1 // Copyright 2009 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/global-handles.h"
6
7 #include "src/api.h"
8 #include "src/cancelable-task.h"
9 #include "src/objects-inl.h"
10 #include "src/v8.h"
11 #include "src/vm-state-inl.h"
12
13 namespace v8 {
14 namespace internal {
15
16
~ObjectGroup()17 ObjectGroup::~ObjectGroup() {
18 if (info != NULL) info->Dispose();
19 delete[] objects;
20 }
21
22
~ImplicitRefGroup()23 ImplicitRefGroup::~ImplicitRefGroup() {
24 delete[] children;
25 }
26
27
28 class GlobalHandles::Node {
29 public:
30 // State transition diagram:
31 // FREE -> NORMAL <-> WEAK -> PENDING -> NEAR_DEATH -> { NORMAL, WEAK, FREE }
32 enum State {
33 FREE = 0,
34 NORMAL, // Normal global handle.
35 WEAK, // Flagged as weak but not yet finalized.
36 PENDING, // Has been recognized as only reachable by weak handles.
37 NEAR_DEATH, // Callback has informed the handle is near death.
38 NUMBER_OF_NODE_STATES
39 };
40
41 // Maps handle location (slot) to the containing node.
FromLocation(Object ** location)42 static Node* FromLocation(Object** location) {
43 DCHECK(offsetof(Node, object_) == 0);
44 return reinterpret_cast<Node*>(location);
45 }
46
Node()47 Node() {
48 DCHECK(offsetof(Node, class_id_) == Internals::kNodeClassIdOffset);
49 DCHECK(offsetof(Node, flags_) == Internals::kNodeFlagsOffset);
50 STATIC_ASSERT(static_cast<int>(NodeState::kMask) ==
51 Internals::kNodeStateMask);
52 STATIC_ASSERT(WEAK == Internals::kNodeStateIsWeakValue);
53 STATIC_ASSERT(PENDING == Internals::kNodeStateIsPendingValue);
54 STATIC_ASSERT(NEAR_DEATH == Internals::kNodeStateIsNearDeathValue);
55 STATIC_ASSERT(static_cast<int>(IsIndependent::kShift) ==
56 Internals::kNodeIsIndependentShift);
57 STATIC_ASSERT(static_cast<int>(IsActive::kShift) ==
58 Internals::kNodeIsActiveShift);
59 }
60
61 #ifdef ENABLE_HANDLE_ZAPPING
~Node()62 ~Node() {
63 // TODO(1428): if it's a weak handle we should have invoked its callback.
64 // Zap the values for eager trapping.
65 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
66 class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
67 index_ = 0;
68 set_independent(false);
69 set_active(false);
70 set_in_new_space_list(false);
71 parameter_or_next_free_.next_free = NULL;
72 weak_callback_ = NULL;
73 }
74 #endif
75
Initialize(int index,Node ** first_free)76 void Initialize(int index, Node** first_free) {
77 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
78 index_ = static_cast<uint8_t>(index);
79 DCHECK(static_cast<int>(index_) == index);
80 set_state(FREE);
81 set_in_new_space_list(false);
82 parameter_or_next_free_.next_free = *first_free;
83 *first_free = this;
84 }
85
Acquire(Object * object)86 void Acquire(Object* object) {
87 DCHECK(state() == FREE);
88 object_ = object;
89 class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
90 set_independent(false);
91 set_active(false);
92 set_state(NORMAL);
93 parameter_or_next_free_.parameter = NULL;
94 weak_callback_ = NULL;
95 IncreaseBlockUses();
96 }
97
Zap()98 void Zap() {
99 DCHECK(IsInUse());
100 // Zap the values for eager trapping.
101 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
102 }
103
Release()104 void Release() {
105 DCHECK(IsInUse());
106 set_state(FREE);
107 // Zap the values for eager trapping.
108 object_ = reinterpret_cast<Object*>(kGlobalHandleZapValue);
109 class_id_ = v8::HeapProfiler::kPersistentHandleNoClassId;
110 set_independent(false);
111 set_active(false);
112 weak_callback_ = NULL;
113 DecreaseBlockUses();
114 }
115
116 // Object slot accessors.
object() const117 Object* object() const { return object_; }
location()118 Object** location() { return &object_; }
handle()119 Handle<Object> handle() { return Handle<Object>(location()); }
120
121 // Wrapper class ID accessors.
has_wrapper_class_id() const122 bool has_wrapper_class_id() const {
123 return class_id_ != v8::HeapProfiler::kPersistentHandleNoClassId;
124 }
125
wrapper_class_id() const126 uint16_t wrapper_class_id() const { return class_id_; }
127
128 // State and flag accessors.
129
state() const130 State state() const {
131 return NodeState::decode(flags_);
132 }
set_state(State state)133 void set_state(State state) {
134 flags_ = NodeState::update(flags_, state);
135 }
136
is_independent()137 bool is_independent() {
138 return IsIndependent::decode(flags_);
139 }
set_independent(bool v)140 void set_independent(bool v) {
141 flags_ = IsIndependent::update(flags_, v);
142 }
143
is_active()144 bool is_active() {
145 return IsActive::decode(flags_);
146 }
set_active(bool v)147 void set_active(bool v) {
148 flags_ = IsActive::update(flags_, v);
149 }
150
is_in_new_space_list()151 bool is_in_new_space_list() {
152 return IsInNewSpaceList::decode(flags_);
153 }
set_in_new_space_list(bool v)154 void set_in_new_space_list(bool v) {
155 flags_ = IsInNewSpaceList::update(flags_, v);
156 }
157
weakness_type() const158 WeaknessType weakness_type() const {
159 return NodeWeaknessType::decode(flags_);
160 }
set_weakness_type(WeaknessType weakness_type)161 void set_weakness_type(WeaknessType weakness_type) {
162 flags_ = NodeWeaknessType::update(flags_, weakness_type);
163 }
164
IsNearDeath() const165 bool IsNearDeath() const {
166 // Check for PENDING to ensure correct answer when processing callbacks.
167 return state() == PENDING || state() == NEAR_DEATH;
168 }
169
IsWeak() const170 bool IsWeak() const { return state() == WEAK; }
171
IsInUse() const172 bool IsInUse() const { return state() != FREE; }
173
IsPendingPhantomCallback() const174 bool IsPendingPhantomCallback() const {
175 return state() == PENDING &&
176 (weakness_type() == PHANTOM_WEAK ||
177 weakness_type() == PHANTOM_WEAK_2_INTERNAL_FIELDS);
178 }
179
IsPendingPhantomResetHandle() const180 bool IsPendingPhantomResetHandle() const {
181 return state() == PENDING && weakness_type() == PHANTOM_WEAK_RESET_HANDLE;
182 }
183
IsRetainer() const184 bool IsRetainer() const {
185 return state() != FREE &&
186 !(state() == NEAR_DEATH && weakness_type() != FINALIZER_WEAK);
187 }
188
IsStrongRetainer() const189 bool IsStrongRetainer() const { return state() == NORMAL; }
190
IsWeakRetainer() const191 bool IsWeakRetainer() const {
192 return state() == WEAK || state() == PENDING ||
193 (state() == NEAR_DEATH && weakness_type() == FINALIZER_WEAK);
194 }
195
MarkPending()196 void MarkPending() {
197 DCHECK(state() == WEAK);
198 set_state(PENDING);
199 }
200
201 // Independent flag accessors.
MarkIndependent()202 void MarkIndependent() {
203 DCHECK(IsInUse());
204 set_independent(true);
205 }
206
207 // Callback accessor.
208 // TODO(svenpanne) Re-enable or nuke later.
209 // WeakReferenceCallback callback() { return callback_; }
210
211 // Callback parameter accessors.
set_parameter(void * parameter)212 void set_parameter(void* parameter) {
213 DCHECK(IsInUse());
214 parameter_or_next_free_.parameter = parameter;
215 }
parameter() const216 void* parameter() const {
217 DCHECK(IsInUse());
218 return parameter_or_next_free_.parameter;
219 }
220
221 // Accessors for next free node in the free list.
next_free()222 Node* next_free() {
223 DCHECK(state() == FREE);
224 return parameter_or_next_free_.next_free;
225 }
set_next_free(Node * value)226 void set_next_free(Node* value) {
227 DCHECK(state() == FREE);
228 parameter_or_next_free_.next_free = value;
229 }
230
MakeWeak(void * parameter,WeakCallbackInfo<void>::Callback phantom_callback,v8::WeakCallbackType type)231 void MakeWeak(void* parameter,
232 WeakCallbackInfo<void>::Callback phantom_callback,
233 v8::WeakCallbackType type) {
234 DCHECK(phantom_callback != nullptr);
235 DCHECK(IsInUse());
236 CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue));
237 set_state(WEAK);
238 switch (type) {
239 case v8::WeakCallbackType::kParameter:
240 set_weakness_type(PHANTOM_WEAK);
241 break;
242 case v8::WeakCallbackType::kInternalFields:
243 set_weakness_type(PHANTOM_WEAK_2_INTERNAL_FIELDS);
244 break;
245 case v8::WeakCallbackType::kFinalizer:
246 set_weakness_type(FINALIZER_WEAK);
247 break;
248 }
249 set_parameter(parameter);
250 weak_callback_ = phantom_callback;
251 }
252
MakeWeak(Object *** location_addr)253 void MakeWeak(Object*** location_addr) {
254 DCHECK(IsInUse());
255 CHECK_NE(object_, reinterpret_cast<Object*>(kGlobalHandleZapValue));
256 set_state(WEAK);
257 set_weakness_type(PHANTOM_WEAK_RESET_HANDLE);
258 set_parameter(location_addr);
259 weak_callback_ = nullptr;
260 }
261
ClearWeakness()262 void* ClearWeakness() {
263 DCHECK(IsInUse());
264 void* p = parameter();
265 set_state(NORMAL);
266 set_parameter(NULL);
267 return p;
268 }
269
CollectPhantomCallbackData(Isolate * isolate,List<PendingPhantomCallback> * pending_phantom_callbacks)270 void CollectPhantomCallbackData(
271 Isolate* isolate,
272 List<PendingPhantomCallback>* pending_phantom_callbacks) {
273 DCHECK(weakness_type() == PHANTOM_WEAK ||
274 weakness_type() == PHANTOM_WEAK_2_INTERNAL_FIELDS);
275 DCHECK(state() == PENDING);
276 DCHECK(weak_callback_ != nullptr);
277
278 void* internal_fields[v8::kInternalFieldsInWeakCallback] = {nullptr,
279 nullptr};
280 if (weakness_type() != PHANTOM_WEAK && object()->IsJSObject()) {
281 auto jsobject = JSObject::cast(object());
282 int field_count = jsobject->GetInternalFieldCount();
283 for (int i = 0; i < v8::kInternalFieldsInWeakCallback; ++i) {
284 if (field_count == i) break;
285 auto field = jsobject->GetInternalField(i);
286 if (field->IsSmi()) internal_fields[i] = field;
287 }
288 }
289
290 // Zap with something dangerous.
291 *location() = reinterpret_cast<Object*>(0x6057ca11);
292
293 typedef v8::WeakCallbackInfo<void> Data;
294 auto callback = reinterpret_cast<Data::Callback>(weak_callback_);
295 pending_phantom_callbacks->Add(
296 PendingPhantomCallback(this, callback, parameter(), internal_fields));
297 DCHECK(IsInUse());
298 set_state(NEAR_DEATH);
299 }
300
ResetPhantomHandle()301 void ResetPhantomHandle() {
302 DCHECK(weakness_type() == PHANTOM_WEAK_RESET_HANDLE);
303 DCHECK(state() == PENDING);
304 DCHECK(weak_callback_ == nullptr);
305 Object*** handle = reinterpret_cast<Object***>(parameter());
306 *handle = nullptr;
307 Release();
308 }
309
PostGarbageCollectionProcessing(Isolate * isolate)310 bool PostGarbageCollectionProcessing(Isolate* isolate) {
311 // Handles only weak handles (not phantom) that are dying.
312 if (state() != Node::PENDING) return false;
313 if (weak_callback_ == NULL) {
314 Release();
315 return false;
316 }
317 set_state(NEAR_DEATH);
318
319 // Check that we are not passing a finalized external string to
320 // the callback.
321 DCHECK(!object_->IsExternalOneByteString() ||
322 ExternalOneByteString::cast(object_)->resource() != NULL);
323 DCHECK(!object_->IsExternalTwoByteString() ||
324 ExternalTwoByteString::cast(object_)->resource() != NULL);
325 if (weakness_type() != FINALIZER_WEAK) {
326 return false;
327 }
328
329 // Leaving V8.
330 VMState<EXTERNAL> vmstate(isolate);
331 HandleScope handle_scope(isolate);
332 void* internal_fields[v8::kInternalFieldsInWeakCallback] = {nullptr,
333 nullptr};
334 v8::WeakCallbackInfo<void> data(reinterpret_cast<v8::Isolate*>(isolate),
335 parameter(), internal_fields, nullptr);
336 weak_callback_(data);
337
338 // Absence of explicit cleanup or revival of weak handle
339 // in most of the cases would lead to memory leak.
340 CHECK(state() != NEAR_DEATH);
341 return true;
342 }
343
344 inline GlobalHandles* GetGlobalHandles();
345
346 private:
347 inline NodeBlock* FindBlock();
348 inline void IncreaseBlockUses();
349 inline void DecreaseBlockUses();
350
351 // Storage for object pointer.
352 // Placed first to avoid offset computation.
353 Object* object_;
354
355 // Next word stores class_id, index, state, and independent.
356 // Note: the most aligned fields should go first.
357
358 // Wrapper class ID.
359 uint16_t class_id_;
360
361 // Index in the containing handle block.
362 uint8_t index_;
363
364 // This stores three flags (independent, partially_dependent and
365 // in_new_space_list) and a State.
366 class NodeState : public BitField<State, 0, 3> {};
367 class IsIndependent : public BitField<bool, 3, 1> {};
368 // The following two fields are mutually exclusive
369 class IsActive : public BitField<bool, 4, 1> {};
370 class IsInNewSpaceList : public BitField<bool, 5, 1> {};
371 class NodeWeaknessType : public BitField<WeaknessType, 6, 2> {};
372
373 uint8_t flags_;
374
375 // Handle specific callback - might be a weak reference in disguise.
376 WeakCallbackInfo<void>::Callback weak_callback_;
377
378 // Provided data for callback. In FREE state, this is used for
379 // the free list link.
380 union {
381 void* parameter;
382 Node* next_free;
383 } parameter_or_next_free_;
384
385 DISALLOW_COPY_AND_ASSIGN(Node);
386 };
387
388
389 class GlobalHandles::NodeBlock {
390 public:
391 static const int kSize = 256;
392
NodeBlock(GlobalHandles * global_handles,NodeBlock * next)393 explicit NodeBlock(GlobalHandles* global_handles, NodeBlock* next)
394 : next_(next),
395 used_nodes_(0),
396 next_used_(NULL),
397 prev_used_(NULL),
398 global_handles_(global_handles) {}
399
PutNodesOnFreeList(Node ** first_free)400 void PutNodesOnFreeList(Node** first_free) {
401 for (int i = kSize - 1; i >= 0; --i) {
402 nodes_[i].Initialize(i, first_free);
403 }
404 }
405
node_at(int index)406 Node* node_at(int index) {
407 DCHECK(0 <= index && index < kSize);
408 return &nodes_[index];
409 }
410
IncreaseUses()411 void IncreaseUses() {
412 DCHECK(used_nodes_ < kSize);
413 if (used_nodes_++ == 0) {
414 NodeBlock* old_first = global_handles_->first_used_block_;
415 global_handles_->first_used_block_ = this;
416 next_used_ = old_first;
417 prev_used_ = NULL;
418 if (old_first == NULL) return;
419 old_first->prev_used_ = this;
420 }
421 }
422
DecreaseUses()423 void DecreaseUses() {
424 DCHECK(used_nodes_ > 0);
425 if (--used_nodes_ == 0) {
426 if (next_used_ != NULL) next_used_->prev_used_ = prev_used_;
427 if (prev_used_ != NULL) prev_used_->next_used_ = next_used_;
428 if (this == global_handles_->first_used_block_) {
429 global_handles_->first_used_block_ = next_used_;
430 }
431 }
432 }
433
global_handles()434 GlobalHandles* global_handles() { return global_handles_; }
435
436 // Next block in the list of all blocks.
next() const437 NodeBlock* next() const { return next_; }
438
439 // Next/previous block in the list of blocks with used nodes.
next_used() const440 NodeBlock* next_used() const { return next_used_; }
prev_used() const441 NodeBlock* prev_used() const { return prev_used_; }
442
443 private:
444 Node nodes_[kSize];
445 NodeBlock* const next_;
446 int used_nodes_;
447 NodeBlock* next_used_;
448 NodeBlock* prev_used_;
449 GlobalHandles* global_handles_;
450 };
451
452
GetGlobalHandles()453 GlobalHandles* GlobalHandles::Node::GetGlobalHandles() {
454 return FindBlock()->global_handles();
455 }
456
457
FindBlock()458 GlobalHandles::NodeBlock* GlobalHandles::Node::FindBlock() {
459 intptr_t ptr = reinterpret_cast<intptr_t>(this);
460 ptr = ptr - index_ * sizeof(Node);
461 NodeBlock* block = reinterpret_cast<NodeBlock*>(ptr);
462 DCHECK(block->node_at(index_) == this);
463 return block;
464 }
465
466
IncreaseBlockUses()467 void GlobalHandles::Node::IncreaseBlockUses() {
468 NodeBlock* node_block = FindBlock();
469 node_block->IncreaseUses();
470 GlobalHandles* global_handles = node_block->global_handles();
471 global_handles->isolate()->counters()->global_handles()->Increment();
472 global_handles->number_of_global_handles_++;
473 }
474
475
DecreaseBlockUses()476 void GlobalHandles::Node::DecreaseBlockUses() {
477 NodeBlock* node_block = FindBlock();
478 GlobalHandles* global_handles = node_block->global_handles();
479 parameter_or_next_free_.next_free = global_handles->first_free_;
480 global_handles->first_free_ = this;
481 node_block->DecreaseUses();
482 global_handles->isolate()->counters()->global_handles()->Decrement();
483 global_handles->number_of_global_handles_--;
484 }
485
486
487 class GlobalHandles::NodeIterator {
488 public:
NodeIterator(GlobalHandles * global_handles)489 explicit NodeIterator(GlobalHandles* global_handles)
490 : block_(global_handles->first_used_block_),
491 index_(0) {}
492
done() const493 bool done() const { return block_ == NULL; }
494
node() const495 Node* node() const {
496 DCHECK(!done());
497 return block_->node_at(index_);
498 }
499
Advance()500 void Advance() {
501 DCHECK(!done());
502 if (++index_ < NodeBlock::kSize) return;
503 index_ = 0;
504 block_ = block_->next_used();
505 }
506
507 private:
508 NodeBlock* block_;
509 int index_;
510
511 DISALLOW_COPY_AND_ASSIGN(NodeIterator);
512 };
513
514 class GlobalHandles::PendingPhantomCallbacksSecondPassTask
515 : public v8::internal::CancelableTask {
516 public:
517 // Takes ownership of the contents of pending_phantom_callbacks, leaving it in
518 // the same state it would be after a call to Clear().
PendingPhantomCallbacksSecondPassTask(List<PendingPhantomCallback> * pending_phantom_callbacks,Isolate * isolate)519 PendingPhantomCallbacksSecondPassTask(
520 List<PendingPhantomCallback>* pending_phantom_callbacks, Isolate* isolate)
521 : CancelableTask(isolate) {
522 pending_phantom_callbacks_.Swap(pending_phantom_callbacks);
523 }
524
RunInternal()525 void RunInternal() override {
526 TRACE_EVENT0("v8", "V8.GCPhantomHandleProcessingCallback");
527 isolate()->heap()->CallGCPrologueCallbacks(
528 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
529 InvokeSecondPassPhantomCallbacks(&pending_phantom_callbacks_, isolate());
530 isolate()->heap()->CallGCEpilogueCallbacks(
531 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
532 }
533
534 private:
535 List<PendingPhantomCallback> pending_phantom_callbacks_;
536
537 DISALLOW_COPY_AND_ASSIGN(PendingPhantomCallbacksSecondPassTask);
538 };
539
GlobalHandles(Isolate * isolate)540 GlobalHandles::GlobalHandles(Isolate* isolate)
541 : isolate_(isolate),
542 number_of_global_handles_(0),
543 first_block_(NULL),
544 first_used_block_(NULL),
545 first_free_(NULL),
546 post_gc_processing_count_(0),
547 number_of_phantom_handle_resets_(0),
548 object_group_connections_(kObjectGroupConnectionsCapacity) {}
549
~GlobalHandles()550 GlobalHandles::~GlobalHandles() {
551 NodeBlock* block = first_block_;
552 while (block != NULL) {
553 NodeBlock* tmp = block->next();
554 delete block;
555 block = tmp;
556 }
557 first_block_ = NULL;
558 }
559
560
Create(Object * value)561 Handle<Object> GlobalHandles::Create(Object* value) {
562 if (first_free_ == NULL) {
563 first_block_ = new NodeBlock(this, first_block_);
564 first_block_->PutNodesOnFreeList(&first_free_);
565 }
566 DCHECK(first_free_ != NULL);
567 // Take the first node in the free list.
568 Node* result = first_free_;
569 first_free_ = result->next_free();
570 result->Acquire(value);
571 if (isolate_->heap()->InNewSpace(value) &&
572 !result->is_in_new_space_list()) {
573 new_space_nodes_.Add(result);
574 result->set_in_new_space_list(true);
575 }
576 return result->handle();
577 }
578
579
CopyGlobal(Object ** location)580 Handle<Object> GlobalHandles::CopyGlobal(Object** location) {
581 DCHECK(location != NULL);
582 return Node::FromLocation(location)->GetGlobalHandles()->Create(*location);
583 }
584
585
Destroy(Object ** location)586 void GlobalHandles::Destroy(Object** location) {
587 if (location != NULL) Node::FromLocation(location)->Release();
588 }
589
590
591 typedef v8::WeakCallbackInfo<void>::Callback GenericCallback;
592
593
MakeWeak(Object ** location,void * parameter,GenericCallback phantom_callback,v8::WeakCallbackType type)594 void GlobalHandles::MakeWeak(Object** location, void* parameter,
595 GenericCallback phantom_callback,
596 v8::WeakCallbackType type) {
597 Node::FromLocation(location)->MakeWeak(parameter, phantom_callback, type);
598 }
599
MakeWeak(Object *** location_addr)600 void GlobalHandles::MakeWeak(Object*** location_addr) {
601 Node::FromLocation(*location_addr)->MakeWeak(location_addr);
602 }
603
ClearWeakness(Object ** location)604 void* GlobalHandles::ClearWeakness(Object** location) {
605 return Node::FromLocation(location)->ClearWeakness();
606 }
607
608
MarkIndependent(Object ** location)609 void GlobalHandles::MarkIndependent(Object** location) {
610 Node::FromLocation(location)->MarkIndependent();
611 }
612
IsIndependent(Object ** location)613 bool GlobalHandles::IsIndependent(Object** location) {
614 return Node::FromLocation(location)->is_independent();
615 }
616
617
IsNearDeath(Object ** location)618 bool GlobalHandles::IsNearDeath(Object** location) {
619 return Node::FromLocation(location)->IsNearDeath();
620 }
621
622
IsWeak(Object ** location)623 bool GlobalHandles::IsWeak(Object** location) {
624 return Node::FromLocation(location)->IsWeak();
625 }
626
627 DISABLE_CFI_PERF
IterateWeakRoots(ObjectVisitor * v)628 void GlobalHandles::IterateWeakRoots(ObjectVisitor* v) {
629 for (NodeIterator it(this); !it.done(); it.Advance()) {
630 Node* node = it.node();
631 if (node->IsWeakRetainer()) {
632 // Pending weak phantom handles die immediately. Everything else survives.
633 if (node->IsPendingPhantomResetHandle()) {
634 node->ResetPhantomHandle();
635 ++number_of_phantom_handle_resets_;
636 } else if (node->IsPendingPhantomCallback()) {
637 node->CollectPhantomCallbackData(isolate(),
638 &pending_phantom_callbacks_);
639 } else {
640 v->VisitPointer(node->location());
641 }
642 }
643 }
644 }
645
646
IdentifyWeakHandles(WeakSlotCallback f)647 void GlobalHandles::IdentifyWeakHandles(WeakSlotCallback f) {
648 for (NodeIterator it(this); !it.done(); it.Advance()) {
649 if (it.node()->IsWeak() && f(it.node()->location())) {
650 it.node()->MarkPending();
651 }
652 }
653 }
654
655
IterateNewSpaceStrongAndDependentRoots(ObjectVisitor * v)656 void GlobalHandles::IterateNewSpaceStrongAndDependentRoots(ObjectVisitor* v) {
657 for (int i = 0; i < new_space_nodes_.length(); ++i) {
658 Node* node = new_space_nodes_[i];
659 if (node->IsStrongRetainer() ||
660 (node->IsWeakRetainer() && !node->is_independent() &&
661 node->is_active())) {
662 v->VisitPointer(node->location());
663 }
664 }
665 }
666
667
IdentifyNewSpaceWeakIndependentHandles(WeakSlotCallbackWithHeap f)668 void GlobalHandles::IdentifyNewSpaceWeakIndependentHandles(
669 WeakSlotCallbackWithHeap f) {
670 for (int i = 0; i < new_space_nodes_.length(); ++i) {
671 Node* node = new_space_nodes_[i];
672 DCHECK(node->is_in_new_space_list());
673 if (node->is_independent() && node->IsWeak() &&
674 f(isolate_->heap(), node->location())) {
675 node->MarkPending();
676 }
677 }
678 }
679
680
IterateNewSpaceWeakIndependentRoots(ObjectVisitor * v)681 void GlobalHandles::IterateNewSpaceWeakIndependentRoots(ObjectVisitor* v) {
682 for (int i = 0; i < new_space_nodes_.length(); ++i) {
683 Node* node = new_space_nodes_[i];
684 DCHECK(node->is_in_new_space_list());
685 if (node->is_independent() && node->IsWeakRetainer()) {
686 // Pending weak phantom handles die immediately. Everything else survives.
687 if (node->IsPendingPhantomResetHandle()) {
688 node->ResetPhantomHandle();
689 ++number_of_phantom_handle_resets_;
690 } else if (node->IsPendingPhantomCallback()) {
691 node->CollectPhantomCallbackData(isolate(),
692 &pending_phantom_callbacks_);
693 } else {
694 v->VisitPointer(node->location());
695 }
696 }
697 }
698 }
699
700
IdentifyWeakUnmodifiedObjects(WeakSlotCallback is_unmodified)701 void GlobalHandles::IdentifyWeakUnmodifiedObjects(
702 WeakSlotCallback is_unmodified) {
703 for (int i = 0; i < new_space_nodes_.length(); ++i) {
704 Node* node = new_space_nodes_[i];
705 if (node->IsWeak() && !is_unmodified(node->location())) {
706 node->set_active(true);
707 }
708 }
709 }
710
711
MarkNewSpaceWeakUnmodifiedObjectsPending(WeakSlotCallbackWithHeap is_unscavenged)712 void GlobalHandles::MarkNewSpaceWeakUnmodifiedObjectsPending(
713 WeakSlotCallbackWithHeap is_unscavenged) {
714 for (int i = 0; i < new_space_nodes_.length(); ++i) {
715 Node* node = new_space_nodes_[i];
716 DCHECK(node->is_in_new_space_list());
717 if ((node->is_independent() || !node->is_active()) && node->IsWeak() &&
718 is_unscavenged(isolate_->heap(), node->location())) {
719 node->MarkPending();
720 }
721 }
722 }
723
724 template <GlobalHandles::IterationMode mode>
IterateNewSpaceWeakUnmodifiedRoots(ObjectVisitor * v)725 void GlobalHandles::IterateNewSpaceWeakUnmodifiedRoots(ObjectVisitor* v) {
726 for (int i = 0; i < new_space_nodes_.length(); ++i) {
727 Node* node = new_space_nodes_[i];
728 DCHECK(node->is_in_new_space_list());
729 if ((node->is_independent() || !node->is_active()) &&
730 node->IsWeakRetainer()) {
731 // Pending weak phantom handles die immediately. Everything else survives.
732 if (node->IsPendingPhantomResetHandle()) {
733 if (mode == IterationMode::HANDLE_PHANTOM_NODES ||
734 mode == IterationMode::HANDLE_PHANTOM_NODES_VISIT_OTHERS) {
735 node->ResetPhantomHandle();
736 ++number_of_phantom_handle_resets_;
737 }
738 } else if (node->IsPendingPhantomCallback()) {
739 if (mode == IterationMode::HANDLE_PHANTOM_NODES ||
740 mode == IterationMode::HANDLE_PHANTOM_NODES_VISIT_OTHERS) {
741 node->CollectPhantomCallbackData(isolate(),
742 &pending_phantom_callbacks_);
743 }
744 } else {
745 if (mode == IterationMode::VISIT_OTHERS ||
746 mode == IterationMode::HANDLE_PHANTOM_NODES_VISIT_OTHERS) {
747 v->VisitPointer(node->location());
748 }
749 }
750 }
751 }
752 }
753
754 template void GlobalHandles::IterateNewSpaceWeakUnmodifiedRoots<
755 GlobalHandles::HANDLE_PHANTOM_NODES>(ObjectVisitor* v);
756
757 template void GlobalHandles::IterateNewSpaceWeakUnmodifiedRoots<
758 GlobalHandles::VISIT_OTHERS>(ObjectVisitor* v);
759
760 template void GlobalHandles::IterateNewSpaceWeakUnmodifiedRoots<
761 GlobalHandles::HANDLE_PHANTOM_NODES_VISIT_OTHERS>(ObjectVisitor* v);
762
763 DISABLE_CFI_PERF
IterateObjectGroups(ObjectVisitor * v,WeakSlotCallbackWithHeap can_skip)764 bool GlobalHandles::IterateObjectGroups(ObjectVisitor* v,
765 WeakSlotCallbackWithHeap can_skip) {
766 ComputeObjectGroupsAndImplicitReferences();
767 int last = 0;
768 bool any_group_was_visited = false;
769 for (int i = 0; i < object_groups_.length(); i++) {
770 ObjectGroup* entry = object_groups_.at(i);
771 DCHECK(entry != NULL);
772
773 Object*** objects = entry->objects;
774 bool group_should_be_visited = false;
775 for (size_t j = 0; j < entry->length; j++) {
776 Object* object = *objects[j];
777 if (object->IsHeapObject()) {
778 if (!can_skip(isolate_->heap(), &object)) {
779 group_should_be_visited = true;
780 break;
781 }
782 }
783 }
784
785 if (!group_should_be_visited) {
786 object_groups_[last++] = entry;
787 continue;
788 }
789
790 // An object in the group requires visiting, so iterate over all
791 // objects in the group.
792 for (size_t j = 0; j < entry->length; ++j) {
793 Object* object = *objects[j];
794 if (object->IsHeapObject()) {
795 v->VisitPointer(&object);
796 any_group_was_visited = true;
797 }
798 }
799
800 // Once the entire group has been iterated over, set the object
801 // group to NULL so it won't be processed again.
802 delete entry;
803 object_groups_.at(i) = NULL;
804 }
805 object_groups_.Rewind(last);
806 return any_group_was_visited;
807 }
808
809 namespace {
810 // Traces the information about object groups and implicit ref groups given by
811 // the embedder to the V8 during each gc prologue.
812 class ObjectGroupsTracer {
813 public:
814 explicit ObjectGroupsTracer(Isolate* isolate);
815 void Print();
816
817 private:
818 void PrintObjectGroup(ObjectGroup* group);
819 void PrintImplicitRefGroup(ImplicitRefGroup* group);
820 void PrintObject(Object* object);
821 void PrintConstructor(JSObject* js_object);
822 void PrintInternalFields(JSObject* js_object);
823 Isolate* isolate_;
824 DISALLOW_COPY_AND_ASSIGN(ObjectGroupsTracer);
825 };
826
ObjectGroupsTracer(Isolate * isolate)827 ObjectGroupsTracer::ObjectGroupsTracer(Isolate* isolate) : isolate_(isolate) {}
828
Print()829 void ObjectGroupsTracer::Print() {
830 GlobalHandles* global_handles = isolate_->global_handles();
831
832 PrintIsolate(isolate_, "### Tracing object groups:\n");
833
834 for (auto group : *(global_handles->object_groups())) {
835 PrintObjectGroup(group);
836 }
837 for (auto group : *(global_handles->implicit_ref_groups())) {
838 PrintImplicitRefGroup(group);
839 }
840
841 PrintIsolate(isolate_, "### Tracing object groups finished.\n");
842 }
843
PrintObject(Object * object)844 void ObjectGroupsTracer::PrintObject(Object* object) {
845 if (object->IsJSObject()) {
846 JSObject* js_object = JSObject::cast(object);
847
848 PrintF("{ constructor_name: ");
849 PrintConstructor(js_object);
850 PrintF(", hidden_fields: [ ");
851 PrintInternalFields(js_object);
852 PrintF(" ] }\n");
853 } else {
854 PrintF("object of unexpected type: %p\n", static_cast<void*>(object));
855 }
856 }
857
PrintConstructor(JSObject * js_object)858 void ObjectGroupsTracer::PrintConstructor(JSObject* js_object) {
859 Object* maybe_constructor = js_object->map()->GetConstructor();
860 if (maybe_constructor->IsJSFunction()) {
861 JSFunction* constructor = JSFunction::cast(maybe_constructor);
862 String* name = String::cast(constructor->shared()->name());
863 if (name->length() == 0) name = constructor->shared()->inferred_name();
864
865 PrintF("%s", name->ToCString().get());
866 } else if (maybe_constructor->IsNull(isolate_)) {
867 if (js_object->IsOddball()) {
868 PrintF("<oddball>");
869 } else {
870 PrintF("<null>");
871 }
872 } else {
873 UNREACHABLE();
874 }
875 }
876
PrintInternalFields(JSObject * js_object)877 void ObjectGroupsTracer::PrintInternalFields(JSObject* js_object) {
878 for (int i = 0; i < js_object->GetInternalFieldCount(); ++i) {
879 if (i != 0) {
880 PrintF(", ");
881 }
882 PrintF("%p", static_cast<void*>(js_object->GetInternalField(i)));
883 }
884 }
885
PrintObjectGroup(ObjectGroup * group)886 void ObjectGroupsTracer::PrintObjectGroup(ObjectGroup* group) {
887 PrintIsolate(isolate_, "ObjectGroup (size: %" PRIuS ")\n", group->length);
888 Object*** objects = group->objects;
889
890 for (size_t i = 0; i < group->length; ++i) {
891 PrintIsolate(isolate_, " - Member: ");
892 PrintObject(*objects[i]);
893 }
894 }
895
PrintImplicitRefGroup(ImplicitRefGroup * group)896 void ObjectGroupsTracer::PrintImplicitRefGroup(ImplicitRefGroup* group) {
897 PrintIsolate(isolate_, "ImplicitRefGroup (children count: %" PRIuS ")\n",
898 group->length);
899 PrintIsolate(isolate_, " - Parent: ");
900 PrintObject(*(group->parent));
901
902 Object*** children = group->children;
903 for (size_t i = 0; i < group->length; ++i) {
904 PrintIsolate(isolate_, " - Child: ");
905 PrintObject(*children[i]);
906 }
907 }
908
909 } // namespace
910
PrintObjectGroups()911 void GlobalHandles::PrintObjectGroups() {
912 ObjectGroupsTracer(isolate_).Print();
913 }
914
InvokeSecondPassPhantomCallbacks(List<PendingPhantomCallback> * callbacks,Isolate * isolate)915 void GlobalHandles::InvokeSecondPassPhantomCallbacks(
916 List<PendingPhantomCallback>* callbacks, Isolate* isolate) {
917 while (callbacks->length() != 0) {
918 auto callback = callbacks->RemoveLast();
919 DCHECK(callback.node() == nullptr);
920 // Fire second pass callback
921 callback.Invoke(isolate);
922 }
923 }
924
925
PostScavengeProcessing(const int initial_post_gc_processing_count)926 int GlobalHandles::PostScavengeProcessing(
927 const int initial_post_gc_processing_count) {
928 int freed_nodes = 0;
929 for (int i = 0; i < new_space_nodes_.length(); ++i) {
930 Node* node = new_space_nodes_[i];
931 DCHECK(node->is_in_new_space_list());
932 if (!node->IsRetainer()) {
933 // Free nodes do not have weak callbacks. Do not use them to compute
934 // the freed_nodes.
935 continue;
936 }
937 // Skip dependent or unmodified handles. Their weak callbacks might expect
938 // to be
939 // called between two global garbage collection callbacks which
940 // are not called for minor collections.
941 if (!node->is_independent() && (node->is_active())) {
942 node->set_active(false);
943 continue;
944 }
945 node->set_active(false);
946
947 if (node->PostGarbageCollectionProcessing(isolate_)) {
948 if (initial_post_gc_processing_count != post_gc_processing_count_) {
949 // Weak callback triggered another GC and another round of
950 // PostGarbageCollection processing. The current node might
951 // have been deleted in that round, so we need to bail out (or
952 // restart the processing).
953 return freed_nodes;
954 }
955 }
956 if (!node->IsRetainer()) {
957 freed_nodes++;
958 }
959 }
960 return freed_nodes;
961 }
962
963
PostMarkSweepProcessing(const int initial_post_gc_processing_count)964 int GlobalHandles::PostMarkSweepProcessing(
965 const int initial_post_gc_processing_count) {
966 int freed_nodes = 0;
967 for (NodeIterator it(this); !it.done(); it.Advance()) {
968 if (!it.node()->IsRetainer()) {
969 // Free nodes do not have weak callbacks. Do not use them to compute
970 // the freed_nodes.
971 continue;
972 }
973 it.node()->set_active(false);
974 if (it.node()->PostGarbageCollectionProcessing(isolate_)) {
975 if (initial_post_gc_processing_count != post_gc_processing_count_) {
976 // See the comment above.
977 return freed_nodes;
978 }
979 }
980 if (!it.node()->IsRetainer()) {
981 freed_nodes++;
982 }
983 }
984 return freed_nodes;
985 }
986
987
UpdateListOfNewSpaceNodes()988 void GlobalHandles::UpdateListOfNewSpaceNodes() {
989 int last = 0;
990 for (int i = 0; i < new_space_nodes_.length(); ++i) {
991 Node* node = new_space_nodes_[i];
992 DCHECK(node->is_in_new_space_list());
993 if (node->IsRetainer()) {
994 if (isolate_->heap()->InNewSpace(node->object())) {
995 new_space_nodes_[last++] = node;
996 isolate_->heap()->IncrementNodesCopiedInNewSpace();
997 } else {
998 node->set_in_new_space_list(false);
999 isolate_->heap()->IncrementNodesPromoted();
1000 }
1001 } else {
1002 node->set_in_new_space_list(false);
1003 isolate_->heap()->IncrementNodesDiedInNewSpace();
1004 }
1005 }
1006 new_space_nodes_.Rewind(last);
1007 new_space_nodes_.Trim();
1008 }
1009
1010
DispatchPendingPhantomCallbacks(bool synchronous_second_pass)1011 int GlobalHandles::DispatchPendingPhantomCallbacks(
1012 bool synchronous_second_pass) {
1013 int freed_nodes = 0;
1014 List<PendingPhantomCallback> second_pass_callbacks;
1015 {
1016 // The initial pass callbacks must simply clear the nodes.
1017 for (auto i = pending_phantom_callbacks_.begin();
1018 i != pending_phantom_callbacks_.end(); ++i) {
1019 auto callback = i;
1020 // Skip callbacks that have already been processed once.
1021 if (callback->node() == nullptr) continue;
1022 callback->Invoke(isolate());
1023 if (callback->callback()) second_pass_callbacks.Add(*callback);
1024 freed_nodes++;
1025 }
1026 }
1027 pending_phantom_callbacks_.Clear();
1028 if (second_pass_callbacks.length() > 0) {
1029 if (FLAG_optimize_for_size || FLAG_predictable || synchronous_second_pass) {
1030 isolate()->heap()->CallGCPrologueCallbacks(
1031 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
1032 InvokeSecondPassPhantomCallbacks(&second_pass_callbacks, isolate());
1033 isolate()->heap()->CallGCEpilogueCallbacks(
1034 GCType::kGCTypeProcessWeakCallbacks, kNoGCCallbackFlags);
1035 } else {
1036 auto task = new PendingPhantomCallbacksSecondPassTask(
1037 &second_pass_callbacks, isolate());
1038 V8::GetCurrentPlatform()->CallOnForegroundThread(
1039 reinterpret_cast<v8::Isolate*>(isolate()), task);
1040 }
1041 }
1042 return freed_nodes;
1043 }
1044
1045
Invoke(Isolate * isolate)1046 void GlobalHandles::PendingPhantomCallback::Invoke(Isolate* isolate) {
1047 Data::Callback* callback_addr = nullptr;
1048 if (node_ != nullptr) {
1049 // Initialize for first pass callback.
1050 DCHECK(node_->state() == Node::NEAR_DEATH);
1051 callback_addr = &callback_;
1052 }
1053 Data data(reinterpret_cast<v8::Isolate*>(isolate), parameter_,
1054 internal_fields_, callback_addr);
1055 Data::Callback callback = callback_;
1056 callback_ = nullptr;
1057 callback(data);
1058 if (node_ != nullptr) {
1059 // Transition to second pass state.
1060 DCHECK(node_->state() == Node::FREE);
1061 node_ = nullptr;
1062 }
1063 }
1064
1065
PostGarbageCollectionProcessing(GarbageCollector collector,const v8::GCCallbackFlags gc_callback_flags)1066 int GlobalHandles::PostGarbageCollectionProcessing(
1067 GarbageCollector collector, const v8::GCCallbackFlags gc_callback_flags) {
1068 // Process weak global handle callbacks. This must be done after the
1069 // GC is completely done, because the callbacks may invoke arbitrary
1070 // API functions.
1071 DCHECK(isolate_->heap()->gc_state() == Heap::NOT_IN_GC);
1072 const int initial_post_gc_processing_count = ++post_gc_processing_count_;
1073 int freed_nodes = 0;
1074 bool synchronous_second_pass =
1075 (gc_callback_flags &
1076 (kGCCallbackFlagForced | kGCCallbackFlagCollectAllAvailableGarbage |
1077 kGCCallbackFlagSynchronousPhantomCallbackProcessing)) != 0;
1078 freed_nodes += DispatchPendingPhantomCallbacks(synchronous_second_pass);
1079 if (initial_post_gc_processing_count != post_gc_processing_count_) {
1080 // If the callbacks caused a nested GC, then return. See comment in
1081 // PostScavengeProcessing.
1082 return freed_nodes;
1083 }
1084 if (Heap::IsYoungGenerationCollector(collector)) {
1085 freed_nodes += PostScavengeProcessing(initial_post_gc_processing_count);
1086 } else {
1087 freed_nodes += PostMarkSweepProcessing(initial_post_gc_processing_count);
1088 }
1089 if (initial_post_gc_processing_count != post_gc_processing_count_) {
1090 // If the callbacks caused a nested GC, then return. See comment in
1091 // PostScavengeProcessing.
1092 return freed_nodes;
1093 }
1094 if (initial_post_gc_processing_count == post_gc_processing_count_) {
1095 UpdateListOfNewSpaceNodes();
1096 }
1097 return freed_nodes;
1098 }
1099
1100
IterateStrongRoots(ObjectVisitor * v)1101 void GlobalHandles::IterateStrongRoots(ObjectVisitor* v) {
1102 for (NodeIterator it(this); !it.done(); it.Advance()) {
1103 if (it.node()->IsStrongRetainer()) {
1104 v->VisitPointer(it.node()->location());
1105 }
1106 }
1107 }
1108
1109
1110 DISABLE_CFI_PERF
IterateAllRoots(ObjectVisitor * v)1111 void GlobalHandles::IterateAllRoots(ObjectVisitor* v) {
1112 for (NodeIterator it(this); !it.done(); it.Advance()) {
1113 if (it.node()->IsRetainer()) {
1114 v->VisitPointer(it.node()->location());
1115 }
1116 }
1117 }
1118
1119
1120 DISABLE_CFI_PERF
IterateAllRootsWithClassIds(ObjectVisitor * v)1121 void GlobalHandles::IterateAllRootsWithClassIds(ObjectVisitor* v) {
1122 for (NodeIterator it(this); !it.done(); it.Advance()) {
1123 if (it.node()->IsRetainer() && it.node()->has_wrapper_class_id()) {
1124 v->VisitEmbedderReference(it.node()->location(),
1125 it.node()->wrapper_class_id());
1126 }
1127 }
1128 }
1129
1130
1131 DISABLE_CFI_PERF
IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor * v)1132 void GlobalHandles::IterateAllRootsInNewSpaceWithClassIds(ObjectVisitor* v) {
1133 for (int i = 0; i < new_space_nodes_.length(); ++i) {
1134 Node* node = new_space_nodes_[i];
1135 if (node->IsRetainer() && node->has_wrapper_class_id()) {
1136 v->VisitEmbedderReference(node->location(),
1137 node->wrapper_class_id());
1138 }
1139 }
1140 }
1141
1142
1143 DISABLE_CFI_PERF
IterateWeakRootsInNewSpaceWithClassIds(ObjectVisitor * v)1144 void GlobalHandles::IterateWeakRootsInNewSpaceWithClassIds(ObjectVisitor* v) {
1145 for (int i = 0; i < new_space_nodes_.length(); ++i) {
1146 Node* node = new_space_nodes_[i];
1147 if (node->has_wrapper_class_id() && node->IsWeak()) {
1148 v->VisitEmbedderReference(node->location(), node->wrapper_class_id());
1149 }
1150 }
1151 }
1152
1153
NumberOfWeakHandles()1154 int GlobalHandles::NumberOfWeakHandles() {
1155 int count = 0;
1156 for (NodeIterator it(this); !it.done(); it.Advance()) {
1157 if (it.node()->IsWeakRetainer()) {
1158 count++;
1159 }
1160 }
1161 return count;
1162 }
1163
1164
NumberOfGlobalObjectWeakHandles()1165 int GlobalHandles::NumberOfGlobalObjectWeakHandles() {
1166 int count = 0;
1167 for (NodeIterator it(this); !it.done(); it.Advance()) {
1168 if (it.node()->IsWeakRetainer() &&
1169 it.node()->object()->IsJSGlobalObject()) {
1170 count++;
1171 }
1172 }
1173 return count;
1174 }
1175
1176
RecordStats(HeapStats * stats)1177 void GlobalHandles::RecordStats(HeapStats* stats) {
1178 *stats->global_handle_count = 0;
1179 *stats->weak_global_handle_count = 0;
1180 *stats->pending_global_handle_count = 0;
1181 *stats->near_death_global_handle_count = 0;
1182 *stats->free_global_handle_count = 0;
1183 for (NodeIterator it(this); !it.done(); it.Advance()) {
1184 *stats->global_handle_count += 1;
1185 if (it.node()->state() == Node::WEAK) {
1186 *stats->weak_global_handle_count += 1;
1187 } else if (it.node()->state() == Node::PENDING) {
1188 *stats->pending_global_handle_count += 1;
1189 } else if (it.node()->state() == Node::NEAR_DEATH) {
1190 *stats->near_death_global_handle_count += 1;
1191 } else if (it.node()->state() == Node::FREE) {
1192 *stats->free_global_handle_count += 1;
1193 }
1194 }
1195 }
1196
1197 #ifdef DEBUG
1198
PrintStats()1199 void GlobalHandles::PrintStats() {
1200 int total = 0;
1201 int weak = 0;
1202 int pending = 0;
1203 int near_death = 0;
1204 int destroyed = 0;
1205
1206 for (NodeIterator it(this); !it.done(); it.Advance()) {
1207 total++;
1208 if (it.node()->state() == Node::WEAK) weak++;
1209 if (it.node()->state() == Node::PENDING) pending++;
1210 if (it.node()->state() == Node::NEAR_DEATH) near_death++;
1211 if (it.node()->state() == Node::FREE) destroyed++;
1212 }
1213
1214 PrintF("Global Handle Statistics:\n");
1215 PrintF(" allocated memory = %" PRIuS "B\n", total * sizeof(Node));
1216 PrintF(" # weak = %d\n", weak);
1217 PrintF(" # pending = %d\n", pending);
1218 PrintF(" # near_death = %d\n", near_death);
1219 PrintF(" # free = %d\n", destroyed);
1220 PrintF(" # total = %d\n", total);
1221 }
1222
1223
Print()1224 void GlobalHandles::Print() {
1225 PrintF("Global handles:\n");
1226 for (NodeIterator it(this); !it.done(); it.Advance()) {
1227 PrintF(" handle %p to %p%s\n",
1228 reinterpret_cast<void*>(it.node()->location()),
1229 reinterpret_cast<void*>(it.node()->object()),
1230 it.node()->IsWeak() ? " (weak)" : "");
1231 }
1232 }
1233
1234 #endif
1235
1236
1237
AddObjectGroup(Object *** handles,size_t length,v8::RetainedObjectInfo * info)1238 void GlobalHandles::AddObjectGroup(Object*** handles,
1239 size_t length,
1240 v8::RetainedObjectInfo* info) {
1241 #ifdef DEBUG
1242 for (size_t i = 0; i < length; ++i) {
1243 DCHECK(!Node::FromLocation(handles[i])->is_independent());
1244 }
1245 #endif
1246 if (length == 0) {
1247 if (info != NULL) info->Dispose();
1248 return;
1249 }
1250 ObjectGroup* group = new ObjectGroup(length);
1251 for (size_t i = 0; i < length; ++i)
1252 group->objects[i] = handles[i];
1253 group->info = info;
1254 object_groups_.Add(group);
1255 }
1256
1257
SetObjectGroupId(Object ** handle,UniqueId id)1258 void GlobalHandles::SetObjectGroupId(Object** handle,
1259 UniqueId id) {
1260 object_group_connections_.Add(ObjectGroupConnection(id, handle));
1261 }
1262
1263
SetRetainedObjectInfo(UniqueId id,RetainedObjectInfo * info)1264 void GlobalHandles::SetRetainedObjectInfo(UniqueId id,
1265 RetainedObjectInfo* info) {
1266 retainer_infos_.Add(ObjectGroupRetainerInfo(id, info));
1267 }
1268
1269
SetReferenceFromGroup(UniqueId id,Object ** child)1270 void GlobalHandles::SetReferenceFromGroup(UniqueId id, Object** child) {
1271 DCHECK(!Node::FromLocation(child)->is_independent());
1272 implicit_ref_connections_.Add(ObjectGroupConnection(id, child));
1273 }
1274
1275
SetReference(HeapObject ** parent,Object ** child)1276 void GlobalHandles::SetReference(HeapObject** parent, Object** child) {
1277 DCHECK(!Node::FromLocation(child)->is_independent());
1278 ImplicitRefGroup* group = new ImplicitRefGroup(parent, 1);
1279 group->children[0] = child;
1280 implicit_ref_groups_.Add(group);
1281 }
1282
1283
RemoveObjectGroups()1284 void GlobalHandles::RemoveObjectGroups() {
1285 for (int i = 0; i < object_groups_.length(); i++)
1286 delete object_groups_.at(i);
1287 object_groups_.Clear();
1288 for (int i = 0; i < retainer_infos_.length(); ++i)
1289 retainer_infos_[i].info->Dispose();
1290 retainer_infos_.Clear();
1291 object_group_connections_.Clear();
1292 object_group_connections_.Initialize(kObjectGroupConnectionsCapacity);
1293 }
1294
1295
RemoveImplicitRefGroups()1296 void GlobalHandles::RemoveImplicitRefGroups() {
1297 for (int i = 0; i < implicit_ref_groups_.length(); i++) {
1298 delete implicit_ref_groups_.at(i);
1299 }
1300 implicit_ref_groups_.Clear();
1301 implicit_ref_connections_.Clear();
1302 }
1303
1304
TearDown()1305 void GlobalHandles::TearDown() {
1306 // TODO(1428): invoke weak callbacks.
1307 }
1308
1309
ComputeObjectGroupsAndImplicitReferences()1310 void GlobalHandles::ComputeObjectGroupsAndImplicitReferences() {
1311 if (object_group_connections_.length() == 0) {
1312 for (int i = 0; i < retainer_infos_.length(); ++i)
1313 retainer_infos_[i].info->Dispose();
1314 retainer_infos_.Clear();
1315 implicit_ref_connections_.Clear();
1316 return;
1317 }
1318
1319 object_group_connections_.Sort();
1320 retainer_infos_.Sort();
1321 implicit_ref_connections_.Sort();
1322
1323 int info_index = 0; // For iterating retainer_infos_.
1324 UniqueId current_group_id(0);
1325 int current_group_start = 0;
1326
1327 int current_implicit_refs_start = 0;
1328 int current_implicit_refs_end = 0;
1329 for (int i = 0; i <= object_group_connections_.length(); ++i) {
1330 if (i == 0)
1331 current_group_id = object_group_connections_[i].id;
1332 if (i == object_group_connections_.length() ||
1333 current_group_id != object_group_connections_[i].id) {
1334 // Group detected: objects in indices [current_group_start, i[.
1335
1336 // Find out which implicit references are related to this group. (We want
1337 // to ignore object groups which only have 1 object, but that object is
1338 // needed as a representative object for the implicit refrerence group.)
1339 while (current_implicit_refs_start < implicit_ref_connections_.length() &&
1340 implicit_ref_connections_[current_implicit_refs_start].id <
1341 current_group_id)
1342 ++current_implicit_refs_start;
1343 current_implicit_refs_end = current_implicit_refs_start;
1344 while (current_implicit_refs_end < implicit_ref_connections_.length() &&
1345 implicit_ref_connections_[current_implicit_refs_end].id ==
1346 current_group_id)
1347 ++current_implicit_refs_end;
1348
1349 if (current_implicit_refs_end > current_implicit_refs_start) {
1350 // Find a representative object for the implicit references.
1351 HeapObject** representative = NULL;
1352 for (int j = current_group_start; j < i; ++j) {
1353 Object** object = object_group_connections_[j].object;
1354 if ((*object)->IsHeapObject()) {
1355 representative = reinterpret_cast<HeapObject**>(object);
1356 break;
1357 }
1358 }
1359 if (representative) {
1360 ImplicitRefGroup* group = new ImplicitRefGroup(
1361 representative,
1362 current_implicit_refs_end - current_implicit_refs_start);
1363 for (int j = current_implicit_refs_start;
1364 j < current_implicit_refs_end;
1365 ++j) {
1366 group->children[j - current_implicit_refs_start] =
1367 implicit_ref_connections_[j].object;
1368 }
1369 implicit_ref_groups_.Add(group);
1370 }
1371 current_implicit_refs_start = current_implicit_refs_end;
1372 }
1373
1374 // Find a RetainedObjectInfo for the group.
1375 RetainedObjectInfo* info = NULL;
1376 while (info_index < retainer_infos_.length() &&
1377 retainer_infos_[info_index].id < current_group_id) {
1378 retainer_infos_[info_index].info->Dispose();
1379 ++info_index;
1380 }
1381 if (info_index < retainer_infos_.length() &&
1382 retainer_infos_[info_index].id == current_group_id) {
1383 // This object group has an associated ObjectGroupRetainerInfo.
1384 info = retainer_infos_[info_index].info;
1385 ++info_index;
1386 }
1387
1388 // Ignore groups which only contain one object.
1389 if (i > current_group_start + 1) {
1390 ObjectGroup* group = new ObjectGroup(i - current_group_start);
1391 for (int j = current_group_start; j < i; ++j) {
1392 group->objects[j - current_group_start] =
1393 object_group_connections_[j].object;
1394 }
1395 group->info = info;
1396 object_groups_.Add(group);
1397 } else if (info) {
1398 info->Dispose();
1399 }
1400
1401 if (i < object_group_connections_.length()) {
1402 current_group_id = object_group_connections_[i].id;
1403 current_group_start = i;
1404 }
1405 }
1406 }
1407 object_group_connections_.Clear();
1408 object_group_connections_.Initialize(kObjectGroupConnectionsCapacity);
1409 retainer_infos_.Clear();
1410 implicit_ref_connections_.Clear();
1411 }
1412
1413
EternalHandles()1414 EternalHandles::EternalHandles() : size_(0) {
1415 for (unsigned i = 0; i < arraysize(singleton_handles_); i++) {
1416 singleton_handles_[i] = kInvalidIndex;
1417 }
1418 }
1419
1420
~EternalHandles()1421 EternalHandles::~EternalHandles() {
1422 for (int i = 0; i < blocks_.length(); i++) delete[] blocks_[i];
1423 }
1424
1425
IterateAllRoots(ObjectVisitor * visitor)1426 void EternalHandles::IterateAllRoots(ObjectVisitor* visitor) {
1427 int limit = size_;
1428 for (int i = 0; i < blocks_.length(); i++) {
1429 DCHECK(limit > 0);
1430 Object** block = blocks_[i];
1431 visitor->VisitPointers(block, block + Min(limit, kSize));
1432 limit -= kSize;
1433 }
1434 }
1435
1436
IterateNewSpaceRoots(ObjectVisitor * visitor)1437 void EternalHandles::IterateNewSpaceRoots(ObjectVisitor* visitor) {
1438 for (int i = 0; i < new_space_indices_.length(); i++) {
1439 visitor->VisitPointer(GetLocation(new_space_indices_[i]));
1440 }
1441 }
1442
1443
PostGarbageCollectionProcessing(Heap * heap)1444 void EternalHandles::PostGarbageCollectionProcessing(Heap* heap) {
1445 int last = 0;
1446 for (int i = 0; i < new_space_indices_.length(); i++) {
1447 int index = new_space_indices_[i];
1448 if (heap->InNewSpace(*GetLocation(index))) {
1449 new_space_indices_[last++] = index;
1450 }
1451 }
1452 new_space_indices_.Rewind(last);
1453 }
1454
1455
Create(Isolate * isolate,Object * object,int * index)1456 void EternalHandles::Create(Isolate* isolate, Object* object, int* index) {
1457 DCHECK_EQ(kInvalidIndex, *index);
1458 if (object == NULL) return;
1459 DCHECK_NE(isolate->heap()->the_hole_value(), object);
1460 int block = size_ >> kShift;
1461 int offset = size_ & kMask;
1462 // need to resize
1463 if (offset == 0) {
1464 Object** next_block = new Object*[kSize];
1465 Object* the_hole = isolate->heap()->the_hole_value();
1466 MemsetPointer(next_block, the_hole, kSize);
1467 blocks_.Add(next_block);
1468 }
1469 DCHECK_EQ(isolate->heap()->the_hole_value(), blocks_[block][offset]);
1470 blocks_[block][offset] = object;
1471 if (isolate->heap()->InNewSpace(object)) {
1472 new_space_indices_.Add(size_);
1473 }
1474 *index = size_++;
1475 }
1476
1477
1478 } // namespace internal
1479 } // namespace v8
1480