• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2016 Gael Guennebaud <gael.guennebaud@inria.fr>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #include <sstream>
11 
12 #ifdef EIGEN_TEST_MAX_SIZE
13 #undef EIGEN_TEST_MAX_SIZE
14 #endif
15 
16 #define EIGEN_TEST_MAX_SIZE 50
17 
18 #ifdef EIGEN_TEST_PART_1
19 #include "cholesky.cpp"
20 #endif
21 
22 #ifdef EIGEN_TEST_PART_2
23 #include "lu.cpp"
24 #endif
25 
26 #ifdef EIGEN_TEST_PART_3
27 #include "qr.cpp"
28 #endif
29 
30 #ifdef EIGEN_TEST_PART_4
31 #include "qr_colpivoting.cpp"
32 #endif
33 
34 #ifdef EIGEN_TEST_PART_5
35 #include "qr_fullpivoting.cpp"
36 #endif
37 
38 #ifdef EIGEN_TEST_PART_6
39 #include "eigensolver_selfadjoint.cpp"
40 #endif
41 
42 #ifdef EIGEN_TEST_PART_7
43 #include "eigensolver_generic.cpp"
44 #endif
45 
46 #ifdef EIGEN_TEST_PART_8
47 #include "eigensolver_generalized_real.cpp"
48 #endif
49 
50 #ifdef EIGEN_TEST_PART_9
51 #include "jacobisvd.cpp"
52 #endif
53 
54 #ifdef EIGEN_TEST_PART_10
55 #include "bdcsvd.cpp"
56 #endif
57 
58 #include <Eigen/Dense>
59 
60 #undef min
61 #undef max
62 #undef isnan
63 #undef isinf
64 #undef isfinite
65 
66 #include <boost/multiprecision/cpp_dec_float.hpp>
67 #include <boost/multiprecision/number.hpp>
68 #include <boost/math/special_functions.hpp>
69 #include <boost/math/complex.hpp>
70 
71 namespace mp = boost::multiprecision;
72 typedef mp::number<mp::cpp_dec_float<100>, mp::et_on> Real;
73 
74 namespace Eigen {
75   template<> struct NumTraits<Real> : GenericNumTraits<Real> {
dummy_precisionEigen::NumTraits76     static inline Real dummy_precision() { return 1e-50; }
77   };
78 
79   template<typename T1,typename T2,typename T3,typename T4,typename T5>
80   struct NumTraits<boost::multiprecision::detail::expression<T1,T2,T3,T4,T5> > : NumTraits<Real> {};
81 
82   template<>
test_precision()83   Real test_precision<Real>() { return 1e-50; }
84 
85   // needed in C++93 mode where number does not support explicit cast.
86   namespace internal {
87     template<typename NewType>
88     struct cast_impl<Real,NewType> {
runEigen::internal::cast_impl89       static inline NewType run(const Real& x) {
90         return x.template convert_to<NewType>();
91       }
92     };
93 
94     template<>
95     struct cast_impl<Real,std::complex<Real> > {
runEigen::internal::cast_impl96       static inline std::complex<Real>  run(const Real& x) {
97         return std::complex<Real>(x);
98       }
99     };
100   }
101 }
102 
103 namespace boost {
104 namespace multiprecision {
105   // to make ADL works as expected:
106   using boost::math::isfinite;
107   using boost::math::isnan;
108   using boost::math::isinf;
109   using boost::math::copysign;
110   using boost::math::hypot;
111 
112   // The following is needed for std::complex<Real>:
fabs(const Real & a)113   Real fabs(const Real& a) { return abs EIGEN_NOT_A_MACRO (a); }
fmax(const Real & a,const Real & b)114   Real fmax(const Real& a, const Real& b) { using std::max; return max(a,b); }
115 
116   // some specialization for the unit tests:
test_isMuchSmallerThan(const Real & a,const Real & b)117   inline bool test_isMuchSmallerThan(const Real& a, const Real& b) {
118     return internal::isMuchSmallerThan(a, b, test_precision<Real>());
119   }
120 
test_isApprox(const Real & a,const Real & b)121   inline bool test_isApprox(const Real& a, const Real& b) {
122     return internal::isApprox(a, b, test_precision<Real>());
123   }
124 
test_isApproxOrLessThan(const Real & a,const Real & b)125   inline bool test_isApproxOrLessThan(const Real& a, const Real& b) {
126     return internal::isApproxOrLessThan(a, b, test_precision<Real>());
127   }
128 
get_test_precision(const Real &)129   Real get_test_precision(const Real&) {
130     return test_precision<Real>();
131   }
132 
test_relative_error(const Real & a,const Real & b)133   Real test_relative_error(const Real &a, const Real &b) {
134     using Eigen::numext::abs2;
135     return sqrt(abs2<Real>(a-b)/Eigen::numext::mini<Real>(abs2(a),abs2(b)));
136   }
137 }
138 }
139 
140 namespace Eigen {
141 
142 }
143 
test_boostmultiprec()144 void test_boostmultiprec()
145 {
146   typedef Matrix<Real,Dynamic,Dynamic> Mat;
147   typedef Matrix<std::complex<Real>,Dynamic,Dynamic> MatC;
148 
149   std::cout << "NumTraits<Real>::epsilon()         = " << NumTraits<Real>::epsilon() << std::endl;
150   std::cout << "NumTraits<Real>::dummy_precision() = " << NumTraits<Real>::dummy_precision() << std::endl;
151   std::cout << "NumTraits<Real>::lowest()          = " << NumTraits<Real>::lowest() << std::endl;
152   std::cout << "NumTraits<Real>::highest()         = " << NumTraits<Real>::highest() << std::endl;
153   std::cout << "NumTraits<Real>::digits10()        = " << NumTraits<Real>::digits10() << std::endl;
154 
155   // chekc stream output
156   {
157     Mat A(10,10);
158     A.setRandom();
159     std::stringstream ss;
160     ss << A;
161   }
162   {
163     MatC A(10,10);
164     A.setRandom();
165     std::stringstream ss;
166     ss << A;
167   }
168 
169   for(int i = 0; i < g_repeat; i++) {
170     int s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE);
171 
172     CALL_SUBTEST_1( cholesky(Mat(s,s)) );
173 
174     CALL_SUBTEST_2( lu_non_invertible<Mat>() );
175     CALL_SUBTEST_2( lu_invertible<Mat>() );
176     CALL_SUBTEST_2( lu_non_invertible<MatC>() );
177     CALL_SUBTEST_2( lu_invertible<MatC>() );
178 
179     CALL_SUBTEST_3( qr(Mat(internal::random<int>(1,EIGEN_TEST_MAX_SIZE),internal::random<int>(1,EIGEN_TEST_MAX_SIZE))) );
180     CALL_SUBTEST_3( qr_invertible<Mat>() );
181 
182     CALL_SUBTEST_4( qr<Mat>() );
183     CALL_SUBTEST_4( cod<Mat>() );
184     CALL_SUBTEST_4( qr_invertible<Mat>() );
185 
186     CALL_SUBTEST_5( qr<Mat>() );
187     CALL_SUBTEST_5( qr_invertible<Mat>() );
188 
189     CALL_SUBTEST_6( selfadjointeigensolver(Mat(s,s)) );
190 
191     CALL_SUBTEST_7( eigensolver(Mat(s,s)) );
192 
193     CALL_SUBTEST_8( generalized_eigensolver_real(Mat(s,s)) );
194 
195     TEST_SET_BUT_UNUSED_VARIABLE(s)
196   }
197 
198   CALL_SUBTEST_9(( jacobisvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
199   CALL_SUBTEST_10(( bdcsvd(Mat(internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE), internal::random<int>(EIGEN_TEST_MAX_SIZE/4, EIGEN_TEST_MAX_SIZE/2))) ));
200 }
201 
202