1 /******************************************************************************
2 *
3 * Copyright (C) 2014 Google, Inc.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at:
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 *
17 ******************************************************************************/
18
19 #include "include/bt_target.h"
20
21 #define LOG_TAG "bt_osi_alarm"
22
23 #include "osi/include/alarm.h"
24
25 #include <base/cancelable_callback.h>
26 #include <base/logging.h>
27 #include <base/message_loop/message_loop.h>
28 #include <errno.h>
29 #include <fcntl.h>
30 #include <inttypes.h>
31 #include <malloc.h>
32 #include <pthread.h>
33 #include <signal.h>
34 #include <string.h>
35 #include <time.h>
36
37 #include <hardware/bluetooth.h>
38
39 #include <mutex>
40
41 #include "osi/include/allocator.h"
42 #include "osi/include/fixed_queue.h"
43 #include "osi/include/list.h"
44 #include "osi/include/log.h"
45 #include "osi/include/osi.h"
46 #include "osi/include/semaphore.h"
47 #include "osi/include/thread.h"
48 #include "osi/include/wakelock.h"
49
50 using base::Bind;
51 using base::CancelableClosure;
52 using base::MessageLoop;
53
54 extern base::MessageLoop* get_message_loop();
55
56 // Callback and timer threads should run at RT priority in order to ensure they
57 // meet audio deadlines. Use this priority for all audio/timer related thread.
58 static const int THREAD_RT_PRIORITY = 1;
59
60 typedef struct {
61 size_t count;
62 period_ms_t total_ms;
63 period_ms_t max_ms;
64 } stat_t;
65
66 // Alarm-related information and statistics
67 typedef struct {
68 const char* name;
69 size_t scheduled_count;
70 size_t canceled_count;
71 size_t rescheduled_count;
72 size_t total_updates;
73 period_ms_t last_update_ms;
74 stat_t overdue_scheduling;
75 stat_t premature_scheduling;
76 } alarm_stats_t;
77
78 /* Wrapper around CancellableClosure that let it be embedded in structs, without
79 * need to define copy operator. */
80 struct CancelableClosureInStruct {
81 base::CancelableClosure i;
82
operator =CancelableClosureInStruct83 CancelableClosureInStruct& operator=(const CancelableClosureInStruct& in) {
84 if (!in.i.callback().is_null()) i.Reset(in.i.callback());
85 return *this;
86 }
87 };
88
89 struct alarm_t {
90 // The mutex is held while the callback for this alarm is being executed.
91 // It allows us to release the coarse-grained monitor lock while a
92 // potentially long-running callback is executing. |alarm_cancel| uses this
93 // mutex to provide a guarantee to its caller that the callback will not be
94 // in progress when it returns.
95 std::shared_ptr<std::recursive_mutex> callback_mutex;
96 period_ms_t creation_time;
97 period_ms_t period;
98 period_ms_t deadline;
99 period_ms_t prev_deadline; // Previous deadline - used for accounting of
100 // periodic timers
101 bool is_periodic;
102 fixed_queue_t* queue; // The processing queue to add this alarm to
103 alarm_callback_t callback;
104 void* data;
105 alarm_stats_t stats;
106
107 bool for_msg_loop; // True, if the alarm should be processed on message loop
108 CancelableClosureInStruct closure; // posted to message loop for processing
109 };
110
111 // If the next wakeup time is less than this threshold, we should acquire
112 // a wakelock instead of setting a wake alarm so we're not bouncing in
113 // and out of suspend frequently. This value is externally visible to allow
114 // unit tests to run faster. It should not be modified by production code.
115 int64_t TIMER_INTERVAL_FOR_WAKELOCK_IN_MS = 3000;
116 static const clockid_t CLOCK_ID = CLOCK_BOOTTIME;
117
118 #if (KERNEL_MISSING_CLOCK_BOOTTIME_ALARM == TRUE)
119 static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME;
120 #else
121 static const clockid_t CLOCK_ID_ALARM = CLOCK_BOOTTIME_ALARM;
122 #endif
123
124 // This mutex ensures that the |alarm_set|, |alarm_cancel|, and alarm callback
125 // functions execute serially and not concurrently. As a result, this mutex
126 // also protects the |alarms| list.
127 static std::mutex alarms_mutex;
128 static list_t* alarms;
129 static timer_t timer;
130 static timer_t wakeup_timer;
131 static bool timer_set;
132
133 // All alarm callbacks are dispatched from |dispatcher_thread|
134 static thread_t* dispatcher_thread;
135 static bool dispatcher_thread_active;
136 static semaphore_t* alarm_expired;
137
138 // Default alarm callback thread and queue
139 static thread_t* default_callback_thread;
140 static fixed_queue_t* default_callback_queue;
141
142 static alarm_t* alarm_new_internal(const char* name, bool is_periodic);
143 static bool lazy_initialize(void);
144 static period_ms_t now(void);
145 static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
146 alarm_callback_t cb, void* data,
147 fixed_queue_t* queue, bool for_msg_loop);
148 static void alarm_cancel_internal(alarm_t* alarm);
149 static void remove_pending_alarm(alarm_t* alarm);
150 static void schedule_next_instance(alarm_t* alarm);
151 static void reschedule_root_alarm(void);
152 static void alarm_queue_ready(fixed_queue_t* queue, void* context);
153 static void timer_callback(void* data);
154 static void callback_dispatch(void* context);
155 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer);
156 static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
157 period_ms_t deadline_ms);
158 // Registers |queue| for processing alarm callbacks on |thread|.
159 // |queue| may not be NULL. |thread| may not be NULL.
160 static void alarm_register_processing_queue(fixed_queue_t* queue,
161 thread_t* thread);
162
update_stat(stat_t * stat,period_ms_t delta)163 static void update_stat(stat_t* stat, period_ms_t delta) {
164 if (stat->max_ms < delta) stat->max_ms = delta;
165 stat->total_ms += delta;
166 stat->count++;
167 }
168
alarm_new(const char * name)169 alarm_t* alarm_new(const char* name) { return alarm_new_internal(name, false); }
170
alarm_new_periodic(const char * name)171 alarm_t* alarm_new_periodic(const char* name) {
172 return alarm_new_internal(name, true);
173 }
174
alarm_new_internal(const char * name,bool is_periodic)175 static alarm_t* alarm_new_internal(const char* name, bool is_periodic) {
176 // Make sure we have a list we can insert alarms into.
177 if (!alarms && !lazy_initialize()) {
178 CHECK(false); // if initialization failed, we should not continue
179 return NULL;
180 }
181
182 alarm_t* ret = static_cast<alarm_t*>(osi_calloc(sizeof(alarm_t)));
183
184 std::shared_ptr<std::recursive_mutex> ptr(new std::recursive_mutex());
185 ret->callback_mutex = ptr;
186 ret->is_periodic = is_periodic;
187 ret->stats.name = osi_strdup(name);
188
189 ret->for_msg_loop = false;
190 // placement new
191 new (&ret->closure) CancelableClosureInStruct();
192
193 // NOTE: The stats were reset by osi_calloc() above
194
195 return ret;
196 }
197
alarm_free(alarm_t * alarm)198 void alarm_free(alarm_t* alarm) {
199 if (!alarm) return;
200
201 alarm_cancel(alarm);
202
203 osi_free((void*)alarm->stats.name);
204 alarm->closure.~CancelableClosureInStruct();
205 osi_free(alarm);
206 }
207
alarm_get_remaining_ms(const alarm_t * alarm)208 period_ms_t alarm_get_remaining_ms(const alarm_t* alarm) {
209 CHECK(alarm != NULL);
210 period_ms_t remaining_ms = 0;
211 period_ms_t just_now = now();
212
213 std::lock_guard<std::mutex> lock(alarms_mutex);
214 if (alarm->deadline > just_now) remaining_ms = alarm->deadline - just_now;
215
216 return remaining_ms;
217 }
218
alarm_set(alarm_t * alarm,period_ms_t interval_ms,alarm_callback_t cb,void * data)219 void alarm_set(alarm_t* alarm, period_ms_t interval_ms, alarm_callback_t cb,
220 void* data) {
221 alarm_set_internal(alarm, interval_ms, cb, data, default_callback_queue,
222 false);
223 }
224
alarm_set_on_mloop(alarm_t * alarm,period_ms_t interval_ms,alarm_callback_t cb,void * data)225 void alarm_set_on_mloop(alarm_t* alarm, period_ms_t interval_ms,
226 alarm_callback_t cb, void* data) {
227 alarm_set_internal(alarm, interval_ms, cb, data, NULL, true);
228 }
229
230 // Runs in exclusion with alarm_cancel and timer_callback.
alarm_set_internal(alarm_t * alarm,period_ms_t period,alarm_callback_t cb,void * data,fixed_queue_t * queue,bool for_msg_loop)231 static void alarm_set_internal(alarm_t* alarm, period_ms_t period,
232 alarm_callback_t cb, void* data,
233 fixed_queue_t* queue, bool for_msg_loop) {
234 CHECK(alarms != NULL);
235 CHECK(alarm != NULL);
236 CHECK(cb != NULL);
237
238 std::lock_guard<std::mutex> lock(alarms_mutex);
239
240 alarm->creation_time = now();
241 alarm->period = period;
242 alarm->queue = queue;
243 alarm->callback = cb;
244 alarm->data = data;
245 alarm->for_msg_loop = for_msg_loop;
246
247 schedule_next_instance(alarm);
248 alarm->stats.scheduled_count++;
249 }
250
alarm_cancel(alarm_t * alarm)251 void alarm_cancel(alarm_t* alarm) {
252 CHECK(alarms != NULL);
253 if (!alarm) return;
254
255 std::shared_ptr<std::recursive_mutex> local_mutex_ref;
256 {
257 std::lock_guard<std::mutex> lock(alarms_mutex);
258 local_mutex_ref = alarm->callback_mutex;
259 alarm_cancel_internal(alarm);
260 }
261
262 // If the callback for |alarm| is in progress, wait here until it completes.
263 std::lock_guard<std::recursive_mutex> lock(*local_mutex_ref);
264 }
265
266 // Internal implementation of canceling an alarm.
267 // The caller must hold the |alarms_mutex|
alarm_cancel_internal(alarm_t * alarm)268 static void alarm_cancel_internal(alarm_t* alarm) {
269 bool needs_reschedule =
270 (!list_is_empty(alarms) && list_front(alarms) == alarm);
271
272 remove_pending_alarm(alarm);
273
274 alarm->deadline = 0;
275 alarm->prev_deadline = 0;
276 alarm->callback = NULL;
277 alarm->data = NULL;
278 alarm->stats.canceled_count++;
279 alarm->queue = NULL;
280
281 if (needs_reschedule) reschedule_root_alarm();
282 }
283
alarm_is_scheduled(const alarm_t * alarm)284 bool alarm_is_scheduled(const alarm_t* alarm) {
285 if ((alarms == NULL) || (alarm == NULL)) return false;
286 return (alarm->callback != NULL);
287 }
288
alarm_cleanup(void)289 void alarm_cleanup(void) {
290 // If lazy_initialize never ran there is nothing else to do
291 if (!alarms) return;
292
293 dispatcher_thread_active = false;
294 semaphore_post(alarm_expired);
295 thread_free(dispatcher_thread);
296 dispatcher_thread = NULL;
297
298 std::lock_guard<std::mutex> lock(alarms_mutex);
299
300 fixed_queue_free(default_callback_queue, NULL);
301 default_callback_queue = NULL;
302 thread_free(default_callback_thread);
303 default_callback_thread = NULL;
304
305 timer_delete(wakeup_timer);
306 timer_delete(timer);
307 semaphore_free(alarm_expired);
308 alarm_expired = NULL;
309
310 list_free(alarms);
311 alarms = NULL;
312 }
313
lazy_initialize(void)314 static bool lazy_initialize(void) {
315 CHECK(alarms == NULL);
316
317 // timer_t doesn't have an invalid value so we must track whether
318 // the |timer| variable is valid ourselves.
319 bool timer_initialized = false;
320 bool wakeup_timer_initialized = false;
321
322 std::lock_guard<std::mutex> lock(alarms_mutex);
323
324 alarms = list_new(NULL);
325 if (!alarms) {
326 LOG_ERROR(LOG_TAG, "%s unable to allocate alarm list.", __func__);
327 goto error;
328 }
329
330 if (!timer_create_internal(CLOCK_ID, &timer)) goto error;
331 timer_initialized = true;
332
333 if (!timer_create_internal(CLOCK_ID_ALARM, &wakeup_timer)) goto error;
334 wakeup_timer_initialized = true;
335
336 alarm_expired = semaphore_new(0);
337 if (!alarm_expired) {
338 LOG_ERROR(LOG_TAG, "%s unable to create alarm expired semaphore", __func__);
339 goto error;
340 }
341
342 default_callback_thread =
343 thread_new_sized("alarm_default_callbacks", SIZE_MAX);
344 if (default_callback_thread == NULL) {
345 LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks thread.",
346 __func__);
347 goto error;
348 }
349 thread_set_rt_priority(default_callback_thread, THREAD_RT_PRIORITY);
350 default_callback_queue = fixed_queue_new(SIZE_MAX);
351 if (default_callback_queue == NULL) {
352 LOG_ERROR(LOG_TAG, "%s unable to create default alarm callbacks queue.",
353 __func__);
354 goto error;
355 }
356 alarm_register_processing_queue(default_callback_queue,
357 default_callback_thread);
358
359 dispatcher_thread_active = true;
360 dispatcher_thread = thread_new("alarm_dispatcher");
361 if (!dispatcher_thread) {
362 LOG_ERROR(LOG_TAG, "%s unable to create alarm callback thread.", __func__);
363 goto error;
364 }
365 thread_set_rt_priority(dispatcher_thread, THREAD_RT_PRIORITY);
366 thread_post(dispatcher_thread, callback_dispatch, NULL);
367 return true;
368
369 error:
370 fixed_queue_free(default_callback_queue, NULL);
371 default_callback_queue = NULL;
372 thread_free(default_callback_thread);
373 default_callback_thread = NULL;
374
375 thread_free(dispatcher_thread);
376 dispatcher_thread = NULL;
377
378 dispatcher_thread_active = false;
379
380 semaphore_free(alarm_expired);
381 alarm_expired = NULL;
382
383 if (wakeup_timer_initialized) timer_delete(wakeup_timer);
384
385 if (timer_initialized) timer_delete(timer);
386
387 list_free(alarms);
388 alarms = NULL;
389
390 return false;
391 }
392
now(void)393 static period_ms_t now(void) {
394 CHECK(alarms != NULL);
395
396 struct timespec ts;
397 if (clock_gettime(CLOCK_ID, &ts) == -1) {
398 LOG_ERROR(LOG_TAG, "%s unable to get current time: %s", __func__,
399 strerror(errno));
400 return 0;
401 }
402
403 return (ts.tv_sec * 1000LL) + (ts.tv_nsec / 1000000LL);
404 }
405
406 // Remove alarm from internal alarm list and the processing queue
407 // The caller must hold the |alarms_mutex|
remove_pending_alarm(alarm_t * alarm)408 static void remove_pending_alarm(alarm_t* alarm) {
409 list_remove(alarms, alarm);
410
411 if (alarm->for_msg_loop) {
412 alarm->closure.i.Cancel();
413 } else {
414 while (fixed_queue_try_remove_from_queue(alarm->queue, alarm) != NULL) {
415 // Remove all repeated alarm instances from the queue.
416 // NOTE: We are defensive here - we shouldn't have repeated alarm
417 // instances
418 }
419 }
420 }
421
422 // Must be called with |alarms_mutex| held
schedule_next_instance(alarm_t * alarm)423 static void schedule_next_instance(alarm_t* alarm) {
424 // If the alarm is currently set and it's at the start of the list,
425 // we'll need to re-schedule since we've adjusted the earliest deadline.
426 bool needs_reschedule =
427 (!list_is_empty(alarms) && list_front(alarms) == alarm);
428 if (alarm->callback) remove_pending_alarm(alarm);
429
430 // Calculate the next deadline for this alarm
431 period_ms_t just_now = now();
432 period_ms_t ms_into_period = 0;
433 if ((alarm->is_periodic) && (alarm->period != 0))
434 ms_into_period = ((just_now - alarm->creation_time) % alarm->period);
435 alarm->deadline = just_now + (alarm->period - ms_into_period);
436
437 // Add it into the timer list sorted by deadline (earliest deadline first).
438 if (list_is_empty(alarms) ||
439 ((alarm_t*)list_front(alarms))->deadline > alarm->deadline) {
440 list_prepend(alarms, alarm);
441 } else {
442 for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
443 node = list_next(node)) {
444 list_node_t* next = list_next(node);
445 if (next == list_end(alarms) ||
446 ((alarm_t*)list_node(next))->deadline > alarm->deadline) {
447 list_insert_after(alarms, node, alarm);
448 break;
449 }
450 }
451 }
452
453 // If the new alarm has the earliest deadline, we need to re-evaluate our
454 // schedule.
455 if (needs_reschedule ||
456 (!list_is_empty(alarms) && list_front(alarms) == alarm)) {
457 reschedule_root_alarm();
458 }
459 }
460
461 // NOTE: must be called with |alarms_mutex| held
reschedule_root_alarm(void)462 static void reschedule_root_alarm(void) {
463 CHECK(alarms != NULL);
464
465 const bool timer_was_set = timer_set;
466 alarm_t* next;
467 int64_t next_expiration;
468
469 // If used in a zeroed state, disarms the timer.
470 struct itimerspec timer_time;
471 memset(&timer_time, 0, sizeof(timer_time));
472
473 if (list_is_empty(alarms)) goto done;
474
475 next = static_cast<alarm_t*>(list_front(alarms));
476 next_expiration = next->deadline - now();
477 if (next_expiration < TIMER_INTERVAL_FOR_WAKELOCK_IN_MS) {
478 if (!timer_set) {
479 if (!wakelock_acquire()) {
480 LOG_ERROR(LOG_TAG, "%s unable to acquire wake lock", __func__);
481 goto done;
482 }
483 }
484
485 timer_time.it_value.tv_sec = (next->deadline / 1000);
486 timer_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
487
488 // It is entirely unsafe to call timer_settime(2) with a zeroed timerspec
489 // for timers with *_ALARM clock IDs. Although the man page states that the
490 // timer would be canceled, the current behavior (as of Linux kernel 3.17)
491 // is that the callback is issued immediately. The only way to cancel an
492 // *_ALARM timer is to delete the timer. But unfortunately, deleting and
493 // re-creating a timer is rather expensive; every timer_create(2) spawns a
494 // new thread. So we simply set the timer to fire at the largest possible
495 // time.
496 //
497 // If we've reached this code path, we're going to grab a wake lock and
498 // wait for the next timer to fire. In that case, there's no reason to
499 // have a pending wakeup timer so we simply cancel it.
500 struct itimerspec end_of_time;
501 memset(&end_of_time, 0, sizeof(end_of_time));
502 end_of_time.it_value.tv_sec = (time_t)(1LL << (sizeof(time_t) * 8 - 2));
503 timer_settime(wakeup_timer, TIMER_ABSTIME, &end_of_time, NULL);
504 } else {
505 // WARNING: do not attempt to use relative timers with *_ALARM clock IDs
506 // in kernels before 3.17 unless you have the following patch:
507 // https://lkml.org/lkml/2014/7/7/576
508 struct itimerspec wakeup_time;
509 memset(&wakeup_time, 0, sizeof(wakeup_time));
510
511 wakeup_time.it_value.tv_sec = (next->deadline / 1000);
512 wakeup_time.it_value.tv_nsec = (next->deadline % 1000) * 1000000LL;
513 if (timer_settime(wakeup_timer, TIMER_ABSTIME, &wakeup_time, NULL) == -1)
514 LOG_ERROR(LOG_TAG, "%s unable to set wakeup timer: %s", __func__,
515 strerror(errno));
516 }
517
518 done:
519 timer_set =
520 timer_time.it_value.tv_sec != 0 || timer_time.it_value.tv_nsec != 0;
521 if (timer_was_set && !timer_set) {
522 wakelock_release();
523 }
524
525 if (timer_settime(timer, TIMER_ABSTIME, &timer_time, NULL) == -1)
526 LOG_ERROR(LOG_TAG, "%s unable to set timer: %s", __func__, strerror(errno));
527
528 // If next expiration was in the past (e.g. short timer that got context
529 // switched) then the timer might have diarmed itself. Detect this case and
530 // work around it by manually signalling the |alarm_expired| semaphore.
531 //
532 // It is possible that the timer was actually super short (a few
533 // milliseconds) and the timer expired normally before we called
534 // |timer_gettime|. Worst case, |alarm_expired| is signaled twice for that
535 // alarm. Nothing bad should happen in that case though since the callback
536 // dispatch function checks to make sure the timer at the head of the list
537 // actually expired.
538 if (timer_set) {
539 struct itimerspec time_to_expire;
540 timer_gettime(timer, &time_to_expire);
541 if (time_to_expire.it_value.tv_sec == 0 &&
542 time_to_expire.it_value.tv_nsec == 0) {
543 LOG_DEBUG(
544 LOG_TAG,
545 "%s alarm expiration too close for posix timers, switching to guns",
546 __func__);
547 semaphore_post(alarm_expired);
548 }
549 }
550 }
551
alarm_register_processing_queue(fixed_queue_t * queue,thread_t * thread)552 static void alarm_register_processing_queue(fixed_queue_t* queue,
553 thread_t* thread) {
554 CHECK(queue != NULL);
555 CHECK(thread != NULL);
556
557 fixed_queue_register_dequeue(queue, thread_get_reactor(thread),
558 alarm_queue_ready, NULL);
559 }
560
alarm_ready_generic(alarm_t * alarm,std::unique_lock<std::mutex> & lock)561 static void alarm_ready_generic(alarm_t* alarm,
562 std::unique_lock<std::mutex>& lock) {
563 if (alarm == NULL) {
564 return; // The alarm was probably canceled
565 }
566 //
567 // If the alarm is not periodic, we've fully serviced it now, and can reset
568 // some of its internal state. This is useful to distinguish between expired
569 // alarms and active ones.
570 //
571 alarm_callback_t callback = alarm->callback;
572 void* data = alarm->data;
573 period_ms_t deadline = alarm->deadline;
574 if (alarm->is_periodic) {
575 // The periodic alarm has been rescheduled and alarm->deadline has been
576 // updated, hence we need to use the previous deadline.
577 deadline = alarm->prev_deadline;
578 } else {
579 alarm->deadline = 0;
580 alarm->callback = NULL;
581 alarm->data = NULL;
582 alarm->queue = NULL;
583 }
584
585 // Increment the reference count of the mutex so it doesn't get freed
586 // before the callback gets finished executing.
587 std::shared_ptr<std::recursive_mutex> local_mutex_ref = alarm->callback_mutex;
588 std::lock_guard<std::recursive_mutex> cb_lock(*local_mutex_ref);
589 lock.unlock();
590
591 // Update the statistics
592 update_scheduling_stats(&alarm->stats, now(), deadline);
593
594 // NOTE: Do NOT access "alarm" after the callback, as a safety precaution
595 // in case the callback itself deleted the alarm.
596 callback(data);
597 }
598
alarm_ready_mloop(alarm_t * alarm)599 static void alarm_ready_mloop(alarm_t* alarm) {
600 std::unique_lock<std::mutex> lock(alarms_mutex);
601 alarm_ready_generic(alarm, lock);
602 }
603
alarm_queue_ready(fixed_queue_t * queue,UNUSED_ATTR void * context)604 static void alarm_queue_ready(fixed_queue_t* queue, UNUSED_ATTR void* context) {
605 CHECK(queue != NULL);
606
607 std::unique_lock<std::mutex> lock(alarms_mutex);
608 alarm_t* alarm = (alarm_t*)fixed_queue_try_dequeue(queue);
609 alarm_ready_generic(alarm, lock);
610 }
611
612 // Callback function for wake alarms and our posix timer
timer_callback(UNUSED_ATTR void * ptr)613 static void timer_callback(UNUSED_ATTR void* ptr) {
614 semaphore_post(alarm_expired);
615 }
616
617 // Function running on |dispatcher_thread| that performs the following:
618 // (1) Receives a signal using |alarm_exired| that the alarm has expired
619 // (2) Dispatches the alarm callback for processing by the corresponding
620 // thread for that alarm.
callback_dispatch(UNUSED_ATTR void * context)621 static void callback_dispatch(UNUSED_ATTR void* context) {
622 while (true) {
623 semaphore_wait(alarm_expired);
624 if (!dispatcher_thread_active) break;
625
626 std::lock_guard<std::mutex> lock(alarms_mutex);
627 alarm_t* alarm;
628
629 // Take into account that the alarm may get cancelled before we get to it.
630 // We're done here if there are no alarms or the alarm at the front is in
631 // the future. Exit right away since there's nothing left to do.
632 if (list_is_empty(alarms) ||
633 (alarm = static_cast<alarm_t*>(list_front(alarms)))->deadline > now()) {
634 reschedule_root_alarm();
635 continue;
636 }
637
638 list_remove(alarms, alarm);
639
640 if (alarm->is_periodic) {
641 alarm->prev_deadline = alarm->deadline;
642 schedule_next_instance(alarm);
643 alarm->stats.rescheduled_count++;
644 }
645 reschedule_root_alarm();
646
647 // Enqueue the alarm for processing
648 if (alarm->for_msg_loop) {
649 if (!get_message_loop()) {
650 LOG_ERROR(LOG_TAG, "%s: message loop already NULL. Alarm: %s", __func__,
651 alarm->stats.name);
652 continue;
653 }
654
655 alarm->closure.i.Reset(Bind(alarm_ready_mloop, alarm));
656 get_message_loop()->PostTask(FROM_HERE, alarm->closure.i.callback());
657 } else {
658 fixed_queue_enqueue(alarm->queue, alarm);
659 }
660 }
661
662 LOG_DEBUG(LOG_TAG, "%s Callback thread exited", __func__);
663 }
664
timer_create_internal(const clockid_t clock_id,timer_t * timer)665 static bool timer_create_internal(const clockid_t clock_id, timer_t* timer) {
666 CHECK(timer != NULL);
667
668 struct sigevent sigevent;
669 // create timer with RT priority thread
670 pthread_attr_t thread_attr;
671 pthread_attr_init(&thread_attr);
672 pthread_attr_setschedpolicy(&thread_attr, SCHED_FIFO);
673 struct sched_param param;
674 param.sched_priority = THREAD_RT_PRIORITY;
675 pthread_attr_setschedparam(&thread_attr, ¶m);
676
677 memset(&sigevent, 0, sizeof(sigevent));
678 sigevent.sigev_notify = SIGEV_THREAD;
679 sigevent.sigev_notify_function = (void (*)(union sigval))timer_callback;
680 sigevent.sigev_notify_attributes = &thread_attr;
681 if (timer_create(clock_id, &sigevent, timer) == -1) {
682 LOG_ERROR(LOG_TAG, "%s unable to create timer with clock %d: %s", __func__,
683 clock_id, strerror(errno));
684 if (clock_id == CLOCK_BOOTTIME_ALARM) {
685 LOG_ERROR(LOG_TAG,
686 "The kernel might not have support for "
687 "timer_create(CLOCK_BOOTTIME_ALARM): "
688 "https://lwn.net/Articles/429925/");
689 LOG_ERROR(LOG_TAG,
690 "See following patches: "
691 "https://git.kernel.org/cgit/linux/kernel/git/torvalds/"
692 "linux.git/log/?qt=grep&q=CLOCK_BOOTTIME_ALARM");
693 }
694 return false;
695 }
696
697 return true;
698 }
699
update_scheduling_stats(alarm_stats_t * stats,period_ms_t now_ms,period_ms_t deadline_ms)700 static void update_scheduling_stats(alarm_stats_t* stats, period_ms_t now_ms,
701 period_ms_t deadline_ms) {
702 stats->total_updates++;
703 stats->last_update_ms = now_ms;
704
705 if (deadline_ms < now_ms) {
706 // Overdue scheduling
707 period_ms_t delta_ms = now_ms - deadline_ms;
708 update_stat(&stats->overdue_scheduling, delta_ms);
709 } else if (deadline_ms > now_ms) {
710 // Premature scheduling
711 period_ms_t delta_ms = deadline_ms - now_ms;
712 update_stat(&stats->premature_scheduling, delta_ms);
713 }
714 }
715
dump_stat(int fd,stat_t * stat,const char * description)716 static void dump_stat(int fd, stat_t* stat, const char* description) {
717 period_ms_t average_time_ms = 0;
718 if (stat->count != 0) average_time_ms = stat->total_ms / stat->count;
719
720 dprintf(fd, "%-51s: %llu / %llu / %llu\n", description,
721 (unsigned long long)stat->total_ms, (unsigned long long)stat->max_ms,
722 (unsigned long long)average_time_ms);
723 }
724
alarm_debug_dump(int fd)725 void alarm_debug_dump(int fd) {
726 dprintf(fd, "\nBluetooth Alarms Statistics:\n");
727
728 std::lock_guard<std::mutex> lock(alarms_mutex);
729
730 if (alarms == NULL) {
731 dprintf(fd, " None\n");
732 return;
733 }
734
735 period_ms_t just_now = now();
736
737 dprintf(fd, " Total Alarms: %zu\n\n", list_length(alarms));
738
739 // Dump info for each alarm
740 for (list_node_t* node = list_begin(alarms); node != list_end(alarms);
741 node = list_next(node)) {
742 alarm_t* alarm = (alarm_t*)list_node(node);
743 alarm_stats_t* stats = &alarm->stats;
744
745 dprintf(fd, " Alarm : %s (%s)\n", stats->name,
746 (alarm->is_periodic) ? "PERIODIC" : "SINGLE");
747
748 dprintf(fd, "%-51s: %zu / %zu / %zu / %zu\n",
749 " Action counts (sched/resched/exec/cancel)",
750 stats->scheduled_count, stats->rescheduled_count,
751 stats->total_updates, stats->canceled_count);
752
753 dprintf(fd, "%-51s: %zu / %zu\n",
754 " Deviation counts (overdue/premature)",
755 stats->overdue_scheduling.count, stats->premature_scheduling.count);
756
757 dprintf(fd, "%-51s: %llu / %llu / %lld\n",
758 " Time in ms (since creation/interval/remaining)",
759 (unsigned long long)(just_now - alarm->creation_time),
760 (unsigned long long)alarm->period,
761 (long long)(alarm->deadline - just_now));
762
763 dump_stat(fd, &stats->overdue_scheduling,
764 " Overdue scheduling time in ms (total/max/avg)");
765
766 dump_stat(fd, &stats->premature_scheduling,
767 " Premature scheduling time in ms (total/max/avg)");
768
769 dprintf(fd, "\n");
770 }
771 }
772