Searched refs:inverted (Results 1 – 7 of 7) sorted by relevance
85 MATRIX inverted(1); in gaussJordanInverse()102 std::swap(inverted[i], inverted[swap]); in gaussJordanInverse()108 inverted[i][k] /= denom; in gaussJordanInverse()117 inverted[j][k] -= inverted[i][k] * d; in gaussJordanInverse()123 return inverted; in gaussJordanInverse()143 MATRIX inverted(MATRIX::NO_INIT); in fastInverse2()151 inverted[0][0] = d / det; in fastInverse2()152 inverted[0][1] = -c / det; in fastInverse2()153 inverted[1][0] = -b / det; in fastInverse2()154 inverted[1][1] = a / det; in fastInverse2()[all …]
102 final Matrix inverted = new Matrix(); in transformMatrixToLocal() local103 if (vm.invert(inverted)) { in transformMatrixToLocal()104 matrix.postConcat(inverted); in transformMatrixToLocal()
140 const vec3_t inverted = pose_inverse.Transform(transformed); in TYPED_TEST() local141 EXPECT_VEC3_NEAR(start_position, inverted, tolerance); in TYPED_TEST()
1643 float inverted[] = new float[m.length]; in inverse3x3() local1644 inverted[0] = A / det; in inverse3x3()1645 inverted[1] = B / det; in inverse3x3()1646 inverted[2] = C / det; in inverse3x3()1647 inverted[3] = (c * h - b * i) / det; in inverse3x3()1648 inverted[4] = (a * i - c * g) / det; in inverse3x3()1649 inverted[5] = (b * g - a * h) / det; in inverse3x3()1650 inverted[6] = (b * f - c * e) / det; in inverse3x3()1651 inverted[7] = (c * d - a * f) / det; in inverse3x3()1652 inverted[8] = (a * e - b * d) / det; in inverse3x3()[all …]
198 Returns true if the matrix was successfully inverted.207 The matrix is first inverted then transposed. Returns true if the matrix was208 successfully inverted.
269 # inverted compared to Force None or Bt Sco
199 * Returns true if the matrix was successfully inverted.210 * The matrix is first inverted then transposed. Returns true if the matrix was211 * successfully inverted.