Path;
1831 for (SUnit *NI : N) {
1832 Visited.clear();
1833 computePath(NI, Path, NodesAdded, I, Visited);
1834 }
1835 if (Path.size() > 0)
1836 I.insert(Path.begin(), Path.end());
1837 }
1838 // Add the nodes from the previous node set to the current node set.
1839 N.clear();
1840 if (succ_L(NodesAdded, N)) {
1841 SetVector<SUnit *> Path;
1842 for (SUnit *NI : N) {
1843 Visited.clear();
1844 computePath(NI, Path, I, NodesAdded, Visited);
1845 }
1846 if (Path.size() > 0)
1847 I.insert(Path.begin(), Path.end());
1848 }
1849 NodesAdded.insert(I.begin(), I.end());
1850 }
1851
1852 // Create a new node set with the connected nodes of any successor of a node
1853 // in a recurrent set.
1854 NodeSet NewSet;
1855 SmallSetVector<SUnit *, 8> N;
1856 if (succ_L(NodesAdded, N))
1857 for (SUnit *I : N)
1858 addConnectedNodes(I, NewSet, NodesAdded);
1859 if (NewSet.size() > 0)
1860 NodeSets.push_back(NewSet);
1861
1862 // Create a new node set with the connected nodes of any predecessor of a node
1863 // in a recurrent set.
1864 NewSet.clear();
1865 if (pred_L(NodesAdded, N))
1866 for (SUnit *I : N)
1867 addConnectedNodes(I, NewSet, NodesAdded);
1868 if (NewSet.size() > 0)
1869 NodeSets.push_back(NewSet);
1870
1871 // Create new nodes sets with the connected nodes any any remaining node that
1872 // has no predecessor.
1873 for (unsigned i = 0; i < SUnits.size(); ++i) {
1874 SUnit *SU = &SUnits[i];
1875 if (NodesAdded.count(SU) == 0) {
1876 NewSet.clear();
1877 addConnectedNodes(SU, NewSet, NodesAdded);
1878 if (NewSet.size() > 0)
1879 NodeSets.push_back(NewSet);
1880 }
1881 }
1882 }
1883
1884 /// Add the node to the set, and add all is its connected nodes to the set.
addConnectedNodes(SUnit * SU,NodeSet & NewSet,SetVector<SUnit * > & NodesAdded)1885 void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1886 SetVector<SUnit *> &NodesAdded) {
1887 NewSet.insert(SU);
1888 NodesAdded.insert(SU);
1889 for (auto &SI : SU->Succs) {
1890 SUnit *Successor = SI.getSUnit();
1891 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1892 addConnectedNodes(Successor, NewSet, NodesAdded);
1893 }
1894 for (auto &PI : SU->Preds) {
1895 SUnit *Predecessor = PI.getSUnit();
1896 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1897 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1898 }
1899 }
1900
1901 /// Return true if Set1 contains elements in Set2. The elements in common
1902 /// are returned in a different container.
isIntersect(SmallSetVector<SUnit *,8> & Set1,const NodeSet & Set2,SmallSetVector<SUnit *,8> & Result)1903 static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1904 SmallSetVector<SUnit *, 8> &Result) {
1905 Result.clear();
1906 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1907 SUnit *SU = Set1[i];
1908 if (Set2.count(SU) != 0)
1909 Result.insert(SU);
1910 }
1911 return !Result.empty();
1912 }
1913
1914 /// Merge the recurrence node sets that have the same initial node.
fuseRecs(NodeSetType & NodeSets)1915 void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1916 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1917 ++I) {
1918 NodeSet &NI = *I;
1919 for (NodeSetType::iterator J = I + 1; J != E;) {
1920 NodeSet &NJ = *J;
1921 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1922 if (NJ.compareRecMII(NI) > 0)
1923 NI.setRecMII(NJ.getRecMII());
1924 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1925 ++NII)
1926 I->insert(*NII);
1927 NodeSets.erase(J);
1928 E = NodeSets.end();
1929 } else {
1930 ++J;
1931 }
1932 }
1933 }
1934 }
1935
1936 /// Remove nodes that have been scheduled in previous NodeSets.
removeDuplicateNodes(NodeSetType & NodeSets)1937 void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1938 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1939 ++I)
1940 for (NodeSetType::iterator J = I + 1; J != E;) {
1941 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1942
1943 if (J->size() == 0) {
1944 NodeSets.erase(J);
1945 E = NodeSets.end();
1946 } else {
1947 ++J;
1948 }
1949 }
1950 }
1951
1952 /// Return true if Inst1 defines a value that is used in Inst2.
hasDataDependence(SUnit * Inst1,SUnit * Inst2)1953 static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
1954 for (auto &SI : Inst1->Succs)
1955 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
1956 return true;
1957 return false;
1958 }
1959
1960 /// Compute an ordered list of the dependence graph nodes, which
1961 /// indicates the order that the nodes will be scheduled. This is a
1962 /// two-level algorithm. First, a partial order is created, which
1963 /// consists of a list of sets ordered from highest to lowest priority.
computeNodeOrder(NodeSetType & NodeSets)1964 void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
1965 SmallSetVector<SUnit *, 8> R;
1966 NodeOrder.clear();
1967
1968 for (auto &Nodes : NodeSets) {
1969 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
1970 OrderKind Order;
1971 SmallSetVector<SUnit *, 8> N;
1972 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
1973 R.insert(N.begin(), N.end());
1974 Order = BottomUp;
1975 DEBUG(dbgs() << " Bottom up (preds) ");
1976 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
1977 R.insert(N.begin(), N.end());
1978 Order = TopDown;
1979 DEBUG(dbgs() << " Top down (succs) ");
1980 } else if (isIntersect(N, Nodes, R)) {
1981 // If some of the successors are in the existing node-set, then use the
1982 // top-down ordering.
1983 Order = TopDown;
1984 DEBUG(dbgs() << " Top down (intersect) ");
1985 } else if (NodeSets.size() == 1) {
1986 for (auto &N : Nodes)
1987 if (N->Succs.size() == 0)
1988 R.insert(N);
1989 Order = BottomUp;
1990 DEBUG(dbgs() << " Bottom up (all) ");
1991 } else {
1992 // Find the node with the highest ASAP.
1993 SUnit *maxASAP = nullptr;
1994 for (SUnit *SU : Nodes) {
1995 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
1996 maxASAP = SU;
1997 }
1998 R.insert(maxASAP);
1999 Order = BottomUp;
2000 DEBUG(dbgs() << " Bottom up (default) ");
2001 }
2002
2003 while (!R.empty()) {
2004 if (Order == TopDown) {
2005 // Choose the node with the maximum height. If more than one, choose
2006 // the node with the lowest MOV. If still more than one, check if there
2007 // is a dependence between the instructions.
2008 while (!R.empty()) {
2009 SUnit *maxHeight = nullptr;
2010 for (SUnit *I : R) {
2011 if (maxHeight == 0 || getHeight(I) > getHeight(maxHeight))
2012 maxHeight = I;
2013 else if (getHeight(I) == getHeight(maxHeight) &&
2014 getMOV(I) < getMOV(maxHeight) &&
2015 !hasDataDependence(maxHeight, I))
2016 maxHeight = I;
2017 else if (hasDataDependence(I, maxHeight))
2018 maxHeight = I;
2019 }
2020 NodeOrder.insert(maxHeight);
2021 DEBUG(dbgs() << maxHeight->NodeNum << " ");
2022 R.remove(maxHeight);
2023 for (const auto &I : maxHeight->Succs) {
2024 if (Nodes.count(I.getSUnit()) == 0)
2025 continue;
2026 if (NodeOrder.count(I.getSUnit()) != 0)
2027 continue;
2028 if (ignoreDependence(I, false))
2029 continue;
2030 R.insert(I.getSUnit());
2031 }
2032 // Back-edges are predecessors with an anti-dependence.
2033 for (const auto &I : maxHeight->Preds) {
2034 if (I.getKind() != SDep::Anti)
2035 continue;
2036 if (Nodes.count(I.getSUnit()) == 0)
2037 continue;
2038 if (NodeOrder.count(I.getSUnit()) != 0)
2039 continue;
2040 R.insert(I.getSUnit());
2041 }
2042 }
2043 Order = BottomUp;
2044 DEBUG(dbgs() << "\n Switching order to bottom up ");
2045 SmallSetVector<SUnit *, 8> N;
2046 if (pred_L(NodeOrder, N, &Nodes))
2047 R.insert(N.begin(), N.end());
2048 } else {
2049 // Choose the node with the maximum depth. If more than one, choose
2050 // the node with the lowest MOV. If there is still more than one, check
2051 // for a dependence between the instructions.
2052 while (!R.empty()) {
2053 SUnit *maxDepth = nullptr;
2054 for (SUnit *I : R) {
2055 if (maxDepth == 0 || getDepth(I) > getDepth(maxDepth))
2056 maxDepth = I;
2057 else if (getDepth(I) == getDepth(maxDepth) &&
2058 getMOV(I) < getMOV(maxDepth) &&
2059 !hasDataDependence(I, maxDepth))
2060 maxDepth = I;
2061 else if (hasDataDependence(maxDepth, I))
2062 maxDepth = I;
2063 }
2064 NodeOrder.insert(maxDepth);
2065 DEBUG(dbgs() << maxDepth->NodeNum << " ");
2066 R.remove(maxDepth);
2067 if (Nodes.isExceedSU(maxDepth)) {
2068 Order = TopDown;
2069 R.clear();
2070 R.insert(Nodes.getNode(0));
2071 break;
2072 }
2073 for (const auto &I : maxDepth->Preds) {
2074 if (Nodes.count(I.getSUnit()) == 0)
2075 continue;
2076 if (NodeOrder.count(I.getSUnit()) != 0)
2077 continue;
2078 if (I.getKind() == SDep::Anti)
2079 continue;
2080 R.insert(I.getSUnit());
2081 }
2082 // Back-edges are predecessors with an anti-dependence.
2083 for (const auto &I : maxDepth->Succs) {
2084 if (I.getKind() != SDep::Anti)
2085 continue;
2086 if (Nodes.count(I.getSUnit()) == 0)
2087 continue;
2088 if (NodeOrder.count(I.getSUnit()) != 0)
2089 continue;
2090 R.insert(I.getSUnit());
2091 }
2092 }
2093 Order = TopDown;
2094 DEBUG(dbgs() << "\n Switching order to top down ");
2095 SmallSetVector<SUnit *, 8> N;
2096 if (succ_L(NodeOrder, N, &Nodes))
2097 R.insert(N.begin(), N.end());
2098 }
2099 }
2100 DEBUG(dbgs() << "\nDone with Nodeset\n");
2101 }
2102
2103 DEBUG({
2104 dbgs() << "Node order: ";
2105 for (SUnit *I : NodeOrder)
2106 dbgs() << " " << I->NodeNum << " ";
2107 dbgs() << "\n";
2108 });
2109 }
2110
2111 /// Process the nodes in the computed order and create the pipelined schedule
2112 /// of the instructions, if possible. Return true if a schedule is found.
schedulePipeline(SMSchedule & Schedule)2113 bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2114
2115 if (NodeOrder.size() == 0)
2116 return false;
2117
2118 bool scheduleFound = false;
2119 // Keep increasing II until a valid schedule is found.
2120 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2121 Schedule.reset();
2122 Schedule.setInitiationInterval(II);
2123 DEBUG(dbgs() << "Try to schedule with " << II << "\n");
2124
2125 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2126 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2127 do {
2128 SUnit *SU = *NI;
2129
2130 // Compute the schedule time for the instruction, which is based
2131 // upon the scheduled time for any predecessors/successors.
2132 int EarlyStart = INT_MIN;
2133 int LateStart = INT_MAX;
2134 // These values are set when the size of the schedule window is limited
2135 // due to chain dependences.
2136 int SchedEnd = INT_MAX;
2137 int SchedStart = INT_MIN;
2138 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2139 II, this);
2140 DEBUG({
2141 dbgs() << "Inst (" << SU->NodeNum << ") ";
2142 SU->getInstr()->dump();
2143 dbgs() << "\n";
2144 });
2145 DEBUG({
2146 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStart
2147 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";
2148 });
2149
2150 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2151 SchedStart > LateStart)
2152 scheduleFound = false;
2153 else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
2154 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2155 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2156 } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
2157 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2158 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2159 } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
2160 SchedEnd =
2161 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2162 // When scheduling a Phi it is better to start at the late cycle and go
2163 // backwards. The default order may insert the Phi too far away from
2164 // its first dependence.
2165 if (SU->getInstr()->isPHI())
2166 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2167 else
2168 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2169 } else {
2170 int FirstCycle = Schedule.getFirstCycle();
2171 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2172 FirstCycle + getASAP(SU) + II - 1, II);
2173 }
2174 // Even if we find a schedule, make sure the schedule doesn't exceed the
2175 // allowable number of stages. We keep trying if this happens.
2176 if (scheduleFound)
2177 if (SwpMaxStages > -1 &&
2178 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2179 scheduleFound = false;
2180
2181 DEBUG({
2182 if (!scheduleFound)
2183 dbgs() << "\tCan't schedule\n";
2184 });
2185 } while (++NI != NE && scheduleFound);
2186
2187 // If a schedule is found, check if it is a valid schedule too.
2188 if (scheduleFound)
2189 scheduleFound = Schedule.isValidSchedule(this);
2190 }
2191
2192 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n");
2193
2194 if (scheduleFound)
2195 Schedule.finalizeSchedule(this);
2196 else
2197 Schedule.reset();
2198
2199 return scheduleFound && Schedule.getMaxStageCount() > 0;
2200 }
2201
2202 /// Given a schedule for the loop, generate a new version of the loop,
2203 /// and replace the old version. This function generates a prolog
2204 /// that contains the initial iterations in the pipeline, and kernel
2205 /// loop, and the epilogue that contains the code for the final
2206 /// iterations.
generatePipelinedLoop(SMSchedule & Schedule)2207 void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2208 // Create a new basic block for the kernel and add it to the CFG.
2209 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2210
2211 unsigned MaxStageCount = Schedule.getMaxStageCount();
2212
2213 // Remember the registers that are used in different stages. The index is
2214 // the iteration, or stage, that the instruction is scheduled in. This is
2215 // a map between register names in the orignal block and the names created
2216 // in each stage of the pipelined loop.
2217 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2218 InstrMapTy InstrMap;
2219
2220 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2221 // Generate the prolog instructions that set up the pipeline.
2222 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2223 MF.insert(BB->getIterator(), KernelBB);
2224
2225 // Rearrange the instructions to generate the new, pipelined loop,
2226 // and update register names as needed.
2227 for (int Cycle = Schedule.getFirstCycle(),
2228 LastCycle = Schedule.getFinalCycle();
2229 Cycle <= LastCycle; ++Cycle) {
2230 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2231 // This inner loop schedules each instruction in the cycle.
2232 for (SUnit *CI : CycleInstrs) {
2233 if (CI->getInstr()->isPHI())
2234 continue;
2235 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2236 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2237 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2238 KernelBB->push_back(NewMI);
2239 InstrMap[NewMI] = CI->getInstr();
2240 }
2241 }
2242
2243 // Copy any terminator instructions to the new kernel, and update
2244 // names as needed.
2245 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2246 E = BB->instr_end();
2247 I != E; ++I) {
2248 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2249 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2250 KernelBB->push_back(NewMI);
2251 InstrMap[NewMI] = &*I;
2252 }
2253
2254 KernelBB->transferSuccessors(BB);
2255 KernelBB->replaceSuccessor(BB, KernelBB);
2256
2257 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2258 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2259 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2260 InstrMap, MaxStageCount, MaxStageCount, false);
2261
2262 DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
2263
2264 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2265 // Generate the epilog instructions to complete the pipeline.
2266 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2267 PrologBBs);
2268
2269 // We need this step because the register allocation doesn't handle some
2270 // situations well, so we insert copies to help out.
2271 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2272
2273 // Remove dead instructions due to loop induction variables.
2274 removeDeadInstructions(KernelBB, EpilogBBs);
2275
2276 // Add branches between prolog and epilog blocks.
2277 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2278
2279 // Remove the original loop since it's no longer referenced.
2280 BB->clear();
2281 BB->eraseFromParent();
2282
2283 delete[] VRMap;
2284 }
2285
2286 /// Generate the pipeline prolog code.
generateProlog(SMSchedule & Schedule,unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & PrologBBs)2287 void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2288 MachineBasicBlock *KernelBB,
2289 ValueMapTy *VRMap,
2290 MBBVectorTy &PrologBBs) {
2291 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2292 assert(PreheaderBB != NULL &&
2293 "Need to add code to handle loops w/o preheader");
2294 MachineBasicBlock *PredBB = PreheaderBB;
2295 InstrMapTy InstrMap;
2296
2297 // Generate a basic block for each stage, not including the last stage,
2298 // which will be generated in the kernel. Each basic block may contain
2299 // instructions from multiple stages/iterations.
2300 for (unsigned i = 0; i < LastStage; ++i) {
2301 // Create and insert the prolog basic block prior to the original loop
2302 // basic block. The original loop is removed later.
2303 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2304 PrologBBs.push_back(NewBB);
2305 MF.insert(BB->getIterator(), NewBB);
2306 NewBB->transferSuccessors(PredBB);
2307 PredBB->addSuccessor(NewBB);
2308 PredBB = NewBB;
2309
2310 // Generate instructions for each appropriate stage. Process instructions
2311 // in original program order.
2312 for (int StageNum = i; StageNum >= 0; --StageNum) {
2313 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2314 BBE = BB->getFirstTerminator();
2315 BBI != BBE; ++BBI) {
2316 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2317 if (BBI->isPHI())
2318 continue;
2319 MachineInstr *NewMI =
2320 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2321 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2322 VRMap);
2323 NewBB->push_back(NewMI);
2324 InstrMap[NewMI] = &*BBI;
2325 }
2326 }
2327 }
2328 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2329 DEBUG({
2330 dbgs() << "prolog:\n";
2331 NewBB->dump();
2332 });
2333 }
2334
2335 PredBB->replaceSuccessor(BB, KernelBB);
2336
2337 // Check if we need to remove the branch from the preheader to the original
2338 // loop, and replace it with a branch to the new loop.
2339 unsigned numBranches = TII->RemoveBranch(*PreheaderBB);
2340 if (numBranches) {
2341 SmallVector<MachineOperand, 0> Cond;
2342 TII->InsertBranch(*PreheaderBB, PrologBBs[0], 0, Cond, DebugLoc());
2343 }
2344 }
2345
2346 /// Generate the pipeline epilog code. The epilog code finishes the iterations
2347 /// that were started in either the prolog or the kernel. We create a basic
2348 /// block for each stage that needs to complete.
generateEpilog(SMSchedule & Schedule,unsigned LastStage,MachineBasicBlock * KernelBB,ValueMapTy * VRMap,MBBVectorTy & EpilogBBs,MBBVectorTy & PrologBBs)2349 void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2350 MachineBasicBlock *KernelBB,
2351 ValueMapTy *VRMap,
2352 MBBVectorTy &EpilogBBs,
2353 MBBVectorTy &PrologBBs) {
2354 // We need to change the branch from the kernel to the first epilog block, so
2355 // this call to analyze branch uses the kernel rather than the original BB.
2356 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2357 SmallVector<MachineOperand, 4> Cond;
2358 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2359 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
2360 if (checkBranch)
2361 return;
2362
2363 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2364 if (*LoopExitI == KernelBB)
2365 ++LoopExitI;
2366 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
2367 MachineBasicBlock *LoopExitBB = *LoopExitI;
2368
2369 MachineBasicBlock *PredBB = KernelBB;
2370 MachineBasicBlock *EpilogStart = LoopExitBB;
2371 InstrMapTy InstrMap;
2372
2373 // Generate a basic block for each stage, not including the last stage,
2374 // which was generated for the kernel. Each basic block may contain
2375 // instructions from multiple stages/iterations.
2376 int EpilogStage = LastStage + 1;
2377 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2378 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2379 EpilogBBs.push_back(NewBB);
2380 MF.insert(BB->getIterator(), NewBB);
2381
2382 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2383 NewBB->addSuccessor(LoopExitBB);
2384
2385 if (EpilogStart == LoopExitBB)
2386 EpilogStart = NewBB;
2387
2388 // Add instructions to the epilog depending on the current block.
2389 // Process instructions in original program order.
2390 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2391 for (auto &BBI : *BB) {
2392 if (BBI.isPHI())
2393 continue;
2394 MachineInstr *In = &BBI;
2395 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2396 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
2397 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2398 NewBB->push_back(NewMI);
2399 InstrMap[NewMI] = In;
2400 }
2401 }
2402 }
2403 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2404 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2405 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2406 InstrMap, LastStage, EpilogStage, i == 1);
2407 PredBB = NewBB;
2408
2409 DEBUG({
2410 dbgs() << "epilog:\n";
2411 NewBB->dump();
2412 });
2413 }
2414
2415 // Fix any Phi nodes in the loop exit block.
2416 for (MachineInstr &MI : *LoopExitBB) {
2417 if (!MI.isPHI())
2418 break;
2419 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2420 MachineOperand &MO = MI.getOperand(i);
2421 if (MO.getMBB() == BB)
2422 MO.setMBB(PredBB);
2423 }
2424 }
2425
2426 // Create a branch to the new epilog from the kernel.
2427 // Remove the original branch and add a new branch to the epilog.
2428 TII->RemoveBranch(*KernelBB);
2429 TII->InsertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2430 // Add a branch to the loop exit.
2431 if (EpilogBBs.size() > 0) {
2432 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2433 SmallVector<MachineOperand, 4> Cond1;
2434 TII->InsertBranch(*LastEpilogBB, LoopExitBB, 0, Cond1, DebugLoc());
2435 }
2436 }
2437
2438 /// Replace all uses of FromReg that appear outside the specified
2439 /// basic block with ToReg.
replaceRegUsesAfterLoop(unsigned FromReg,unsigned ToReg,MachineBasicBlock * MBB,MachineRegisterInfo & MRI,LiveIntervals & LIS)2440 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2441 MachineBasicBlock *MBB,
2442 MachineRegisterInfo &MRI,
2443 LiveIntervals &LIS) {
2444 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2445 E = MRI.use_end();
2446 I != E;) {
2447 MachineOperand &O = *I;
2448 ++I;
2449 if (O.getParent()->getParent() != MBB)
2450 O.setReg(ToReg);
2451 }
2452 if (!LIS.hasInterval(ToReg))
2453 LIS.createEmptyInterval(ToReg);
2454 }
2455
2456 /// Return true if the register has a use that occurs outside the
2457 /// specified loop.
hasUseAfterLoop(unsigned Reg,MachineBasicBlock * BB,MachineRegisterInfo & MRI)2458 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2459 MachineRegisterInfo &MRI) {
2460 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2461 E = MRI.use_end();
2462 I != E; ++I)
2463 if (I->getParent()->getParent() != BB)
2464 return true;
2465 return false;
2466 }
2467
2468 /// Generate Phis for the specific block in the generated pipelined code.
2469 /// This function looks at the Phis from the original code to guide the
2470 /// creation of new Phis.
generateExistingPhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,SMSchedule & Schedule,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)2471 void SwingSchedulerDAG::generateExistingPhis(
2472 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2473 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2474 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2475 bool IsLast) {
2476 // Compute the stage number for the inital value of the Phi, which
2477 // comes from the prolog. The prolog to use depends on to which kernel/
2478 // epilog that we're adding the Phi.
2479 unsigned PrologStage = 0;
2480 unsigned PrevStage = 0;
2481 bool InKernel = (LastStageNum == CurStageNum);
2482 if (InKernel) {
2483 PrologStage = LastStageNum - 1;
2484 PrevStage = CurStageNum;
2485 } else {
2486 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2487 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2488 }
2489
2490 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2491 BBE = BB->getFirstNonPHI();
2492 BBI != BBE; ++BBI) {
2493 unsigned Def = BBI->getOperand(0).getReg();
2494
2495 unsigned InitVal = 0;
2496 unsigned LoopVal = 0;
2497 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2498
2499 unsigned PhiOp1 = 0;
2500 // The Phi value from the loop body typically is defined in the loop, but
2501 // not always. So, we need to check if the value is defined in the loop.
2502 unsigned PhiOp2 = LoopVal;
2503 if (VRMap[LastStageNum].count(LoopVal))
2504 PhiOp2 = VRMap[LastStageNum][LoopVal];
2505
2506 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2507 int LoopValStage =
2508 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2509 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2510 if (NumStages == 0) {
2511 // We don't need to generate a Phi anymore, but we need to rename any uses
2512 // of the Phi value.
2513 unsigned NewReg = VRMap[PrevStage][LoopVal];
2514 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2515 Def, NewReg);
2516 if (VRMap[CurStageNum].count(LoopVal))
2517 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2518 }
2519 // Adjust the number of Phis needed depending on the number of prologs left,
2520 // and the distance from where the Phi is first scheduled.
2521 unsigned NumPhis = NumStages;
2522 if (!InKernel && (int)PrologStage < LoopValStage)
2523 // The NumPhis is the maximum number of new Phis needed during the steady
2524 // state. If the Phi has not been scheduled in current prolog, then we
2525 // need to generate less Phis.
2526 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
2527 // The number of Phis cannot exceed the number of prolog stages. Each
2528 // stage can potentially define two values.
2529 NumPhis = std::min(NumPhis, PrologStage + 2);
2530
2531 unsigned NewReg = 0;
2532
2533 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2534 // In the epilog, we may need to look back one stage to get the correct
2535 // Phi name because the epilog and prolog blocks execute the same stage.
2536 // The correct name is from the previous block only when the Phi has
2537 // been completely scheduled prior to the epilog, and Phi value is not
2538 // needed in multiple stages.
2539 int StageDiff = 0;
2540 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2541 NumPhis == 1)
2542 StageDiff = 1;
2543 // Adjust the computations below when the phi and the loop definition
2544 // are scheduled in different stages.
2545 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2546 StageDiff = StageScheduled - LoopValStage;
2547 for (unsigned np = 0; np < NumPhis; ++np) {
2548 // If the Phi hasn't been scheduled, then use the initial Phi operand
2549 // value. Otherwise, use the scheduled version of the instruction. This
2550 // is a little complicated when a Phi references another Phi.
2551 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2552 PhiOp1 = InitVal;
2553 // Check if the Phi has already been scheduled in a prolog stage.
2554 else if (PrologStage >= AccessStage + StageDiff + np &&
2555 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2556 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2557 // Check if the Phi has already been scheduled, but the loop intruction
2558 // is either another Phi, or doesn't occur in the loop.
2559 else if (PrologStage >= AccessStage + StageDiff + np) {
2560 // If the Phi references another Phi, we need to examine the other
2561 // Phi to get the correct value.
2562 PhiOp1 = LoopVal;
2563 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2564 int Indirects = 1;
2565 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2566 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2567 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2568 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2569 else
2570 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2571 InstOp1 = MRI.getVRegDef(PhiOp1);
2572 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2573 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2574 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2575 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2576 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2577 break;
2578 }
2579 ++Indirects;
2580 }
2581 } else
2582 PhiOp1 = InitVal;
2583 // If this references a generated Phi in the kernel, get the Phi operand
2584 // from the incoming block.
2585 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2586 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2587 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2588
2589 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2590 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2591 // In the epilog, a map lookup is needed to get the value from the kernel,
2592 // or previous epilog block. How is does this depends on if the
2593 // instruction is scheduled in the previous block.
2594 if (!InKernel) {
2595 int StageDiffAdj = 0;
2596 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2597 StageDiffAdj = StageScheduled - LoopValStage;
2598 // Use the loop value defined in the kernel, unless the kernel
2599 // contains the last definition of the Phi.
2600 if (np == 0 && PrevStage == LastStageNum &&
2601 (StageScheduled != 0 || LoopValStage != 0) &&
2602 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2603 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2604 // Use the value defined by the Phi. We add one because we switch
2605 // from looking at the loop value to the Phi definition.
2606 else if (np > 0 && PrevStage == LastStageNum &&
2607 VRMap[PrevStage - np + 1].count(Def))
2608 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2609 // Use the loop value defined in the kernel.
2610 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2611 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2612 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2613 // Use the value defined by the Phi, unless we're generating the first
2614 // epilog and the Phi refers to a Phi in a different stage.
2615 else if (VRMap[PrevStage - np].count(Def) &&
2616 (!LoopDefIsPhi || PrevStage != LastStageNum))
2617 PhiOp2 = VRMap[PrevStage - np][Def];
2618 }
2619
2620 // Check if we can reuse an existing Phi. This occurs when a Phi
2621 // references another Phi, and the other Phi is scheduled in an
2622 // earlier stage. We can try to reuse an existing Phi up until the last
2623 // stage of the current Phi.
2624 if (LoopDefIsPhi && VRMap[CurStageNum].count(LoopVal) &&
2625 LoopValStage >= (int)(CurStageNum - LastStageNum)) {
2626 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2627 int StageDiff = (StageScheduled - LoopValStage);
2628 LVNumStages -= StageDiff;
2629 if (LVNumStages > (int)np) {
2630 NewReg = PhiOp2;
2631 unsigned ReuseStage = CurStageNum;
2632 if (Schedule.isLoopCarried(this, *PhiInst))
2633 ReuseStage -= LVNumStages;
2634 // Check if the Phi to reuse has been generated yet. If not, then
2635 // there is nothing to reuse.
2636 if (VRMap[ReuseStage].count(LoopVal)) {
2637 NewReg = VRMap[ReuseStage][LoopVal];
2638
2639 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2640 &*BBI, Def, NewReg);
2641 // Update the map with the new Phi name.
2642 VRMap[CurStageNum - np][Def] = NewReg;
2643 PhiOp2 = NewReg;
2644 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2645 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2646
2647 if (IsLast && np == NumPhis - 1)
2648 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2649 continue;
2650 }
2651 } else if (StageDiff > 0 &&
2652 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2653 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2654 }
2655
2656 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2657 NewReg = MRI.createVirtualRegister(RC);
2658
2659 MachineInstrBuilder NewPhi =
2660 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2661 TII->get(TargetOpcode::PHI), NewReg);
2662 NewPhi.addReg(PhiOp1).addMBB(BB1);
2663 NewPhi.addReg(PhiOp2).addMBB(BB2);
2664 if (np == 0)
2665 InstrMap[NewPhi] = &*BBI;
2666
2667 // We define the Phis after creating the new pipelined code, so
2668 // we need to rename the Phi values in scheduled instructions.
2669
2670 unsigned PrevReg = 0;
2671 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2672 PrevReg = VRMap[PrevStage - np][LoopVal];
2673 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2674 Def, NewReg, PrevReg);
2675 // If the Phi has been scheduled, use the new name for rewriting.
2676 if (VRMap[CurStageNum - np].count(Def)) {
2677 unsigned R = VRMap[CurStageNum - np][Def];
2678 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2679 R, NewReg);
2680 }
2681
2682 // Check if we need to rename any uses that occurs after the loop. The
2683 // register to replace depends on whether the Phi is scheduled in the
2684 // epilog.
2685 if (IsLast && np == NumPhis - 1)
2686 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2687
2688 // In the kernel, a dependent Phi uses the value from this Phi.
2689 if (InKernel)
2690 PhiOp2 = NewReg;
2691
2692 // Update the map with the new Phi name.
2693 VRMap[CurStageNum - np][Def] = NewReg;
2694 }
2695
2696 while (NumPhis++ < NumStages) {
2697 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2698 &*BBI, Def, NewReg, 0);
2699 }
2700
2701 // Check if we need to rename a Phi that has been eliminated due to
2702 // scheduling.
2703 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2704 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2705 }
2706 }
2707
2708 /// Generate Phis for the specified block in the generated pipelined code.
2709 /// These are new Phis needed because the definition is scheduled after the
2710 /// use in the pipelened sequence.
generatePhis(MachineBasicBlock * NewBB,MachineBasicBlock * BB1,MachineBasicBlock * BB2,MachineBasicBlock * KernelBB,SMSchedule & Schedule,ValueMapTy * VRMap,InstrMapTy & InstrMap,unsigned LastStageNum,unsigned CurStageNum,bool IsLast)2711 void SwingSchedulerDAG::generatePhis(
2712 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2713 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2714 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2715 bool IsLast) {
2716 // Compute the stage number that contains the initial Phi value, and
2717 // the Phi from the previous stage.
2718 unsigned PrologStage = 0;
2719 unsigned PrevStage = 0;
2720 unsigned StageDiff = CurStageNum - LastStageNum;
2721 bool InKernel = (StageDiff == 0);
2722 if (InKernel) {
2723 PrologStage = LastStageNum - 1;
2724 PrevStage = CurStageNum;
2725 } else {
2726 PrologStage = LastStageNum - StageDiff;
2727 PrevStage = LastStageNum + StageDiff - 1;
2728 }
2729
2730 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2731 BBE = BB->instr_end();
2732 BBI != BBE; ++BBI) {
2733 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2734 MachineOperand &MO = BBI->getOperand(i);
2735 if (!MO.isReg() || !MO.isDef() ||
2736 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2737 continue;
2738
2739 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2740 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
2741 unsigned Def = MO.getReg();
2742 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2743 // An instruction scheduled in stage 0 and is used after the loop
2744 // requires a phi in the epilog for the last definition from either
2745 // the kernel or prolog.
2746 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2747 hasUseAfterLoop(Def, BB, MRI))
2748 NumPhis = 1;
2749 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2750 continue;
2751
2752 unsigned PhiOp2 = VRMap[PrevStage][Def];
2753 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2754 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2755 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2756 // The number of Phis can't exceed the number of prolog stages. The
2757 // prolog stage number is zero based.
2758 if (NumPhis > PrologStage + 1 - StageScheduled)
2759 NumPhis = PrologStage + 1 - StageScheduled;
2760 for (unsigned np = 0; np < NumPhis; ++np) {
2761 unsigned PhiOp1 = VRMap[PrologStage][Def];
2762 if (np <= PrologStage)
2763 PhiOp1 = VRMap[PrologStage - np][Def];
2764 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2765 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2766 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2767 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2768 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2769 }
2770 if (!InKernel)
2771 PhiOp2 = VRMap[PrevStage - np][Def];
2772
2773 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2774 unsigned NewReg = MRI.createVirtualRegister(RC);
2775
2776 MachineInstrBuilder NewPhi =
2777 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2778 TII->get(TargetOpcode::PHI), NewReg);
2779 NewPhi.addReg(PhiOp1).addMBB(BB1);
2780 NewPhi.addReg(PhiOp2).addMBB(BB2);
2781 if (np == 0)
2782 InstrMap[NewPhi] = &*BBI;
2783
2784 // Rewrite uses and update the map. The actions depend upon whether
2785 // we generating code for the kernel or epilog blocks.
2786 if (InKernel) {
2787 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2788 &*BBI, PhiOp1, NewReg);
2789 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2790 &*BBI, PhiOp2, NewReg);
2791
2792 PhiOp2 = NewReg;
2793 VRMap[PrevStage - np - 1][Def] = NewReg;
2794 } else {
2795 VRMap[CurStageNum - np][Def] = NewReg;
2796 if (np == NumPhis - 1)
2797 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2798 &*BBI, Def, NewReg);
2799 }
2800 if (IsLast && np == NumPhis - 1)
2801 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2802 }
2803 }
2804 }
2805 }
2806
2807 /// Remove instructions that generate values with no uses.
2808 /// Typically, these are induction variable operations that generate values
2809 /// used in the loop itself. A dead instruction has a definition with
2810 /// no uses, or uses that occur in the original loop only.
removeDeadInstructions(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs)2811 void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2812 MBBVectorTy &EpilogBBs) {
2813 // For each epilog block, check that the value defined by each instruction
2814 // is used. If not, delete it.
2815 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2816 MBE = EpilogBBs.rend();
2817 MBB != MBE; ++MBB)
2818 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2819 ME = (*MBB)->instr_rend();
2820 MI != ME;) {
2821 // From DeadMachineInstructionElem. Don't delete inline assembly.
2822 if (MI->isInlineAsm()) {
2823 ++MI;
2824 continue;
2825 }
2826 bool SawStore = false;
2827 // Check if it's safe to remove the instruction due to side effects.
2828 // We can, and want to, remove Phis here.
2829 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2830 ++MI;
2831 continue;
2832 }
2833 bool used = true;
2834 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2835 MOE = MI->operands_end();
2836 MOI != MOE; ++MOI) {
2837 if (!MOI->isReg() || !MOI->isDef())
2838 continue;
2839 unsigned reg = MOI->getReg();
2840 unsigned realUses = 0;
2841 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2842 EI = MRI.use_end();
2843 UI != EI; ++UI) {
2844 // Check if there are any uses that occur only in the original
2845 // loop. If so, that's not a real use.
2846 if (UI->getParent()->getParent() != BB) {
2847 realUses++;
2848 used = true;
2849 break;
2850 }
2851 }
2852 if (realUses > 0)
2853 break;
2854 used = false;
2855 }
2856 if (!used) {
2857 MI->eraseFromParent();
2858 ME = (*MBB)->instr_rend();
2859 continue;
2860 }
2861 ++MI;
2862 }
2863 // In the kernel block, check if we can remove a Phi that generates a value
2864 // used in an instruction removed in the epilog block.
2865 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2866 BBE = KernelBB->getFirstNonPHI();
2867 BBI != BBE;) {
2868 MachineInstr *MI = &*BBI;
2869 ++BBI;
2870 unsigned reg = MI->getOperand(0).getReg();
2871 if (MRI.use_begin(reg) == MRI.use_end()) {
2872 MI->eraseFromParent();
2873 }
2874 }
2875 }
2876
2877 /// For loop carried definitions, we split the lifetime of a virtual register
2878 /// that has uses past the definition in the next iteration. A copy with a new
2879 /// virtual register is inserted before the definition, which helps with
2880 /// generating a better register assignment.
2881 ///
2882 /// v1 = phi(a, v2) v1 = phi(a, v2)
2883 /// v2 = phi(b, v3) v2 = phi(b, v3)
2884 /// v3 = .. v4 = copy v1
2885 /// .. = V1 v3 = ..
2886 /// .. = v4
splitLifetimes(MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs,SMSchedule & Schedule)2887 void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2888 MBBVectorTy &EpilogBBs,
2889 SMSchedule &Schedule) {
2890 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2891 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2892 BBF = KernelBB->getFirstNonPHI();
2893 BBI != BBF; ++BBI) {
2894 unsigned Def = BBI->getOperand(0).getReg();
2895 // Check for any Phi definition that used as an operand of another Phi
2896 // in the same block.
2897 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2898 E = MRI.use_instr_end();
2899 I != E; ++I) {
2900 if (I->isPHI() && I->getParent() == KernelBB) {
2901 // Get the loop carried definition.
2902 unsigned LCDef = getLoopPhiReg(*BBI, KernelBB);
2903 if (!LCDef)
2904 continue;
2905 MachineInstr *MI = MRI.getVRegDef(LCDef);
2906 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2907 continue;
2908 // Search through the rest of the block looking for uses of the Phi
2909 // definition. If one occurs, then split the lifetime.
2910 unsigned SplitReg = 0;
2911 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2912 KernelBB->instr_end()))
2913 if (BBJ.readsRegister(Def)) {
2914 // We split the lifetime when we find the first use.
2915 if (SplitReg == 0) {
2916 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2917 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2918 TII->get(TargetOpcode::COPY), SplitReg)
2919 .addReg(Def);
2920 }
2921 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2922 }
2923 if (!SplitReg)
2924 continue;
2925 // Search through each of the epilog blocks for any uses to be renamed.
2926 for (auto &Epilog : EpilogBBs)
2927 for (auto &I : *Epilog)
2928 if (I.readsRegister(Def))
2929 I.substituteRegister(Def, SplitReg, 0, *TRI);
2930 break;
2931 }
2932 }
2933 }
2934 }
2935
2936 /// Remove the incoming block from the Phis in a basic block.
removePhis(MachineBasicBlock * BB,MachineBasicBlock * Incoming)2937 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2938 for (MachineInstr &MI : *BB) {
2939 if (!MI.isPHI())
2940 break;
2941 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2942 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2943 MI.RemoveOperand(i + 1);
2944 MI.RemoveOperand(i);
2945 break;
2946 }
2947 }
2948 }
2949
2950 /// Create branches from each prolog basic block to the appropriate epilog
2951 /// block. These edges are needed if the loop ends before reaching the
2952 /// kernel.
addBranches(MBBVectorTy & PrologBBs,MachineBasicBlock * KernelBB,MBBVectorTy & EpilogBBs,SMSchedule & Schedule,ValueMapTy * VRMap)2953 void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2954 MachineBasicBlock *KernelBB,
2955 MBBVectorTy &EpilogBBs,
2956 SMSchedule &Schedule, ValueMapTy *VRMap) {
2957 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
2958 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2959 MachineInstr *Cmp = Pass.LI.LoopCompare;
2960 MachineBasicBlock *LastPro = KernelBB;
2961 MachineBasicBlock *LastEpi = KernelBB;
2962
2963 // Start from the blocks connected to the kernel and work "out"
2964 // to the first prolog and the last epilog blocks.
2965 SmallVector<MachineInstr *, 4> PrevInsts;
2966 unsigned MaxIter = PrologBBs.size() - 1;
2967 unsigned LC = UINT_MAX;
2968 unsigned LCMin = UINT_MAX;
2969 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
2970 // Add branches to the prolog that go to the corresponding
2971 // epilog, and the fall-thru prolog/kernel block.
2972 MachineBasicBlock *Prolog = PrologBBs[j];
2973 MachineBasicBlock *Epilog = EpilogBBs[i];
2974 // We've executed one iteration, so decrement the loop count and check for
2975 // the loop end.
2976 SmallVector<MachineOperand, 4> Cond;
2977 // Check if the LOOP0 has already been removed. If so, then there is no need
2978 // to reduce the trip count.
2979 if (LC != 0)
2980 LC = TII->reduceLoopCount(*Prolog, IndVar, Cmp, Cond, PrevInsts, j,
2981 MaxIter);
2982
2983 // Record the value of the first trip count, which is used to determine if
2984 // branches and blocks can be removed for constant trip counts.
2985 if (LCMin == UINT_MAX)
2986 LCMin = LC;
2987
2988 unsigned numAdded = 0;
2989 if (TargetRegisterInfo::isVirtualRegister(LC)) {
2990 Prolog->addSuccessor(Epilog);
2991 numAdded = TII->InsertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
2992 } else if (j >= LCMin) {
2993 Prolog->addSuccessor(Epilog);
2994 Prolog->removeSuccessor(LastPro);
2995 LastEpi->removeSuccessor(Epilog);
2996 numAdded = TII->InsertBranch(*Prolog, Epilog, 0, Cond, DebugLoc());
2997 removePhis(Epilog, LastEpi);
2998 // Remove the blocks that are no longer referenced.
2999 if (LastPro != LastEpi) {
3000 LastEpi->clear();
3001 LastEpi->eraseFromParent();
3002 }
3003 LastPro->clear();
3004 LastPro->eraseFromParent();
3005 } else {
3006 numAdded = TII->InsertBranch(*Prolog, LastPro, 0, Cond, DebugLoc());
3007 removePhis(Epilog, Prolog);
3008 }
3009 LastPro = Prolog;
3010 LastEpi = Epilog;
3011 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3012 E = Prolog->instr_rend();
3013 I != E && numAdded > 0; ++I, --numAdded)
3014 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3015 }
3016 }
3017
3018 /// Return true if we can compute the amount the instruction changes
3019 /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)3020 bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3021 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3022 unsigned BaseReg;
3023 int64_t Offset;
3024 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3025 return false;
3026
3027 MachineRegisterInfo &MRI = MF.getRegInfo();
3028 // Check if there is a Phi. If so, get the definition in the loop.
3029 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3030 if (BaseDef && BaseDef->isPHI()) {
3031 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3032 BaseDef = MRI.getVRegDef(BaseReg);
3033 }
3034 if (!BaseDef)
3035 return false;
3036
3037 int D = 0;
3038 if (!TII->getIncrementValue(BaseDef, D) && D >= 0)
3039 return false;
3040
3041 Delta = D;
3042 return true;
3043 }
3044
3045 /// Update the memory operand with a new offset when the pipeliner
3046 /// generate a new copy of the instruction that refers to a
3047 /// different memory location.
updateMemOperands(MachineInstr & NewMI,MachineInstr & OldMI,unsigned Num)3048 void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3049 MachineInstr &OldMI, unsigned Num) {
3050 if (Num == 0)
3051 return;
3052 // If the instruction has memory operands, then adjust the offset
3053 // when the instruction appears in different stages.
3054 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3055 if (NumRefs == 0)
3056 return;
3057 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3058 unsigned Refs = 0;
3059 for (MachineInstr::mmo_iterator I = NewMI.memoperands_begin(),
3060 E = NewMI.memoperands_end();
3061 I != E; ++I) {
3062 if ((*I)->isVolatile() || (*I)->isInvariant() || (!(*I)->getValue())) {
3063 NewMemRefs[Refs++] = *I;
3064 continue;
3065 }
3066 unsigned Delta;
3067 if (computeDelta(OldMI, Delta)) {
3068 int64_t AdjOffset = Delta * Num;
3069 NewMemRefs[Refs++] =
3070 MF.getMachineMemOperand(*I, AdjOffset, (*I)->getSize());
3071 } else
3072 NewMemRefs[Refs++] = MF.getMachineMemOperand(*I, 0, UINT64_MAX);
3073 }
3074 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3075 }
3076
3077 /// Clone the instruction for the new pipelined loop and update the
3078 /// memory operands, if needed.
cloneInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum)3079 MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3080 unsigned CurStageNum,
3081 unsigned InstStageNum) {
3082 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3083 // Check for tied operands in inline asm instructions. This should be handled
3084 // elsewhere, but I'm not sure of the best solution.
3085 if (OldMI->isInlineAsm())
3086 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3087 const auto &MO = OldMI->getOperand(i);
3088 if (MO.isReg() && MO.isUse())
3089 break;
3090 unsigned UseIdx;
3091 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3092 NewMI->tieOperands(i, UseIdx);
3093 }
3094 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3095 return NewMI;
3096 }
3097
3098 /// Clone the instruction for the new pipelined loop. If needed, this
3099 /// function updates the instruction using the values saved in the
3100 /// InstrChanges structure.
cloneAndChangeInstr(MachineInstr * OldMI,unsigned CurStageNum,unsigned InstStageNum,SMSchedule & Schedule)3101 MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3102 unsigned CurStageNum,
3103 unsigned InstStageNum,
3104 SMSchedule &Schedule) {
3105 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3106 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3107 InstrChanges.find(getSUnit(OldMI));
3108 if (It != InstrChanges.end()) {
3109 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3110 unsigned BasePos, OffsetPos;
3111 if (!TII->getBaseAndOffsetPosition(OldMI, BasePos, OffsetPos))
3112 return nullptr;
3113 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3114 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3115 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3116 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3117 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3118 }
3119 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3120 return NewMI;
3121 }
3122
3123 /// Update the machine instruction with new virtual registers. This
3124 /// function may change the defintions and/or uses.
updateInstruction(MachineInstr * NewMI,bool LastDef,unsigned CurStageNum,unsigned InstrStageNum,SMSchedule & Schedule,ValueMapTy * VRMap)3125 void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3126 unsigned CurStageNum,
3127 unsigned InstrStageNum,
3128 SMSchedule &Schedule,
3129 ValueMapTy *VRMap) {
3130 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3131 MachineOperand &MO = NewMI->getOperand(i);
3132 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3133 continue;
3134 unsigned reg = MO.getReg();
3135 if (MO.isDef()) {
3136 // Create a new virtual register for the definition.
3137 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3138 unsigned NewReg = MRI.createVirtualRegister(RC);
3139 MO.setReg(NewReg);
3140 VRMap[CurStageNum][reg] = NewReg;
3141 if (LastDef)
3142 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3143 } else if (MO.isUse()) {
3144 MachineInstr *Def = MRI.getVRegDef(reg);
3145 // Compute the stage that contains the last definition for instruction.
3146 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3147 unsigned StageNum = CurStageNum;
3148 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3149 // Compute the difference in stages between the defintion and the use.
3150 unsigned StageDiff = (InstrStageNum - DefStageNum);
3151 // Make an adjustment to get the last definition.
3152 StageNum -= StageDiff;
3153 }
3154 if (VRMap[StageNum].count(reg))
3155 MO.setReg(VRMap[StageNum][reg]);
3156 }
3157 }
3158 }
3159
3160 /// Return the instruction in the loop that defines the register.
3161 /// If the definition is a Phi, then follow the Phi operand to
3162 /// the instruction in the loop.
findDefInLoop(unsigned Reg)3163 MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3164 SmallPtrSet<MachineInstr *, 8> Visited;
3165 MachineInstr *Def = MRI.getVRegDef(Reg);
3166 while (Def->isPHI()) {
3167 if (!Visited.insert(Def).second)
3168 break;
3169 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3170 if (Def->getOperand(i + 1).getMBB() == BB) {
3171 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3172 break;
3173 }
3174 }
3175 return Def;
3176 }
3177
3178 /// Return the new name for the value from the previous stage.
getPrevMapVal(unsigned StageNum,unsigned PhiStage,unsigned LoopVal,unsigned LoopStage,ValueMapTy * VRMap,MachineBasicBlock * BB)3179 unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3180 unsigned LoopVal, unsigned LoopStage,
3181 ValueMapTy *VRMap,
3182 MachineBasicBlock *BB) {
3183 unsigned PrevVal = 0;
3184 if (StageNum > PhiStage) {
3185 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3186 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3187 // The name is defined in the previous stage.
3188 PrevVal = VRMap[StageNum - 1][LoopVal];
3189 else if (VRMap[StageNum].count(LoopVal))
3190 // The previous name is defined in the current stage when the instruction
3191 // order is swapped.
3192 PrevVal = VRMap[StageNum][LoopVal];
3193 else if (!LoopInst->isPHI())
3194 // The loop value hasn't yet been scheduled.
3195 PrevVal = LoopVal;
3196 else if (StageNum == PhiStage + 1)
3197 // The loop value is another phi, which has not been scheduled.
3198 PrevVal = getInitPhiReg(*LoopInst, BB);
3199 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3200 // The loop value is another phi, which has been scheduled.
3201 PrevVal =
3202 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3203 LoopStage, VRMap, BB);
3204 }
3205 return PrevVal;
3206 }
3207
3208 /// Rewrite the Phi values in the specified block to use the mappings
3209 /// from the initial operand. Once the Phi is scheduled, we switch
3210 /// to using the loop value instead of the Phi value, so those names
3211 /// do not need to be rewritten.
rewritePhiValues(MachineBasicBlock * NewBB,unsigned StageNum,SMSchedule & Schedule,ValueMapTy * VRMap,InstrMapTy & InstrMap)3212 void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3213 unsigned StageNum,
3214 SMSchedule &Schedule,
3215 ValueMapTy *VRMap,
3216 InstrMapTy &InstrMap) {
3217 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
3218 BBE = BB->getFirstNonPHI();
3219 BBI != BBE; ++BBI) {
3220 unsigned InitVal = 0;
3221 unsigned LoopVal = 0;
3222 getPhiRegs(*BBI, BB, InitVal, LoopVal);
3223 unsigned PhiDef = BBI->getOperand(0).getReg();
3224
3225 unsigned PhiStage =
3226 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3227 unsigned LoopStage =
3228 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3229 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3230 if (NumPhis > StageNum)
3231 NumPhis = StageNum;
3232 for (unsigned np = 0; np <= NumPhis; ++np) {
3233 unsigned NewVal =
3234 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3235 if (!NewVal)
3236 NewVal = InitVal;
3237 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &*BBI,
3238 PhiDef, NewVal);
3239 }
3240 }
3241 }
3242
3243 /// Rewrite a previously scheduled instruction to use the register value
3244 /// from the new instruction. Make sure the instruction occurs in the
3245 /// basic block, and we don't change the uses in the new instruction.
rewriteScheduledInstr(MachineBasicBlock * BB,SMSchedule & Schedule,InstrMapTy & InstrMap,unsigned CurStageNum,unsigned PhiNum,MachineInstr * Phi,unsigned OldReg,unsigned NewReg,unsigned PrevReg)3246 void SwingSchedulerDAG::rewriteScheduledInstr(
3247 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3248 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3249 unsigned NewReg, unsigned PrevReg) {
3250 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3251 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3252 // Rewrite uses that have been scheduled already to use the new
3253 // Phi register.
3254 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3255 EI = MRI.use_end();
3256 UI != EI;) {
3257 MachineOperand &UseOp = *UI;
3258 MachineInstr *UseMI = UseOp.getParent();
3259 ++UI;
3260 if (UseMI->getParent() != BB)
3261 continue;
3262 if (UseMI->isPHI()) {
3263 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3264 continue;
3265 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3266 continue;
3267 }
3268 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3269 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
3270 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3271 int StageSched = Schedule.stageScheduled(OrigMISU);
3272 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3273 unsigned ReplaceReg = 0;
3274 // This is the stage for the scheduled instruction.
3275 if (StagePhi == StageSched && Phi->isPHI()) {
3276 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3277 if (PrevReg && InProlog)
3278 ReplaceReg = PrevReg;
3279 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3280 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3281 ReplaceReg = PrevReg;
3282 else
3283 ReplaceReg = NewReg;
3284 }
3285 // The scheduled instruction occurs before the scheduled Phi, and the
3286 // Phi is not loop carried.
3287 if (!InProlog && StagePhi + 1 == StageSched &&
3288 !Schedule.isLoopCarried(this, *Phi))
3289 ReplaceReg = NewReg;
3290 if (StagePhi > StageSched && Phi->isPHI())
3291 ReplaceReg = NewReg;
3292 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3293 ReplaceReg = NewReg;
3294 if (ReplaceReg) {
3295 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3296 UseOp.setReg(ReplaceReg);
3297 }
3298 }
3299 }
3300
3301 /// Check if we can change the instruction to use an offset value from the
3302 /// previous iteration. If so, return true and set the base and offset values
3303 /// so that we can rewrite the load, if necessary.
3304 /// v1 = Phi(v0, v3)
3305 /// v2 = load v1, 0
3306 /// v3 = post_store v1, 4, x
3307 /// This function enables the load to be rewritten as v2 = load v3, 4.
canUseLastOffsetValue(MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos,unsigned & NewBase,int64_t & Offset)3308 bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3309 unsigned &BasePos,
3310 unsigned &OffsetPos,
3311 unsigned &NewBase,
3312 int64_t &Offset) {
3313 // Get the load instruction.
3314 if (TII->isPostIncrement(MI))
3315 return false;
3316 unsigned BasePosLd, OffsetPosLd;
3317 if (!TII->getBaseAndOffsetPosition(MI, BasePosLd, OffsetPosLd))
3318 return false;
3319 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3320
3321 // Look for the Phi instruction.
3322 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
3323 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3324 if (!Phi || !Phi->isPHI())
3325 return false;
3326 // Get the register defined in the loop block.
3327 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3328 if (!PrevReg)
3329 return false;
3330
3331 // Check for the post-increment load/store instruction.
3332 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3333 if (!PrevDef || PrevDef == MI)
3334 return false;
3335
3336 if (!TII->isPostIncrement(PrevDef))
3337 return false;
3338
3339 unsigned BasePos1 = 0, OffsetPos1 = 0;
3340 if (!TII->getBaseAndOffsetPosition(PrevDef, BasePos1, OffsetPos1))
3341 return false;
3342
3343 // Make sure offset values are both positive or both negative.
3344 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3345 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3346 if ((LoadOffset >= 0) != (StoreOffset >= 0))
3347 return false;
3348
3349 // Set the return value once we determine that we return true.
3350 BasePos = BasePosLd;
3351 OffsetPos = OffsetPosLd;
3352 NewBase = PrevReg;
3353 Offset = StoreOffset;
3354 return true;
3355 }
3356
3357 /// Apply changes to the instruction if needed. The changes are need
3358 /// to improve the scheduling and depend up on the final schedule.
applyInstrChange(MachineInstr * MI,SMSchedule & Schedule,bool UpdateDAG)3359 MachineInstr *SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3360 SMSchedule &Schedule,
3361 bool UpdateDAG) {
3362 SUnit *SU = getSUnit(MI);
3363 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3364 InstrChanges.find(SU);
3365 if (It != InstrChanges.end()) {
3366 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3367 unsigned BasePos, OffsetPos;
3368 if (!TII->getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3369 return nullptr;
3370 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3371 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3372 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3373 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3374 int BaseStageNum = Schedule.stageScheduled(SU);
3375 int BaseCycleNum = Schedule.cycleScheduled(SU);
3376 if (BaseStageNum < DefStageNum) {
3377 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3378 int OffsetDiff = DefStageNum - BaseStageNum;
3379 if (DefCycleNum < BaseCycleNum) {
3380 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3381 if (OffsetDiff > 0)
3382 --OffsetDiff;
3383 }
3384 int64_t NewOffset =
3385 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3386 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3387 if (UpdateDAG) {
3388 SU->setInstr(NewMI);
3389 MISUnitMap[NewMI] = SU;
3390 }
3391 NewMIs.insert(NewMI);
3392 return NewMI;
3393 }
3394 }
3395 return nullptr;
3396 }
3397
3398 /// Return true for an order dependence that is loop carried potentially.
3399 /// An order dependence is loop carried if the destination defines a value
3400 /// that may be used by the source in a subsequent iteration.
isLoopCarriedOrder(SUnit * Source,const SDep & Dep,bool isSucc)3401 bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
3402 bool isSucc) {
3403 if (!isOrder(Source, Dep) || Dep.isArtificial())
3404 return false;
3405
3406 if (!SwpPruneLoopCarried)
3407 return true;
3408
3409 MachineInstr *SI = Source->getInstr();
3410 MachineInstr *DI = Dep.getSUnit()->getInstr();
3411 if (!isSucc)
3412 std::swap(SI, DI);
3413 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
3414
3415 // Assume ordered loads and stores may have a loop carried dependence.
3416 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3417 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3418 return true;
3419
3420 // Only chain dependences between a load and store can be loop carried.
3421 if (!DI->mayStore() || !SI->mayLoad())
3422 return false;
3423
3424 unsigned DeltaS, DeltaD;
3425 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3426 return true;
3427
3428 unsigned BaseRegS, BaseRegD;
3429 int64_t OffsetS, OffsetD;
3430 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3431 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3432 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3433 return true;
3434
3435 if (BaseRegS != BaseRegD)
3436 return true;
3437
3438 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3439 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3440
3441 // This is the main test, which checks the offset values and the loop
3442 // increment value to determine if the accesses may be loop carried.
3443 if (OffsetS >= OffsetD)
3444 return OffsetS + AccessSizeS > DeltaS;
3445 else if (OffsetS < OffsetD)
3446 return OffsetD + AccessSizeD > DeltaD;
3447
3448 return true;
3449 }
3450
3451 /// Try to schedule the node at the specified StartCycle and continue
3452 /// until the node is schedule or the EndCycle is reached. This function
3453 /// returns true if the node is scheduled. This routine may search either
3454 /// forward or backward for a place to insert the instruction based upon
3455 /// the relative values of StartCycle and EndCycle.
insert(SUnit * SU,int StartCycle,int EndCycle,int II)3456 bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3457 bool forward = true;
3458 if (StartCycle > EndCycle)
3459 forward = false;
3460
3461 // The terminating condition depends on the direction.
3462 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3463 for (int curCycle = StartCycle; curCycle != termCycle;
3464 forward ? ++curCycle : --curCycle) {
3465
3466 // Add the already scheduled instructions at the specified cycle to the DFA.
3467 Resources->clearResources();
3468 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3469 checkCycle <= LastCycle; checkCycle += II) {
3470 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3471
3472 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3473 E = cycleInstrs.end();
3474 I != E; ++I) {
3475 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3476 continue;
3477 assert(Resources->canReserveResources(*(*I)->getInstr()) &&
3478 "These instructions have already been scheduled.");
3479 Resources->reserveResources(*(*I)->getInstr());
3480 }
3481 }
3482 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3483 Resources->canReserveResources(*SU->getInstr())) {
3484 DEBUG({
3485 dbgs() << "\tinsert at cycle " << curCycle << " ";
3486 SU->getInstr()->dump();
3487 });
3488
3489 ScheduledInstrs[curCycle].push_back(SU);
3490 InstrToCycle.insert(std::make_pair(SU, curCycle));
3491 if (curCycle > LastCycle)
3492 LastCycle = curCycle;
3493 if (curCycle < FirstCycle)
3494 FirstCycle = curCycle;
3495 return true;
3496 }
3497 DEBUG({
3498 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
3499 SU->getInstr()->dump();
3500 });
3501 }
3502 return false;
3503 }
3504
3505 // Return the cycle of the earliest scheduled instruction in the chain.
earliestCycleInChain(const SDep & Dep)3506 int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3507 SmallPtrSet<SUnit *, 8> Visited;
3508 SmallVector<SDep, 8> Worklist;
3509 Worklist.push_back(Dep);
3510 int EarlyCycle = INT_MAX;
3511 while (!Worklist.empty()) {
3512 const SDep &Cur = Worklist.pop_back_val();
3513 SUnit *PrevSU = Cur.getSUnit();
3514 if (Visited.count(PrevSU))
3515 continue;
3516 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3517 if (it == InstrToCycle.end())
3518 continue;
3519 EarlyCycle = std::min(EarlyCycle, it->second);
3520 for (const auto &PI : PrevSU->Preds)
3521 if (SwingSchedulerDAG::isOrder(PrevSU, PI))
3522 Worklist.push_back(PI);
3523 Visited.insert(PrevSU);
3524 }
3525 return EarlyCycle;
3526 }
3527
3528 // Return the cycle of the latest scheduled instruction in the chain.
latestCycleInChain(const SDep & Dep)3529 int SMSchedule::latestCycleInChain(const SDep &Dep) {
3530 SmallPtrSet<SUnit *, 8> Visited;
3531 SmallVector<SDep, 8> Worklist;
3532 Worklist.push_back(Dep);
3533 int LateCycle = INT_MIN;
3534 while (!Worklist.empty()) {
3535 const SDep &Cur = Worklist.pop_back_val();
3536 SUnit *SuccSU = Cur.getSUnit();
3537 if (Visited.count(SuccSU))
3538 continue;
3539 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3540 if (it == InstrToCycle.end())
3541 continue;
3542 LateCycle = std::max(LateCycle, it->second);
3543 for (const auto &SI : SuccSU->Succs)
3544 if (SwingSchedulerDAG::isOrder(SuccSU, SI))
3545 Worklist.push_back(SI);
3546 Visited.insert(SuccSU);
3547 }
3548 return LateCycle;
3549 }
3550
3551 /// If an instruction has a use that spans multiple iterations, then
3552 /// return true. These instructions are characterized by having a back-ege
3553 /// to a Phi, which contains a reference to another Phi.
multipleIterations(SUnit * SU,SwingSchedulerDAG * DAG)3554 static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3555 for (auto &P : SU->Preds)
3556 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3557 for (auto &S : P.getSUnit()->Succs)
3558 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
3559 return P.getSUnit();
3560 return nullptr;
3561 }
3562
3563 /// Compute the scheduling start slot for the instruction. The start slot
3564 /// depends on any predecessor or successor nodes scheduled already.
computeStart(SUnit * SU,int * MaxEarlyStart,int * MinLateStart,int * MinEnd,int * MaxStart,int II,SwingSchedulerDAG * DAG)3565 void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3566 int *MinEnd, int *MaxStart, int II,
3567 SwingSchedulerDAG *DAG) {
3568 // Iterate over each instruction that has been scheduled already. The start
3569 // slot computuation depends on whether the previously scheduled instruction
3570 // is a predecessor or successor of the specified instruction.
3571 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3572
3573 // Iterate over each instruction in the current cycle.
3574 for (SUnit *I : getInstructions(cycle)) {
3575 // Because we're processing a DAG for the dependences, we recognize
3576 // the back-edge in recurrences by anti dependences.
3577 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3578 const SDep &Dep = SU->Preds[i];
3579 if (Dep.getSUnit() == I) {
3580 if (!DAG->isBackedge(SU, Dep)) {
3581 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3582 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3583 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3584 if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
3585 int End = earliestCycleInChain(Dep) + (II - 1);
3586 *MinEnd = std::min(*MinEnd, End);
3587 }
3588 } else {
3589 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3590 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3591 *MinLateStart = std::min(*MinLateStart, LateStart);
3592 }
3593 }
3594 // For instruction that requires multiple iterations, make sure that
3595 // the dependent instruction is not scheduled past the definition.
3596 SUnit *BE = multipleIterations(I, DAG);
3597 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3598 !SU->isPred(I))
3599 *MinLateStart = std::min(*MinLateStart, cycle);
3600 }
3601 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
3602 if (SU->Succs[i].getSUnit() == I) {
3603 const SDep &Dep = SU->Succs[i];
3604 if (!DAG->isBackedge(SU, Dep)) {
3605 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3606 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3607 *MinLateStart = std::min(*MinLateStart, LateStart);
3608 if (DAG->isLoopCarriedOrder(SU, Dep)) {
3609 int Start = latestCycleInChain(Dep) + 1 - II;
3610 *MaxStart = std::max(*MaxStart, Start);
3611 }
3612 } else {
3613 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3614 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3615 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3616 }
3617 }
3618 }
3619 }
3620 }
3621
3622 /// Order the instructions within a cycle so that the definitions occur
3623 /// before the uses. Returns true if the instruction is added to the start
3624 /// of the list, or false if added to the end.
orderDependence(SwingSchedulerDAG * SSD,SUnit * SU,std::deque<SUnit * > & Insts)3625 bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3626 std::deque<SUnit *> &Insts) {
3627 MachineInstr *MI = SU->getInstr();
3628 bool OrderBeforeUse = false;
3629 bool OrderAfterDef = false;
3630 bool OrderBeforeDef = false;
3631 unsigned MoveDef = 0;
3632 unsigned MoveUse = 0;
3633 int StageInst1 = stageScheduled(SU);
3634
3635 unsigned Pos = 0;
3636 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3637 ++I, ++Pos) {
3638 // Relative order of Phis does not matter.
3639 if (MI->isPHI() && (*I)->getInstr()->isPHI())
3640 continue;
3641 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3642 MachineOperand &MO = MI->getOperand(i);
3643 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3644 continue;
3645 unsigned Reg = MO.getReg();
3646 unsigned BasePos, OffsetPos;
3647 if (ST.getInstrInfo()->getBaseAndOffsetPosition(MI, BasePos, OffsetPos))
3648 if (MI->getOperand(BasePos).getReg() == Reg)
3649 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3650 Reg = NewReg;
3651 bool Reads, Writes;
3652 std::tie(Reads, Writes) =
3653 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3654 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3655 OrderBeforeUse = true;
3656 MoveUse = Pos;
3657 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3658 // Add the instruction after the scheduled instruction.
3659 OrderAfterDef = true;
3660 MoveDef = Pos;
3661 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3662 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3663 OrderBeforeUse = true;
3664 MoveUse = Pos;
3665 } else {
3666 OrderAfterDef = true;
3667 MoveDef = Pos;
3668 }
3669 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3670 OrderBeforeUse = true;
3671 MoveUse = Pos;
3672 if (MoveUse != 0) {
3673 OrderAfterDef = true;
3674 MoveDef = Pos - 1;
3675 }
3676 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3677 // Add the instruction before the scheduled instruction.
3678 OrderBeforeUse = true;
3679 MoveUse = Pos;
3680 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3681 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3682 OrderBeforeDef = true;
3683 MoveUse = Pos;
3684 }
3685 }
3686 // Check for order dependences between instructions. Make sure the source
3687 // is ordered before the destination.
3688 for (auto &S : SU->Succs)
3689 if (S.getKind() == SDep::Order) {
3690 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3691 OrderBeforeUse = true;
3692 MoveUse = Pos;
3693 }
3694 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
3695 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
3696 if (S.isAssignedRegDep()) {
3697 OrderAfterDef = true;
3698 MoveDef = Pos;
3699 }
3700 } else {
3701 OrderBeforeUse = true;
3702 MoveUse = Pos;
3703 }
3704 }
3705 for (auto &P : SU->Preds)
3706 if (P.getKind() == SDep::Order) {
3707 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3708 OrderAfterDef = true;
3709 MoveDef = Pos;
3710 }
3711 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
3712 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
3713 if (P.isAssignedRegDep()) {
3714 OrderBeforeUse = true;
3715 MoveUse = Pos;
3716 }
3717 } else {
3718 OrderAfterDef = true;
3719 MoveDef = Pos;
3720 }
3721 }
3722 }
3723
3724 // A circular dependence.
3725 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3726 OrderBeforeUse = false;
3727
3728 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3729 // to a loop-carried dependence.
3730 if (OrderBeforeDef)
3731 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3732
3733 // The uncommon case when the instruction order needs to be updated because
3734 // there is both a use and def.
3735 if (OrderBeforeUse && OrderAfterDef) {
3736 SUnit *UseSU = Insts.at(MoveUse);
3737 SUnit *DefSU = Insts.at(MoveDef);
3738 if (MoveUse > MoveDef) {
3739 Insts.erase(Insts.begin() + MoveUse);
3740 Insts.erase(Insts.begin() + MoveDef);
3741 } else {
3742 Insts.erase(Insts.begin() + MoveDef);
3743 Insts.erase(Insts.begin() + MoveUse);
3744 }
3745 if (orderDependence(SSD, UseSU, Insts)) {
3746 Insts.push_front(SU);
3747 orderDependence(SSD, DefSU, Insts);
3748 return true;
3749 }
3750 Insts.pop_back();
3751 Insts.push_back(SU);
3752 Insts.push_back(UseSU);
3753 orderDependence(SSD, DefSU, Insts);
3754 return false;
3755 }
3756 // Put the new instruction first if there is a use in the list. Otherwise,
3757 // put it at the end of the list.
3758 if (OrderBeforeUse)
3759 Insts.push_front(SU);
3760 else
3761 Insts.push_back(SU);
3762 return OrderBeforeUse;
3763 }
3764
3765 /// Return true if the scheduled Phi has a loop carried operand.
isLoopCarried(SwingSchedulerDAG * SSD,MachineInstr & Phi)3766 bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3767 if (!Phi.isPHI())
3768 return false;
3769 assert(Phi.isPHI() && "Expecing a Phi.");
3770 SUnit *DefSU = SSD->getSUnit(&Phi);
3771 unsigned DefCycle = cycleScheduled(DefSU);
3772 int DefStage = stageScheduled(DefSU);
3773
3774 unsigned InitVal = 0;
3775 unsigned LoopVal = 0;
3776 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3777 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3778 if (!UseSU)
3779 return true;
3780 if (UseSU->getInstr()->isPHI())
3781 return true;
3782 unsigned LoopCycle = cycleScheduled(UseSU);
3783 int LoopStage = stageScheduled(UseSU);
3784 return LoopCycle > DefCycle ||
3785 (LoopCycle <= DefCycle && LoopStage <= DefStage);
3786 }
3787
3788 /// Return true if the instruction is a definition that is loop carried
3789 /// and defines the use on the next iteration.
3790 /// v1 = phi(v2, v3)
3791 /// (Def) v3 = op v1
3792 /// (MO) = v1
3793 /// If MO appears before Def, then then v1 and v3 may get assigned to the same
3794 /// register.
isLoopCarriedDefOfUse(SwingSchedulerDAG * SSD,MachineInstr * Def,MachineOperand & MO)3795 bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3796 MachineInstr *Def, MachineOperand &MO) {
3797 if (!MO.isReg())
3798 return false;
3799 if (Def->isPHI())
3800 return false;
3801 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3802 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3803 return false;
3804 if (!isLoopCarried(SSD, *Phi))
3805 return false;
3806 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3807 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3808 MachineOperand &DMO = Def->getOperand(i);
3809 if (!DMO.isReg() || !DMO.isDef())
3810 continue;
3811 if (DMO.getReg() == LoopReg)
3812 return true;
3813 }
3814 return false;
3815 }
3816
3817 // Check if the generated schedule is valid. This function checks if
3818 // an instruction that uses a physical register is scheduled in a
3819 // different stage than the definition. The pipeliner does not handle
3820 // physical register values that may cross a basic block boundary.
isValidSchedule(SwingSchedulerDAG * SSD)3821 bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3822 const TargetRegisterInfo *TRI = ST.getRegisterInfo();
3823 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3824 SUnit &SU = SSD->SUnits[i];
3825 if (!SU.hasPhysRegDefs)
3826 continue;
3827 int StageDef = stageScheduled(&SU);
3828 assert(StageDef != -1 && "Instruction should have been scheduled.");
3829 for (auto &SI : SU.Succs)
3830 if (SI.isAssignedRegDep())
3831 if (TRI->isPhysicalRegister(SI.getReg()))
3832 if (stageScheduled(SI.getSUnit()) != StageDef)
3833 return false;
3834 }
3835 return true;
3836 }
3837
3838 /// After the schedule has been formed, call this function to combine
3839 /// the instructions from the different stages/cycles. That is, this
3840 /// function creates a schedule that represents a single iteration.
finalizeSchedule(SwingSchedulerDAG * SSD)3841 void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3842 // Move all instructions to the first stage from later stages.
3843 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3844 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3845 ++stage) {
3846 std::deque<SUnit *> &cycleInstrs =
3847 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3848 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3849 E = cycleInstrs.rend();
3850 I != E; ++I)
3851 ScheduledInstrs[cycle].push_front(*I);
3852 }
3853 }
3854 // Iterate over the definitions in each instruction, and compute the
3855 // stage difference for each use. Keep the maximum value.
3856 for (auto &I : InstrToCycle) {
3857 int DefStage = stageScheduled(I.first);
3858 MachineInstr *MI = I.first->getInstr();
3859 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3860 MachineOperand &Op = MI->getOperand(i);
3861 if (!Op.isReg() || !Op.isDef())
3862 continue;
3863
3864 unsigned Reg = Op.getReg();
3865 unsigned MaxDiff = 0;
3866 bool PhiIsSwapped = false;
3867 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3868 EI = MRI.use_end();
3869 UI != EI; ++UI) {
3870 MachineOperand &UseOp = *UI;
3871 MachineInstr *UseMI = UseOp.getParent();
3872 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3873 int UseStage = stageScheduled(SUnitUse);
3874 unsigned Diff = 0;
3875 if (UseStage != -1 && UseStage >= DefStage)
3876 Diff = UseStage - DefStage;
3877 if (MI->isPHI()) {
3878 if (isLoopCarried(SSD, *MI))
3879 ++Diff;
3880 else
3881 PhiIsSwapped = true;
3882 }
3883 MaxDiff = std::max(Diff, MaxDiff);
3884 }
3885 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3886 }
3887 }
3888
3889 // Erase all the elements in the later stages. Only one iteration should
3890 // remain in the scheduled list, and it contains all the instructions.
3891 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3892 ScheduledInstrs.erase(cycle);
3893
3894 // Change the registers in instruction as specified in the InstrChanges
3895 // map. We need to use the new registers to create the correct order.
3896 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3897 SUnit *SU = &SSD->SUnits[i];
3898 SSD->applyInstrChange(SU->getInstr(), *this, true);
3899 }
3900
3901 // Reorder the instructions in each cycle to fix and improve the
3902 // generated code.
3903 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3904 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3905 std::deque<SUnit *> newOrderZC;
3906 // Put the zero-cost, pseudo instructions at the start of the cycle.
3907 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3908 SUnit *SU = cycleInstrs[i];
3909 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3910 orderDependence(SSD, SU, newOrderZC);
3911 }
3912 std::deque<SUnit *> newOrderI;
3913 // Then, add the regular instructions back.
3914 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3915 SUnit *SU = cycleInstrs[i];
3916 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3917 orderDependence(SSD, SU, newOrderI);
3918 }
3919 // Replace the old order with the new order.
3920 cycleInstrs.swap(newOrderZC);
3921 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
3922 }
3923
3924 DEBUG(dump(););
3925 }
3926
3927 /// Print the schedule information to the given output.
print(raw_ostream & os) const3928 void SMSchedule::print(raw_ostream &os) const {
3929 // Iterate over each cycle.
3930 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3931 // Iterate over each instruction in the cycle.
3932 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
3933 for (SUnit *CI : cycleInstrs->second) {
3934 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
3935 os << "(" << CI->NodeNum << ") ";
3936 CI->getInstr()->print(os);
3937 os << "\n";
3938 }
3939 }
3940 }
3941
3942 /// Utility function used for debugging to print the schedule.
dump() const3943 void SMSchedule::dump() const { print(dbgs()); }
3944