1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_ARM_CONSTANTS_ARM_H_
6 #define V8_ARM_CONSTANTS_ARM_H_
7
8 #include <stdint.h>
9
10 #include "src/base/logging.h"
11 #include "src/base/macros.h"
12 #include "src/globals.h"
13
14 // ARM EABI is required.
15 #if defined(__arm__) && !defined(__ARM_EABI__)
16 #error ARM EABI support is required.
17 #endif
18
19 namespace v8 {
20 namespace internal {
21
22 // Constant pool marker.
23 // Use UDF, the permanently undefined instruction.
24 const int kConstantPoolMarkerMask = 0xfff000f0;
25 const int kConstantPoolMarker = 0xe7f000f0;
26 const int kConstantPoolLengthMaxMask = 0xffff;
EncodeConstantPoolLength(int length)27 inline int EncodeConstantPoolLength(int length) {
28 DCHECK((length & kConstantPoolLengthMaxMask) == length);
29 return ((length & 0xfff0) << 4) | (length & 0xf);
30 }
DecodeConstantPoolLength(int instr)31 inline int DecodeConstantPoolLength(int instr) {
32 DCHECK((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
33 return ((instr >> 4) & 0xfff0) | (instr & 0xf);
34 }
35
36 // Used in code age prologue - ldr(pc, MemOperand(pc, -4))
37 const int kCodeAgeJumpInstruction = 0xe51ff004;
38
39 // Number of registers in normal ARM mode.
40 const int kNumRegisters = 16;
41
42 // VFP support.
43 const int kNumVFPSingleRegisters = 32;
44 const int kNumVFPDoubleRegisters = 32;
45 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
46
47 // PC is register 15.
48 const int kPCRegister = 15;
49 const int kNoRegister = -1;
50
51 // Used in embedded constant pool builder - max reach in bits for
52 // various load instructions (unsigned)
53 const int kLdrMaxReachBits = 12;
54 const int kVldrMaxReachBits = 10;
55
56 // -----------------------------------------------------------------------------
57 // Conditions.
58
59 // Defines constants and accessor classes to assemble, disassemble and
60 // simulate ARM instructions.
61 //
62 // Section references in the code refer to the "ARM Architecture Reference
63 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
64 //
65 // Constants for specific fields are defined in their respective named enums.
66 // General constants are in an anonymous enum in class Instr.
67
68 // Values for the condition field as defined in section A3.2
69 enum Condition {
70 kNoCondition = -1,
71
72 eq = 0 << 28, // Z set Equal.
73 ne = 1 << 28, // Z clear Not equal.
74 cs = 2 << 28, // C set Unsigned higher or same.
75 cc = 3 << 28, // C clear Unsigned lower.
76 mi = 4 << 28, // N set Negative.
77 pl = 5 << 28, // N clear Positive or zero.
78 vs = 6 << 28, // V set Overflow.
79 vc = 7 << 28, // V clear No overflow.
80 hi = 8 << 28, // C set, Z clear Unsigned higher.
81 ls = 9 << 28, // C clear or Z set Unsigned lower or same.
82 ge = 10 << 28, // N == V Greater or equal.
83 lt = 11 << 28, // N != V Less than.
84 gt = 12 << 28, // Z clear, N == V Greater than.
85 le = 13 << 28, // Z set or N != V Less then or equal
86 al = 14 << 28, // Always.
87
88 kSpecialCondition = 15 << 28, // Special condition (refer to section A3.2.1).
89 kNumberOfConditions = 16,
90
91 // Aliases.
92 hs = cs, // C set Unsigned higher or same.
93 lo = cc // C clear Unsigned lower.
94 };
95
96
NegateCondition(Condition cond)97 inline Condition NegateCondition(Condition cond) {
98 DCHECK(cond != al);
99 return static_cast<Condition>(cond ^ ne);
100 }
101
102
103 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cond)104 inline Condition CommuteCondition(Condition cond) {
105 switch (cond) {
106 case lo:
107 return hi;
108 case hi:
109 return lo;
110 case hs:
111 return ls;
112 case ls:
113 return hs;
114 case lt:
115 return gt;
116 case gt:
117 return lt;
118 case ge:
119 return le;
120 case le:
121 return ge;
122 default:
123 return cond;
124 }
125 }
126
127
128 // -----------------------------------------------------------------------------
129 // Instructions encoding.
130
131 // Instr is merely used by the Assembler to distinguish 32bit integers
132 // representing instructions from usual 32 bit values.
133 // Instruction objects are pointers to 32bit values, and provide methods to
134 // access the various ISA fields.
135 typedef int32_t Instr;
136
137
138 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
139 // as defined in section A3.4
140 enum Opcode {
141 AND = 0 << 21, // Logical AND.
142 EOR = 1 << 21, // Logical Exclusive OR.
143 SUB = 2 << 21, // Subtract.
144 RSB = 3 << 21, // Reverse Subtract.
145 ADD = 4 << 21, // Add.
146 ADC = 5 << 21, // Add with Carry.
147 SBC = 6 << 21, // Subtract with Carry.
148 RSC = 7 << 21, // Reverse Subtract with Carry.
149 TST = 8 << 21, // Test.
150 TEQ = 9 << 21, // Test Equivalence.
151 CMP = 10 << 21, // Compare.
152 CMN = 11 << 21, // Compare Negated.
153 ORR = 12 << 21, // Logical (inclusive) OR.
154 MOV = 13 << 21, // Move.
155 BIC = 14 << 21, // Bit Clear.
156 MVN = 15 << 21 // Move Not.
157 };
158
159
160 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
161 enum MiscInstructionsBits74 {
162 // With bits 22-21 01.
163 BX = 1 << 4,
164 BXJ = 2 << 4,
165 BLX = 3 << 4,
166 BKPT = 7 << 4,
167
168 // With bits 22-21 11.
169 CLZ = 1 << 4
170 };
171
172
173 // Instruction encoding bits and masks.
174 enum {
175 H = 1 << 5, // Halfword (or byte).
176 S6 = 1 << 6, // Signed (or unsigned).
177 L = 1 << 20, // Load (or store).
178 S = 1 << 20, // Set condition code (or leave unchanged).
179 W = 1 << 21, // Writeback base register (or leave unchanged).
180 A = 1 << 21, // Accumulate in multiply instruction (or not).
181 B = 1 << 22, // Unsigned byte (or word).
182 N = 1 << 22, // Long (or short).
183 U = 1 << 23, // Positive (or negative) offset/index.
184 P = 1 << 24, // Offset/pre-indexed addressing (or post-indexed addressing).
185 I = 1 << 25, // Immediate shifter operand (or not).
186 B0 = 1 << 0,
187 B4 = 1 << 4,
188 B5 = 1 << 5,
189 B6 = 1 << 6,
190 B7 = 1 << 7,
191 B8 = 1 << 8,
192 B9 = 1 << 9,
193 B10 = 1 << 10,
194 B12 = 1 << 12,
195 B16 = 1 << 16,
196 B17 = 1 << 17,
197 B18 = 1 << 18,
198 B19 = 1 << 19,
199 B20 = 1 << 20,
200 B21 = 1 << 21,
201 B22 = 1 << 22,
202 B23 = 1 << 23,
203 B24 = 1 << 24,
204 B25 = 1 << 25,
205 B26 = 1 << 26,
206 B27 = 1 << 27,
207 B28 = 1 << 28,
208
209 // Instruction bit masks.
210 kCondMask = 15 << 28,
211 kALUMask = 0x6f << 21,
212 kRdMask = 15 << 12, // In str instruction.
213 kCoprocessorMask = 15 << 8,
214 kOpCodeMask = 15 << 21, // In data-processing instructions.
215 kImm24Mask = (1 << 24) - 1,
216 kImm16Mask = (1 << 16) - 1,
217 kImm8Mask = (1 << 8) - 1,
218 kOff12Mask = (1 << 12) - 1,
219 kOff8Mask = (1 << 8) - 1
220 };
221
222 enum BarrierOption {
223 OSHLD = 0x1,
224 OSHST = 0x2,
225 OSH = 0x3,
226 NSHLD = 0x5,
227 NSHST = 0x6,
228 NSH = 0x7,
229 ISHLD = 0x9,
230 ISHST = 0xa,
231 ISH = 0xb,
232 LD = 0xd,
233 ST = 0xe,
234 SY = 0xf,
235 };
236
237
238 // -----------------------------------------------------------------------------
239 // Addressing modes and instruction variants.
240
241 // Condition code updating mode.
242 enum SBit {
243 SetCC = 1 << 20, // Set condition code.
244 LeaveCC = 0 << 20 // Leave condition code unchanged.
245 };
246
247
248 // Status register selection.
249 enum SRegister {
250 CPSR = 0 << 22,
251 SPSR = 1 << 22
252 };
253
254
255 // Shifter types for Data-processing operands as defined in section A5.1.2.
256 enum ShiftOp {
257 LSL = 0 << 5, // Logical shift left.
258 LSR = 1 << 5, // Logical shift right.
259 ASR = 2 << 5, // Arithmetic shift right.
260 ROR = 3 << 5, // Rotate right.
261
262 // RRX is encoded as ROR with shift_imm == 0.
263 // Use a special code to make the distinction. The RRX ShiftOp is only used
264 // as an argument, and will never actually be encoded. The Assembler will
265 // detect it and emit the correct ROR shift operand with shift_imm == 0.
266 RRX = -1,
267 kNumberOfShifts = 4
268 };
269
270
271 // Status register fields.
272 enum SRegisterField {
273 CPSR_c = CPSR | 1 << 16,
274 CPSR_x = CPSR | 1 << 17,
275 CPSR_s = CPSR | 1 << 18,
276 CPSR_f = CPSR | 1 << 19,
277 SPSR_c = SPSR | 1 << 16,
278 SPSR_x = SPSR | 1 << 17,
279 SPSR_s = SPSR | 1 << 18,
280 SPSR_f = SPSR | 1 << 19
281 };
282
283 // Status register field mask (or'ed SRegisterField enum values).
284 typedef uint32_t SRegisterFieldMask;
285
286
287 // Memory operand addressing mode.
288 enum AddrMode {
289 // Bit encoding P U W.
290 Offset = (8|4|0) << 21, // Offset (without writeback to base).
291 PreIndex = (8|4|1) << 21, // Pre-indexed addressing with writeback.
292 PostIndex = (0|4|0) << 21, // Post-indexed addressing with writeback.
293 NegOffset = (8|0|0) << 21, // Negative offset (without writeback to base).
294 NegPreIndex = (8|0|1) << 21, // Negative pre-indexed with writeback.
295 NegPostIndex = (0|0|0) << 21 // Negative post-indexed with writeback.
296 };
297
298
299 // Load/store multiple addressing mode.
300 enum BlockAddrMode {
301 // Bit encoding P U W .
302 da = (0|0|0) << 21, // Decrement after.
303 ia = (0|4|0) << 21, // Increment after.
304 db = (8|0|0) << 21, // Decrement before.
305 ib = (8|4|0) << 21, // Increment before.
306 da_w = (0|0|1) << 21, // Decrement after with writeback to base.
307 ia_w = (0|4|1) << 21, // Increment after with writeback to base.
308 db_w = (8|0|1) << 21, // Decrement before with writeback to base.
309 ib_w = (8|4|1) << 21, // Increment before with writeback to base.
310
311 // Alias modes for comparison when writeback does not matter.
312 da_x = (0|0|0) << 21, // Decrement after.
313 ia_x = (0|4|0) << 21, // Increment after.
314 db_x = (8|0|0) << 21, // Decrement before.
315 ib_x = (8|4|0) << 21, // Increment before.
316
317 kBlockAddrModeMask = (8|4|1) << 21
318 };
319
320
321 // Coprocessor load/store operand size.
322 enum LFlag {
323 Long = 1 << 22, // Long load/store coprocessor.
324 Short = 0 << 22 // Short load/store coprocessor.
325 };
326
327
328 // NEON data type
329 enum NeonDataType {
330 NeonS8 = 0,
331 NeonS16 = 1,
332 NeonS32 = 2,
333 // Gap to make it easier to extract U and size.
334 NeonU8 = 4,
335 NeonU16 = 5,
336 NeonU32 = 6
337 };
338
NeonU(NeonDataType dt)339 inline int NeonU(NeonDataType dt) { return static_cast<int>(dt) >> 2; }
NeonSz(NeonDataType dt)340 inline int NeonSz(NeonDataType dt) { return static_cast<int>(dt) & 0x3; }
341
342 enum NeonListType {
343 nlt_1 = 0x7,
344 nlt_2 = 0xA,
345 nlt_3 = 0x6,
346 nlt_4 = 0x2
347 };
348
349 enum NeonSize {
350 Neon8 = 0x0,
351 Neon16 = 0x1,
352 Neon32 = 0x2,
353 Neon64 = 0x3
354 };
355
356 // -----------------------------------------------------------------------------
357 // Supervisor Call (svc) specific support.
358
359 // Special Software Interrupt codes when used in the presence of the ARM
360 // simulator.
361 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
362 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
363 enum SoftwareInterruptCodes {
364 // transition to C code
365 kCallRtRedirected = 0x10,
366 // break point
367 kBreakpoint = 0x20,
368 // stop
369 kStopCode = 1 << 23
370 };
371 const uint32_t kStopCodeMask = kStopCode - 1;
372 const uint32_t kMaxStopCode = kStopCode - 1;
373 const int32_t kDefaultStopCode = -1;
374
375
376 // Type of VFP register. Determines register encoding.
377 enum VFPRegPrecision {
378 kSinglePrecision = 0,
379 kDoublePrecision = 1,
380 kSimd128Precision = 2
381 };
382
383 // VFP FPSCR constants.
384 enum VFPConversionMode {
385 kFPSCRRounding = 0,
386 kDefaultRoundToZero = 1
387 };
388
389 // This mask does not include the "inexact" or "input denormal" cumulative
390 // exceptions flags, because we usually don't want to check for it.
391 const uint32_t kVFPExceptionMask = 0xf;
392 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
393 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
394 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
395 const uint32_t kVFPInexactExceptionBit = 1 << 4;
396 const uint32_t kVFPFlushToZeroMask = 1 << 24;
397 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
398
399 const uint32_t kVFPNConditionFlagBit = 1 << 31;
400 const uint32_t kVFPZConditionFlagBit = 1 << 30;
401 const uint32_t kVFPCConditionFlagBit = 1 << 29;
402 const uint32_t kVFPVConditionFlagBit = 1 << 28;
403
404
405 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
406 enum VFPRoundingMode {
407 RN = 0 << 22, // Round to Nearest.
408 RP = 1 << 22, // Round towards Plus Infinity.
409 RM = 2 << 22, // Round towards Minus Infinity.
410 RZ = 3 << 22, // Round towards zero.
411
412 // Aliases.
413 kRoundToNearest = RN,
414 kRoundToPlusInf = RP,
415 kRoundToMinusInf = RM,
416 kRoundToZero = RZ
417 };
418
419 const uint32_t kVFPRoundingModeMask = 3 << 22;
420
421 enum CheckForInexactConversion {
422 kCheckForInexactConversion,
423 kDontCheckForInexactConversion
424 };
425
426 // -----------------------------------------------------------------------------
427 // Hints.
428
429 // Branch hints are not used on the ARM. They are defined so that they can
430 // appear in shared function signatures, but will be ignored in ARM
431 // implementations.
432 enum Hint { no_hint };
433
434 // Hints are not used on the arm. Negating is trivial.
NegateHint(Hint ignored)435 inline Hint NegateHint(Hint ignored) { return no_hint; }
436
437
438 // -----------------------------------------------------------------------------
439 // Instruction abstraction.
440
441 // The class Instruction enables access to individual fields defined in the ARM
442 // architecture instruction set encoding as described in figure A3-1.
443 // Note that the Assembler uses typedef int32_t Instr.
444 //
445 // Example: Test whether the instruction at ptr does set the condition code
446 // bits.
447 //
448 // bool InstructionSetsConditionCodes(byte* ptr) {
449 // Instruction* instr = Instruction::At(ptr);
450 // int type = instr->TypeValue();
451 // return ((type == 0) || (type == 1)) && instr->HasS();
452 // }
453 //
454 class Instruction {
455 public:
456 enum {
457 kInstrSize = 4,
458 kInstrSizeLog2 = 2,
459 kPCReadOffset = 8
460 };
461
462 // Helper macro to define static accessors.
463 // We use the cast to char* trick to bypass the strict anti-aliasing rules.
464 #define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
465 static inline return_type Name(Instr instr) { \
466 char* temp = reinterpret_cast<char*>(&instr); \
467 return reinterpret_cast<Instruction*>(temp)->Name(); \
468 }
469
470 #define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
471
472 // Get the raw instruction bits.
InstructionBits()473 inline Instr InstructionBits() const {
474 return *reinterpret_cast<const Instr*>(this);
475 }
476
477 // Set the raw instruction bits to value.
SetInstructionBits(Instr value)478 inline void SetInstructionBits(Instr value) {
479 *reinterpret_cast<Instr*>(this) = value;
480 }
481
482 // Extract a single bit from the instruction bits and return it as bit 0 in
483 // the result.
Bit(int nr)484 inline int Bit(int nr) const {
485 return (InstructionBits() >> nr) & 1;
486 }
487
488 // Extract a bit field <hi:lo> from the instruction bits and return it in the
489 // least-significant bits of the result.
Bits(int hi,int lo)490 inline int Bits(int hi, int lo) const {
491 return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
492 }
493
494 // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(int hi,int lo)495 inline int BitField(int hi, int lo) const {
496 return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
497 }
498
499 // Static support.
500
501 // Extract a single bit from the instruction bits and return it as bit 0 in
502 // the result.
Bit(Instr instr,int nr)503 static inline int Bit(Instr instr, int nr) {
504 return (instr >> nr) & 1;
505 }
506
507 // Extract a bit field <hi:lo> from the instruction bits and return it in the
508 // least-significant bits of the result.
Bits(Instr instr,int hi,int lo)509 static inline int Bits(Instr instr, int hi, int lo) {
510 return (instr >> lo) & ((2 << (hi - lo)) - 1);
511 }
512
513 // Read a bit field <hi:lo>, leaving its position unchanged in the result.
BitField(Instr instr,int hi,int lo)514 static inline int BitField(Instr instr, int hi, int lo) {
515 return instr & (((2 << (hi - lo)) - 1) << lo);
516 }
517
518 // Accessors for the different named fields used in the ARM encoding.
519 // The naming of these accessor corresponds to figure A3-1.
520 //
521 // Two kind of accessors are declared:
522 // - <Name>Field() will return the raw field, i.e. the field's bits at their
523 // original place in the instruction encoding.
524 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
525 // 0xC0810002 ConditionField(instr) will return 0xC0000000.
526 // - <Name>Value() will return the field value, shifted back to bit 0.
527 // e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
528 // 0xC0810002 ConditionField(instr) will return 0xC.
529
530
531 // Generally applicable fields
ConditionValue()532 inline int ConditionValue() const { return Bits(31, 28); }
ConditionField()533 inline Condition ConditionField() const {
534 return static_cast<Condition>(BitField(31, 28));
535 }
536 DECLARE_STATIC_TYPED_ACCESSOR(int, ConditionValue);
537 DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
538
TypeValue()539 inline int TypeValue() const { return Bits(27, 25); }
SpecialValue()540 inline int SpecialValue() const { return Bits(27, 23); }
541
RnValue()542 inline int RnValue() const { return Bits(19, 16); }
543 DECLARE_STATIC_ACCESSOR(RnValue);
RdValue()544 inline int RdValue() const { return Bits(15, 12); }
545 DECLARE_STATIC_ACCESSOR(RdValue);
546
CoprocessorValue()547 inline int CoprocessorValue() const { return Bits(11, 8); }
548 // Support for VFP.
549 // Vn(19-16) | Vd(15-12) | Vm(3-0)
VnValue()550 inline int VnValue() const { return Bits(19, 16); }
VmValue()551 inline int VmValue() const { return Bits(3, 0); }
VdValue()552 inline int VdValue() const { return Bits(15, 12); }
NValue()553 inline int NValue() const { return Bit(7); }
MValue()554 inline int MValue() const { return Bit(5); }
DValue()555 inline int DValue() const { return Bit(22); }
RtValue()556 inline int RtValue() const { return Bits(15, 12); }
PValue()557 inline int PValue() const { return Bit(24); }
UValue()558 inline int UValue() const { return Bit(23); }
Opc1Value()559 inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
Opc2Value()560 inline int Opc2Value() const { return Bits(19, 16); }
Opc3Value()561 inline int Opc3Value() const { return Bits(7, 6); }
SzValue()562 inline int SzValue() const { return Bit(8); }
VLValue()563 inline int VLValue() const { return Bit(20); }
VCValue()564 inline int VCValue() const { return Bit(8); }
VAValue()565 inline int VAValue() const { return Bits(23, 21); }
VBValue()566 inline int VBValue() const { return Bits(6, 5); }
VFPNRegValue(VFPRegPrecision pre)567 inline int VFPNRegValue(VFPRegPrecision pre) {
568 return VFPGlueRegValue(pre, 16, 7);
569 }
VFPMRegValue(VFPRegPrecision pre)570 inline int VFPMRegValue(VFPRegPrecision pre) {
571 return VFPGlueRegValue(pre, 0, 5);
572 }
VFPDRegValue(VFPRegPrecision pre)573 inline int VFPDRegValue(VFPRegPrecision pre) {
574 return VFPGlueRegValue(pre, 12, 22);
575 }
576
577 // Fields used in Data processing instructions
OpcodeValue()578 inline int OpcodeValue() const {
579 return static_cast<Opcode>(Bits(24, 21));
580 }
OpcodeField()581 inline Opcode OpcodeField() const {
582 return static_cast<Opcode>(BitField(24, 21));
583 }
SValue()584 inline int SValue() const { return Bit(20); }
585 // with register
RmValue()586 inline int RmValue() const { return Bits(3, 0); }
587 DECLARE_STATIC_ACCESSOR(RmValue);
ShiftValue()588 inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
ShiftField()589 inline ShiftOp ShiftField() const {
590 return static_cast<ShiftOp>(BitField(6, 5));
591 }
RegShiftValue()592 inline int RegShiftValue() const { return Bit(4); }
RsValue()593 inline int RsValue() const { return Bits(11, 8); }
ShiftAmountValue()594 inline int ShiftAmountValue() const { return Bits(11, 7); }
595 // with immediate
RotateValue()596 inline int RotateValue() const { return Bits(11, 8); }
597 DECLARE_STATIC_ACCESSOR(RotateValue);
Immed8Value()598 inline int Immed8Value() const { return Bits(7, 0); }
599 DECLARE_STATIC_ACCESSOR(Immed8Value);
Immed4Value()600 inline int Immed4Value() const { return Bits(19, 16); }
ImmedMovwMovtValue()601 inline int ImmedMovwMovtValue() const {
602 return Immed4Value() << 12 | Offset12Value(); }
603 DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
604
605 // Fields used in Load/Store instructions
PUValue()606 inline int PUValue() const { return Bits(24, 23); }
PUField()607 inline int PUField() const { return BitField(24, 23); }
BValue()608 inline int BValue() const { return Bit(22); }
WValue()609 inline int WValue() const { return Bit(21); }
LValue()610 inline int LValue() const { return Bit(20); }
611 // with register uses same fields as Data processing instructions above
612 // with immediate
Offset12Value()613 inline int Offset12Value() const { return Bits(11, 0); }
614 // multiple
RlistValue()615 inline int RlistValue() const { return Bits(15, 0); }
616 // extra loads and stores
SignValue()617 inline int SignValue() const { return Bit(6); }
HValue()618 inline int HValue() const { return Bit(5); }
ImmedHValue()619 inline int ImmedHValue() const { return Bits(11, 8); }
ImmedLValue()620 inline int ImmedLValue() const { return Bits(3, 0); }
621
622 // Fields used in Branch instructions
LinkValue()623 inline int LinkValue() const { return Bit(24); }
SImmed24Value()624 inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
625
626 // Fields used in Software interrupt instructions
SvcValue()627 inline SoftwareInterruptCodes SvcValue() const {
628 return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
629 }
630
631 // Test for special encodings of type 0 instructions (extra loads and stores,
632 // as well as multiplications).
IsSpecialType0()633 inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
634
635 // Test for miscellaneous instructions encodings of type 0 instructions.
IsMiscType0()636 inline bool IsMiscType0() const { return (Bit(24) == 1)
637 && (Bit(23) == 0)
638 && (Bit(20) == 0)
639 && ((Bit(7) == 0)); }
640
641 // Test for a nop instruction, which falls under type 1.
IsNopType1()642 inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
643
644 // Test for a stop instruction.
IsStop()645 inline bool IsStop() const {
646 return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
647 }
648
649 // Special accessors that test for existence of a value.
HasS()650 inline bool HasS() const { return SValue() == 1; }
HasB()651 inline bool HasB() const { return BValue() == 1; }
HasW()652 inline bool HasW() const { return WValue() == 1; }
HasL()653 inline bool HasL() const { return LValue() == 1; }
HasU()654 inline bool HasU() const { return UValue() == 1; }
HasSign()655 inline bool HasSign() const { return SignValue() == 1; }
HasH()656 inline bool HasH() const { return HValue() == 1; }
HasLink()657 inline bool HasLink() const { return LinkValue() == 1; }
658
659 // Decode the double immediate from a vmov instruction.
660 double DoubleImmedVmov() const;
661
662 // Instructions are read of out a code stream. The only way to get a
663 // reference to an instruction is to convert a pointer. There is no way
664 // to allocate or create instances of class Instruction.
665 // Use the At(pc) function to create references to Instruction.
At(byte * pc)666 static Instruction* At(byte* pc) {
667 return reinterpret_cast<Instruction*>(pc);
668 }
669
670
671 private:
672 // Join split register codes, depending on register precision.
673 // four_bit is the position of the least-significant bit of the four
674 // bit specifier. one_bit is the position of the additional single bit
675 // specifier.
VFPGlueRegValue(VFPRegPrecision pre,int four_bit,int one_bit)676 inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
677 if (pre == kSinglePrecision) {
678 return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
679 } else {
680 int reg_num = (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
681 if (pre == kDoublePrecision) {
682 return reg_num;
683 }
684 DCHECK_EQ(kSimd128Precision, pre);
685 DCHECK_EQ(reg_num & 1, 0);
686 return reg_num / 2;
687 }
688 }
689
690 // We need to prevent the creation of instances of class Instruction.
691 DISALLOW_IMPLICIT_CONSTRUCTORS(Instruction);
692 };
693
694
695 // Helper functions for converting between register numbers and names.
696 class Registers {
697 public:
698 // Return the name of the register.
699 static const char* Name(int reg);
700
701 // Lookup the register number for the name provided.
702 static int Number(const char* name);
703
704 struct RegisterAlias {
705 int reg;
706 const char* name;
707 };
708
709 private:
710 static const char* names_[kNumRegisters];
711 static const RegisterAlias aliases_[];
712 };
713
714 // Helper functions for converting between VFP register numbers and names.
715 class VFPRegisters {
716 public:
717 // Return the name of the register.
718 static const char* Name(int reg, bool is_double);
719
720 // Lookup the register number for the name provided.
721 // Set flag pointed by is_double to true if register
722 // is double-precision.
723 static int Number(const char* name, bool* is_double);
724
725 private:
726 static const char* names_[kNumVFPRegisters];
727 };
728
729
730 } // namespace internal
731 } // namespace v8
732
733 #endif // V8_ARM_CONSTANTS_ARM_H_
734