1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
12 //
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
15 //
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
41 // block.
42 // * Landingpad instructions must be in a function with a personality function.
43 // * All other things that are tested by asserts spread about the code...
44 //
45 //===----------------------------------------------------------------------===//
46
47 #include "llvm/IR/Verifier.h"
48 #include "llvm/ADT/MapVector.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/IR/CFG.h"
55 #include "llvm/IR/CallSite.h"
56 #include "llvm/IR/CallingConv.h"
57 #include "llvm/IR/ConstantRange.h"
58 #include "llvm/IR/Constants.h"
59 #include "llvm/IR/DataLayout.h"
60 #include "llvm/IR/DebugInfo.h"
61 #include "llvm/IR/DerivedTypes.h"
62 #include "llvm/IR/DiagnosticInfo.h"
63 #include "llvm/IR/Dominators.h"
64 #include "llvm/IR/InlineAsm.h"
65 #include "llvm/IR/InstIterator.h"
66 #include "llvm/IR/InstVisitor.h"
67 #include "llvm/IR/IntrinsicInst.h"
68 #include "llvm/IR/LLVMContext.h"
69 #include "llvm/IR/Metadata.h"
70 #include "llvm/IR/Module.h"
71 #include "llvm/IR/ModuleSlotTracker.h"
72 #include "llvm/IR/PassManager.h"
73 #include "llvm/IR/Statepoint.h"
74 #include "llvm/Pass.h"
75 #include "llvm/Support/CommandLine.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include <algorithm>
80 #include <cstdarg>
81 using namespace llvm;
82
83 static cl::opt<bool> VerifyDebugInfo("verify-debug-info", cl::init(true));
84
85 namespace {
86 struct VerifierSupport {
87 raw_ostream *OS;
88 const Module *M = nullptr;
89 Optional<ModuleSlotTracker> MST;
90
91 /// Track the brokenness of the module while recursively visiting.
92 bool Broken = false;
93 /// Broken debug info can be "recovered" from by stripping the debug info.
94 bool BrokenDebugInfo = false;
95 /// Whether to treat broken debug info as an error.
96 bool TreatBrokenDebugInfoAsError = true;
97
VerifierSupport__anon51203d770111::VerifierSupport98 explicit VerifierSupport(raw_ostream *OS) : OS(OS) {}
99
100 private:
Write__anon51203d770111::VerifierSupport101 template <class NodeTy> void Write(const ilist_iterator<NodeTy> &I) {
102 Write(&*I);
103 }
104
Write__anon51203d770111::VerifierSupport105 void Write(const Module *M) {
106 if (!M)
107 return;
108 *OS << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
109 }
110
Write__anon51203d770111::VerifierSupport111 void Write(const Value *V) {
112 if (!V)
113 return;
114 if (isa<Instruction>(V)) {
115 V->print(*OS, *MST);
116 *OS << '\n';
117 } else {
118 V->printAsOperand(*OS, true, *MST);
119 *OS << '\n';
120 }
121 }
Write__anon51203d770111::VerifierSupport122 void Write(ImmutableCallSite CS) {
123 Write(CS.getInstruction());
124 }
125
Write__anon51203d770111::VerifierSupport126 void Write(const Metadata *MD) {
127 if (!MD)
128 return;
129 MD->print(*OS, *MST, M);
130 *OS << '\n';
131 }
132
Write__anon51203d770111::VerifierSupport133 template <class T> void Write(const MDTupleTypedArrayWrapper<T> &MD) {
134 Write(MD.get());
135 }
136
Write__anon51203d770111::VerifierSupport137 void Write(const NamedMDNode *NMD) {
138 if (!NMD)
139 return;
140 NMD->print(*OS, *MST);
141 *OS << '\n';
142 }
143
Write__anon51203d770111::VerifierSupport144 void Write(Type *T) {
145 if (!T)
146 return;
147 *OS << ' ' << *T;
148 }
149
Write__anon51203d770111::VerifierSupport150 void Write(const Comdat *C) {
151 if (!C)
152 return;
153 *OS << *C;
154 }
155
Write__anon51203d770111::VerifierSupport156 template <typename T> void Write(ArrayRef<T> Vs) {
157 for (const T &V : Vs)
158 Write(V);
159 }
160
161 template <typename T1, typename... Ts>
WriteTs__anon51203d770111::VerifierSupport162 void WriteTs(const T1 &V1, const Ts &... Vs) {
163 Write(V1);
164 WriteTs(Vs...);
165 }
166
WriteTs__anon51203d770111::VerifierSupport167 template <typename... Ts> void WriteTs() {}
168
169 public:
170 /// \brief A check failed, so printout out the condition and the message.
171 ///
172 /// This provides a nice place to put a breakpoint if you want to see why
173 /// something is not correct.
CheckFailed__anon51203d770111::VerifierSupport174 void CheckFailed(const Twine &Message) {
175 if (OS)
176 *OS << Message << '\n';
177 Broken = true;
178 }
179
180 /// \brief A check failed (with values to print).
181 ///
182 /// This calls the Message-only version so that the above is easier to set a
183 /// breakpoint on.
184 template <typename T1, typename... Ts>
CheckFailed__anon51203d770111::VerifierSupport185 void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
186 CheckFailed(Message);
187 if (OS)
188 WriteTs(V1, Vs...);
189 }
190
191 /// A debug info check failed.
DebugInfoCheckFailed__anon51203d770111::VerifierSupport192 void DebugInfoCheckFailed(const Twine &Message) {
193 if (OS)
194 *OS << Message << '\n';
195 Broken |= TreatBrokenDebugInfoAsError;
196 BrokenDebugInfo = true;
197 }
198
199 /// A debug info check failed (with values to print).
200 template <typename T1, typename... Ts>
DebugInfoCheckFailed__anon51203d770111::VerifierSupport201 void DebugInfoCheckFailed(const Twine &Message, const T1 &V1,
202 const Ts &... Vs) {
203 DebugInfoCheckFailed(Message);
204 if (OS)
205 WriteTs(V1, Vs...);
206 }
207 };
208
209 class Verifier : public InstVisitor<Verifier>, VerifierSupport {
210 friend class InstVisitor<Verifier>;
211
212 LLVMContext *Context;
213 DominatorTree DT;
214
215 /// \brief When verifying a basic block, keep track of all of the
216 /// instructions we have seen so far.
217 ///
218 /// This allows us to do efficient dominance checks for the case when an
219 /// instruction has an operand that is an instruction in the same block.
220 SmallPtrSet<Instruction *, 16> InstsInThisBlock;
221
222 /// \brief Keep track of the metadata nodes that have been checked already.
223 SmallPtrSet<const Metadata *, 32> MDNodes;
224
225 /// Track all DICompileUnits visited.
226 SmallPtrSet<const Metadata *, 2> CUVisited;
227
228 /// \brief The result type for a landingpad.
229 Type *LandingPadResultTy;
230
231 /// \brief Whether we've seen a call to @llvm.localescape in this function
232 /// already.
233 bool SawFrameEscape;
234
235 /// Stores the count of how many objects were passed to llvm.localescape for a
236 /// given function and the largest index passed to llvm.localrecover.
237 DenseMap<Function *, std::pair<unsigned, unsigned>> FrameEscapeInfo;
238
239 // Maps catchswitches and cleanuppads that unwind to siblings to the
240 // terminators that indicate the unwind, used to detect cycles therein.
241 MapVector<Instruction *, TerminatorInst *> SiblingFuncletInfo;
242
243 /// Cache of constants visited in search of ConstantExprs.
244 SmallPtrSet<const Constant *, 32> ConstantExprVisited;
245
246 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
247 SmallVector<const Function *, 4> DeoptimizeDeclarations;
248
249 // Verify that this GlobalValue is only used in this module.
250 // This map is used to avoid visiting uses twice. We can arrive at a user
251 // twice, if they have multiple operands. In particular for very large
252 // constant expressions, we can arrive at a particular user many times.
253 SmallPtrSet<const Value *, 32> GlobalValueVisited;
254
255 void checkAtomicMemAccessSize(const Module *M, Type *Ty,
256 const Instruction *I);
257
updateModule(const Module * NewM)258 void updateModule(const Module *NewM) {
259 if (M == NewM)
260 return;
261 MST.emplace(NewM);
262 M = NewM;
263 }
264
265 public:
Verifier(raw_ostream * OS,bool ShouldTreatBrokenDebugInfoAsError)266 explicit Verifier(raw_ostream *OS, bool ShouldTreatBrokenDebugInfoAsError)
267 : VerifierSupport(OS), Context(nullptr), LandingPadResultTy(nullptr),
268 SawFrameEscape(false) {
269 TreatBrokenDebugInfoAsError = ShouldTreatBrokenDebugInfoAsError;
270 }
271
hasBrokenDebugInfo() const272 bool hasBrokenDebugInfo() const { return BrokenDebugInfo; }
273
verify(const Function & F)274 bool verify(const Function &F) {
275 updateModule(F.getParent());
276 Context = &M->getContext();
277
278 // First ensure the function is well-enough formed to compute dominance
279 // information, and directly compute a dominance tree. We don't rely on the
280 // pass manager to provide this as it isolates us from a potentially
281 // out-of-date dominator tree and makes it significantly more complex to run
282 // this code outside of a pass manager.
283 // FIXME: It's really gross that we have to cast away constness here.
284 if (!F.empty())
285 DT.recalculate(const_cast<Function &>(F));
286
287 for (const BasicBlock &BB : F) {
288 if (!BB.empty() && BB.back().isTerminator())
289 continue;
290
291 if (OS) {
292 *OS << "Basic Block in function '" << F.getName()
293 << "' does not have terminator!\n";
294 BB.printAsOperand(*OS, true, *MST);
295 *OS << "\n";
296 }
297 return false;
298 }
299
300 Broken = false;
301 // FIXME: We strip const here because the inst visitor strips const.
302 visit(const_cast<Function &>(F));
303 verifySiblingFuncletUnwinds();
304 InstsInThisBlock.clear();
305 LandingPadResultTy = nullptr;
306 SawFrameEscape = false;
307 SiblingFuncletInfo.clear();
308
309 return !Broken;
310 }
311
verify(const Module & M)312 bool verify(const Module &M) {
313 updateModule(&M);
314 Context = &M.getContext();
315 Broken = false;
316
317 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
318 for (const Function &F : M)
319 if (F.getIntrinsicID() == Intrinsic::experimental_deoptimize)
320 DeoptimizeDeclarations.push_back(&F);
321
322 // Now that we've visited every function, verify that we never asked to
323 // recover a frame index that wasn't escaped.
324 verifyFrameRecoverIndices();
325 for (const GlobalVariable &GV : M.globals())
326 visitGlobalVariable(GV);
327
328 for (const GlobalAlias &GA : M.aliases())
329 visitGlobalAlias(GA);
330
331 for (const NamedMDNode &NMD : M.named_metadata())
332 visitNamedMDNode(NMD);
333
334 for (const StringMapEntry<Comdat> &SMEC : M.getComdatSymbolTable())
335 visitComdat(SMEC.getValue());
336
337 visitModuleFlags(M);
338 visitModuleIdents(M);
339
340 verifyCompileUnits();
341
342 verifyDeoptimizeCallingConvs();
343
344 return !Broken;
345 }
346
347 private:
348 // Verification methods...
349 void visitGlobalValue(const GlobalValue &GV);
350 void visitGlobalVariable(const GlobalVariable &GV);
351 void visitGlobalAlias(const GlobalAlias &GA);
352 void visitAliaseeSubExpr(const GlobalAlias &A, const Constant &C);
353 void visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias *> &Visited,
354 const GlobalAlias &A, const Constant &C);
355 void visitNamedMDNode(const NamedMDNode &NMD);
356 void visitMDNode(const MDNode &MD);
357 void visitMetadataAsValue(const MetadataAsValue &MD, Function *F);
358 void visitValueAsMetadata(const ValueAsMetadata &MD, Function *F);
359 void visitComdat(const Comdat &C);
360 void visitModuleIdents(const Module &M);
361 void visitModuleFlags(const Module &M);
362 void visitModuleFlag(const MDNode *Op,
363 DenseMap<const MDString *, const MDNode *> &SeenIDs,
364 SmallVectorImpl<const MDNode *> &Requirements);
365 void visitFunction(const Function &F);
366 void visitBasicBlock(BasicBlock &BB);
367 void visitRangeMetadata(Instruction& I, MDNode* Range, Type* Ty);
368 void visitDereferenceableMetadata(Instruction& I, MDNode* MD);
369
370 template <class Ty> bool isValidMetadataArray(const MDTuple &N);
371 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
372 #include "llvm/IR/Metadata.def"
373 void visitDIScope(const DIScope &N);
374 void visitDIVariable(const DIVariable &N);
375 void visitDILexicalBlockBase(const DILexicalBlockBase &N);
376 void visitDITemplateParameter(const DITemplateParameter &N);
377
378 void visitTemplateParams(const MDNode &N, const Metadata &RawParams);
379
380 // InstVisitor overrides...
381 using InstVisitor<Verifier>::visit;
382 void visit(Instruction &I);
383
384 void visitTruncInst(TruncInst &I);
385 void visitZExtInst(ZExtInst &I);
386 void visitSExtInst(SExtInst &I);
387 void visitFPTruncInst(FPTruncInst &I);
388 void visitFPExtInst(FPExtInst &I);
389 void visitFPToUIInst(FPToUIInst &I);
390 void visitFPToSIInst(FPToSIInst &I);
391 void visitUIToFPInst(UIToFPInst &I);
392 void visitSIToFPInst(SIToFPInst &I);
393 void visitIntToPtrInst(IntToPtrInst &I);
394 void visitPtrToIntInst(PtrToIntInst &I);
395 void visitBitCastInst(BitCastInst &I);
396 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
397 void visitPHINode(PHINode &PN);
398 void visitBinaryOperator(BinaryOperator &B);
399 void visitICmpInst(ICmpInst &IC);
400 void visitFCmpInst(FCmpInst &FC);
401 void visitExtractElementInst(ExtractElementInst &EI);
402 void visitInsertElementInst(InsertElementInst &EI);
403 void visitShuffleVectorInst(ShuffleVectorInst &EI);
visitVAArgInst(VAArgInst & VAA)404 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
405 void visitCallInst(CallInst &CI);
406 void visitInvokeInst(InvokeInst &II);
407 void visitGetElementPtrInst(GetElementPtrInst &GEP);
408 void visitLoadInst(LoadInst &LI);
409 void visitStoreInst(StoreInst &SI);
410 void verifyDominatesUse(Instruction &I, unsigned i);
411 void visitInstruction(Instruction &I);
412 void visitTerminatorInst(TerminatorInst &I);
413 void visitBranchInst(BranchInst &BI);
414 void visitReturnInst(ReturnInst &RI);
415 void visitSwitchInst(SwitchInst &SI);
416 void visitIndirectBrInst(IndirectBrInst &BI);
417 void visitSelectInst(SelectInst &SI);
418 void visitUserOp1(Instruction &I);
visitUserOp2(Instruction & I)419 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
420 void visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS);
421 template <class DbgIntrinsicTy>
422 void visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII);
423 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
424 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
425 void visitFenceInst(FenceInst &FI);
426 void visitAllocaInst(AllocaInst &AI);
427 void visitExtractValueInst(ExtractValueInst &EVI);
428 void visitInsertValueInst(InsertValueInst &IVI);
429 void visitEHPadPredecessors(Instruction &I);
430 void visitLandingPadInst(LandingPadInst &LPI);
431 void visitCatchPadInst(CatchPadInst &CPI);
432 void visitCatchReturnInst(CatchReturnInst &CatchReturn);
433 void visitCleanupPadInst(CleanupPadInst &CPI);
434 void visitFuncletPadInst(FuncletPadInst &FPI);
435 void visitCatchSwitchInst(CatchSwitchInst &CatchSwitch);
436 void visitCleanupReturnInst(CleanupReturnInst &CRI);
437
438 void verifyCallSite(CallSite CS);
439 void verifySwiftErrorCallSite(CallSite CS, const Value *SwiftErrorVal);
440 void verifySwiftErrorValue(const Value *SwiftErrorVal);
441 void verifyMustTailCall(CallInst &CI);
442 bool performTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty, int VT,
443 unsigned ArgNo, std::string &Suffix);
444 bool verifyAttributeCount(AttributeSet Attrs, unsigned Params);
445 void verifyAttributeTypes(AttributeSet Attrs, unsigned Idx, bool isFunction,
446 const Value *V);
447 void verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
448 bool isReturnValue, const Value *V);
449 void verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
450 const Value *V);
451 void verifyFunctionMetadata(ArrayRef<std::pair<unsigned, MDNode *>> MDs);
452
453 void visitConstantExprsRecursively(const Constant *EntryC);
454 void visitConstantExpr(const ConstantExpr *CE);
455 void verifyStatepoint(ImmutableCallSite CS);
456 void verifyFrameRecoverIndices();
457 void verifySiblingFuncletUnwinds();
458
459 void verifyBitPieceExpression(const DbgInfoIntrinsic &I);
460
461 /// Module-level debug info verification...
462 void verifyCompileUnits();
463
464 /// Module-level verification that all @llvm.experimental.deoptimize
465 /// declarations share the same calling convention.
466 void verifyDeoptimizeCallingConvs();
467 };
468 } // End anonymous namespace
469
470 /// We know that cond should be true, if not print an error message.
471 #define Assert(C, ...) \
472 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (0)
473
474 /// We know that a debug info condition should be true, if not print
475 /// an error message.
476 #define AssertDI(C, ...) \
477 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (0)
478
479
visit(Instruction & I)480 void Verifier::visit(Instruction &I) {
481 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
482 Assert(I.getOperand(i) != nullptr, "Operand is null", &I);
483 InstVisitor<Verifier>::visit(I);
484 }
485
486 // Helper to recursively iterate over indirect users. By
487 // returning false, the callback can ask to stop recursing
488 // further.
forEachUser(const Value * User,SmallPtrSet<const Value *,32> & Visited,llvm::function_ref<bool (const Value *)> Callback)489 static void forEachUser(const Value *User,
490 SmallPtrSet<const Value *, 32> &Visited,
491 llvm::function_ref<bool(const Value *)> Callback) {
492 if (!Visited.insert(User).second)
493 return;
494 for (const Value *TheNextUser : User->materialized_users())
495 if (Callback(TheNextUser))
496 forEachUser(TheNextUser, Visited, Callback);
497 }
498
visitGlobalValue(const GlobalValue & GV)499 void Verifier::visitGlobalValue(const GlobalValue &GV) {
500 Assert(!GV.isDeclaration() || GV.hasValidDeclarationLinkage(),
501 "Global is external, but doesn't have external or weak linkage!", &GV);
502
503 Assert(GV.getAlignment() <= Value::MaximumAlignment,
504 "huge alignment values are unsupported", &GV);
505 Assert(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
506 "Only global variables can have appending linkage!", &GV);
507
508 if (GV.hasAppendingLinkage()) {
509 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
510 Assert(GVar && GVar->getValueType()->isArrayTy(),
511 "Only global arrays can have appending linkage!", GVar);
512 }
513
514 if (GV.isDeclarationForLinker())
515 Assert(!GV.hasComdat(), "Declaration may not be in a Comdat!", &GV);
516
517 forEachUser(&GV, GlobalValueVisited, [&](const Value *V) -> bool {
518 if (const Instruction *I = dyn_cast<Instruction>(V)) {
519 if (!I->getParent() || !I->getParent()->getParent())
520 CheckFailed("Global is referenced by parentless instruction!", &GV,
521 M, I);
522 else if (I->getParent()->getParent()->getParent() != M)
523 CheckFailed("Global is referenced in a different module!", &GV,
524 M, I, I->getParent()->getParent(),
525 I->getParent()->getParent()->getParent());
526 return false;
527 } else if (const Function *F = dyn_cast<Function>(V)) {
528 if (F->getParent() != M)
529 CheckFailed("Global is used by function in a different module", &GV,
530 M, F, F->getParent());
531 return false;
532 }
533 return true;
534 });
535 }
536
visitGlobalVariable(const GlobalVariable & GV)537 void Verifier::visitGlobalVariable(const GlobalVariable &GV) {
538 if (GV.hasInitializer()) {
539 Assert(GV.getInitializer()->getType() == GV.getValueType(),
540 "Global variable initializer type does not match global "
541 "variable type!",
542 &GV);
543
544 // If the global has common linkage, it must have a zero initializer and
545 // cannot be constant.
546 if (GV.hasCommonLinkage()) {
547 Assert(GV.getInitializer()->isNullValue(),
548 "'common' global must have a zero initializer!", &GV);
549 Assert(!GV.isConstant(), "'common' global may not be marked constant!",
550 &GV);
551 Assert(!GV.hasComdat(), "'common' global may not be in a Comdat!", &GV);
552 }
553 }
554
555 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
556 GV.getName() == "llvm.global_dtors")) {
557 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
558 "invalid linkage for intrinsic global variable", &GV);
559 // Don't worry about emitting an error for it not being an array,
560 // visitGlobalValue will complain on appending non-array.
561 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getValueType())) {
562 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
563 PointerType *FuncPtrTy =
564 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
565 // FIXME: Reject the 2-field form in LLVM 4.0.
566 Assert(STy &&
567 (STy->getNumElements() == 2 || STy->getNumElements() == 3) &&
568 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
569 STy->getTypeAtIndex(1) == FuncPtrTy,
570 "wrong type for intrinsic global variable", &GV);
571 if (STy->getNumElements() == 3) {
572 Type *ETy = STy->getTypeAtIndex(2);
573 Assert(ETy->isPointerTy() &&
574 cast<PointerType>(ETy)->getElementType()->isIntegerTy(8),
575 "wrong type for intrinsic global variable", &GV);
576 }
577 }
578 }
579
580 if (GV.hasName() && (GV.getName() == "llvm.used" ||
581 GV.getName() == "llvm.compiler.used")) {
582 Assert(!GV.hasInitializer() || GV.hasAppendingLinkage(),
583 "invalid linkage for intrinsic global variable", &GV);
584 Type *GVType = GV.getValueType();
585 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
586 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
587 Assert(PTy, "wrong type for intrinsic global variable", &GV);
588 if (GV.hasInitializer()) {
589 const Constant *Init = GV.getInitializer();
590 const ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
591 Assert(InitArray, "wrong initalizer for intrinsic global variable",
592 Init);
593 for (Value *Op : InitArray->operands()) {
594 Value *V = Op->stripPointerCastsNoFollowAliases();
595 Assert(isa<GlobalVariable>(V) || isa<Function>(V) ||
596 isa<GlobalAlias>(V),
597 "invalid llvm.used member", V);
598 Assert(V->hasName(), "members of llvm.used must be named", V);
599 }
600 }
601 }
602 }
603
604 Assert(!GV.hasDLLImportStorageClass() ||
605 (GV.isDeclaration() && GV.hasExternalLinkage()) ||
606 GV.hasAvailableExternallyLinkage(),
607 "Global is marked as dllimport, but not external", &GV);
608
609 if (!GV.hasInitializer()) {
610 visitGlobalValue(GV);
611 return;
612 }
613
614 // Walk any aggregate initializers looking for bitcasts between address spaces
615 visitConstantExprsRecursively(GV.getInitializer());
616
617 visitGlobalValue(GV);
618 }
619
visitAliaseeSubExpr(const GlobalAlias & GA,const Constant & C)620 void Verifier::visitAliaseeSubExpr(const GlobalAlias &GA, const Constant &C) {
621 SmallPtrSet<const GlobalAlias*, 4> Visited;
622 Visited.insert(&GA);
623 visitAliaseeSubExpr(Visited, GA, C);
624 }
625
visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias * > & Visited,const GlobalAlias & GA,const Constant & C)626 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl<const GlobalAlias*> &Visited,
627 const GlobalAlias &GA, const Constant &C) {
628 if (const auto *GV = dyn_cast<GlobalValue>(&C)) {
629 Assert(!GV->isDeclarationForLinker(), "Alias must point to a definition",
630 &GA);
631
632 if (const auto *GA2 = dyn_cast<GlobalAlias>(GV)) {
633 Assert(Visited.insert(GA2).second, "Aliases cannot form a cycle", &GA);
634
635 Assert(!GA2->isInterposable(), "Alias cannot point to an interposable alias",
636 &GA);
637 } else {
638 // Only continue verifying subexpressions of GlobalAliases.
639 // Do not recurse into global initializers.
640 return;
641 }
642 }
643
644 if (const auto *CE = dyn_cast<ConstantExpr>(&C))
645 visitConstantExprsRecursively(CE);
646
647 for (const Use &U : C.operands()) {
648 Value *V = &*U;
649 if (const auto *GA2 = dyn_cast<GlobalAlias>(V))
650 visitAliaseeSubExpr(Visited, GA, *GA2->getAliasee());
651 else if (const auto *C2 = dyn_cast<Constant>(V))
652 visitAliaseeSubExpr(Visited, GA, *C2);
653 }
654 }
655
visitGlobalAlias(const GlobalAlias & GA)656 void Verifier::visitGlobalAlias(const GlobalAlias &GA) {
657 Assert(GlobalAlias::isValidLinkage(GA.getLinkage()),
658 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
659 "weak_odr, or external linkage!",
660 &GA);
661 const Constant *Aliasee = GA.getAliasee();
662 Assert(Aliasee, "Aliasee cannot be NULL!", &GA);
663 Assert(GA.getType() == Aliasee->getType(),
664 "Alias and aliasee types should match!", &GA);
665
666 Assert(isa<GlobalValue>(Aliasee) || isa<ConstantExpr>(Aliasee),
667 "Aliasee should be either GlobalValue or ConstantExpr", &GA);
668
669 visitAliaseeSubExpr(GA, *Aliasee);
670
671 visitGlobalValue(GA);
672 }
673
visitNamedMDNode(const NamedMDNode & NMD)674 void Verifier::visitNamedMDNode(const NamedMDNode &NMD) {
675 for (const MDNode *MD : NMD.operands()) {
676 if (NMD.getName() == "llvm.dbg.cu") {
677 AssertDI(MD && isa<DICompileUnit>(MD), "invalid compile unit", &NMD, MD);
678 }
679
680 if (!MD)
681 continue;
682
683 visitMDNode(*MD);
684 }
685 }
686
visitMDNode(const MDNode & MD)687 void Verifier::visitMDNode(const MDNode &MD) {
688 // Only visit each node once. Metadata can be mutually recursive, so this
689 // avoids infinite recursion here, as well as being an optimization.
690 if (!MDNodes.insert(&MD).second)
691 return;
692
693 switch (MD.getMetadataID()) {
694 default:
695 llvm_unreachable("Invalid MDNode subclass");
696 case Metadata::MDTupleKind:
697 break;
698 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
699 case Metadata::CLASS##Kind: \
700 visit##CLASS(cast<CLASS>(MD)); \
701 break;
702 #include "llvm/IR/Metadata.def"
703 }
704
705 for (const Metadata *Op : MD.operands()) {
706 if (!Op)
707 continue;
708 Assert(!isa<LocalAsMetadata>(Op), "Invalid operand for global metadata!",
709 &MD, Op);
710 if (auto *N = dyn_cast<MDNode>(Op)) {
711 visitMDNode(*N);
712 continue;
713 }
714 if (auto *V = dyn_cast<ValueAsMetadata>(Op)) {
715 visitValueAsMetadata(*V, nullptr);
716 continue;
717 }
718 }
719
720 // Check these last, so we diagnose problems in operands first.
721 Assert(!MD.isTemporary(), "Expected no forward declarations!", &MD);
722 Assert(MD.isResolved(), "All nodes should be resolved!", &MD);
723 }
724
visitValueAsMetadata(const ValueAsMetadata & MD,Function * F)725 void Verifier::visitValueAsMetadata(const ValueAsMetadata &MD, Function *F) {
726 Assert(MD.getValue(), "Expected valid value", &MD);
727 Assert(!MD.getValue()->getType()->isMetadataTy(),
728 "Unexpected metadata round-trip through values", &MD, MD.getValue());
729
730 auto *L = dyn_cast<LocalAsMetadata>(&MD);
731 if (!L)
732 return;
733
734 Assert(F, "function-local metadata used outside a function", L);
735
736 // If this was an instruction, bb, or argument, verify that it is in the
737 // function that we expect.
738 Function *ActualF = nullptr;
739 if (Instruction *I = dyn_cast<Instruction>(L->getValue())) {
740 Assert(I->getParent(), "function-local metadata not in basic block", L, I);
741 ActualF = I->getParent()->getParent();
742 } else if (BasicBlock *BB = dyn_cast<BasicBlock>(L->getValue()))
743 ActualF = BB->getParent();
744 else if (Argument *A = dyn_cast<Argument>(L->getValue()))
745 ActualF = A->getParent();
746 assert(ActualF && "Unimplemented function local metadata case!");
747
748 Assert(ActualF == F, "function-local metadata used in wrong function", L);
749 }
750
visitMetadataAsValue(const MetadataAsValue & MDV,Function * F)751 void Verifier::visitMetadataAsValue(const MetadataAsValue &MDV, Function *F) {
752 Metadata *MD = MDV.getMetadata();
753 if (auto *N = dyn_cast<MDNode>(MD)) {
754 visitMDNode(*N);
755 return;
756 }
757
758 // Only visit each node once. Metadata can be mutually recursive, so this
759 // avoids infinite recursion here, as well as being an optimization.
760 if (!MDNodes.insert(MD).second)
761 return;
762
763 if (auto *V = dyn_cast<ValueAsMetadata>(MD))
764 visitValueAsMetadata(*V, F);
765 }
766
isType(const Metadata * MD)767 static bool isType(const Metadata *MD) { return !MD || isa<DIType>(MD); }
isScope(const Metadata * MD)768 static bool isScope(const Metadata *MD) { return !MD || isa<DIScope>(MD); }
isDINode(const Metadata * MD)769 static bool isDINode(const Metadata *MD) { return !MD || isa<DINode>(MD); }
770
771 template <class Ty>
isValidMetadataArrayImpl(const MDTuple & N,bool AllowNull)772 bool isValidMetadataArrayImpl(const MDTuple &N, bool AllowNull) {
773 for (Metadata *MD : N.operands()) {
774 if (MD) {
775 if (!isa<Ty>(MD))
776 return false;
777 } else {
778 if (!AllowNull)
779 return false;
780 }
781 }
782 return true;
783 }
784
785 template <class Ty>
isValidMetadataArray(const MDTuple & N)786 bool isValidMetadataArray(const MDTuple &N) {
787 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ false);
788 }
789
790 template <class Ty>
isValidMetadataNullArray(const MDTuple & N)791 bool isValidMetadataNullArray(const MDTuple &N) {
792 return isValidMetadataArrayImpl<Ty>(N, /* AllowNull */ true);
793 }
794
visitDILocation(const DILocation & N)795 void Verifier::visitDILocation(const DILocation &N) {
796 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
797 "location requires a valid scope", &N, N.getRawScope());
798 if (auto *IA = N.getRawInlinedAt())
799 AssertDI(isa<DILocation>(IA), "inlined-at should be a location", &N, IA);
800 }
801
visitGenericDINode(const GenericDINode & N)802 void Verifier::visitGenericDINode(const GenericDINode &N) {
803 AssertDI(N.getTag(), "invalid tag", &N);
804 }
805
visitDIScope(const DIScope & N)806 void Verifier::visitDIScope(const DIScope &N) {
807 if (auto *F = N.getRawFile())
808 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
809 }
810
visitDISubrange(const DISubrange & N)811 void Verifier::visitDISubrange(const DISubrange &N) {
812 AssertDI(N.getTag() == dwarf::DW_TAG_subrange_type, "invalid tag", &N);
813 AssertDI(N.getCount() >= -1, "invalid subrange count", &N);
814 }
815
visitDIEnumerator(const DIEnumerator & N)816 void Verifier::visitDIEnumerator(const DIEnumerator &N) {
817 AssertDI(N.getTag() == dwarf::DW_TAG_enumerator, "invalid tag", &N);
818 }
819
visitDIBasicType(const DIBasicType & N)820 void Verifier::visitDIBasicType(const DIBasicType &N) {
821 AssertDI(N.getTag() == dwarf::DW_TAG_base_type ||
822 N.getTag() == dwarf::DW_TAG_unspecified_type,
823 "invalid tag", &N);
824 }
825
visitDIDerivedType(const DIDerivedType & N)826 void Verifier::visitDIDerivedType(const DIDerivedType &N) {
827 // Common scope checks.
828 visitDIScope(N);
829
830 AssertDI(N.getTag() == dwarf::DW_TAG_typedef ||
831 N.getTag() == dwarf::DW_TAG_pointer_type ||
832 N.getTag() == dwarf::DW_TAG_ptr_to_member_type ||
833 N.getTag() == dwarf::DW_TAG_reference_type ||
834 N.getTag() == dwarf::DW_TAG_rvalue_reference_type ||
835 N.getTag() == dwarf::DW_TAG_const_type ||
836 N.getTag() == dwarf::DW_TAG_volatile_type ||
837 N.getTag() == dwarf::DW_TAG_restrict_type ||
838 N.getTag() == dwarf::DW_TAG_member ||
839 N.getTag() == dwarf::DW_TAG_inheritance ||
840 N.getTag() == dwarf::DW_TAG_friend,
841 "invalid tag", &N);
842 if (N.getTag() == dwarf::DW_TAG_ptr_to_member_type) {
843 AssertDI(isType(N.getRawExtraData()), "invalid pointer to member type", &N,
844 N.getRawExtraData());
845 }
846
847 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
848 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
849 N.getRawBaseType());
850 }
851
hasConflictingReferenceFlags(unsigned Flags)852 static bool hasConflictingReferenceFlags(unsigned Flags) {
853 return (Flags & DINode::FlagLValueReference) &&
854 (Flags & DINode::FlagRValueReference);
855 }
856
visitTemplateParams(const MDNode & N,const Metadata & RawParams)857 void Verifier::visitTemplateParams(const MDNode &N, const Metadata &RawParams) {
858 auto *Params = dyn_cast<MDTuple>(&RawParams);
859 AssertDI(Params, "invalid template params", &N, &RawParams);
860 for (Metadata *Op : Params->operands()) {
861 AssertDI(Op && isa<DITemplateParameter>(Op), "invalid template parameter",
862 &N, Params, Op);
863 }
864 }
865
visitDICompositeType(const DICompositeType & N)866 void Verifier::visitDICompositeType(const DICompositeType &N) {
867 // Common scope checks.
868 visitDIScope(N);
869
870 AssertDI(N.getTag() == dwarf::DW_TAG_array_type ||
871 N.getTag() == dwarf::DW_TAG_structure_type ||
872 N.getTag() == dwarf::DW_TAG_union_type ||
873 N.getTag() == dwarf::DW_TAG_enumeration_type ||
874 N.getTag() == dwarf::DW_TAG_class_type,
875 "invalid tag", &N);
876
877 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
878 AssertDI(isType(N.getRawBaseType()), "invalid base type", &N,
879 N.getRawBaseType());
880
881 AssertDI(!N.getRawElements() || isa<MDTuple>(N.getRawElements()),
882 "invalid composite elements", &N, N.getRawElements());
883 AssertDI(isType(N.getRawVTableHolder()), "invalid vtable holder", &N,
884 N.getRawVTableHolder());
885 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
886 "invalid reference flags", &N);
887 if (auto *Params = N.getRawTemplateParams())
888 visitTemplateParams(N, *Params);
889
890 if (N.getTag() == dwarf::DW_TAG_class_type ||
891 N.getTag() == dwarf::DW_TAG_union_type) {
892 AssertDI(N.getFile() && !N.getFile()->getFilename().empty(),
893 "class/union requires a filename", &N, N.getFile());
894 }
895 }
896
visitDISubroutineType(const DISubroutineType & N)897 void Verifier::visitDISubroutineType(const DISubroutineType &N) {
898 AssertDI(N.getTag() == dwarf::DW_TAG_subroutine_type, "invalid tag", &N);
899 if (auto *Types = N.getRawTypeArray()) {
900 AssertDI(isa<MDTuple>(Types), "invalid composite elements", &N, Types);
901 for (Metadata *Ty : N.getTypeArray()->operands()) {
902 AssertDI(isType(Ty), "invalid subroutine type ref", &N, Types, Ty);
903 }
904 }
905 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
906 "invalid reference flags", &N);
907 }
908
visitDIFile(const DIFile & N)909 void Verifier::visitDIFile(const DIFile &N) {
910 AssertDI(N.getTag() == dwarf::DW_TAG_file_type, "invalid tag", &N);
911 }
912
visitDICompileUnit(const DICompileUnit & N)913 void Verifier::visitDICompileUnit(const DICompileUnit &N) {
914 AssertDI(N.isDistinct(), "compile units must be distinct", &N);
915 AssertDI(N.getTag() == dwarf::DW_TAG_compile_unit, "invalid tag", &N);
916
917 // Don't bother verifying the compilation directory or producer string
918 // as those could be empty.
919 AssertDI(N.getRawFile() && isa<DIFile>(N.getRawFile()), "invalid file", &N,
920 N.getRawFile());
921 AssertDI(!N.getFile()->getFilename().empty(), "invalid filename", &N,
922 N.getFile());
923
924 AssertDI((N.getEmissionKind() <= DICompileUnit::LastEmissionKind),
925 "invalid emission kind", &N);
926
927 if (auto *Array = N.getRawEnumTypes()) {
928 AssertDI(isa<MDTuple>(Array), "invalid enum list", &N, Array);
929 for (Metadata *Op : N.getEnumTypes()->operands()) {
930 auto *Enum = dyn_cast_or_null<DICompositeType>(Op);
931 AssertDI(Enum && Enum->getTag() == dwarf::DW_TAG_enumeration_type,
932 "invalid enum type", &N, N.getEnumTypes(), Op);
933 }
934 }
935 if (auto *Array = N.getRawRetainedTypes()) {
936 AssertDI(isa<MDTuple>(Array), "invalid retained type list", &N, Array);
937 for (Metadata *Op : N.getRetainedTypes()->operands()) {
938 AssertDI(Op && (isa<DIType>(Op) ||
939 (isa<DISubprogram>(Op) &&
940 cast<DISubprogram>(Op)->isDefinition() == false)),
941 "invalid retained type", &N, Op);
942 }
943 }
944 if (auto *Array = N.getRawGlobalVariables()) {
945 AssertDI(isa<MDTuple>(Array), "invalid global variable list", &N, Array);
946 for (Metadata *Op : N.getGlobalVariables()->operands()) {
947 AssertDI(Op && isa<DIGlobalVariable>(Op), "invalid global variable ref",
948 &N, Op);
949 }
950 }
951 if (auto *Array = N.getRawImportedEntities()) {
952 AssertDI(isa<MDTuple>(Array), "invalid imported entity list", &N, Array);
953 for (Metadata *Op : N.getImportedEntities()->operands()) {
954 AssertDI(Op && isa<DIImportedEntity>(Op), "invalid imported entity ref",
955 &N, Op);
956 }
957 }
958 if (auto *Array = N.getRawMacros()) {
959 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
960 for (Metadata *Op : N.getMacros()->operands()) {
961 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
962 }
963 }
964 CUVisited.insert(&N);
965 }
966
visitDISubprogram(const DISubprogram & N)967 void Verifier::visitDISubprogram(const DISubprogram &N) {
968 AssertDI(N.getTag() == dwarf::DW_TAG_subprogram, "invalid tag", &N);
969 AssertDI(isScope(N.getRawScope()), "invalid scope", &N, N.getRawScope());
970 if (auto *F = N.getRawFile())
971 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
972 if (auto *T = N.getRawType())
973 AssertDI(isa<DISubroutineType>(T), "invalid subroutine type", &N, T);
974 AssertDI(isType(N.getRawContainingType()), "invalid containing type", &N,
975 N.getRawContainingType());
976 if (auto *Params = N.getRawTemplateParams())
977 visitTemplateParams(N, *Params);
978 if (auto *S = N.getRawDeclaration())
979 AssertDI(isa<DISubprogram>(S) && !cast<DISubprogram>(S)->isDefinition(),
980 "invalid subprogram declaration", &N, S);
981 if (auto *RawVars = N.getRawVariables()) {
982 auto *Vars = dyn_cast<MDTuple>(RawVars);
983 AssertDI(Vars, "invalid variable list", &N, RawVars);
984 for (Metadata *Op : Vars->operands()) {
985 AssertDI(Op && isa<DILocalVariable>(Op), "invalid local variable", &N,
986 Vars, Op);
987 }
988 }
989 AssertDI(!hasConflictingReferenceFlags(N.getFlags()),
990 "invalid reference flags", &N);
991
992 auto *Unit = N.getRawUnit();
993 if (N.isDefinition()) {
994 // Subprogram definitions (not part of the type hierarchy).
995 AssertDI(N.isDistinct(), "subprogram definitions must be distinct", &N);
996 AssertDI(Unit, "subprogram definitions must have a compile unit", &N);
997 AssertDI(isa<DICompileUnit>(Unit), "invalid unit type", &N, Unit);
998 } else {
999 // Subprogram declarations (part of the type hierarchy).
1000 AssertDI(!Unit, "subprogram declarations must not have a compile unit", &N);
1001 }
1002 }
1003
visitDILexicalBlockBase(const DILexicalBlockBase & N)1004 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase &N) {
1005 AssertDI(N.getTag() == dwarf::DW_TAG_lexical_block, "invalid tag", &N);
1006 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1007 "invalid local scope", &N, N.getRawScope());
1008 }
1009
visitDILexicalBlock(const DILexicalBlock & N)1010 void Verifier::visitDILexicalBlock(const DILexicalBlock &N) {
1011 visitDILexicalBlockBase(N);
1012
1013 AssertDI(N.getLine() || !N.getColumn(),
1014 "cannot have column info without line info", &N);
1015 }
1016
visitDILexicalBlockFile(const DILexicalBlockFile & N)1017 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile &N) {
1018 visitDILexicalBlockBase(N);
1019 }
1020
visitDINamespace(const DINamespace & N)1021 void Verifier::visitDINamespace(const DINamespace &N) {
1022 AssertDI(N.getTag() == dwarf::DW_TAG_namespace, "invalid tag", &N);
1023 if (auto *S = N.getRawScope())
1024 AssertDI(isa<DIScope>(S), "invalid scope ref", &N, S);
1025 }
1026
visitDIMacro(const DIMacro & N)1027 void Verifier::visitDIMacro(const DIMacro &N) {
1028 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_define ||
1029 N.getMacinfoType() == dwarf::DW_MACINFO_undef,
1030 "invalid macinfo type", &N);
1031 AssertDI(!N.getName().empty(), "anonymous macro", &N);
1032 if (!N.getValue().empty()) {
1033 assert(N.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1034 }
1035 }
1036
visitDIMacroFile(const DIMacroFile & N)1037 void Verifier::visitDIMacroFile(const DIMacroFile &N) {
1038 AssertDI(N.getMacinfoType() == dwarf::DW_MACINFO_start_file,
1039 "invalid macinfo type", &N);
1040 if (auto *F = N.getRawFile())
1041 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1042
1043 if (auto *Array = N.getRawElements()) {
1044 AssertDI(isa<MDTuple>(Array), "invalid macro list", &N, Array);
1045 for (Metadata *Op : N.getElements()->operands()) {
1046 AssertDI(Op && isa<DIMacroNode>(Op), "invalid macro ref", &N, Op);
1047 }
1048 }
1049 }
1050
visitDIModule(const DIModule & N)1051 void Verifier::visitDIModule(const DIModule &N) {
1052 AssertDI(N.getTag() == dwarf::DW_TAG_module, "invalid tag", &N);
1053 AssertDI(!N.getName().empty(), "anonymous module", &N);
1054 }
1055
visitDITemplateParameter(const DITemplateParameter & N)1056 void Verifier::visitDITemplateParameter(const DITemplateParameter &N) {
1057 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1058 }
1059
visitDITemplateTypeParameter(const DITemplateTypeParameter & N)1060 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter &N) {
1061 visitDITemplateParameter(N);
1062
1063 AssertDI(N.getTag() == dwarf::DW_TAG_template_type_parameter, "invalid tag",
1064 &N);
1065 }
1066
visitDITemplateValueParameter(const DITemplateValueParameter & N)1067 void Verifier::visitDITemplateValueParameter(
1068 const DITemplateValueParameter &N) {
1069 visitDITemplateParameter(N);
1070
1071 AssertDI(N.getTag() == dwarf::DW_TAG_template_value_parameter ||
1072 N.getTag() == dwarf::DW_TAG_GNU_template_template_param ||
1073 N.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack,
1074 "invalid tag", &N);
1075 }
1076
visitDIVariable(const DIVariable & N)1077 void Verifier::visitDIVariable(const DIVariable &N) {
1078 if (auto *S = N.getRawScope())
1079 AssertDI(isa<DIScope>(S), "invalid scope", &N, S);
1080 AssertDI(isType(N.getRawType()), "invalid type ref", &N, N.getRawType());
1081 if (auto *F = N.getRawFile())
1082 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1083 }
1084
visitDIGlobalVariable(const DIGlobalVariable & N)1085 void Verifier::visitDIGlobalVariable(const DIGlobalVariable &N) {
1086 // Checks common to all variables.
1087 visitDIVariable(N);
1088
1089 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1090 AssertDI(!N.getName().empty(), "missing global variable name", &N);
1091 if (auto *V = N.getRawVariable()) {
1092 AssertDI(isa<ConstantAsMetadata>(V) &&
1093 !isa<Function>(cast<ConstantAsMetadata>(V)->getValue()),
1094 "invalid global varaible ref", &N, V);
1095 visitConstantExprsRecursively(cast<ConstantAsMetadata>(V)->getValue());
1096 }
1097 if (auto *Member = N.getRawStaticDataMemberDeclaration()) {
1098 AssertDI(isa<DIDerivedType>(Member),
1099 "invalid static data member declaration", &N, Member);
1100 }
1101 }
1102
visitDILocalVariable(const DILocalVariable & N)1103 void Verifier::visitDILocalVariable(const DILocalVariable &N) {
1104 // Checks common to all variables.
1105 visitDIVariable(N);
1106
1107 AssertDI(N.getTag() == dwarf::DW_TAG_variable, "invalid tag", &N);
1108 AssertDI(N.getRawScope() && isa<DILocalScope>(N.getRawScope()),
1109 "local variable requires a valid scope", &N, N.getRawScope());
1110 }
1111
visitDIExpression(const DIExpression & N)1112 void Verifier::visitDIExpression(const DIExpression &N) {
1113 AssertDI(N.isValid(), "invalid expression", &N);
1114 }
1115
visitDIObjCProperty(const DIObjCProperty & N)1116 void Verifier::visitDIObjCProperty(const DIObjCProperty &N) {
1117 AssertDI(N.getTag() == dwarf::DW_TAG_APPLE_property, "invalid tag", &N);
1118 if (auto *T = N.getRawType())
1119 AssertDI(isType(T), "invalid type ref", &N, T);
1120 if (auto *F = N.getRawFile())
1121 AssertDI(isa<DIFile>(F), "invalid file", &N, F);
1122 }
1123
visitDIImportedEntity(const DIImportedEntity & N)1124 void Verifier::visitDIImportedEntity(const DIImportedEntity &N) {
1125 AssertDI(N.getTag() == dwarf::DW_TAG_imported_module ||
1126 N.getTag() == dwarf::DW_TAG_imported_declaration,
1127 "invalid tag", &N);
1128 if (auto *S = N.getRawScope())
1129 AssertDI(isa<DIScope>(S), "invalid scope for imported entity", &N, S);
1130 AssertDI(isDINode(N.getRawEntity()), "invalid imported entity", &N,
1131 N.getRawEntity());
1132 }
1133
visitComdat(const Comdat & C)1134 void Verifier::visitComdat(const Comdat &C) {
1135 // The Module is invalid if the GlobalValue has private linkage. Entities
1136 // with private linkage don't have entries in the symbol table.
1137 if (const GlobalValue *GV = M->getNamedValue(C.getName()))
1138 Assert(!GV->hasPrivateLinkage(), "comdat global value has private linkage",
1139 GV);
1140 }
1141
visitModuleIdents(const Module & M)1142 void Verifier::visitModuleIdents(const Module &M) {
1143 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
1144 if (!Idents)
1145 return;
1146
1147 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1148 // Scan each llvm.ident entry and make sure that this requirement is met.
1149 for (const MDNode *N : Idents->operands()) {
1150 Assert(N->getNumOperands() == 1,
1151 "incorrect number of operands in llvm.ident metadata", N);
1152 Assert(dyn_cast_or_null<MDString>(N->getOperand(0)),
1153 ("invalid value for llvm.ident metadata entry operand"
1154 "(the operand should be a string)"),
1155 N->getOperand(0));
1156 }
1157 }
1158
visitModuleFlags(const Module & M)1159 void Verifier::visitModuleFlags(const Module &M) {
1160 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
1161 if (!Flags) return;
1162
1163 // Scan each flag, and track the flags and requirements.
1164 DenseMap<const MDString*, const MDNode*> SeenIDs;
1165 SmallVector<const MDNode*, 16> Requirements;
1166 for (const MDNode *MDN : Flags->operands())
1167 visitModuleFlag(MDN, SeenIDs, Requirements);
1168
1169 // Validate that the requirements in the module are valid.
1170 for (const MDNode *Requirement : Requirements) {
1171 const MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1172 const Metadata *ReqValue = Requirement->getOperand(1);
1173
1174 const MDNode *Op = SeenIDs.lookup(Flag);
1175 if (!Op) {
1176 CheckFailed("invalid requirement on flag, flag is not present in module",
1177 Flag);
1178 continue;
1179 }
1180
1181 if (Op->getOperand(2) != ReqValue) {
1182 CheckFailed(("invalid requirement on flag, "
1183 "flag does not have the required value"),
1184 Flag);
1185 continue;
1186 }
1187 }
1188 }
1189
1190 void
visitModuleFlag(const MDNode * Op,DenseMap<const MDString *,const MDNode * > & SeenIDs,SmallVectorImpl<const MDNode * > & Requirements)1191 Verifier::visitModuleFlag(const MDNode *Op,
1192 DenseMap<const MDString *, const MDNode *> &SeenIDs,
1193 SmallVectorImpl<const MDNode *> &Requirements) {
1194 // Each module flag should have three arguments, the merge behavior (a
1195 // constant int), the flag ID (an MDString), and the value.
1196 Assert(Op->getNumOperands() == 3,
1197 "incorrect number of operands in module flag", Op);
1198 Module::ModFlagBehavior MFB;
1199 if (!Module::isValidModFlagBehavior(Op->getOperand(0), MFB)) {
1200 Assert(
1201 mdconst::dyn_extract_or_null<ConstantInt>(Op->getOperand(0)),
1202 "invalid behavior operand in module flag (expected constant integer)",
1203 Op->getOperand(0));
1204 Assert(false,
1205 "invalid behavior operand in module flag (unexpected constant)",
1206 Op->getOperand(0));
1207 }
1208 MDString *ID = dyn_cast_or_null<MDString>(Op->getOperand(1));
1209 Assert(ID, "invalid ID operand in module flag (expected metadata string)",
1210 Op->getOperand(1));
1211
1212 // Sanity check the values for behaviors with additional requirements.
1213 switch (MFB) {
1214 case Module::Error:
1215 case Module::Warning:
1216 case Module::Override:
1217 // These behavior types accept any value.
1218 break;
1219
1220 case Module::Require: {
1221 // The value should itself be an MDNode with two operands, a flag ID (an
1222 // MDString), and a value.
1223 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
1224 Assert(Value && Value->getNumOperands() == 2,
1225 "invalid value for 'require' module flag (expected metadata pair)",
1226 Op->getOperand(2));
1227 Assert(isa<MDString>(Value->getOperand(0)),
1228 ("invalid value for 'require' module flag "
1229 "(first value operand should be a string)"),
1230 Value->getOperand(0));
1231
1232 // Append it to the list of requirements, to check once all module flags are
1233 // scanned.
1234 Requirements.push_back(Value);
1235 break;
1236 }
1237
1238 case Module::Append:
1239 case Module::AppendUnique: {
1240 // These behavior types require the operand be an MDNode.
1241 Assert(isa<MDNode>(Op->getOperand(2)),
1242 "invalid value for 'append'-type module flag "
1243 "(expected a metadata node)",
1244 Op->getOperand(2));
1245 break;
1246 }
1247 }
1248
1249 // Unless this is a "requires" flag, check the ID is unique.
1250 if (MFB != Module::Require) {
1251 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
1252 Assert(Inserted,
1253 "module flag identifiers must be unique (or of 'require' type)", ID);
1254 }
1255 }
1256
verifyAttributeTypes(AttributeSet Attrs,unsigned Idx,bool isFunction,const Value * V)1257 void Verifier::verifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
1258 bool isFunction, const Value *V) {
1259 unsigned Slot = ~0U;
1260 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
1261 if (Attrs.getSlotIndex(I) == Idx) {
1262 Slot = I;
1263 break;
1264 }
1265
1266 assert(Slot != ~0U && "Attribute set inconsistency!");
1267
1268 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
1269 I != E; ++I) {
1270 if (I->isStringAttribute())
1271 continue;
1272
1273 if (I->getKindAsEnum() == Attribute::NoReturn ||
1274 I->getKindAsEnum() == Attribute::NoUnwind ||
1275 I->getKindAsEnum() == Attribute::NoInline ||
1276 I->getKindAsEnum() == Attribute::AlwaysInline ||
1277 I->getKindAsEnum() == Attribute::OptimizeForSize ||
1278 I->getKindAsEnum() == Attribute::StackProtect ||
1279 I->getKindAsEnum() == Attribute::StackProtectReq ||
1280 I->getKindAsEnum() == Attribute::StackProtectStrong ||
1281 I->getKindAsEnum() == Attribute::SafeStack ||
1282 I->getKindAsEnum() == Attribute::NoRedZone ||
1283 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
1284 I->getKindAsEnum() == Attribute::Naked ||
1285 I->getKindAsEnum() == Attribute::InlineHint ||
1286 I->getKindAsEnum() == Attribute::StackAlignment ||
1287 I->getKindAsEnum() == Attribute::UWTable ||
1288 I->getKindAsEnum() == Attribute::NonLazyBind ||
1289 I->getKindAsEnum() == Attribute::ReturnsTwice ||
1290 I->getKindAsEnum() == Attribute::SanitizeAddress ||
1291 I->getKindAsEnum() == Attribute::SanitizeThread ||
1292 I->getKindAsEnum() == Attribute::SanitizeMemory ||
1293 I->getKindAsEnum() == Attribute::MinSize ||
1294 I->getKindAsEnum() == Attribute::NoDuplicate ||
1295 I->getKindAsEnum() == Attribute::Builtin ||
1296 I->getKindAsEnum() == Attribute::NoBuiltin ||
1297 I->getKindAsEnum() == Attribute::Cold ||
1298 I->getKindAsEnum() == Attribute::OptimizeNone ||
1299 I->getKindAsEnum() == Attribute::JumpTable ||
1300 I->getKindAsEnum() == Attribute::Convergent ||
1301 I->getKindAsEnum() == Attribute::ArgMemOnly ||
1302 I->getKindAsEnum() == Attribute::NoRecurse ||
1303 I->getKindAsEnum() == Attribute::InaccessibleMemOnly ||
1304 I->getKindAsEnum() == Attribute::InaccessibleMemOrArgMemOnly ||
1305 I->getKindAsEnum() == Attribute::AllocSize) {
1306 if (!isFunction) {
1307 CheckFailed("Attribute '" + I->getAsString() +
1308 "' only applies to functions!", V);
1309 return;
1310 }
1311 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
1312 I->getKindAsEnum() == Attribute::WriteOnly ||
1313 I->getKindAsEnum() == Attribute::ReadNone) {
1314 if (Idx == 0) {
1315 CheckFailed("Attribute '" + I->getAsString() +
1316 "' does not apply to function returns");
1317 return;
1318 }
1319 } else if (isFunction) {
1320 CheckFailed("Attribute '" + I->getAsString() +
1321 "' does not apply to functions!", V);
1322 return;
1323 }
1324 }
1325 }
1326
1327 // VerifyParameterAttrs - Check the given attributes for an argument or return
1328 // value of the specified type. The value V is printed in error messages.
verifyParameterAttrs(AttributeSet Attrs,unsigned Idx,Type * Ty,bool isReturnValue,const Value * V)1329 void Verifier::verifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
1330 bool isReturnValue, const Value *V) {
1331 if (!Attrs.hasAttributes(Idx))
1332 return;
1333
1334 verifyAttributeTypes(Attrs, Idx, false, V);
1335
1336 if (isReturnValue)
1337 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1338 !Attrs.hasAttribute(Idx, Attribute::Nest) &&
1339 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1340 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
1341 !Attrs.hasAttribute(Idx, Attribute::Returned) &&
1342 !Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1343 !Attrs.hasAttribute(Idx, Attribute::SwiftSelf) &&
1344 !Attrs.hasAttribute(Idx, Attribute::SwiftError),
1345 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1346 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1347 "values!",
1348 V);
1349
1350 // Check for mutually incompatible attributes. Only inreg is compatible with
1351 // sret.
1352 unsigned AttrCount = 0;
1353 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
1354 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
1355 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
1356 Attrs.hasAttribute(Idx, Attribute::InReg);
1357 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
1358 Assert(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1359 "and 'sret' are incompatible!",
1360 V);
1361
1362 Assert(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
1363 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1364 "Attributes "
1365 "'inalloca and readonly' are incompatible!",
1366 V);
1367
1368 Assert(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
1369 Attrs.hasAttribute(Idx, Attribute::Returned)),
1370 "Attributes "
1371 "'sret and returned' are incompatible!",
1372 V);
1373
1374 Assert(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
1375 Attrs.hasAttribute(Idx, Attribute::SExt)),
1376 "Attributes "
1377 "'zeroext and signext' are incompatible!",
1378 V);
1379
1380 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1381 Attrs.hasAttribute(Idx, Attribute::ReadOnly)),
1382 "Attributes "
1383 "'readnone and readonly' are incompatible!",
1384 V);
1385
1386 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
1387 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
1388 "Attributes "
1389 "'readnone and writeonly' are incompatible!",
1390 V);
1391
1392 Assert(!(Attrs.hasAttribute(Idx, Attribute::ReadOnly) &&
1393 Attrs.hasAttribute(Idx, Attribute::WriteOnly)),
1394 "Attributes "
1395 "'readonly and writeonly' are incompatible!",
1396 V);
1397
1398 Assert(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
1399 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)),
1400 "Attributes "
1401 "'noinline and alwaysinline' are incompatible!",
1402 V);
1403
1404 Assert(!AttrBuilder(Attrs, Idx)
1405 .overlaps(AttributeFuncs::typeIncompatible(Ty)),
1406 "Wrong types for attribute: " +
1407 AttributeSet::get(*Context, Idx,
1408 AttributeFuncs::typeIncompatible(Ty)).getAsString(Idx),
1409 V);
1410
1411 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1412 SmallPtrSet<Type*, 4> Visited;
1413 if (!PTy->getElementType()->isSized(&Visited)) {
1414 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
1415 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
1416 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1417 V);
1418 }
1419 if (!isa<PointerType>(PTy->getElementType()))
1420 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
1421 "Attribute 'swifterror' only applies to parameters "
1422 "with pointer to pointer type!",
1423 V);
1424 } else {
1425 Assert(!Attrs.hasAttribute(Idx, Attribute::ByVal),
1426 "Attribute 'byval' only applies to parameters with pointer type!",
1427 V);
1428 Assert(!Attrs.hasAttribute(Idx, Attribute::SwiftError),
1429 "Attribute 'swifterror' only applies to parameters "
1430 "with pointer type!",
1431 V);
1432 }
1433 }
1434
1435 // Check parameter attributes against a function type.
1436 // The value V is printed in error messages.
verifyFunctionAttrs(FunctionType * FT,AttributeSet Attrs,const Value * V)1437 void Verifier::verifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
1438 const Value *V) {
1439 if (Attrs.isEmpty())
1440 return;
1441
1442 bool SawNest = false;
1443 bool SawReturned = false;
1444 bool SawSRet = false;
1445 bool SawSwiftSelf = false;
1446 bool SawSwiftError = false;
1447
1448 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
1449 unsigned Idx = Attrs.getSlotIndex(i);
1450
1451 Type *Ty;
1452 if (Idx == 0)
1453 Ty = FT->getReturnType();
1454 else if (Idx-1 < FT->getNumParams())
1455 Ty = FT->getParamType(Idx-1);
1456 else
1457 break; // VarArgs attributes, verified elsewhere.
1458
1459 verifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
1460
1461 if (Idx == 0)
1462 continue;
1463
1464 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1465 Assert(!SawNest, "More than one parameter has attribute nest!", V);
1466 SawNest = true;
1467 }
1468
1469 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1470 Assert(!SawReturned, "More than one parameter has attribute returned!",
1471 V);
1472 Assert(Ty->canLosslesslyBitCastTo(FT->getReturnType()),
1473 "Incompatible "
1474 "argument and return types for 'returned' attribute",
1475 V);
1476 SawReturned = true;
1477 }
1478
1479 if (Attrs.hasAttribute(Idx, Attribute::StructRet)) {
1480 Assert(!SawSRet, "Cannot have multiple 'sret' parameters!", V);
1481 Assert(Idx == 1 || Idx == 2,
1482 "Attribute 'sret' is not on first or second parameter!", V);
1483 SawSRet = true;
1484 }
1485
1486 if (Attrs.hasAttribute(Idx, Attribute::SwiftSelf)) {
1487 Assert(!SawSwiftSelf, "Cannot have multiple 'swiftself' parameters!", V);
1488 SawSwiftSelf = true;
1489 }
1490
1491 if (Attrs.hasAttribute(Idx, Attribute::SwiftError)) {
1492 Assert(!SawSwiftError, "Cannot have multiple 'swifterror' parameters!",
1493 V);
1494 SawSwiftError = true;
1495 }
1496
1497 if (Attrs.hasAttribute(Idx, Attribute::InAlloca)) {
1498 Assert(Idx == FT->getNumParams(), "inalloca isn't on the last parameter!",
1499 V);
1500 }
1501 }
1502
1503 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
1504 return;
1505
1506 verifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
1507
1508 Assert(
1509 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1510 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly)),
1511 "Attributes 'readnone and readonly' are incompatible!", V);
1512
1513 Assert(
1514 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1515 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
1516 "Attributes 'readnone and writeonly' are incompatible!", V);
1517
1518 Assert(
1519 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly) &&
1520 Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::WriteOnly)),
1521 "Attributes 'readonly and writeonly' are incompatible!", V);
1522
1523 Assert(
1524 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1525 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1526 Attribute::InaccessibleMemOrArgMemOnly)),
1527 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are incompatible!", V);
1528
1529 Assert(
1530 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone) &&
1531 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1532 Attribute::InaccessibleMemOnly)),
1533 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V);
1534
1535 Assert(
1536 !(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline) &&
1537 Attrs.hasAttribute(AttributeSet::FunctionIndex,
1538 Attribute::AlwaysInline)),
1539 "Attributes 'noinline and alwaysinline' are incompatible!", V);
1540
1541 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1542 Attribute::OptimizeNone)) {
1543 Assert(Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::NoInline),
1544 "Attribute 'optnone' requires 'noinline'!", V);
1545
1546 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1547 Attribute::OptimizeForSize),
1548 "Attributes 'optsize and optnone' are incompatible!", V);
1549
1550 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::MinSize),
1551 "Attributes 'minsize and optnone' are incompatible!", V);
1552 }
1553
1554 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
1555 Attribute::JumpTable)) {
1556 const GlobalValue *GV = cast<GlobalValue>(V);
1557 Assert(GV->hasGlobalUnnamedAddr(),
1558 "Attribute 'jumptable' requires 'unnamed_addr'", V);
1559 }
1560
1561 if (Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::AllocSize)) {
1562 std::pair<unsigned, Optional<unsigned>> Args =
1563 Attrs.getAllocSizeArgs(AttributeSet::FunctionIndex);
1564
1565 auto CheckParam = [&](StringRef Name, unsigned ParamNo) {
1566 if (ParamNo >= FT->getNumParams()) {
1567 CheckFailed("'allocsize' " + Name + " argument is out of bounds", V);
1568 return false;
1569 }
1570
1571 if (!FT->getParamType(ParamNo)->isIntegerTy()) {
1572 CheckFailed("'allocsize' " + Name +
1573 " argument must refer to an integer parameter",
1574 V);
1575 return false;
1576 }
1577
1578 return true;
1579 };
1580
1581 if (!CheckParam("element size", Args.first))
1582 return;
1583
1584 if (Args.second && !CheckParam("number of elements", *Args.second))
1585 return;
1586 }
1587 }
1588
verifyFunctionMetadata(ArrayRef<std::pair<unsigned,MDNode * >> MDs)1589 void Verifier::verifyFunctionMetadata(
1590 ArrayRef<std::pair<unsigned, MDNode *>> MDs) {
1591 for (const auto &Pair : MDs) {
1592 if (Pair.first == LLVMContext::MD_prof) {
1593 MDNode *MD = Pair.second;
1594 Assert(MD->getNumOperands() == 2,
1595 "!prof annotations should have exactly 2 operands", MD);
1596
1597 // Check first operand.
1598 Assert(MD->getOperand(0) != nullptr, "first operand should not be null",
1599 MD);
1600 Assert(isa<MDString>(MD->getOperand(0)),
1601 "expected string with name of the !prof annotation", MD);
1602 MDString *MDS = cast<MDString>(MD->getOperand(0));
1603 StringRef ProfName = MDS->getString();
1604 Assert(ProfName.equals("function_entry_count"),
1605 "first operand should be 'function_entry_count'", MD);
1606
1607 // Check second operand.
1608 Assert(MD->getOperand(1) != nullptr, "second operand should not be null",
1609 MD);
1610 Assert(isa<ConstantAsMetadata>(MD->getOperand(1)),
1611 "expected integer argument to function_entry_count", MD);
1612 }
1613 }
1614 }
1615
visitConstantExprsRecursively(const Constant * EntryC)1616 void Verifier::visitConstantExprsRecursively(const Constant *EntryC) {
1617 if (!ConstantExprVisited.insert(EntryC).second)
1618 return;
1619
1620 SmallVector<const Constant *, 16> Stack;
1621 Stack.push_back(EntryC);
1622
1623 while (!Stack.empty()) {
1624 const Constant *C = Stack.pop_back_val();
1625
1626 // Check this constant expression.
1627 if (const auto *CE = dyn_cast<ConstantExpr>(C))
1628 visitConstantExpr(CE);
1629
1630 if (const auto *GV = dyn_cast<GlobalValue>(C)) {
1631 // Global Values get visited separately, but we do need to make sure
1632 // that the global value is in the correct module
1633 Assert(GV->getParent() == M, "Referencing global in another module!",
1634 EntryC, M, GV, GV->getParent());
1635 continue;
1636 }
1637
1638 // Visit all sub-expressions.
1639 for (const Use &U : C->operands()) {
1640 const auto *OpC = dyn_cast<Constant>(U);
1641 if (!OpC)
1642 continue;
1643 if (!ConstantExprVisited.insert(OpC).second)
1644 continue;
1645 Stack.push_back(OpC);
1646 }
1647 }
1648 }
1649
visitConstantExpr(const ConstantExpr * CE)1650 void Verifier::visitConstantExpr(const ConstantExpr *CE) {
1651 if (CE->getOpcode() != Instruction::BitCast)
1652 return;
1653
1654 Assert(CastInst::castIsValid(Instruction::BitCast, CE->getOperand(0),
1655 CE->getType()),
1656 "Invalid bitcast", CE);
1657 }
1658
verifyAttributeCount(AttributeSet Attrs,unsigned Params)1659 bool Verifier::verifyAttributeCount(AttributeSet Attrs, unsigned Params) {
1660 if (Attrs.getNumSlots() == 0)
1661 return true;
1662
1663 unsigned LastSlot = Attrs.getNumSlots() - 1;
1664 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
1665 if (LastIndex <= Params
1666 || (LastIndex == AttributeSet::FunctionIndex
1667 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1668 return true;
1669
1670 return false;
1671 }
1672
1673 /// Verify that statepoint intrinsic is well formed.
verifyStatepoint(ImmutableCallSite CS)1674 void Verifier::verifyStatepoint(ImmutableCallSite CS) {
1675 assert(CS.getCalledFunction() &&
1676 CS.getCalledFunction()->getIntrinsicID() ==
1677 Intrinsic::experimental_gc_statepoint);
1678
1679 const Instruction &CI = *CS.getInstruction();
1680
1681 Assert(!CS.doesNotAccessMemory() && !CS.onlyReadsMemory() &&
1682 !CS.onlyAccessesArgMemory(),
1683 "gc.statepoint must read and write all memory to preserve "
1684 "reordering restrictions required by safepoint semantics",
1685 &CI);
1686
1687 const Value *IDV = CS.getArgument(0);
1688 Assert(isa<ConstantInt>(IDV), "gc.statepoint ID must be a constant integer",
1689 &CI);
1690
1691 const Value *NumPatchBytesV = CS.getArgument(1);
1692 Assert(isa<ConstantInt>(NumPatchBytesV),
1693 "gc.statepoint number of patchable bytes must be a constant integer",
1694 &CI);
1695 const int64_t NumPatchBytes =
1696 cast<ConstantInt>(NumPatchBytesV)->getSExtValue();
1697 assert(isInt<32>(NumPatchBytes) && "NumPatchBytesV is an i32!");
1698 Assert(NumPatchBytes >= 0, "gc.statepoint number of patchable bytes must be "
1699 "positive",
1700 &CI);
1701
1702 const Value *Target = CS.getArgument(2);
1703 auto *PT = dyn_cast<PointerType>(Target->getType());
1704 Assert(PT && PT->getElementType()->isFunctionTy(),
1705 "gc.statepoint callee must be of function pointer type", &CI, Target);
1706 FunctionType *TargetFuncType = cast<FunctionType>(PT->getElementType());
1707
1708 const Value *NumCallArgsV = CS.getArgument(3);
1709 Assert(isa<ConstantInt>(NumCallArgsV),
1710 "gc.statepoint number of arguments to underlying call "
1711 "must be constant integer",
1712 &CI);
1713 const int NumCallArgs = cast<ConstantInt>(NumCallArgsV)->getZExtValue();
1714 Assert(NumCallArgs >= 0,
1715 "gc.statepoint number of arguments to underlying call "
1716 "must be positive",
1717 &CI);
1718 const int NumParams = (int)TargetFuncType->getNumParams();
1719 if (TargetFuncType->isVarArg()) {
1720 Assert(NumCallArgs >= NumParams,
1721 "gc.statepoint mismatch in number of vararg call args", &CI);
1722
1723 // TODO: Remove this limitation
1724 Assert(TargetFuncType->getReturnType()->isVoidTy(),
1725 "gc.statepoint doesn't support wrapping non-void "
1726 "vararg functions yet",
1727 &CI);
1728 } else
1729 Assert(NumCallArgs == NumParams,
1730 "gc.statepoint mismatch in number of call args", &CI);
1731
1732 const Value *FlagsV = CS.getArgument(4);
1733 Assert(isa<ConstantInt>(FlagsV),
1734 "gc.statepoint flags must be constant integer", &CI);
1735 const uint64_t Flags = cast<ConstantInt>(FlagsV)->getZExtValue();
1736 Assert((Flags & ~(uint64_t)StatepointFlags::MaskAll) == 0,
1737 "unknown flag used in gc.statepoint flags argument", &CI);
1738
1739 // Verify that the types of the call parameter arguments match
1740 // the type of the wrapped callee.
1741 for (int i = 0; i < NumParams; i++) {
1742 Type *ParamType = TargetFuncType->getParamType(i);
1743 Type *ArgType = CS.getArgument(5 + i)->getType();
1744 Assert(ArgType == ParamType,
1745 "gc.statepoint call argument does not match wrapped "
1746 "function type",
1747 &CI);
1748 }
1749
1750 const int EndCallArgsInx = 4 + NumCallArgs;
1751
1752 const Value *NumTransitionArgsV = CS.getArgument(EndCallArgsInx+1);
1753 Assert(isa<ConstantInt>(NumTransitionArgsV),
1754 "gc.statepoint number of transition arguments "
1755 "must be constant integer",
1756 &CI);
1757 const int NumTransitionArgs =
1758 cast<ConstantInt>(NumTransitionArgsV)->getZExtValue();
1759 Assert(NumTransitionArgs >= 0,
1760 "gc.statepoint number of transition arguments must be positive", &CI);
1761 const int EndTransitionArgsInx = EndCallArgsInx + 1 + NumTransitionArgs;
1762
1763 const Value *NumDeoptArgsV = CS.getArgument(EndTransitionArgsInx+1);
1764 Assert(isa<ConstantInt>(NumDeoptArgsV),
1765 "gc.statepoint number of deoptimization arguments "
1766 "must be constant integer",
1767 &CI);
1768 const int NumDeoptArgs = cast<ConstantInt>(NumDeoptArgsV)->getZExtValue();
1769 Assert(NumDeoptArgs >= 0, "gc.statepoint number of deoptimization arguments "
1770 "must be positive",
1771 &CI);
1772
1773 const int ExpectedNumArgs =
1774 7 + NumCallArgs + NumTransitionArgs + NumDeoptArgs;
1775 Assert(ExpectedNumArgs <= (int)CS.arg_size(),
1776 "gc.statepoint too few arguments according to length fields", &CI);
1777
1778 // Check that the only uses of this gc.statepoint are gc.result or
1779 // gc.relocate calls which are tied to this statepoint and thus part
1780 // of the same statepoint sequence
1781 for (const User *U : CI.users()) {
1782 const CallInst *Call = dyn_cast<const CallInst>(U);
1783 Assert(Call, "illegal use of statepoint token", &CI, U);
1784 if (!Call) continue;
1785 Assert(isa<GCRelocateInst>(Call) || isa<GCResultInst>(Call),
1786 "gc.result or gc.relocate are the only value uses"
1787 "of a gc.statepoint",
1788 &CI, U);
1789 if (isa<GCResultInst>(Call)) {
1790 Assert(Call->getArgOperand(0) == &CI,
1791 "gc.result connected to wrong gc.statepoint", &CI, Call);
1792 } else if (isa<GCRelocateInst>(Call)) {
1793 Assert(Call->getArgOperand(0) == &CI,
1794 "gc.relocate connected to wrong gc.statepoint", &CI, Call);
1795 }
1796 }
1797
1798 // Note: It is legal for a single derived pointer to be listed multiple
1799 // times. It's non-optimal, but it is legal. It can also happen after
1800 // insertion if we strip a bitcast away.
1801 // Note: It is really tempting to check that each base is relocated and
1802 // that a derived pointer is never reused as a base pointer. This turns
1803 // out to be problematic since optimizations run after safepoint insertion
1804 // can recognize equality properties that the insertion logic doesn't know
1805 // about. See example statepoint.ll in the verifier subdirectory
1806 }
1807
verifyFrameRecoverIndices()1808 void Verifier::verifyFrameRecoverIndices() {
1809 for (auto &Counts : FrameEscapeInfo) {
1810 Function *F = Counts.first;
1811 unsigned EscapedObjectCount = Counts.second.first;
1812 unsigned MaxRecoveredIndex = Counts.second.second;
1813 Assert(MaxRecoveredIndex <= EscapedObjectCount,
1814 "all indices passed to llvm.localrecover must be less than the "
1815 "number of arguments passed ot llvm.localescape in the parent "
1816 "function",
1817 F);
1818 }
1819 }
1820
getSuccPad(TerminatorInst * Terminator)1821 static Instruction *getSuccPad(TerminatorInst *Terminator) {
1822 BasicBlock *UnwindDest;
1823 if (auto *II = dyn_cast<InvokeInst>(Terminator))
1824 UnwindDest = II->getUnwindDest();
1825 else if (auto *CSI = dyn_cast<CatchSwitchInst>(Terminator))
1826 UnwindDest = CSI->getUnwindDest();
1827 else
1828 UnwindDest = cast<CleanupReturnInst>(Terminator)->getUnwindDest();
1829 return UnwindDest->getFirstNonPHI();
1830 }
1831
verifySiblingFuncletUnwinds()1832 void Verifier::verifySiblingFuncletUnwinds() {
1833 SmallPtrSet<Instruction *, 8> Visited;
1834 SmallPtrSet<Instruction *, 8> Active;
1835 for (const auto &Pair : SiblingFuncletInfo) {
1836 Instruction *PredPad = Pair.first;
1837 if (Visited.count(PredPad))
1838 continue;
1839 Active.insert(PredPad);
1840 TerminatorInst *Terminator = Pair.second;
1841 do {
1842 Instruction *SuccPad = getSuccPad(Terminator);
1843 if (Active.count(SuccPad)) {
1844 // Found a cycle; report error
1845 Instruction *CyclePad = SuccPad;
1846 SmallVector<Instruction *, 8> CycleNodes;
1847 do {
1848 CycleNodes.push_back(CyclePad);
1849 TerminatorInst *CycleTerminator = SiblingFuncletInfo[CyclePad];
1850 if (CycleTerminator != CyclePad)
1851 CycleNodes.push_back(CycleTerminator);
1852 CyclePad = getSuccPad(CycleTerminator);
1853 } while (CyclePad != SuccPad);
1854 Assert(false, "EH pads can't handle each other's exceptions",
1855 ArrayRef<Instruction *>(CycleNodes));
1856 }
1857 // Don't re-walk a node we've already checked
1858 if (!Visited.insert(SuccPad).second)
1859 break;
1860 // Walk to this successor if it has a map entry.
1861 PredPad = SuccPad;
1862 auto TermI = SiblingFuncletInfo.find(PredPad);
1863 if (TermI == SiblingFuncletInfo.end())
1864 break;
1865 Terminator = TermI->second;
1866 Active.insert(PredPad);
1867 } while (true);
1868 // Each node only has one successor, so we've walked all the active
1869 // nodes' successors.
1870 Active.clear();
1871 }
1872 }
1873
1874 // visitFunction - Verify that a function is ok.
1875 //
visitFunction(const Function & F)1876 void Verifier::visitFunction(const Function &F) {
1877 visitGlobalValue(F);
1878
1879 // Check function arguments.
1880 FunctionType *FT = F.getFunctionType();
1881 unsigned NumArgs = F.arg_size();
1882
1883 Assert(Context == &F.getContext(),
1884 "Function context does not match Module context!", &F);
1885
1886 Assert(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1887 Assert(FT->getNumParams() == NumArgs,
1888 "# formal arguments must match # of arguments for function type!", &F,
1889 FT);
1890 Assert(F.getReturnType()->isFirstClassType() ||
1891 F.getReturnType()->isVoidTy() || F.getReturnType()->isStructTy(),
1892 "Functions cannot return aggregate values!", &F);
1893
1894 Assert(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1895 "Invalid struct return type!", &F);
1896
1897 AttributeSet Attrs = F.getAttributes();
1898
1899 Assert(verifyAttributeCount(Attrs, FT->getNumParams()),
1900 "Attribute after last parameter!", &F);
1901
1902 // Check function attributes.
1903 verifyFunctionAttrs(FT, Attrs, &F);
1904
1905 // On function declarations/definitions, we do not support the builtin
1906 // attribute. We do not check this in VerifyFunctionAttrs since that is
1907 // checking for Attributes that can/can not ever be on functions.
1908 Assert(!Attrs.hasAttribute(AttributeSet::FunctionIndex, Attribute::Builtin),
1909 "Attribute 'builtin' can only be applied to a callsite.", &F);
1910
1911 // Check that this function meets the restrictions on this calling convention.
1912 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
1913 // restrictions can be lifted.
1914 switch (F.getCallingConv()) {
1915 default:
1916 case CallingConv::C:
1917 break;
1918 case CallingConv::Fast:
1919 case CallingConv::Cold:
1920 case CallingConv::Intel_OCL_BI:
1921 case CallingConv::PTX_Kernel:
1922 case CallingConv::PTX_Device:
1923 Assert(!F.isVarArg(), "Calling convention does not support varargs or "
1924 "perfect forwarding!",
1925 &F);
1926 break;
1927 }
1928
1929 bool isLLVMdotName = F.getName().size() >= 5 &&
1930 F.getName().substr(0, 5) == "llvm.";
1931
1932 // Check that the argument values match the function type for this function...
1933 unsigned i = 0;
1934 for (const Argument &Arg : F.args()) {
1935 Assert(Arg.getType() == FT->getParamType(i),
1936 "Argument value does not match function argument type!", &Arg,
1937 FT->getParamType(i));
1938 Assert(Arg.getType()->isFirstClassType(),
1939 "Function arguments must have first-class types!", &Arg);
1940 if (!isLLVMdotName) {
1941 Assert(!Arg.getType()->isMetadataTy(),
1942 "Function takes metadata but isn't an intrinsic", &Arg, &F);
1943 Assert(!Arg.getType()->isTokenTy(),
1944 "Function takes token but isn't an intrinsic", &Arg, &F);
1945 }
1946
1947 // Check that swifterror argument is only used by loads and stores.
1948 if (Attrs.hasAttribute(i+1, Attribute::SwiftError)) {
1949 verifySwiftErrorValue(&Arg);
1950 }
1951 ++i;
1952 }
1953
1954 if (!isLLVMdotName)
1955 Assert(!F.getReturnType()->isTokenTy(),
1956 "Functions returns a token but isn't an intrinsic", &F);
1957
1958 // Get the function metadata attachments.
1959 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
1960 F.getAllMetadata(MDs);
1961 assert(F.hasMetadata() != MDs.empty() && "Bit out-of-sync");
1962 verifyFunctionMetadata(MDs);
1963
1964 // Check validity of the personality function
1965 if (F.hasPersonalityFn()) {
1966 auto *Per = dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
1967 if (Per)
1968 Assert(Per->getParent() == F.getParent(),
1969 "Referencing personality function in another module!",
1970 &F, F.getParent(), Per, Per->getParent());
1971 }
1972
1973 if (F.isMaterializable()) {
1974 // Function has a body somewhere we can't see.
1975 Assert(MDs.empty(), "unmaterialized function cannot have metadata", &F,
1976 MDs.empty() ? nullptr : MDs.front().second);
1977 } else if (F.isDeclaration()) {
1978 for (const auto &I : MDs) {
1979 AssertDI(I.first != LLVMContext::MD_dbg,
1980 "function declaration may not have a !dbg attachment", &F);
1981 Assert(I.first != LLVMContext::MD_prof,
1982 "function declaration may not have a !prof attachment", &F);
1983
1984 // Verify the metadata itself.
1985 visitMDNode(*I.second);
1986 }
1987 Assert(!F.hasPersonalityFn(),
1988 "Function declaration shouldn't have a personality routine", &F);
1989 } else {
1990 // Verify that this function (which has a body) is not named "llvm.*". It
1991 // is not legal to define intrinsics.
1992 Assert(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1993
1994 // Check the entry node
1995 const BasicBlock *Entry = &F.getEntryBlock();
1996 Assert(pred_empty(Entry),
1997 "Entry block to function must not have predecessors!", Entry);
1998
1999 // The address of the entry block cannot be taken, unless it is dead.
2000 if (Entry->hasAddressTaken()) {
2001 Assert(!BlockAddress::lookup(Entry)->isConstantUsed(),
2002 "blockaddress may not be used with the entry block!", Entry);
2003 }
2004
2005 unsigned NumDebugAttachments = 0, NumProfAttachments = 0;
2006 // Visit metadata attachments.
2007 for (const auto &I : MDs) {
2008 // Verify that the attachment is legal.
2009 switch (I.first) {
2010 default:
2011 break;
2012 case LLVMContext::MD_dbg:
2013 ++NumDebugAttachments;
2014 AssertDI(NumDebugAttachments == 1,
2015 "function must have a single !dbg attachment", &F, I.second);
2016 AssertDI(isa<DISubprogram>(I.second),
2017 "function !dbg attachment must be a subprogram", &F, I.second);
2018 break;
2019 case LLVMContext::MD_prof:
2020 ++NumProfAttachments;
2021 Assert(NumProfAttachments == 1,
2022 "function must have a single !prof attachment", &F, I.second);
2023 break;
2024 }
2025
2026 // Verify the metadata itself.
2027 visitMDNode(*I.second);
2028 }
2029 }
2030
2031 // If this function is actually an intrinsic, verify that it is only used in
2032 // direct call/invokes, never having its "address taken".
2033 // Only do this if the module is materialized, otherwise we don't have all the
2034 // uses.
2035 if (F.getIntrinsicID() && F.getParent()->isMaterialized()) {
2036 const User *U;
2037 if (F.hasAddressTaken(&U))
2038 Assert(0, "Invalid user of intrinsic instruction!", U);
2039 }
2040
2041 Assert(!F.hasDLLImportStorageClass() ||
2042 (F.isDeclaration() && F.hasExternalLinkage()) ||
2043 F.hasAvailableExternallyLinkage(),
2044 "Function is marked as dllimport, but not external.", &F);
2045
2046 auto *N = F.getSubprogram();
2047 if (!N)
2048 return;
2049
2050 visitDISubprogram(*N);
2051
2052 // Check that all !dbg attachments lead to back to N (or, at least, another
2053 // subprogram that describes the same function).
2054 //
2055 // FIXME: Check this incrementally while visiting !dbg attachments.
2056 // FIXME: Only check when N is the canonical subprogram for F.
2057 SmallPtrSet<const MDNode *, 32> Seen;
2058 for (auto &BB : F)
2059 for (auto &I : BB) {
2060 // Be careful about using DILocation here since we might be dealing with
2061 // broken code (this is the Verifier after all).
2062 DILocation *DL =
2063 dyn_cast_or_null<DILocation>(I.getDebugLoc().getAsMDNode());
2064 if (!DL)
2065 continue;
2066 if (!Seen.insert(DL).second)
2067 continue;
2068
2069 DILocalScope *Scope = DL->getInlinedAtScope();
2070 if (Scope && !Seen.insert(Scope).second)
2071 continue;
2072
2073 DISubprogram *SP = Scope ? Scope->getSubprogram() : nullptr;
2074
2075 // Scope and SP could be the same MDNode and we don't want to skip
2076 // validation in that case
2077 if (SP && ((Scope != SP) && !Seen.insert(SP).second))
2078 continue;
2079
2080 // FIXME: Once N is canonical, check "SP == &N".
2081 Assert(SP->describes(&F),
2082 "!dbg attachment points at wrong subprogram for function", N, &F,
2083 &I, DL, Scope, SP);
2084 }
2085 }
2086
2087 // verifyBasicBlock - Verify that a basic block is well formed...
2088 //
visitBasicBlock(BasicBlock & BB)2089 void Verifier::visitBasicBlock(BasicBlock &BB) {
2090 InstsInThisBlock.clear();
2091
2092 // Ensure that basic blocks have terminators!
2093 Assert(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
2094
2095 // Check constraints that this basic block imposes on all of the PHI nodes in
2096 // it.
2097 if (isa<PHINode>(BB.front())) {
2098 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
2099 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
2100 std::sort(Preds.begin(), Preds.end());
2101 PHINode *PN;
2102 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
2103 // Ensure that PHI nodes have at least one entry!
2104 Assert(PN->getNumIncomingValues() != 0,
2105 "PHI nodes must have at least one entry. If the block is dead, "
2106 "the PHI should be removed!",
2107 PN);
2108 Assert(PN->getNumIncomingValues() == Preds.size(),
2109 "PHINode should have one entry for each predecessor of its "
2110 "parent basic block!",
2111 PN);
2112
2113 // Get and sort all incoming values in the PHI node...
2114 Values.clear();
2115 Values.reserve(PN->getNumIncomingValues());
2116 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
2117 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
2118 PN->getIncomingValue(i)));
2119 std::sort(Values.begin(), Values.end());
2120
2121 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
2122 // Check to make sure that if there is more than one entry for a
2123 // particular basic block in this PHI node, that the incoming values are
2124 // all identical.
2125 //
2126 Assert(i == 0 || Values[i].first != Values[i - 1].first ||
2127 Values[i].second == Values[i - 1].second,
2128 "PHI node has multiple entries for the same basic block with "
2129 "different incoming values!",
2130 PN, Values[i].first, Values[i].second, Values[i - 1].second);
2131
2132 // Check to make sure that the predecessors and PHI node entries are
2133 // matched up.
2134 Assert(Values[i].first == Preds[i],
2135 "PHI node entries do not match predecessors!", PN,
2136 Values[i].first, Preds[i]);
2137 }
2138 }
2139 }
2140
2141 // Check that all instructions have their parent pointers set up correctly.
2142 for (auto &I : BB)
2143 {
2144 Assert(I.getParent() == &BB, "Instruction has bogus parent pointer!");
2145 }
2146 }
2147
visitTerminatorInst(TerminatorInst & I)2148 void Verifier::visitTerminatorInst(TerminatorInst &I) {
2149 // Ensure that terminators only exist at the end of the basic block.
2150 Assert(&I == I.getParent()->getTerminator(),
2151 "Terminator found in the middle of a basic block!", I.getParent());
2152 visitInstruction(I);
2153 }
2154
visitBranchInst(BranchInst & BI)2155 void Verifier::visitBranchInst(BranchInst &BI) {
2156 if (BI.isConditional()) {
2157 Assert(BI.getCondition()->getType()->isIntegerTy(1),
2158 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
2159 }
2160 visitTerminatorInst(BI);
2161 }
2162
visitReturnInst(ReturnInst & RI)2163 void Verifier::visitReturnInst(ReturnInst &RI) {
2164 Function *F = RI.getParent()->getParent();
2165 unsigned N = RI.getNumOperands();
2166 if (F->getReturnType()->isVoidTy())
2167 Assert(N == 0,
2168 "Found return instr that returns non-void in Function of void "
2169 "return type!",
2170 &RI, F->getReturnType());
2171 else
2172 Assert(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
2173 "Function return type does not match operand "
2174 "type of return inst!",
2175 &RI, F->getReturnType());
2176
2177 // Check to make sure that the return value has necessary properties for
2178 // terminators...
2179 visitTerminatorInst(RI);
2180 }
2181
visitSwitchInst(SwitchInst & SI)2182 void Verifier::visitSwitchInst(SwitchInst &SI) {
2183 // Check to make sure that all of the constants in the switch instruction
2184 // have the same type as the switched-on value.
2185 Type *SwitchTy = SI.getCondition()->getType();
2186 SmallPtrSet<ConstantInt*, 32> Constants;
2187 for (auto &Case : SI.cases()) {
2188 Assert(Case.getCaseValue()->getType() == SwitchTy,
2189 "Switch constants must all be same type as switch value!", &SI);
2190 Assert(Constants.insert(Case.getCaseValue()).second,
2191 "Duplicate integer as switch case", &SI, Case.getCaseValue());
2192 }
2193
2194 visitTerminatorInst(SI);
2195 }
2196
visitIndirectBrInst(IndirectBrInst & BI)2197 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
2198 Assert(BI.getAddress()->getType()->isPointerTy(),
2199 "Indirectbr operand must have pointer type!", &BI);
2200 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
2201 Assert(BI.getDestination(i)->getType()->isLabelTy(),
2202 "Indirectbr destinations must all have pointer type!", &BI);
2203
2204 visitTerminatorInst(BI);
2205 }
2206
visitSelectInst(SelectInst & SI)2207 void Verifier::visitSelectInst(SelectInst &SI) {
2208 Assert(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
2209 SI.getOperand(2)),
2210 "Invalid operands for select instruction!", &SI);
2211
2212 Assert(SI.getTrueValue()->getType() == SI.getType(),
2213 "Select values must have same type as select instruction!", &SI);
2214 visitInstruction(SI);
2215 }
2216
2217 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2218 /// a pass, if any exist, it's an error.
2219 ///
visitUserOp1(Instruction & I)2220 void Verifier::visitUserOp1(Instruction &I) {
2221 Assert(0, "User-defined operators should not live outside of a pass!", &I);
2222 }
2223
visitTruncInst(TruncInst & I)2224 void Verifier::visitTruncInst(TruncInst &I) {
2225 // Get the source and destination types
2226 Type *SrcTy = I.getOperand(0)->getType();
2227 Type *DestTy = I.getType();
2228
2229 // Get the size of the types in bits, we'll need this later
2230 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2231 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2232
2233 Assert(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
2234 Assert(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
2235 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2236 "trunc source and destination must both be a vector or neither", &I);
2237 Assert(SrcBitSize > DestBitSize, "DestTy too big for Trunc", &I);
2238
2239 visitInstruction(I);
2240 }
2241
visitZExtInst(ZExtInst & I)2242 void Verifier::visitZExtInst(ZExtInst &I) {
2243 // Get the source and destination types
2244 Type *SrcTy = I.getOperand(0)->getType();
2245 Type *DestTy = I.getType();
2246
2247 // Get the size of the types in bits, we'll need this later
2248 Assert(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
2249 Assert(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
2250 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2251 "zext source and destination must both be a vector or neither", &I);
2252 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2253 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2254
2255 Assert(SrcBitSize < DestBitSize, "Type too small for ZExt", &I);
2256
2257 visitInstruction(I);
2258 }
2259
visitSExtInst(SExtInst & I)2260 void Verifier::visitSExtInst(SExtInst &I) {
2261 // Get the source and destination types
2262 Type *SrcTy = I.getOperand(0)->getType();
2263 Type *DestTy = I.getType();
2264
2265 // Get the size of the types in bits, we'll need this later
2266 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2267 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2268
2269 Assert(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
2270 Assert(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
2271 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2272 "sext source and destination must both be a vector or neither", &I);
2273 Assert(SrcBitSize < DestBitSize, "Type too small for SExt", &I);
2274
2275 visitInstruction(I);
2276 }
2277
visitFPTruncInst(FPTruncInst & I)2278 void Verifier::visitFPTruncInst(FPTruncInst &I) {
2279 // Get the source and destination types
2280 Type *SrcTy = I.getOperand(0)->getType();
2281 Type *DestTy = I.getType();
2282 // Get the size of the types in bits, we'll need this later
2283 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2284 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2285
2286 Assert(SrcTy->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I);
2287 Assert(DestTy->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I);
2288 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2289 "fptrunc source and destination must both be a vector or neither", &I);
2290 Assert(SrcBitSize > DestBitSize, "DestTy too big for FPTrunc", &I);
2291
2292 visitInstruction(I);
2293 }
2294
visitFPExtInst(FPExtInst & I)2295 void Verifier::visitFPExtInst(FPExtInst &I) {
2296 // Get the source and destination types
2297 Type *SrcTy = I.getOperand(0)->getType();
2298 Type *DestTy = I.getType();
2299
2300 // Get the size of the types in bits, we'll need this later
2301 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
2302 unsigned DestBitSize = DestTy->getScalarSizeInBits();
2303
2304 Assert(SrcTy->isFPOrFPVectorTy(), "FPExt only operates on FP", &I);
2305 Assert(DestTy->isFPOrFPVectorTy(), "FPExt only produces an FP", &I);
2306 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(),
2307 "fpext source and destination must both be a vector or neither", &I);
2308 Assert(SrcBitSize < DestBitSize, "DestTy too small for FPExt", &I);
2309
2310 visitInstruction(I);
2311 }
2312
visitUIToFPInst(UIToFPInst & I)2313 void Verifier::visitUIToFPInst(UIToFPInst &I) {
2314 // Get the source and destination types
2315 Type *SrcTy = I.getOperand(0)->getType();
2316 Type *DestTy = I.getType();
2317
2318 bool SrcVec = SrcTy->isVectorTy();
2319 bool DstVec = DestTy->isVectorTy();
2320
2321 Assert(SrcVec == DstVec,
2322 "UIToFP source and dest must both be vector or scalar", &I);
2323 Assert(SrcTy->isIntOrIntVectorTy(),
2324 "UIToFP source must be integer or integer vector", &I);
2325 Assert(DestTy->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2326 &I);
2327
2328 if (SrcVec && DstVec)
2329 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2330 cast<VectorType>(DestTy)->getNumElements(),
2331 "UIToFP source and dest vector length mismatch", &I);
2332
2333 visitInstruction(I);
2334 }
2335
visitSIToFPInst(SIToFPInst & I)2336 void Verifier::visitSIToFPInst(SIToFPInst &I) {
2337 // Get the source and destination types
2338 Type *SrcTy = I.getOperand(0)->getType();
2339 Type *DestTy = I.getType();
2340
2341 bool SrcVec = SrcTy->isVectorTy();
2342 bool DstVec = DestTy->isVectorTy();
2343
2344 Assert(SrcVec == DstVec,
2345 "SIToFP source and dest must both be vector or scalar", &I);
2346 Assert(SrcTy->isIntOrIntVectorTy(),
2347 "SIToFP source must be integer or integer vector", &I);
2348 Assert(DestTy->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2349 &I);
2350
2351 if (SrcVec && DstVec)
2352 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2353 cast<VectorType>(DestTy)->getNumElements(),
2354 "SIToFP source and dest vector length mismatch", &I);
2355
2356 visitInstruction(I);
2357 }
2358
visitFPToUIInst(FPToUIInst & I)2359 void Verifier::visitFPToUIInst(FPToUIInst &I) {
2360 // Get the source and destination types
2361 Type *SrcTy = I.getOperand(0)->getType();
2362 Type *DestTy = I.getType();
2363
2364 bool SrcVec = SrcTy->isVectorTy();
2365 bool DstVec = DestTy->isVectorTy();
2366
2367 Assert(SrcVec == DstVec,
2368 "FPToUI source and dest must both be vector or scalar", &I);
2369 Assert(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2370 &I);
2371 Assert(DestTy->isIntOrIntVectorTy(),
2372 "FPToUI result must be integer or integer vector", &I);
2373
2374 if (SrcVec && DstVec)
2375 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2376 cast<VectorType>(DestTy)->getNumElements(),
2377 "FPToUI source and dest vector length mismatch", &I);
2378
2379 visitInstruction(I);
2380 }
2381
visitFPToSIInst(FPToSIInst & I)2382 void Verifier::visitFPToSIInst(FPToSIInst &I) {
2383 // Get the source and destination types
2384 Type *SrcTy = I.getOperand(0)->getType();
2385 Type *DestTy = I.getType();
2386
2387 bool SrcVec = SrcTy->isVectorTy();
2388 bool DstVec = DestTy->isVectorTy();
2389
2390 Assert(SrcVec == DstVec,
2391 "FPToSI source and dest must both be vector or scalar", &I);
2392 Assert(SrcTy->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2393 &I);
2394 Assert(DestTy->isIntOrIntVectorTy(),
2395 "FPToSI result must be integer or integer vector", &I);
2396
2397 if (SrcVec && DstVec)
2398 Assert(cast<VectorType>(SrcTy)->getNumElements() ==
2399 cast<VectorType>(DestTy)->getNumElements(),
2400 "FPToSI source and dest vector length mismatch", &I);
2401
2402 visitInstruction(I);
2403 }
2404
visitPtrToIntInst(PtrToIntInst & I)2405 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
2406 // Get the source and destination types
2407 Type *SrcTy = I.getOperand(0)->getType();
2408 Type *DestTy = I.getType();
2409
2410 Assert(SrcTy->getScalarType()->isPointerTy(),
2411 "PtrToInt source must be pointer", &I);
2412 Assert(DestTy->getScalarType()->isIntegerTy(),
2413 "PtrToInt result must be integral", &I);
2414 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "PtrToInt type mismatch",
2415 &I);
2416
2417 if (SrcTy->isVectorTy()) {
2418 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2419 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2420 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2421 "PtrToInt Vector width mismatch", &I);
2422 }
2423
2424 visitInstruction(I);
2425 }
2426
visitIntToPtrInst(IntToPtrInst & I)2427 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
2428 // Get the source and destination types
2429 Type *SrcTy = I.getOperand(0)->getType();
2430 Type *DestTy = I.getType();
2431
2432 Assert(SrcTy->getScalarType()->isIntegerTy(),
2433 "IntToPtr source must be an integral", &I);
2434 Assert(DestTy->getScalarType()->isPointerTy(),
2435 "IntToPtr result must be a pointer", &I);
2436 Assert(SrcTy->isVectorTy() == DestTy->isVectorTy(), "IntToPtr type mismatch",
2437 &I);
2438 if (SrcTy->isVectorTy()) {
2439 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
2440 VectorType *VDest = dyn_cast<VectorType>(DestTy);
2441 Assert(VSrc->getNumElements() == VDest->getNumElements(),
2442 "IntToPtr Vector width mismatch", &I);
2443 }
2444 visitInstruction(I);
2445 }
2446
visitBitCastInst(BitCastInst & I)2447 void Verifier::visitBitCastInst(BitCastInst &I) {
2448 Assert(
2449 CastInst::castIsValid(Instruction::BitCast, I.getOperand(0), I.getType()),
2450 "Invalid bitcast", &I);
2451 visitInstruction(I);
2452 }
2453
visitAddrSpaceCastInst(AddrSpaceCastInst & I)2454 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
2455 Type *SrcTy = I.getOperand(0)->getType();
2456 Type *DestTy = I.getType();
2457
2458 Assert(SrcTy->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2459 &I);
2460 Assert(DestTy->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2461 &I);
2462 Assert(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
2463 "AddrSpaceCast must be between different address spaces", &I);
2464 if (SrcTy->isVectorTy())
2465 Assert(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
2466 "AddrSpaceCast vector pointer number of elements mismatch", &I);
2467 visitInstruction(I);
2468 }
2469
2470 /// visitPHINode - Ensure that a PHI node is well formed.
2471 ///
visitPHINode(PHINode & PN)2472 void Verifier::visitPHINode(PHINode &PN) {
2473 // Ensure that the PHI nodes are all grouped together at the top of the block.
2474 // This can be tested by checking whether the instruction before this is
2475 // either nonexistent (because this is begin()) or is a PHI node. If not,
2476 // then there is some other instruction before a PHI.
2477 Assert(&PN == &PN.getParent()->front() ||
2478 isa<PHINode>(--BasicBlock::iterator(&PN)),
2479 "PHI nodes not grouped at top of basic block!", &PN, PN.getParent());
2480
2481 // Check that a PHI doesn't yield a Token.
2482 Assert(!PN.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2483
2484 // Check that all of the values of the PHI node have the same type as the
2485 // result, and that the incoming blocks are really basic blocks.
2486 for (Value *IncValue : PN.incoming_values()) {
2487 Assert(PN.getType() == IncValue->getType(),
2488 "PHI node operands are not the same type as the result!", &PN);
2489 }
2490
2491 // All other PHI node constraints are checked in the visitBasicBlock method.
2492
2493 visitInstruction(PN);
2494 }
2495
verifyCallSite(CallSite CS)2496 void Verifier::verifyCallSite(CallSite CS) {
2497 Instruction *I = CS.getInstruction();
2498
2499 Assert(CS.getCalledValue()->getType()->isPointerTy(),
2500 "Called function must be a pointer!", I);
2501 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
2502
2503 Assert(FPTy->getElementType()->isFunctionTy(),
2504 "Called function is not pointer to function type!", I);
2505
2506 Assert(FPTy->getElementType() == CS.getFunctionType(),
2507 "Called function is not the same type as the call!", I);
2508
2509 FunctionType *FTy = CS.getFunctionType();
2510
2511 // Verify that the correct number of arguments are being passed
2512 if (FTy->isVarArg())
2513 Assert(CS.arg_size() >= FTy->getNumParams(),
2514 "Called function requires more parameters than were provided!", I);
2515 else
2516 Assert(CS.arg_size() == FTy->getNumParams(),
2517 "Incorrect number of arguments passed to called function!", I);
2518
2519 // Verify that all arguments to the call match the function type.
2520 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2521 Assert(CS.getArgument(i)->getType() == FTy->getParamType(i),
2522 "Call parameter type does not match function signature!",
2523 CS.getArgument(i), FTy->getParamType(i), I);
2524
2525 AttributeSet Attrs = CS.getAttributes();
2526
2527 Assert(verifyAttributeCount(Attrs, CS.arg_size()),
2528 "Attribute after last parameter!", I);
2529
2530 // Verify call attributes.
2531 verifyFunctionAttrs(FTy, Attrs, I);
2532
2533 // Conservatively check the inalloca argument.
2534 // We have a bug if we can find that there is an underlying alloca without
2535 // inalloca.
2536 if (CS.hasInAllocaArgument()) {
2537 Value *InAllocaArg = CS.getArgument(FTy->getNumParams() - 1);
2538 if (auto AI = dyn_cast<AllocaInst>(InAllocaArg->stripInBoundsOffsets()))
2539 Assert(AI->isUsedWithInAlloca(),
2540 "inalloca argument for call has mismatched alloca", AI, I);
2541 }
2542
2543 // For each argument of the callsite, if it has the swifterror argument,
2544 // make sure the underlying alloca has swifterror as well.
2545 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
2546 if (CS.paramHasAttr(i+1, Attribute::SwiftError)) {
2547 Value *SwiftErrorArg = CS.getArgument(i);
2548 auto AI = dyn_cast<AllocaInst>(SwiftErrorArg->stripInBoundsOffsets());
2549 Assert(AI, "swifterror argument should come from alloca", AI, I);
2550 if (AI)
2551 Assert(AI->isSwiftError(),
2552 "swifterror argument for call has mismatched alloca", AI, I);
2553 }
2554
2555 if (FTy->isVarArg()) {
2556 // FIXME? is 'nest' even legal here?
2557 bool SawNest = false;
2558 bool SawReturned = false;
2559
2560 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
2561 if (Attrs.hasAttribute(Idx, Attribute::Nest))
2562 SawNest = true;
2563 if (Attrs.hasAttribute(Idx, Attribute::Returned))
2564 SawReturned = true;
2565 }
2566
2567 // Check attributes on the varargs part.
2568 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
2569 Type *Ty = CS.getArgument(Idx-1)->getType();
2570 verifyParameterAttrs(Attrs, Idx, Ty, false, I);
2571
2572 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
2573 Assert(!SawNest, "More than one parameter has attribute nest!", I);
2574 SawNest = true;
2575 }
2576
2577 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
2578 Assert(!SawReturned, "More than one parameter has attribute returned!",
2579 I);
2580 Assert(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
2581 "Incompatible argument and return types for 'returned' "
2582 "attribute",
2583 I);
2584 SawReturned = true;
2585 }
2586
2587 Assert(!Attrs.hasAttribute(Idx, Attribute::StructRet),
2588 "Attribute 'sret' cannot be used for vararg call arguments!", I);
2589
2590 if (Attrs.hasAttribute(Idx, Attribute::InAlloca))
2591 Assert(Idx == CS.arg_size(), "inalloca isn't on the last argument!", I);
2592 }
2593 }
2594
2595 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2596 if (CS.getCalledFunction() == nullptr ||
2597 !CS.getCalledFunction()->getName().startswith("llvm.")) {
2598 for (Type *ParamTy : FTy->params()) {
2599 Assert(!ParamTy->isMetadataTy(),
2600 "Function has metadata parameter but isn't an intrinsic", I);
2601 Assert(!ParamTy->isTokenTy(),
2602 "Function has token parameter but isn't an intrinsic", I);
2603 }
2604 }
2605
2606 // Verify that indirect calls don't return tokens.
2607 if (CS.getCalledFunction() == nullptr)
2608 Assert(!FTy->getReturnType()->isTokenTy(),
2609 "Return type cannot be token for indirect call!");
2610
2611 if (Function *F = CS.getCalledFunction())
2612 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2613 visitIntrinsicCallSite(ID, CS);
2614
2615 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2616 // at most one "gc-transition" operand bundle.
2617 bool FoundDeoptBundle = false, FoundFuncletBundle = false,
2618 FoundGCTransitionBundle = false;
2619 for (unsigned i = 0, e = CS.getNumOperandBundles(); i < e; ++i) {
2620 OperandBundleUse BU = CS.getOperandBundleAt(i);
2621 uint32_t Tag = BU.getTagID();
2622 if (Tag == LLVMContext::OB_deopt) {
2623 Assert(!FoundDeoptBundle, "Multiple deopt operand bundles", I);
2624 FoundDeoptBundle = true;
2625 } else if (Tag == LLVMContext::OB_gc_transition) {
2626 Assert(!FoundGCTransitionBundle, "Multiple gc-transition operand bundles",
2627 I);
2628 FoundGCTransitionBundle = true;
2629 } else if (Tag == LLVMContext::OB_funclet) {
2630 Assert(!FoundFuncletBundle, "Multiple funclet operand bundles", I);
2631 FoundFuncletBundle = true;
2632 Assert(BU.Inputs.size() == 1,
2633 "Expected exactly one funclet bundle operand", I);
2634 Assert(isa<FuncletPadInst>(BU.Inputs.front()),
2635 "Funclet bundle operands should correspond to a FuncletPadInst",
2636 I);
2637 }
2638 }
2639
2640 // Verify that each inlinable callsite of a debug-info-bearing function in a
2641 // debug-info-bearing function has a debug location attached to it. Failure to
2642 // do so causes assertion failures when the inliner sets up inline scope info.
2643 if (I->getFunction()->getSubprogram() && CS.getCalledFunction() &&
2644 CS.getCalledFunction()->getSubprogram())
2645 Assert(I->getDebugLoc(), "inlinable function call in a function with debug "
2646 "info must have a !dbg location",
2647 I);
2648
2649 visitInstruction(*I);
2650 }
2651
2652 /// Two types are "congruent" if they are identical, or if they are both pointer
2653 /// types with different pointee types and the same address space.
isTypeCongruent(Type * L,Type * R)2654 static bool isTypeCongruent(Type *L, Type *R) {
2655 if (L == R)
2656 return true;
2657 PointerType *PL = dyn_cast<PointerType>(L);
2658 PointerType *PR = dyn_cast<PointerType>(R);
2659 if (!PL || !PR)
2660 return false;
2661 return PL->getAddressSpace() == PR->getAddressSpace();
2662 }
2663
getParameterABIAttributes(int I,AttributeSet Attrs)2664 static AttrBuilder getParameterABIAttributes(int I, AttributeSet Attrs) {
2665 static const Attribute::AttrKind ABIAttrs[] = {
2666 Attribute::StructRet, Attribute::ByVal, Attribute::InAlloca,
2667 Attribute::InReg, Attribute::Returned, Attribute::SwiftSelf,
2668 Attribute::SwiftError};
2669 AttrBuilder Copy;
2670 for (auto AK : ABIAttrs) {
2671 if (Attrs.hasAttribute(I + 1, AK))
2672 Copy.addAttribute(AK);
2673 }
2674 if (Attrs.hasAttribute(I + 1, Attribute::Alignment))
2675 Copy.addAlignmentAttr(Attrs.getParamAlignment(I + 1));
2676 return Copy;
2677 }
2678
verifyMustTailCall(CallInst & CI)2679 void Verifier::verifyMustTailCall(CallInst &CI) {
2680 Assert(!CI.isInlineAsm(), "cannot use musttail call with inline asm", &CI);
2681
2682 // - The caller and callee prototypes must match. Pointer types of
2683 // parameters or return types may differ in pointee type, but not
2684 // address space.
2685 Function *F = CI.getParent()->getParent();
2686 FunctionType *CallerTy = F->getFunctionType();
2687 FunctionType *CalleeTy = CI.getFunctionType();
2688 Assert(CallerTy->getNumParams() == CalleeTy->getNumParams(),
2689 "cannot guarantee tail call due to mismatched parameter counts", &CI);
2690 Assert(CallerTy->isVarArg() == CalleeTy->isVarArg(),
2691 "cannot guarantee tail call due to mismatched varargs", &CI);
2692 Assert(isTypeCongruent(CallerTy->getReturnType(), CalleeTy->getReturnType()),
2693 "cannot guarantee tail call due to mismatched return types", &CI);
2694 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2695 Assert(
2696 isTypeCongruent(CallerTy->getParamType(I), CalleeTy->getParamType(I)),
2697 "cannot guarantee tail call due to mismatched parameter types", &CI);
2698 }
2699
2700 // - The calling conventions of the caller and callee must match.
2701 Assert(F->getCallingConv() == CI.getCallingConv(),
2702 "cannot guarantee tail call due to mismatched calling conv", &CI);
2703
2704 // - All ABI-impacting function attributes, such as sret, byval, inreg,
2705 // returned, and inalloca, must match.
2706 AttributeSet CallerAttrs = F->getAttributes();
2707 AttributeSet CalleeAttrs = CI.getAttributes();
2708 for (int I = 0, E = CallerTy->getNumParams(); I != E; ++I) {
2709 AttrBuilder CallerABIAttrs = getParameterABIAttributes(I, CallerAttrs);
2710 AttrBuilder CalleeABIAttrs = getParameterABIAttributes(I, CalleeAttrs);
2711 Assert(CallerABIAttrs == CalleeABIAttrs,
2712 "cannot guarantee tail call due to mismatched ABI impacting "
2713 "function attributes",
2714 &CI, CI.getOperand(I));
2715 }
2716
2717 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
2718 // or a pointer bitcast followed by a ret instruction.
2719 // - The ret instruction must return the (possibly bitcasted) value
2720 // produced by the call or void.
2721 Value *RetVal = &CI;
2722 Instruction *Next = CI.getNextNode();
2723
2724 // Handle the optional bitcast.
2725 if (BitCastInst *BI = dyn_cast_or_null<BitCastInst>(Next)) {
2726 Assert(BI->getOperand(0) == RetVal,
2727 "bitcast following musttail call must use the call", BI);
2728 RetVal = BI;
2729 Next = BI->getNextNode();
2730 }
2731
2732 // Check the return.
2733 ReturnInst *Ret = dyn_cast_or_null<ReturnInst>(Next);
2734 Assert(Ret, "musttail call must be precede a ret with an optional bitcast",
2735 &CI);
2736 Assert(!Ret->getReturnValue() || Ret->getReturnValue() == RetVal,
2737 "musttail call result must be returned", Ret);
2738 }
2739
visitCallInst(CallInst & CI)2740 void Verifier::visitCallInst(CallInst &CI) {
2741 verifyCallSite(&CI);
2742
2743 if (CI.isMustTailCall())
2744 verifyMustTailCall(CI);
2745 }
2746
visitInvokeInst(InvokeInst & II)2747 void Verifier::visitInvokeInst(InvokeInst &II) {
2748 verifyCallSite(&II);
2749
2750 // Verify that the first non-PHI instruction of the unwind destination is an
2751 // exception handling instruction.
2752 Assert(
2753 II.getUnwindDest()->isEHPad(),
2754 "The unwind destination does not have an exception handling instruction!",
2755 &II);
2756
2757 visitTerminatorInst(II);
2758 }
2759
2760 /// visitBinaryOperator - Check that both arguments to the binary operator are
2761 /// of the same type!
2762 ///
visitBinaryOperator(BinaryOperator & B)2763 void Verifier::visitBinaryOperator(BinaryOperator &B) {
2764 Assert(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
2765 "Both operands to a binary operator are not of the same type!", &B);
2766
2767 switch (B.getOpcode()) {
2768 // Check that integer arithmetic operators are only used with
2769 // integral operands.
2770 case Instruction::Add:
2771 case Instruction::Sub:
2772 case Instruction::Mul:
2773 case Instruction::SDiv:
2774 case Instruction::UDiv:
2775 case Instruction::SRem:
2776 case Instruction::URem:
2777 Assert(B.getType()->isIntOrIntVectorTy(),
2778 "Integer arithmetic operators only work with integral types!", &B);
2779 Assert(B.getType() == B.getOperand(0)->getType(),
2780 "Integer arithmetic operators must have same type "
2781 "for operands and result!",
2782 &B);
2783 break;
2784 // Check that floating-point arithmetic operators are only used with
2785 // floating-point operands.
2786 case Instruction::FAdd:
2787 case Instruction::FSub:
2788 case Instruction::FMul:
2789 case Instruction::FDiv:
2790 case Instruction::FRem:
2791 Assert(B.getType()->isFPOrFPVectorTy(),
2792 "Floating-point arithmetic operators only work with "
2793 "floating-point types!",
2794 &B);
2795 Assert(B.getType() == B.getOperand(0)->getType(),
2796 "Floating-point arithmetic operators must have same type "
2797 "for operands and result!",
2798 &B);
2799 break;
2800 // Check that logical operators are only used with integral operands.
2801 case Instruction::And:
2802 case Instruction::Or:
2803 case Instruction::Xor:
2804 Assert(B.getType()->isIntOrIntVectorTy(),
2805 "Logical operators only work with integral types!", &B);
2806 Assert(B.getType() == B.getOperand(0)->getType(),
2807 "Logical operators must have same type for operands and result!",
2808 &B);
2809 break;
2810 case Instruction::Shl:
2811 case Instruction::LShr:
2812 case Instruction::AShr:
2813 Assert(B.getType()->isIntOrIntVectorTy(),
2814 "Shifts only work with integral types!", &B);
2815 Assert(B.getType() == B.getOperand(0)->getType(),
2816 "Shift return type must be same as operands!", &B);
2817 break;
2818 default:
2819 llvm_unreachable("Unknown BinaryOperator opcode!");
2820 }
2821
2822 visitInstruction(B);
2823 }
2824
visitICmpInst(ICmpInst & IC)2825 void Verifier::visitICmpInst(ICmpInst &IC) {
2826 // Check that the operands are the same type
2827 Type *Op0Ty = IC.getOperand(0)->getType();
2828 Type *Op1Ty = IC.getOperand(1)->getType();
2829 Assert(Op0Ty == Op1Ty,
2830 "Both operands to ICmp instruction are not of the same type!", &IC);
2831 // Check that the operands are the right type
2832 Assert(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
2833 "Invalid operand types for ICmp instruction", &IC);
2834 // Check that the predicate is valid.
2835 Assert(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
2836 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
2837 "Invalid predicate in ICmp instruction!", &IC);
2838
2839 visitInstruction(IC);
2840 }
2841
visitFCmpInst(FCmpInst & FC)2842 void Verifier::visitFCmpInst(FCmpInst &FC) {
2843 // Check that the operands are the same type
2844 Type *Op0Ty = FC.getOperand(0)->getType();
2845 Type *Op1Ty = FC.getOperand(1)->getType();
2846 Assert(Op0Ty == Op1Ty,
2847 "Both operands to FCmp instruction are not of the same type!", &FC);
2848 // Check that the operands are the right type
2849 Assert(Op0Ty->isFPOrFPVectorTy(),
2850 "Invalid operand types for FCmp instruction", &FC);
2851 // Check that the predicate is valid.
2852 Assert(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
2853 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
2854 "Invalid predicate in FCmp instruction!", &FC);
2855
2856 visitInstruction(FC);
2857 }
2858
visitExtractElementInst(ExtractElementInst & EI)2859 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
2860 Assert(
2861 ExtractElementInst::isValidOperands(EI.getOperand(0), EI.getOperand(1)),
2862 "Invalid extractelement operands!", &EI);
2863 visitInstruction(EI);
2864 }
2865
visitInsertElementInst(InsertElementInst & IE)2866 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
2867 Assert(InsertElementInst::isValidOperands(IE.getOperand(0), IE.getOperand(1),
2868 IE.getOperand(2)),
2869 "Invalid insertelement operands!", &IE);
2870 visitInstruction(IE);
2871 }
2872
visitShuffleVectorInst(ShuffleVectorInst & SV)2873 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
2874 Assert(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
2875 SV.getOperand(2)),
2876 "Invalid shufflevector operands!", &SV);
2877 visitInstruction(SV);
2878 }
2879
visitGetElementPtrInst(GetElementPtrInst & GEP)2880 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
2881 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
2882
2883 Assert(isa<PointerType>(TargetTy),
2884 "GEP base pointer is not a vector or a vector of pointers", &GEP);
2885 Assert(GEP.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP);
2886 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
2887 Type *ElTy =
2888 GetElementPtrInst::getIndexedType(GEP.getSourceElementType(), Idxs);
2889 Assert(ElTy, "Invalid indices for GEP pointer type!", &GEP);
2890
2891 Assert(GEP.getType()->getScalarType()->isPointerTy() &&
2892 GEP.getResultElementType() == ElTy,
2893 "GEP is not of right type for indices!", &GEP, ElTy);
2894
2895 if (GEP.getType()->isVectorTy()) {
2896 // Additional checks for vector GEPs.
2897 unsigned GEPWidth = GEP.getType()->getVectorNumElements();
2898 if (GEP.getPointerOperandType()->isVectorTy())
2899 Assert(GEPWidth == GEP.getPointerOperandType()->getVectorNumElements(),
2900 "Vector GEP result width doesn't match operand's", &GEP);
2901 for (Value *Idx : Idxs) {
2902 Type *IndexTy = Idx->getType();
2903 if (IndexTy->isVectorTy()) {
2904 unsigned IndexWidth = IndexTy->getVectorNumElements();
2905 Assert(IndexWidth == GEPWidth, "Invalid GEP index vector width", &GEP);
2906 }
2907 Assert(IndexTy->getScalarType()->isIntegerTy(),
2908 "All GEP indices should be of integer type");
2909 }
2910 }
2911 visitInstruction(GEP);
2912 }
2913
isContiguous(const ConstantRange & A,const ConstantRange & B)2914 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
2915 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
2916 }
2917
visitRangeMetadata(Instruction & I,MDNode * Range,Type * Ty)2918 void Verifier::visitRangeMetadata(Instruction& I,
2919 MDNode* Range, Type* Ty) {
2920 assert(Range &&
2921 Range == I.getMetadata(LLVMContext::MD_range) &&
2922 "precondition violation");
2923
2924 unsigned NumOperands = Range->getNumOperands();
2925 Assert(NumOperands % 2 == 0, "Unfinished range!", Range);
2926 unsigned NumRanges = NumOperands / 2;
2927 Assert(NumRanges >= 1, "It should have at least one range!", Range);
2928
2929 ConstantRange LastRange(1); // Dummy initial value
2930 for (unsigned i = 0; i < NumRanges; ++i) {
2931 ConstantInt *Low =
2932 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i));
2933 Assert(Low, "The lower limit must be an integer!", Low);
2934 ConstantInt *High =
2935 mdconst::dyn_extract<ConstantInt>(Range->getOperand(2 * i + 1));
2936 Assert(High, "The upper limit must be an integer!", High);
2937 Assert(High->getType() == Low->getType() && High->getType() == Ty,
2938 "Range types must match instruction type!", &I);
2939
2940 APInt HighV = High->getValue();
2941 APInt LowV = Low->getValue();
2942 ConstantRange CurRange(LowV, HighV);
2943 Assert(!CurRange.isEmptySet() && !CurRange.isFullSet(),
2944 "Range must not be empty!", Range);
2945 if (i != 0) {
2946 Assert(CurRange.intersectWith(LastRange).isEmptySet(),
2947 "Intervals are overlapping", Range);
2948 Assert(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
2949 Range);
2950 Assert(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
2951 Range);
2952 }
2953 LastRange = ConstantRange(LowV, HighV);
2954 }
2955 if (NumRanges > 2) {
2956 APInt FirstLow =
2957 mdconst::dyn_extract<ConstantInt>(Range->getOperand(0))->getValue();
2958 APInt FirstHigh =
2959 mdconst::dyn_extract<ConstantInt>(Range->getOperand(1))->getValue();
2960 ConstantRange FirstRange(FirstLow, FirstHigh);
2961 Assert(FirstRange.intersectWith(LastRange).isEmptySet(),
2962 "Intervals are overlapping", Range);
2963 Assert(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
2964 Range);
2965 }
2966 }
2967
checkAtomicMemAccessSize(const Module * M,Type * Ty,const Instruction * I)2968 void Verifier::checkAtomicMemAccessSize(const Module *M, Type *Ty,
2969 const Instruction *I) {
2970 unsigned Size = M->getDataLayout().getTypeSizeInBits(Ty);
2971 Assert(Size >= 8, "atomic memory access' size must be byte-sized", Ty, I);
2972 Assert(!(Size & (Size - 1)),
2973 "atomic memory access' operand must have a power-of-two size", Ty, I);
2974 }
2975
visitLoadInst(LoadInst & LI)2976 void Verifier::visitLoadInst(LoadInst &LI) {
2977 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
2978 Assert(PTy, "Load operand must be a pointer.", &LI);
2979 Type *ElTy = LI.getType();
2980 Assert(LI.getAlignment() <= Value::MaximumAlignment,
2981 "huge alignment values are unsupported", &LI);
2982 Assert(ElTy->isSized(), "loading unsized types is not allowed", &LI);
2983 if (LI.isAtomic()) {
2984 Assert(LI.getOrdering() != AtomicOrdering::Release &&
2985 LI.getOrdering() != AtomicOrdering::AcquireRelease,
2986 "Load cannot have Release ordering", &LI);
2987 Assert(LI.getAlignment() != 0,
2988 "Atomic load must specify explicit alignment", &LI);
2989 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
2990 ElTy->isFloatingPointTy(),
2991 "atomic load operand must have integer, pointer, or floating point "
2992 "type!",
2993 ElTy, &LI);
2994 checkAtomicMemAccessSize(M, ElTy, &LI);
2995 } else {
2996 Assert(LI.getSynchScope() == CrossThread,
2997 "Non-atomic load cannot have SynchronizationScope specified", &LI);
2998 }
2999
3000 visitInstruction(LI);
3001 }
3002
visitStoreInst(StoreInst & SI)3003 void Verifier::visitStoreInst(StoreInst &SI) {
3004 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
3005 Assert(PTy, "Store operand must be a pointer.", &SI);
3006 Type *ElTy = PTy->getElementType();
3007 Assert(ElTy == SI.getOperand(0)->getType(),
3008 "Stored value type does not match pointer operand type!", &SI, ElTy);
3009 Assert(SI.getAlignment() <= Value::MaximumAlignment,
3010 "huge alignment values are unsupported", &SI);
3011 Assert(ElTy->isSized(), "storing unsized types is not allowed", &SI);
3012 if (SI.isAtomic()) {
3013 Assert(SI.getOrdering() != AtomicOrdering::Acquire &&
3014 SI.getOrdering() != AtomicOrdering::AcquireRelease,
3015 "Store cannot have Acquire ordering", &SI);
3016 Assert(SI.getAlignment() != 0,
3017 "Atomic store must specify explicit alignment", &SI);
3018 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy() ||
3019 ElTy->isFloatingPointTy(),
3020 "atomic store operand must have integer, pointer, or floating point "
3021 "type!",
3022 ElTy, &SI);
3023 checkAtomicMemAccessSize(M, ElTy, &SI);
3024 } else {
3025 Assert(SI.getSynchScope() == CrossThread,
3026 "Non-atomic store cannot have SynchronizationScope specified", &SI);
3027 }
3028 visitInstruction(SI);
3029 }
3030
3031 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
verifySwiftErrorCallSite(CallSite CS,const Value * SwiftErrorVal)3032 void Verifier::verifySwiftErrorCallSite(CallSite CS,
3033 const Value *SwiftErrorVal) {
3034 unsigned Idx = 0;
3035 for (CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
3036 I != E; ++I, ++Idx) {
3037 if (*I == SwiftErrorVal) {
3038 Assert(CS.paramHasAttr(Idx+1, Attribute::SwiftError),
3039 "swifterror value when used in a callsite should be marked "
3040 "with swifterror attribute",
3041 SwiftErrorVal, CS);
3042 }
3043 }
3044 }
3045
verifySwiftErrorValue(const Value * SwiftErrorVal)3046 void Verifier::verifySwiftErrorValue(const Value *SwiftErrorVal) {
3047 // Check that swifterror value is only used by loads, stores, or as
3048 // a swifterror argument.
3049 for (const User *U : SwiftErrorVal->users()) {
3050 Assert(isa<LoadInst>(U) || isa<StoreInst>(U) || isa<CallInst>(U) ||
3051 isa<InvokeInst>(U),
3052 "swifterror value can only be loaded and stored from, or "
3053 "as a swifterror argument!",
3054 SwiftErrorVal, U);
3055 // If it is used by a store, check it is the second operand.
3056 if (auto StoreI = dyn_cast<StoreInst>(U))
3057 Assert(StoreI->getOperand(1) == SwiftErrorVal,
3058 "swifterror value should be the second operand when used "
3059 "by stores", SwiftErrorVal, U);
3060 if (auto CallI = dyn_cast<CallInst>(U))
3061 verifySwiftErrorCallSite(const_cast<CallInst*>(CallI), SwiftErrorVal);
3062 if (auto II = dyn_cast<InvokeInst>(U))
3063 verifySwiftErrorCallSite(const_cast<InvokeInst*>(II), SwiftErrorVal);
3064 }
3065 }
3066
visitAllocaInst(AllocaInst & AI)3067 void Verifier::visitAllocaInst(AllocaInst &AI) {
3068 SmallPtrSet<Type*, 4> Visited;
3069 PointerType *PTy = AI.getType();
3070 Assert(PTy->getAddressSpace() == 0,
3071 "Allocation instruction pointer not in the generic address space!",
3072 &AI);
3073 Assert(AI.getAllocatedType()->isSized(&Visited),
3074 "Cannot allocate unsized type", &AI);
3075 Assert(AI.getArraySize()->getType()->isIntegerTy(),
3076 "Alloca array size must have integer type", &AI);
3077 Assert(AI.getAlignment() <= Value::MaximumAlignment,
3078 "huge alignment values are unsupported", &AI);
3079
3080 if (AI.isSwiftError()) {
3081 verifySwiftErrorValue(&AI);
3082 }
3083
3084 visitInstruction(AI);
3085 }
3086
visitAtomicCmpXchgInst(AtomicCmpXchgInst & CXI)3087 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
3088
3089 // FIXME: more conditions???
3090 Assert(CXI.getSuccessOrdering() != AtomicOrdering::NotAtomic,
3091 "cmpxchg instructions must be atomic.", &CXI);
3092 Assert(CXI.getFailureOrdering() != AtomicOrdering::NotAtomic,
3093 "cmpxchg instructions must be atomic.", &CXI);
3094 Assert(CXI.getSuccessOrdering() != AtomicOrdering::Unordered,
3095 "cmpxchg instructions cannot be unordered.", &CXI);
3096 Assert(CXI.getFailureOrdering() != AtomicOrdering::Unordered,
3097 "cmpxchg instructions cannot be unordered.", &CXI);
3098 Assert(!isStrongerThan(CXI.getFailureOrdering(), CXI.getSuccessOrdering()),
3099 "cmpxchg instructions failure argument shall be no stronger than the "
3100 "success argument",
3101 &CXI);
3102 Assert(CXI.getFailureOrdering() != AtomicOrdering::Release &&
3103 CXI.getFailureOrdering() != AtomicOrdering::AcquireRelease,
3104 "cmpxchg failure ordering cannot include release semantics", &CXI);
3105
3106 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
3107 Assert(PTy, "First cmpxchg operand must be a pointer.", &CXI);
3108 Type *ElTy = PTy->getElementType();
3109 Assert(ElTy->isIntegerTy() || ElTy->isPointerTy(),
3110 "cmpxchg operand must have integer or pointer type",
3111 ElTy, &CXI);
3112 checkAtomicMemAccessSize(M, ElTy, &CXI);
3113 Assert(ElTy == CXI.getOperand(1)->getType(),
3114 "Expected value type does not match pointer operand type!", &CXI,
3115 ElTy);
3116 Assert(ElTy == CXI.getOperand(2)->getType(),
3117 "Stored value type does not match pointer operand type!", &CXI, ElTy);
3118 visitInstruction(CXI);
3119 }
3120
visitAtomicRMWInst(AtomicRMWInst & RMWI)3121 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
3122 Assert(RMWI.getOrdering() != AtomicOrdering::NotAtomic,
3123 "atomicrmw instructions must be atomic.", &RMWI);
3124 Assert(RMWI.getOrdering() != AtomicOrdering::Unordered,
3125 "atomicrmw instructions cannot be unordered.", &RMWI);
3126 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
3127 Assert(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
3128 Type *ElTy = PTy->getElementType();
3129 Assert(ElTy->isIntegerTy(), "atomicrmw operand must have integer type!",
3130 &RMWI, ElTy);
3131 checkAtomicMemAccessSize(M, ElTy, &RMWI);
3132 Assert(ElTy == RMWI.getOperand(1)->getType(),
3133 "Argument value type does not match pointer operand type!", &RMWI,
3134 ElTy);
3135 Assert(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
3136 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
3137 "Invalid binary operation!", &RMWI);
3138 visitInstruction(RMWI);
3139 }
3140
visitFenceInst(FenceInst & FI)3141 void Verifier::visitFenceInst(FenceInst &FI) {
3142 const AtomicOrdering Ordering = FI.getOrdering();
3143 Assert(Ordering == AtomicOrdering::Acquire ||
3144 Ordering == AtomicOrdering::Release ||
3145 Ordering == AtomicOrdering::AcquireRelease ||
3146 Ordering == AtomicOrdering::SequentiallyConsistent,
3147 "fence instructions may only have acquire, release, acq_rel, or "
3148 "seq_cst ordering.",
3149 &FI);
3150 visitInstruction(FI);
3151 }
3152
visitExtractValueInst(ExtractValueInst & EVI)3153 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
3154 Assert(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
3155 EVI.getIndices()) == EVI.getType(),
3156 "Invalid ExtractValueInst operands!", &EVI);
3157
3158 visitInstruction(EVI);
3159 }
3160
visitInsertValueInst(InsertValueInst & IVI)3161 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
3162 Assert(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
3163 IVI.getIndices()) ==
3164 IVI.getOperand(1)->getType(),
3165 "Invalid InsertValueInst operands!", &IVI);
3166
3167 visitInstruction(IVI);
3168 }
3169
getParentPad(Value * EHPad)3170 static Value *getParentPad(Value *EHPad) {
3171 if (auto *FPI = dyn_cast<FuncletPadInst>(EHPad))
3172 return FPI->getParentPad();
3173
3174 return cast<CatchSwitchInst>(EHPad)->getParentPad();
3175 }
3176
visitEHPadPredecessors(Instruction & I)3177 void Verifier::visitEHPadPredecessors(Instruction &I) {
3178 assert(I.isEHPad());
3179
3180 BasicBlock *BB = I.getParent();
3181 Function *F = BB->getParent();
3182
3183 Assert(BB != &F->getEntryBlock(), "EH pad cannot be in entry block.", &I);
3184
3185 if (auto *LPI = dyn_cast<LandingPadInst>(&I)) {
3186 // The landingpad instruction defines its parent as a landing pad block. The
3187 // landing pad block may be branched to only by the unwind edge of an
3188 // invoke.
3189 for (BasicBlock *PredBB : predecessors(BB)) {
3190 const auto *II = dyn_cast<InvokeInst>(PredBB->getTerminator());
3191 Assert(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
3192 "Block containing LandingPadInst must be jumped to "
3193 "only by the unwind edge of an invoke.",
3194 LPI);
3195 }
3196 return;
3197 }
3198 if (auto *CPI = dyn_cast<CatchPadInst>(&I)) {
3199 if (!pred_empty(BB))
3200 Assert(BB->getUniquePredecessor() == CPI->getCatchSwitch()->getParent(),
3201 "Block containg CatchPadInst must be jumped to "
3202 "only by its catchswitch.",
3203 CPI);
3204 Assert(BB != CPI->getCatchSwitch()->getUnwindDest(),
3205 "Catchswitch cannot unwind to one of its catchpads",
3206 CPI->getCatchSwitch(), CPI);
3207 return;
3208 }
3209
3210 // Verify that each pred has a legal terminator with a legal to/from EH
3211 // pad relationship.
3212 Instruction *ToPad = &I;
3213 Value *ToPadParent = getParentPad(ToPad);
3214 for (BasicBlock *PredBB : predecessors(BB)) {
3215 TerminatorInst *TI = PredBB->getTerminator();
3216 Value *FromPad;
3217 if (auto *II = dyn_cast<InvokeInst>(TI)) {
3218 Assert(II->getUnwindDest() == BB && II->getNormalDest() != BB,
3219 "EH pad must be jumped to via an unwind edge", ToPad, II);
3220 if (auto Bundle = II->getOperandBundle(LLVMContext::OB_funclet))
3221 FromPad = Bundle->Inputs[0];
3222 else
3223 FromPad = ConstantTokenNone::get(II->getContext());
3224 } else if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) {
3225 FromPad = CRI->getOperand(0);
3226 Assert(FromPad != ToPadParent, "A cleanupret must exit its cleanup", CRI);
3227 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(TI)) {
3228 FromPad = CSI;
3229 } else {
3230 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad, TI);
3231 }
3232
3233 // The edge may exit from zero or more nested pads.
3234 SmallSet<Value *, 8> Seen;
3235 for (;; FromPad = getParentPad(FromPad)) {
3236 Assert(FromPad != ToPad,
3237 "EH pad cannot handle exceptions raised within it", FromPad, TI);
3238 if (FromPad == ToPadParent) {
3239 // This is a legal unwind edge.
3240 break;
3241 }
3242 Assert(!isa<ConstantTokenNone>(FromPad),
3243 "A single unwind edge may only enter one EH pad", TI);
3244 Assert(Seen.insert(FromPad).second,
3245 "EH pad jumps through a cycle of pads", FromPad);
3246 }
3247 }
3248 }
3249
visitLandingPadInst(LandingPadInst & LPI)3250 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
3251 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3252 // isn't a cleanup.
3253 Assert(LPI.getNumClauses() > 0 || LPI.isCleanup(),
3254 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
3255
3256 visitEHPadPredecessors(LPI);
3257
3258 if (!LandingPadResultTy)
3259 LandingPadResultTy = LPI.getType();
3260 else
3261 Assert(LandingPadResultTy == LPI.getType(),
3262 "The landingpad instruction should have a consistent result type "
3263 "inside a function.",
3264 &LPI);
3265
3266 Function *F = LPI.getParent()->getParent();
3267 Assert(F->hasPersonalityFn(),
3268 "LandingPadInst needs to be in a function with a personality.", &LPI);
3269
3270 // The landingpad instruction must be the first non-PHI instruction in the
3271 // block.
3272 Assert(LPI.getParent()->getLandingPadInst() == &LPI,
3273 "LandingPadInst not the first non-PHI instruction in the block.",
3274 &LPI);
3275
3276 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
3277 Constant *Clause = LPI.getClause(i);
3278 if (LPI.isCatch(i)) {
3279 Assert(isa<PointerType>(Clause->getType()),
3280 "Catch operand does not have pointer type!", &LPI);
3281 } else {
3282 Assert(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
3283 Assert(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
3284 "Filter operand is not an array of constants!", &LPI);
3285 }
3286 }
3287
3288 visitInstruction(LPI);
3289 }
3290
visitCatchPadInst(CatchPadInst & CPI)3291 void Verifier::visitCatchPadInst(CatchPadInst &CPI) {
3292 BasicBlock *BB = CPI.getParent();
3293
3294 Function *F = BB->getParent();
3295 Assert(F->hasPersonalityFn(),
3296 "CatchPadInst needs to be in a function with a personality.", &CPI);
3297
3298 Assert(isa<CatchSwitchInst>(CPI.getParentPad()),
3299 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3300 CPI.getParentPad());
3301
3302 // The catchpad instruction must be the first non-PHI instruction in the
3303 // block.
3304 Assert(BB->getFirstNonPHI() == &CPI,
3305 "CatchPadInst not the first non-PHI instruction in the block.", &CPI);
3306
3307 visitEHPadPredecessors(CPI);
3308 visitFuncletPadInst(CPI);
3309 }
3310
visitCatchReturnInst(CatchReturnInst & CatchReturn)3311 void Verifier::visitCatchReturnInst(CatchReturnInst &CatchReturn) {
3312 Assert(isa<CatchPadInst>(CatchReturn.getOperand(0)),
3313 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn,
3314 CatchReturn.getOperand(0));
3315
3316 visitTerminatorInst(CatchReturn);
3317 }
3318
visitCleanupPadInst(CleanupPadInst & CPI)3319 void Verifier::visitCleanupPadInst(CleanupPadInst &CPI) {
3320 BasicBlock *BB = CPI.getParent();
3321
3322 Function *F = BB->getParent();
3323 Assert(F->hasPersonalityFn(),
3324 "CleanupPadInst needs to be in a function with a personality.", &CPI);
3325
3326 // The cleanuppad instruction must be the first non-PHI instruction in the
3327 // block.
3328 Assert(BB->getFirstNonPHI() == &CPI,
3329 "CleanupPadInst not the first non-PHI instruction in the block.",
3330 &CPI);
3331
3332 auto *ParentPad = CPI.getParentPad();
3333 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3334 "CleanupPadInst has an invalid parent.", &CPI);
3335
3336 visitEHPadPredecessors(CPI);
3337 visitFuncletPadInst(CPI);
3338 }
3339
visitFuncletPadInst(FuncletPadInst & FPI)3340 void Verifier::visitFuncletPadInst(FuncletPadInst &FPI) {
3341 User *FirstUser = nullptr;
3342 Value *FirstUnwindPad = nullptr;
3343 SmallVector<FuncletPadInst *, 8> Worklist({&FPI});
3344 SmallSet<FuncletPadInst *, 8> Seen;
3345
3346 while (!Worklist.empty()) {
3347 FuncletPadInst *CurrentPad = Worklist.pop_back_val();
3348 Assert(Seen.insert(CurrentPad).second,
3349 "FuncletPadInst must not be nested within itself", CurrentPad);
3350 Value *UnresolvedAncestorPad = nullptr;
3351 for (User *U : CurrentPad->users()) {
3352 BasicBlock *UnwindDest;
3353 if (auto *CRI = dyn_cast<CleanupReturnInst>(U)) {
3354 UnwindDest = CRI->getUnwindDest();
3355 } else if (auto *CSI = dyn_cast<CatchSwitchInst>(U)) {
3356 // We allow catchswitch unwind to caller to nest
3357 // within an outer pad that unwinds somewhere else,
3358 // because catchswitch doesn't have a nounwind variant.
3359 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3360 if (CSI->unwindsToCaller())
3361 continue;
3362 UnwindDest = CSI->getUnwindDest();
3363 } else if (auto *II = dyn_cast<InvokeInst>(U)) {
3364 UnwindDest = II->getUnwindDest();
3365 } else if (isa<CallInst>(U)) {
3366 // Calls which don't unwind may be found inside funclet
3367 // pads that unwind somewhere else. We don't *require*
3368 // such calls to be annotated nounwind.
3369 continue;
3370 } else if (auto *CPI = dyn_cast<CleanupPadInst>(U)) {
3371 // The unwind dest for a cleanup can only be found by
3372 // recursive search. Add it to the worklist, and we'll
3373 // search for its first use that determines where it unwinds.
3374 Worklist.push_back(CPI);
3375 continue;
3376 } else {
3377 Assert(isa<CatchReturnInst>(U), "Bogus funclet pad use", U);
3378 continue;
3379 }
3380
3381 Value *UnwindPad;
3382 bool ExitsFPI;
3383 if (UnwindDest) {
3384 UnwindPad = UnwindDest->getFirstNonPHI();
3385 if (!cast<Instruction>(UnwindPad)->isEHPad())
3386 continue;
3387 Value *UnwindParent = getParentPad(UnwindPad);
3388 // Ignore unwind edges that don't exit CurrentPad.
3389 if (UnwindParent == CurrentPad)
3390 continue;
3391 // Determine whether the original funclet pad is exited,
3392 // and if we are scanning nested pads determine how many
3393 // of them are exited so we can stop searching their
3394 // children.
3395 Value *ExitedPad = CurrentPad;
3396 ExitsFPI = false;
3397 do {
3398 if (ExitedPad == &FPI) {
3399 ExitsFPI = true;
3400 // Now we can resolve any ancestors of CurrentPad up to
3401 // FPI, but not including FPI since we need to make sure
3402 // to check all direct users of FPI for consistency.
3403 UnresolvedAncestorPad = &FPI;
3404 break;
3405 }
3406 Value *ExitedParent = getParentPad(ExitedPad);
3407 if (ExitedParent == UnwindParent) {
3408 // ExitedPad is the ancestor-most pad which this unwind
3409 // edge exits, so we can resolve up to it, meaning that
3410 // ExitedParent is the first ancestor still unresolved.
3411 UnresolvedAncestorPad = ExitedParent;
3412 break;
3413 }
3414 ExitedPad = ExitedParent;
3415 } while (!isa<ConstantTokenNone>(ExitedPad));
3416 } else {
3417 // Unwinding to caller exits all pads.
3418 UnwindPad = ConstantTokenNone::get(FPI.getContext());
3419 ExitsFPI = true;
3420 UnresolvedAncestorPad = &FPI;
3421 }
3422
3423 if (ExitsFPI) {
3424 // This unwind edge exits FPI. Make sure it agrees with other
3425 // such edges.
3426 if (FirstUser) {
3427 Assert(UnwindPad == FirstUnwindPad, "Unwind edges out of a funclet "
3428 "pad must have the same unwind "
3429 "dest",
3430 &FPI, U, FirstUser);
3431 } else {
3432 FirstUser = U;
3433 FirstUnwindPad = UnwindPad;
3434 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3435 if (isa<CleanupPadInst>(&FPI) && !isa<ConstantTokenNone>(UnwindPad) &&
3436 getParentPad(UnwindPad) == getParentPad(&FPI))
3437 SiblingFuncletInfo[&FPI] = cast<TerminatorInst>(U);
3438 }
3439 }
3440 // Make sure we visit all uses of FPI, but for nested pads stop as
3441 // soon as we know where they unwind to.
3442 if (CurrentPad != &FPI)
3443 break;
3444 }
3445 if (UnresolvedAncestorPad) {
3446 if (CurrentPad == UnresolvedAncestorPad) {
3447 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3448 // we've found an unwind edge that exits it, because we need to verify
3449 // all direct uses of FPI.
3450 assert(CurrentPad == &FPI);
3451 continue;
3452 }
3453 // Pop off the worklist any nested pads that we've found an unwind
3454 // destination for. The pads on the worklist are the uncles,
3455 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3456 // for all ancestors of CurrentPad up to but not including
3457 // UnresolvedAncestorPad.
3458 Value *ResolvedPad = CurrentPad;
3459 while (!Worklist.empty()) {
3460 Value *UnclePad = Worklist.back();
3461 Value *AncestorPad = getParentPad(UnclePad);
3462 // Walk ResolvedPad up the ancestor list until we either find the
3463 // uncle's parent or the last resolved ancestor.
3464 while (ResolvedPad != AncestorPad) {
3465 Value *ResolvedParent = getParentPad(ResolvedPad);
3466 if (ResolvedParent == UnresolvedAncestorPad) {
3467 break;
3468 }
3469 ResolvedPad = ResolvedParent;
3470 }
3471 // If the resolved ancestor search didn't find the uncle's parent,
3472 // then the uncle is not yet resolved.
3473 if (ResolvedPad != AncestorPad)
3474 break;
3475 // This uncle is resolved, so pop it from the worklist.
3476 Worklist.pop_back();
3477 }
3478 }
3479 }
3480
3481 if (FirstUnwindPad) {
3482 if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FPI.getParentPad())) {
3483 BasicBlock *SwitchUnwindDest = CatchSwitch->getUnwindDest();
3484 Value *SwitchUnwindPad;
3485 if (SwitchUnwindDest)
3486 SwitchUnwindPad = SwitchUnwindDest->getFirstNonPHI();
3487 else
3488 SwitchUnwindPad = ConstantTokenNone::get(FPI.getContext());
3489 Assert(SwitchUnwindPad == FirstUnwindPad,
3490 "Unwind edges out of a catch must have the same unwind dest as "
3491 "the parent catchswitch",
3492 &FPI, FirstUser, CatchSwitch);
3493 }
3494 }
3495
3496 visitInstruction(FPI);
3497 }
3498
visitCatchSwitchInst(CatchSwitchInst & CatchSwitch)3499 void Verifier::visitCatchSwitchInst(CatchSwitchInst &CatchSwitch) {
3500 BasicBlock *BB = CatchSwitch.getParent();
3501
3502 Function *F = BB->getParent();
3503 Assert(F->hasPersonalityFn(),
3504 "CatchSwitchInst needs to be in a function with a personality.",
3505 &CatchSwitch);
3506
3507 // The catchswitch instruction must be the first non-PHI instruction in the
3508 // block.
3509 Assert(BB->getFirstNonPHI() == &CatchSwitch,
3510 "CatchSwitchInst not the first non-PHI instruction in the block.",
3511 &CatchSwitch);
3512
3513 auto *ParentPad = CatchSwitch.getParentPad();
3514 Assert(isa<ConstantTokenNone>(ParentPad) || isa<FuncletPadInst>(ParentPad),
3515 "CatchSwitchInst has an invalid parent.", ParentPad);
3516
3517 if (BasicBlock *UnwindDest = CatchSwitch.getUnwindDest()) {
3518 Instruction *I = UnwindDest->getFirstNonPHI();
3519 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3520 "CatchSwitchInst must unwind to an EH block which is not a "
3521 "landingpad.",
3522 &CatchSwitch);
3523
3524 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3525 if (getParentPad(I) == ParentPad)
3526 SiblingFuncletInfo[&CatchSwitch] = &CatchSwitch;
3527 }
3528
3529 Assert(CatchSwitch.getNumHandlers() != 0,
3530 "CatchSwitchInst cannot have empty handler list", &CatchSwitch);
3531
3532 for (BasicBlock *Handler : CatchSwitch.handlers()) {
3533 Assert(isa<CatchPadInst>(Handler->getFirstNonPHI()),
3534 "CatchSwitchInst handlers must be catchpads", &CatchSwitch, Handler);
3535 }
3536
3537 visitEHPadPredecessors(CatchSwitch);
3538 visitTerminatorInst(CatchSwitch);
3539 }
3540
visitCleanupReturnInst(CleanupReturnInst & CRI)3541 void Verifier::visitCleanupReturnInst(CleanupReturnInst &CRI) {
3542 Assert(isa<CleanupPadInst>(CRI.getOperand(0)),
3543 "CleanupReturnInst needs to be provided a CleanupPad", &CRI,
3544 CRI.getOperand(0));
3545
3546 if (BasicBlock *UnwindDest = CRI.getUnwindDest()) {
3547 Instruction *I = UnwindDest->getFirstNonPHI();
3548 Assert(I->isEHPad() && !isa<LandingPadInst>(I),
3549 "CleanupReturnInst must unwind to an EH block which is not a "
3550 "landingpad.",
3551 &CRI);
3552 }
3553
3554 visitTerminatorInst(CRI);
3555 }
3556
verifyDominatesUse(Instruction & I,unsigned i)3557 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
3558 Instruction *Op = cast<Instruction>(I.getOperand(i));
3559 // If the we have an invalid invoke, don't try to compute the dominance.
3560 // We already reject it in the invoke specific checks and the dominance
3561 // computation doesn't handle multiple edges.
3562 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
3563 if (II->getNormalDest() == II->getUnwindDest())
3564 return;
3565 }
3566
3567 // Quick check whether the def has already been encountered in the same block.
3568 // PHI nodes are not checked to prevent accepting preceeding PHIs, because PHI
3569 // uses are defined to happen on the incoming edge, not at the instruction.
3570 //
3571 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3572 // wrapping an SSA value, assert that we've already encountered it. See
3573 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3574 if (!isa<PHINode>(I) && InstsInThisBlock.count(Op))
3575 return;
3576
3577 const Use &U = I.getOperandUse(i);
3578 Assert(DT.dominates(Op, U),
3579 "Instruction does not dominate all uses!", Op, &I);
3580 }
3581
visitDereferenceableMetadata(Instruction & I,MDNode * MD)3582 void Verifier::visitDereferenceableMetadata(Instruction& I, MDNode* MD) {
3583 Assert(I.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3584 "apply only to pointer types", &I);
3585 Assert(isa<LoadInst>(I),
3586 "dereferenceable, dereferenceable_or_null apply only to load"
3587 " instructions, use attributes for calls or invokes", &I);
3588 Assert(MD->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3589 "take one operand!", &I);
3590 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
3591 Assert(CI && CI->getType()->isIntegerTy(64), "dereferenceable, "
3592 "dereferenceable_or_null metadata value must be an i64!", &I);
3593 }
3594
3595 /// verifyInstruction - Verify that an instruction is well formed.
3596 ///
visitInstruction(Instruction & I)3597 void Verifier::visitInstruction(Instruction &I) {
3598 BasicBlock *BB = I.getParent();
3599 Assert(BB, "Instruction not embedded in basic block!", &I);
3600
3601 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
3602 for (User *U : I.users()) {
3603 Assert(U != (User *)&I || !DT.isReachableFromEntry(BB),
3604 "Only PHI nodes may reference their own value!", &I);
3605 }
3606 }
3607
3608 // Check that void typed values don't have names
3609 Assert(!I.getType()->isVoidTy() || !I.hasName(),
3610 "Instruction has a name, but provides a void value!", &I);
3611
3612 // Check that the return value of the instruction is either void or a legal
3613 // value type.
3614 Assert(I.getType()->isVoidTy() || I.getType()->isFirstClassType(),
3615 "Instruction returns a non-scalar type!", &I);
3616
3617 // Check that the instruction doesn't produce metadata. Calls are already
3618 // checked against the callee type.
3619 Assert(!I.getType()->isMetadataTy() || isa<CallInst>(I) || isa<InvokeInst>(I),
3620 "Invalid use of metadata!", &I);
3621
3622 // Check that all uses of the instruction, if they are instructions
3623 // themselves, actually have parent basic blocks. If the use is not an
3624 // instruction, it is an error!
3625 for (Use &U : I.uses()) {
3626 if (Instruction *Used = dyn_cast<Instruction>(U.getUser()))
3627 Assert(Used->getParent() != nullptr,
3628 "Instruction referencing"
3629 " instruction not embedded in a basic block!",
3630 &I, Used);
3631 else {
3632 CheckFailed("Use of instruction is not an instruction!", U);
3633 return;
3634 }
3635 }
3636
3637 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
3638 Assert(I.getOperand(i) != nullptr, "Instruction has null operand!", &I);
3639
3640 // Check to make sure that only first-class-values are operands to
3641 // instructions.
3642 if (!I.getOperand(i)->getType()->isFirstClassType()) {
3643 Assert(0, "Instruction operands must be first-class values!", &I);
3644 }
3645
3646 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
3647 // Check to make sure that the "address of" an intrinsic function is never
3648 // taken.
3649 Assert(
3650 !F->isIntrinsic() ||
3651 i == (isa<CallInst>(I) ? e - 1 : isa<InvokeInst>(I) ? e - 3 : 0),
3652 "Cannot take the address of an intrinsic!", &I);
3653 Assert(
3654 !F->isIntrinsic() || isa<CallInst>(I) ||
3655 F->getIntrinsicID() == Intrinsic::donothing ||
3656 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_void ||
3657 F->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64 ||
3658 F->getIntrinsicID() == Intrinsic::experimental_gc_statepoint,
3659 "Cannot invoke an intrinsic other than donothing, patchpoint or "
3660 "statepoint",
3661 &I);
3662 Assert(F->getParent() == M, "Referencing function in another module!",
3663 &I, M, F, F->getParent());
3664 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
3665 Assert(OpBB->getParent() == BB->getParent(),
3666 "Referring to a basic block in another function!", &I);
3667 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
3668 Assert(OpArg->getParent() == BB->getParent(),
3669 "Referring to an argument in another function!", &I);
3670 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
3671 Assert(GV->getParent() == M, "Referencing global in another module!", &I, M, GV, GV->getParent());
3672 } else if (isa<Instruction>(I.getOperand(i))) {
3673 verifyDominatesUse(I, i);
3674 } else if (isa<InlineAsm>(I.getOperand(i))) {
3675 Assert((i + 1 == e && isa<CallInst>(I)) ||
3676 (i + 3 == e && isa<InvokeInst>(I)),
3677 "Cannot take the address of an inline asm!", &I);
3678 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
3679 if (CE->getType()->isPtrOrPtrVectorTy()) {
3680 // If we have a ConstantExpr pointer, we need to see if it came from an
3681 // illegal bitcast (inttoptr <constant int> )
3682 visitConstantExprsRecursively(CE);
3683 }
3684 }
3685 }
3686
3687 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
3688 Assert(I.getType()->isFPOrFPVectorTy(),
3689 "fpmath requires a floating point result!", &I);
3690 Assert(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
3691 if (ConstantFP *CFP0 =
3692 mdconst::dyn_extract_or_null<ConstantFP>(MD->getOperand(0))) {
3693 const APFloat &Accuracy = CFP0->getValueAPF();
3694 Assert(&Accuracy.getSemantics() == &APFloat::IEEEsingle,
3695 "fpmath accuracy must have float type", &I);
3696 Assert(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
3697 "fpmath accuracy not a positive number!", &I);
3698 } else {
3699 Assert(false, "invalid fpmath accuracy!", &I);
3700 }
3701 }
3702
3703 if (MDNode *Range = I.getMetadata(LLVMContext::MD_range)) {
3704 Assert(isa<LoadInst>(I) || isa<CallInst>(I) || isa<InvokeInst>(I),
3705 "Ranges are only for loads, calls and invokes!", &I);
3706 visitRangeMetadata(I, Range, I.getType());
3707 }
3708
3709 if (I.getMetadata(LLVMContext::MD_nonnull)) {
3710 Assert(I.getType()->isPointerTy(), "nonnull applies only to pointer types",
3711 &I);
3712 Assert(isa<LoadInst>(I),
3713 "nonnull applies only to load instructions, use attributes"
3714 " for calls or invokes",
3715 &I);
3716 }
3717
3718 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable))
3719 visitDereferenceableMetadata(I, MD);
3720
3721 if (MDNode *MD = I.getMetadata(LLVMContext::MD_dereferenceable_or_null))
3722 visitDereferenceableMetadata(I, MD);
3723
3724 if (MDNode *AlignMD = I.getMetadata(LLVMContext::MD_align)) {
3725 Assert(I.getType()->isPointerTy(), "align applies only to pointer types",
3726 &I);
3727 Assert(isa<LoadInst>(I), "align applies only to load instructions, "
3728 "use attributes for calls or invokes", &I);
3729 Assert(AlignMD->getNumOperands() == 1, "align takes one operand!", &I);
3730 ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(AlignMD->getOperand(0));
3731 Assert(CI && CI->getType()->isIntegerTy(64),
3732 "align metadata value must be an i64!", &I);
3733 uint64_t Align = CI->getZExtValue();
3734 Assert(isPowerOf2_64(Align),
3735 "align metadata value must be a power of 2!", &I);
3736 Assert(Align <= Value::MaximumAlignment,
3737 "alignment is larger that implementation defined limit", &I);
3738 }
3739
3740 if (MDNode *N = I.getDebugLoc().getAsMDNode()) {
3741 AssertDI(isa<DILocation>(N), "invalid !dbg metadata attachment", &I, N);
3742 visitMDNode(*N);
3743 }
3744
3745 if (auto *DII = dyn_cast<DbgInfoIntrinsic>(&I))
3746 verifyBitPieceExpression(*DII);
3747
3748 InstsInThisBlock.insert(&I);
3749 }
3750
3751 /// Allow intrinsics to be verified in different ways.
visitIntrinsicCallSite(Intrinsic::ID ID,CallSite CS)3752 void Verifier::visitIntrinsicCallSite(Intrinsic::ID ID, CallSite CS) {
3753 Function *IF = CS.getCalledFunction();
3754 Assert(IF->isDeclaration(), "Intrinsic functions should never be defined!",
3755 IF);
3756
3757 // Verify that the intrinsic prototype lines up with what the .td files
3758 // describe.
3759 FunctionType *IFTy = IF->getFunctionType();
3760 bool IsVarArg = IFTy->isVarArg();
3761
3762 SmallVector<Intrinsic::IITDescriptor, 8> Table;
3763 getIntrinsicInfoTableEntries(ID, Table);
3764 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
3765
3766 SmallVector<Type *, 4> ArgTys;
3767 Assert(!Intrinsic::matchIntrinsicType(IFTy->getReturnType(),
3768 TableRef, ArgTys),
3769 "Intrinsic has incorrect return type!", IF);
3770 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
3771 Assert(!Intrinsic::matchIntrinsicType(IFTy->getParamType(i),
3772 TableRef, ArgTys),
3773 "Intrinsic has incorrect argument type!", IF);
3774
3775 // Verify if the intrinsic call matches the vararg property.
3776 if (IsVarArg)
3777 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3778 "Intrinsic was not defined with variable arguments!", IF);
3779 else
3780 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg, TableRef),
3781 "Callsite was not defined with variable arguments!", IF);
3782
3783 // All descriptors should be absorbed by now.
3784 Assert(TableRef.empty(), "Intrinsic has too few arguments!", IF);
3785
3786 // Now that we have the intrinsic ID and the actual argument types (and we
3787 // know they are legal for the intrinsic!) get the intrinsic name through the
3788 // usual means. This allows us to verify the mangling of argument types into
3789 // the name.
3790 const std::string ExpectedName = Intrinsic::getName(ID, ArgTys);
3791 Assert(ExpectedName == IF->getName(),
3792 "Intrinsic name not mangled correctly for type arguments! "
3793 "Should be: " +
3794 ExpectedName,
3795 IF);
3796
3797 // If the intrinsic takes MDNode arguments, verify that they are either global
3798 // or are local to *this* function.
3799 for (Value *V : CS.args())
3800 if (auto *MD = dyn_cast<MetadataAsValue>(V))
3801 visitMetadataAsValue(*MD, CS.getCaller());
3802
3803 switch (ID) {
3804 default:
3805 break;
3806 case Intrinsic::ctlz: // llvm.ctlz
3807 case Intrinsic::cttz: // llvm.cttz
3808 Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3809 "is_zero_undef argument of bit counting intrinsics must be a "
3810 "constant int",
3811 CS);
3812 break;
3813 case Intrinsic::dbg_declare: // llvm.dbg.declare
3814 Assert(isa<MetadataAsValue>(CS.getArgOperand(0)),
3815 "invalid llvm.dbg.declare intrinsic call 1", CS);
3816 visitDbgIntrinsic("declare", cast<DbgDeclareInst>(*CS.getInstruction()));
3817 break;
3818 case Intrinsic::dbg_value: // llvm.dbg.value
3819 visitDbgIntrinsic("value", cast<DbgValueInst>(*CS.getInstruction()));
3820 break;
3821 case Intrinsic::memcpy:
3822 case Intrinsic::memmove:
3823 case Intrinsic::memset: {
3824 ConstantInt *AlignCI = dyn_cast<ConstantInt>(CS.getArgOperand(3));
3825 Assert(AlignCI,
3826 "alignment argument of memory intrinsics must be a constant int",
3827 CS);
3828 const APInt &AlignVal = AlignCI->getValue();
3829 Assert(AlignCI->isZero() || AlignVal.isPowerOf2(),
3830 "alignment argument of memory intrinsics must be a power of 2", CS);
3831 Assert(isa<ConstantInt>(CS.getArgOperand(4)),
3832 "isvolatile argument of memory intrinsics must be a constant int",
3833 CS);
3834 break;
3835 }
3836 case Intrinsic::gcroot:
3837 case Intrinsic::gcwrite:
3838 case Intrinsic::gcread:
3839 if (ID == Intrinsic::gcroot) {
3840 AllocaInst *AI =
3841 dyn_cast<AllocaInst>(CS.getArgOperand(0)->stripPointerCasts());
3842 Assert(AI, "llvm.gcroot parameter #1 must be an alloca.", CS);
3843 Assert(isa<Constant>(CS.getArgOperand(1)),
3844 "llvm.gcroot parameter #2 must be a constant.", CS);
3845 if (!AI->getAllocatedType()->isPointerTy()) {
3846 Assert(!isa<ConstantPointerNull>(CS.getArgOperand(1)),
3847 "llvm.gcroot parameter #1 must either be a pointer alloca, "
3848 "or argument #2 must be a non-null constant.",
3849 CS);
3850 }
3851 }
3852
3853 Assert(CS.getParent()->getParent()->hasGC(),
3854 "Enclosing function does not use GC.", CS);
3855 break;
3856 case Intrinsic::init_trampoline:
3857 Assert(isa<Function>(CS.getArgOperand(1)->stripPointerCasts()),
3858 "llvm.init_trampoline parameter #2 must resolve to a function.",
3859 CS);
3860 break;
3861 case Intrinsic::prefetch:
3862 Assert(isa<ConstantInt>(CS.getArgOperand(1)) &&
3863 isa<ConstantInt>(CS.getArgOperand(2)) &&
3864 cast<ConstantInt>(CS.getArgOperand(1))->getZExtValue() < 2 &&
3865 cast<ConstantInt>(CS.getArgOperand(2))->getZExtValue() < 4,
3866 "invalid arguments to llvm.prefetch", CS);
3867 break;
3868 case Intrinsic::stackprotector:
3869 Assert(isa<AllocaInst>(CS.getArgOperand(1)->stripPointerCasts()),
3870 "llvm.stackprotector parameter #2 must resolve to an alloca.", CS);
3871 break;
3872 case Intrinsic::lifetime_start:
3873 case Intrinsic::lifetime_end:
3874 case Intrinsic::invariant_start:
3875 Assert(isa<ConstantInt>(CS.getArgOperand(0)),
3876 "size argument of memory use markers must be a constant integer",
3877 CS);
3878 break;
3879 case Intrinsic::invariant_end:
3880 Assert(isa<ConstantInt>(CS.getArgOperand(1)),
3881 "llvm.invariant.end parameter #2 must be a constant integer", CS);
3882 break;
3883
3884 case Intrinsic::localescape: {
3885 BasicBlock *BB = CS.getParent();
3886 Assert(BB == &BB->getParent()->front(),
3887 "llvm.localescape used outside of entry block", CS);
3888 Assert(!SawFrameEscape,
3889 "multiple calls to llvm.localescape in one function", CS);
3890 for (Value *Arg : CS.args()) {
3891 if (isa<ConstantPointerNull>(Arg))
3892 continue; // Null values are allowed as placeholders.
3893 auto *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts());
3894 Assert(AI && AI->isStaticAlloca(),
3895 "llvm.localescape only accepts static allocas", CS);
3896 }
3897 FrameEscapeInfo[BB->getParent()].first = CS.getNumArgOperands();
3898 SawFrameEscape = true;
3899 break;
3900 }
3901 case Intrinsic::localrecover: {
3902 Value *FnArg = CS.getArgOperand(0)->stripPointerCasts();
3903 Function *Fn = dyn_cast<Function>(FnArg);
3904 Assert(Fn && !Fn->isDeclaration(),
3905 "llvm.localrecover first "
3906 "argument must be function defined in this module",
3907 CS);
3908 auto *IdxArg = dyn_cast<ConstantInt>(CS.getArgOperand(2));
3909 Assert(IdxArg, "idx argument of llvm.localrecover must be a constant int",
3910 CS);
3911 auto &Entry = FrameEscapeInfo[Fn];
3912 Entry.second = unsigned(
3913 std::max(uint64_t(Entry.second), IdxArg->getLimitedValue(~0U) + 1));
3914 break;
3915 }
3916
3917 case Intrinsic::experimental_gc_statepoint:
3918 Assert(!CS.isInlineAsm(),
3919 "gc.statepoint support for inline assembly unimplemented", CS);
3920 Assert(CS.getParent()->getParent()->hasGC(),
3921 "Enclosing function does not use GC.", CS);
3922
3923 verifyStatepoint(CS);
3924 break;
3925 case Intrinsic::experimental_gc_result: {
3926 Assert(CS.getParent()->getParent()->hasGC(),
3927 "Enclosing function does not use GC.", CS);
3928 // Are we tied to a statepoint properly?
3929 CallSite StatepointCS(CS.getArgOperand(0));
3930 const Function *StatepointFn =
3931 StatepointCS.getInstruction() ? StatepointCS.getCalledFunction() : nullptr;
3932 Assert(StatepointFn && StatepointFn->isDeclaration() &&
3933 StatepointFn->getIntrinsicID() ==
3934 Intrinsic::experimental_gc_statepoint,
3935 "gc.result operand #1 must be from a statepoint", CS,
3936 CS.getArgOperand(0));
3937
3938 // Assert that result type matches wrapped callee.
3939 const Value *Target = StatepointCS.getArgument(2);
3940 auto *PT = cast<PointerType>(Target->getType());
3941 auto *TargetFuncType = cast<FunctionType>(PT->getElementType());
3942 Assert(CS.getType() == TargetFuncType->getReturnType(),
3943 "gc.result result type does not match wrapped callee", CS);
3944 break;
3945 }
3946 case Intrinsic::experimental_gc_relocate: {
3947 Assert(CS.getNumArgOperands() == 3, "wrong number of arguments", CS);
3948
3949 Assert(isa<PointerType>(CS.getType()->getScalarType()),
3950 "gc.relocate must return a pointer or a vector of pointers", CS);
3951
3952 // Check that this relocate is correctly tied to the statepoint
3953
3954 // This is case for relocate on the unwinding path of an invoke statepoint
3955 if (LandingPadInst *LandingPad =
3956 dyn_cast<LandingPadInst>(CS.getArgOperand(0))) {
3957
3958 const BasicBlock *InvokeBB =
3959 LandingPad->getParent()->getUniquePredecessor();
3960
3961 // Landingpad relocates should have only one predecessor with invoke
3962 // statepoint terminator
3963 Assert(InvokeBB, "safepoints should have unique landingpads",
3964 LandingPad->getParent());
3965 Assert(InvokeBB->getTerminator(), "safepoint block should be well formed",
3966 InvokeBB);
3967 Assert(isStatepoint(InvokeBB->getTerminator()),
3968 "gc relocate should be linked to a statepoint", InvokeBB);
3969 }
3970 else {
3971 // In all other cases relocate should be tied to the statepoint directly.
3972 // This covers relocates on a normal return path of invoke statepoint and
3973 // relocates of a call statepoint.
3974 auto Token = CS.getArgOperand(0);
3975 Assert(isa<Instruction>(Token) && isStatepoint(cast<Instruction>(Token)),
3976 "gc relocate is incorrectly tied to the statepoint", CS, Token);
3977 }
3978
3979 // Verify rest of the relocate arguments.
3980
3981 ImmutableCallSite StatepointCS(
3982 cast<GCRelocateInst>(*CS.getInstruction()).getStatepoint());
3983
3984 // Both the base and derived must be piped through the safepoint.
3985 Value* Base = CS.getArgOperand(1);
3986 Assert(isa<ConstantInt>(Base),
3987 "gc.relocate operand #2 must be integer offset", CS);
3988
3989 Value* Derived = CS.getArgOperand(2);
3990 Assert(isa<ConstantInt>(Derived),
3991 "gc.relocate operand #3 must be integer offset", CS);
3992
3993 const int BaseIndex = cast<ConstantInt>(Base)->getZExtValue();
3994 const int DerivedIndex = cast<ConstantInt>(Derived)->getZExtValue();
3995 // Check the bounds
3996 Assert(0 <= BaseIndex && BaseIndex < (int)StatepointCS.arg_size(),
3997 "gc.relocate: statepoint base index out of bounds", CS);
3998 Assert(0 <= DerivedIndex && DerivedIndex < (int)StatepointCS.arg_size(),
3999 "gc.relocate: statepoint derived index out of bounds", CS);
4000
4001 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4002 // section of the statepoint's argument.
4003 Assert(StatepointCS.arg_size() > 0,
4004 "gc.statepoint: insufficient arguments");
4005 Assert(isa<ConstantInt>(StatepointCS.getArgument(3)),
4006 "gc.statement: number of call arguments must be constant integer");
4007 const unsigned NumCallArgs =
4008 cast<ConstantInt>(StatepointCS.getArgument(3))->getZExtValue();
4009 Assert(StatepointCS.arg_size() > NumCallArgs + 5,
4010 "gc.statepoint: mismatch in number of call arguments");
4011 Assert(isa<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5)),
4012 "gc.statepoint: number of transition arguments must be "
4013 "a constant integer");
4014 const int NumTransitionArgs =
4015 cast<ConstantInt>(StatepointCS.getArgument(NumCallArgs + 5))
4016 ->getZExtValue();
4017 const int DeoptArgsStart = 4 + NumCallArgs + 1 + NumTransitionArgs + 1;
4018 Assert(isa<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart)),
4019 "gc.statepoint: number of deoptimization arguments must be "
4020 "a constant integer");
4021 const int NumDeoptArgs =
4022 cast<ConstantInt>(StatepointCS.getArgument(DeoptArgsStart))
4023 ->getZExtValue();
4024 const int GCParamArgsStart = DeoptArgsStart + 1 + NumDeoptArgs;
4025 const int GCParamArgsEnd = StatepointCS.arg_size();
4026 Assert(GCParamArgsStart <= BaseIndex && BaseIndex < GCParamArgsEnd,
4027 "gc.relocate: statepoint base index doesn't fall within the "
4028 "'gc parameters' section of the statepoint call",
4029 CS);
4030 Assert(GCParamArgsStart <= DerivedIndex && DerivedIndex < GCParamArgsEnd,
4031 "gc.relocate: statepoint derived index doesn't fall within the "
4032 "'gc parameters' section of the statepoint call",
4033 CS);
4034
4035 // Relocated value must be either a pointer type or vector-of-pointer type,
4036 // but gc_relocate does not need to return the same pointer type as the
4037 // relocated pointer. It can be casted to the correct type later if it's
4038 // desired. However, they must have the same address space and 'vectorness'
4039 GCRelocateInst &Relocate = cast<GCRelocateInst>(*CS.getInstruction());
4040 Assert(Relocate.getDerivedPtr()->getType()->getScalarType()->isPointerTy(),
4041 "gc.relocate: relocated value must be a gc pointer", CS);
4042
4043 auto ResultType = CS.getType();
4044 auto DerivedType = Relocate.getDerivedPtr()->getType();
4045 Assert(ResultType->isVectorTy() == DerivedType->isVectorTy(),
4046 "gc.relocate: vector relocates to vector and pointer to pointer",
4047 CS);
4048 Assert(
4049 ResultType->getPointerAddressSpace() ==
4050 DerivedType->getPointerAddressSpace(),
4051 "gc.relocate: relocating a pointer shouldn't change its address space",
4052 CS);
4053 break;
4054 }
4055 case Intrinsic::eh_exceptioncode:
4056 case Intrinsic::eh_exceptionpointer: {
4057 Assert(isa<CatchPadInst>(CS.getArgOperand(0)),
4058 "eh.exceptionpointer argument must be a catchpad", CS);
4059 break;
4060 }
4061 case Intrinsic::masked_load: {
4062 Assert(CS.getType()->isVectorTy(), "masked_load: must return a vector", CS);
4063
4064 Value *Ptr = CS.getArgOperand(0);
4065 //Value *Alignment = CS.getArgOperand(1);
4066 Value *Mask = CS.getArgOperand(2);
4067 Value *PassThru = CS.getArgOperand(3);
4068 Assert(Mask->getType()->isVectorTy(),
4069 "masked_load: mask must be vector", CS);
4070
4071 // DataTy is the overloaded type
4072 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4073 Assert(DataTy == CS.getType(),
4074 "masked_load: return must match pointer type", CS);
4075 Assert(PassThru->getType() == DataTy,
4076 "masked_load: pass through and data type must match", CS);
4077 Assert(Mask->getType()->getVectorNumElements() ==
4078 DataTy->getVectorNumElements(),
4079 "masked_load: vector mask must be same length as data", CS);
4080 break;
4081 }
4082 case Intrinsic::masked_store: {
4083 Value *Val = CS.getArgOperand(0);
4084 Value *Ptr = CS.getArgOperand(1);
4085 //Value *Alignment = CS.getArgOperand(2);
4086 Value *Mask = CS.getArgOperand(3);
4087 Assert(Mask->getType()->isVectorTy(),
4088 "masked_store: mask must be vector", CS);
4089
4090 // DataTy is the overloaded type
4091 Type *DataTy = cast<PointerType>(Ptr->getType())->getElementType();
4092 Assert(DataTy == Val->getType(),
4093 "masked_store: storee must match pointer type", CS);
4094 Assert(Mask->getType()->getVectorNumElements() ==
4095 DataTy->getVectorNumElements(),
4096 "masked_store: vector mask must be same length as data", CS);
4097 break;
4098 }
4099
4100 case Intrinsic::experimental_guard: {
4101 Assert(CS.isCall(), "experimental_guard cannot be invoked", CS);
4102 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4103 "experimental_guard must have exactly one "
4104 "\"deopt\" operand bundle");
4105 break;
4106 }
4107
4108 case Intrinsic::experimental_deoptimize: {
4109 Assert(CS.isCall(), "experimental_deoptimize cannot be invoked", CS);
4110 Assert(CS.countOperandBundlesOfType(LLVMContext::OB_deopt) == 1,
4111 "experimental_deoptimize must have exactly one "
4112 "\"deopt\" operand bundle");
4113 Assert(CS.getType() == CS.getInstruction()->getFunction()->getReturnType(),
4114 "experimental_deoptimize return type must match caller return type");
4115
4116 if (CS.isCall()) {
4117 auto *DeoptCI = CS.getInstruction();
4118 auto *RI = dyn_cast<ReturnInst>(DeoptCI->getNextNode());
4119 Assert(RI,
4120 "calls to experimental_deoptimize must be followed by a return");
4121
4122 if (!CS.getType()->isVoidTy() && RI)
4123 Assert(RI->getReturnValue() == DeoptCI,
4124 "calls to experimental_deoptimize must be followed by a return "
4125 "of the value computed by experimental_deoptimize");
4126 }
4127
4128 break;
4129 }
4130 };
4131 }
4132
4133 /// \brief Carefully grab the subprogram from a local scope.
4134 ///
4135 /// This carefully grabs the subprogram from a local scope, avoiding the
4136 /// built-in assertions that would typically fire.
getSubprogram(Metadata * LocalScope)4137 static DISubprogram *getSubprogram(Metadata *LocalScope) {
4138 if (!LocalScope)
4139 return nullptr;
4140
4141 if (auto *SP = dyn_cast<DISubprogram>(LocalScope))
4142 return SP;
4143
4144 if (auto *LB = dyn_cast<DILexicalBlockBase>(LocalScope))
4145 return getSubprogram(LB->getRawScope());
4146
4147 // Just return null; broken scope chains are checked elsewhere.
4148 assert(!isa<DILocalScope>(LocalScope) && "Unknown type of local scope");
4149 return nullptr;
4150 }
4151
4152 template <class DbgIntrinsicTy>
visitDbgIntrinsic(StringRef Kind,DbgIntrinsicTy & DII)4153 void Verifier::visitDbgIntrinsic(StringRef Kind, DbgIntrinsicTy &DII) {
4154 auto *MD = cast<MetadataAsValue>(DII.getArgOperand(0))->getMetadata();
4155 AssertDI(isa<ValueAsMetadata>(MD) ||
4156 (isa<MDNode>(MD) && !cast<MDNode>(MD)->getNumOperands()),
4157 "invalid llvm.dbg." + Kind + " intrinsic address/value", &DII, MD);
4158 AssertDI(isa<DILocalVariable>(DII.getRawVariable()),
4159 "invalid llvm.dbg." + Kind + " intrinsic variable", &DII,
4160 DII.getRawVariable());
4161 AssertDI(isa<DIExpression>(DII.getRawExpression()),
4162 "invalid llvm.dbg." + Kind + " intrinsic expression", &DII,
4163 DII.getRawExpression());
4164
4165 // Ignore broken !dbg attachments; they're checked elsewhere.
4166 if (MDNode *N = DII.getDebugLoc().getAsMDNode())
4167 if (!isa<DILocation>(N))
4168 return;
4169
4170 BasicBlock *BB = DII.getParent();
4171 Function *F = BB ? BB->getParent() : nullptr;
4172
4173 // The scopes for variables and !dbg attachments must agree.
4174 DILocalVariable *Var = DII.getVariable();
4175 DILocation *Loc = DII.getDebugLoc();
4176 Assert(Loc, "llvm.dbg." + Kind + " intrinsic requires a !dbg attachment",
4177 &DII, BB, F);
4178
4179 DISubprogram *VarSP = getSubprogram(Var->getRawScope());
4180 DISubprogram *LocSP = getSubprogram(Loc->getRawScope());
4181 if (!VarSP || !LocSP)
4182 return; // Broken scope chains are checked elsewhere.
4183
4184 Assert(VarSP == LocSP, "mismatched subprogram between llvm.dbg." + Kind +
4185 " variable and !dbg attachment",
4186 &DII, BB, F, Var, Var->getScope()->getSubprogram(), Loc,
4187 Loc->getScope()->getSubprogram());
4188 }
4189
getVariableSize(const DILocalVariable & V)4190 static uint64_t getVariableSize(const DILocalVariable &V) {
4191 // Be careful of broken types (checked elsewhere).
4192 const Metadata *RawType = V.getRawType();
4193 while (RawType) {
4194 // Try to get the size directly.
4195 if (auto *T = dyn_cast<DIType>(RawType))
4196 if (uint64_t Size = T->getSizeInBits())
4197 return Size;
4198
4199 if (auto *DT = dyn_cast<DIDerivedType>(RawType)) {
4200 // Look at the base type.
4201 RawType = DT->getRawBaseType();
4202 continue;
4203 }
4204
4205 // Missing type or size.
4206 break;
4207 }
4208
4209 // Fail gracefully.
4210 return 0;
4211 }
4212
verifyBitPieceExpression(const DbgInfoIntrinsic & I)4213 void Verifier::verifyBitPieceExpression(const DbgInfoIntrinsic &I) {
4214 DILocalVariable *V;
4215 DIExpression *E;
4216 if (auto *DVI = dyn_cast<DbgValueInst>(&I)) {
4217 V = dyn_cast_or_null<DILocalVariable>(DVI->getRawVariable());
4218 E = dyn_cast_or_null<DIExpression>(DVI->getRawExpression());
4219 } else {
4220 auto *DDI = cast<DbgDeclareInst>(&I);
4221 V = dyn_cast_or_null<DILocalVariable>(DDI->getRawVariable());
4222 E = dyn_cast_or_null<DIExpression>(DDI->getRawExpression());
4223 }
4224
4225 // We don't know whether this intrinsic verified correctly.
4226 if (!V || !E || !E->isValid())
4227 return;
4228
4229 // Nothing to do if this isn't a bit piece expression.
4230 if (!E->isBitPiece())
4231 return;
4232
4233 // The frontend helps out GDB by emitting the members of local anonymous
4234 // unions as artificial local variables with shared storage. When SROA splits
4235 // the storage for artificial local variables that are smaller than the entire
4236 // union, the overhang piece will be outside of the allotted space for the
4237 // variable and this check fails.
4238 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4239 if (V->isArtificial())
4240 return;
4241
4242 // If there's no size, the type is broken, but that should be checked
4243 // elsewhere.
4244 uint64_t VarSize = getVariableSize(*V);
4245 if (!VarSize)
4246 return;
4247
4248 unsigned PieceSize = E->getBitPieceSize();
4249 unsigned PieceOffset = E->getBitPieceOffset();
4250 Assert(PieceSize + PieceOffset <= VarSize,
4251 "piece is larger than or outside of variable", &I, V, E);
4252 Assert(PieceSize != VarSize, "piece covers entire variable", &I, V, E);
4253 }
4254
verifyCompileUnits()4255 void Verifier::verifyCompileUnits() {
4256 auto *CUs = M->getNamedMetadata("llvm.dbg.cu");
4257 SmallPtrSet<const Metadata *, 2> Listed;
4258 if (CUs)
4259 Listed.insert(CUs->op_begin(), CUs->op_end());
4260 Assert(
4261 std::all_of(CUVisited.begin(), CUVisited.end(),
4262 [&Listed](const Metadata *CU) { return Listed.count(CU); }),
4263 "All DICompileUnits must be listed in llvm.dbg.cu");
4264 CUVisited.clear();
4265 }
4266
verifyDeoptimizeCallingConvs()4267 void Verifier::verifyDeoptimizeCallingConvs() {
4268 if (DeoptimizeDeclarations.empty())
4269 return;
4270
4271 const Function *First = DeoptimizeDeclarations[0];
4272 for (auto *F : makeArrayRef(DeoptimizeDeclarations).slice(1)) {
4273 Assert(First->getCallingConv() == F->getCallingConv(),
4274 "All llvm.experimental.deoptimize declarations must have the same "
4275 "calling convention",
4276 First, F);
4277 }
4278 }
4279
4280 //===----------------------------------------------------------------------===//
4281 // Implement the public interfaces to this file...
4282 //===----------------------------------------------------------------------===//
4283
verifyFunction(const Function & f,raw_ostream * OS)4284 bool llvm::verifyFunction(const Function &f, raw_ostream *OS) {
4285 Function &F = const_cast<Function &>(f);
4286
4287 // Don't use a raw_null_ostream. Printing IR is expensive.
4288 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/true);
4289
4290 // Note that this function's return value is inverted from what you would
4291 // expect of a function called "verify".
4292 return !V.verify(F);
4293 }
4294
verifyModule(const Module & M,raw_ostream * OS,bool * BrokenDebugInfo)4295 bool llvm::verifyModule(const Module &M, raw_ostream *OS,
4296 bool *BrokenDebugInfo) {
4297 // Don't use a raw_null_ostream. Printing IR is expensive.
4298 Verifier V(OS, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo);
4299
4300 bool Broken = false;
4301 for (const Function &F : M)
4302 Broken |= !V.verify(F);
4303
4304 Broken |= !V.verify(M);
4305 if (BrokenDebugInfo)
4306 *BrokenDebugInfo = V.hasBrokenDebugInfo();
4307 // Note that this function's return value is inverted from what you would
4308 // expect of a function called "verify".
4309 return Broken;
4310 }
4311
4312 namespace {
4313 struct VerifierLegacyPass : public FunctionPass {
4314 static char ID;
4315
4316 Verifier V;
4317 bool FatalErrors = true;
4318
VerifierLegacyPass__anon51203d770511::VerifierLegacyPass4319 VerifierLegacyPass()
4320 : FunctionPass(ID),
4321 V(&dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false) {
4322 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4323 }
VerifierLegacyPass__anon51203d770511::VerifierLegacyPass4324 explicit VerifierLegacyPass(bool FatalErrors)
4325 : FunctionPass(ID),
4326 V(&dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false),
4327 FatalErrors(FatalErrors) {
4328 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
4329 }
4330
runOnFunction__anon51203d770511::VerifierLegacyPass4331 bool runOnFunction(Function &F) override {
4332 if (!V.verify(F) && FatalErrors)
4333 report_fatal_error("Broken function found, compilation aborted!");
4334
4335 return false;
4336 }
4337
doFinalization__anon51203d770511::VerifierLegacyPass4338 bool doFinalization(Module &M) override {
4339 bool HasErrors = false;
4340 for (Function &F : M)
4341 if (F.isDeclaration())
4342 HasErrors |= !V.verify(F);
4343
4344 HasErrors |= !V.verify(M);
4345 if (FatalErrors) {
4346 if (HasErrors)
4347 report_fatal_error("Broken module found, compilation aborted!");
4348 assert(!V.hasBrokenDebugInfo() && "Module contains invalid debug info");
4349 }
4350
4351 // Strip broken debug info.
4352 if (V.hasBrokenDebugInfo()) {
4353 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4354 M.getContext().diagnose(DiagInvalid);
4355 if (!StripDebugInfo(M))
4356 report_fatal_error("Failed to strip malformed debug info");
4357 }
4358 return false;
4359 }
4360
getAnalysisUsage__anon51203d770511::VerifierLegacyPass4361 void getAnalysisUsage(AnalysisUsage &AU) const override {
4362 AU.setPreservesAll();
4363 }
4364 };
4365 }
4366
4367 char VerifierLegacyPass::ID = 0;
4368 INITIALIZE_PASS(VerifierLegacyPass, "verify", "Module Verifier", false, false)
4369
createVerifierPass(bool FatalErrors)4370 FunctionPass *llvm::createVerifierPass(bool FatalErrors) {
4371 return new VerifierLegacyPass(FatalErrors);
4372 }
4373
4374 char VerifierAnalysis::PassID;
run(Module & M,ModuleAnalysisManager &)4375 VerifierAnalysis::Result VerifierAnalysis::run(Module &M,
4376 ModuleAnalysisManager &) {
4377 Result Res;
4378 Res.IRBroken = llvm::verifyModule(M, &dbgs(), &Res.DebugInfoBroken);
4379 return Res;
4380 }
4381
run(Function & F,FunctionAnalysisManager &)4382 VerifierAnalysis::Result VerifierAnalysis::run(Function &F,
4383 FunctionAnalysisManager &) {
4384 return { llvm::verifyFunction(F, &dbgs()), false };
4385 }
4386
run(Module & M,ModuleAnalysisManager & AM)4387 PreservedAnalyses VerifierPass::run(Module &M, ModuleAnalysisManager &AM) {
4388 auto Res = AM.getResult<VerifierAnalysis>(M);
4389 if (FatalErrors) {
4390 if (Res.IRBroken)
4391 report_fatal_error("Broken module found, compilation aborted!");
4392 assert(!Res.DebugInfoBroken && "Module contains invalid debug info");
4393 }
4394
4395 // Strip broken debug info.
4396 if (Res.DebugInfoBroken) {
4397 DiagnosticInfoIgnoringInvalidDebugMetadata DiagInvalid(M);
4398 M.getContext().diagnose(DiagInvalid);
4399 if (!StripDebugInfo(M))
4400 report_fatal_error("Failed to strip malformed debug info");
4401 }
4402 return PreservedAnalyses::all();
4403 }
4404
run(Function & F,FunctionAnalysisManager & AM)4405 PreservedAnalyses VerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
4406 auto res = AM.getResult<VerifierAnalysis>(F);
4407 if (res.IRBroken && FatalErrors)
4408 report_fatal_error("Broken function found, compilation aborted!");
4409
4410 return PreservedAnalyses::all();
4411 }
4412