1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_writer.h"
18
19 #include <sys/stat.h>
20 #include <lz4.h>
21 #include <lz4hc.h>
22
23 #include <memory>
24 #include <numeric>
25 #include <unordered_set>
26 #include <vector>
27
28 #include "art_field-inl.h"
29 #include "art_method-inl.h"
30 #include "base/callee_save_type.h"
31 #include "base/enums.h"
32 #include "base/logging.h"
33 #include "base/unix_file/fd_file.h"
34 #include "class_linker-inl.h"
35 #include "compiled_method.h"
36 #include "dex_file-inl.h"
37 #include "dex_file_types.h"
38 #include "driver/compiler_driver.h"
39 #include "elf_file.h"
40 #include "elf_utils.h"
41 #include "elf_writer.h"
42 #include "gc/accounting/card_table-inl.h"
43 #include "gc/accounting/heap_bitmap.h"
44 #include "gc/accounting/space_bitmap-inl.h"
45 #include "gc/collector/concurrent_copying.h"
46 #include "gc/heap.h"
47 #include "gc/heap-visit-objects-inl.h"
48 #include "gc/space/large_object_space.h"
49 #include "gc/space/space-inl.h"
50 #include "gc/verification.h"
51 #include "globals.h"
52 #include "handle_scope-inl.h"
53 #include "image.h"
54 #include "imt_conflict_table.h"
55 #include "jni_internal.h"
56 #include "linear_alloc.h"
57 #include "lock_word.h"
58 #include "mirror/array-inl.h"
59 #include "mirror/class-inl.h"
60 #include "mirror/class_ext.h"
61 #include "mirror/class_loader.h"
62 #include "mirror/dex_cache.h"
63 #include "mirror/dex_cache-inl.h"
64 #include "mirror/executable.h"
65 #include "mirror/method.h"
66 #include "mirror/object-inl.h"
67 #include "mirror/object-refvisitor-inl.h"
68 #include "mirror/object_array-inl.h"
69 #include "mirror/string-inl.h"
70 #include "oat.h"
71 #include "oat_file.h"
72 #include "oat_file_manager.h"
73 #include "runtime.h"
74 #include "scoped_thread_state_change-inl.h"
75 #include "utils/dex_cache_arrays_layout-inl.h"
76
77 using ::art::mirror::Class;
78 using ::art::mirror::DexCache;
79 using ::art::mirror::Object;
80 using ::art::mirror::ObjectArray;
81 using ::art::mirror::String;
82
83 namespace art {
84
85 // Separate objects into multiple bins to optimize dirty memory use.
86 static constexpr bool kBinObjects = true;
87
88 // Return true if an object is already in an image space.
IsInBootImage(const void * obj) const89 bool ImageWriter::IsInBootImage(const void* obj) const {
90 gc::Heap* const heap = Runtime::Current()->GetHeap();
91 if (!compile_app_image_) {
92 DCHECK(heap->GetBootImageSpaces().empty());
93 return false;
94 }
95 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
96 const uint8_t* image_begin = boot_image_space->Begin();
97 // Real image end including ArtMethods and ArtField sections.
98 const uint8_t* image_end = image_begin + boot_image_space->GetImageHeader().GetImageSize();
99 if (image_begin <= obj && obj < image_end) {
100 return true;
101 }
102 }
103 return false;
104 }
105
IsInBootOatFile(const void * ptr) const106 bool ImageWriter::IsInBootOatFile(const void* ptr) const {
107 gc::Heap* const heap = Runtime::Current()->GetHeap();
108 if (!compile_app_image_) {
109 DCHECK(heap->GetBootImageSpaces().empty());
110 return false;
111 }
112 for (gc::space::ImageSpace* boot_image_space : heap->GetBootImageSpaces()) {
113 const ImageHeader& image_header = boot_image_space->GetImageHeader();
114 if (image_header.GetOatFileBegin() <= ptr && ptr < image_header.GetOatFileEnd()) {
115 return true;
116 }
117 }
118 return false;
119 }
120
ClearDexFileCookies()121 static void ClearDexFileCookies() REQUIRES_SHARED(Locks::mutator_lock_) {
122 auto visitor = [](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
123 DCHECK(obj != nullptr);
124 Class* klass = obj->GetClass();
125 if (klass == WellKnownClasses::ToClass(WellKnownClasses::dalvik_system_DexFile)) {
126 ArtField* field = jni::DecodeArtField(WellKnownClasses::dalvik_system_DexFile_cookie);
127 // Null out the cookie to enable determinism. b/34090128
128 field->SetObject</*kTransactionActive*/false>(obj, nullptr);
129 }
130 };
131 Runtime::Current()->GetHeap()->VisitObjects(visitor);
132 }
133
PrepareImageAddressSpace()134 bool ImageWriter::PrepareImageAddressSpace() {
135 target_ptr_size_ = InstructionSetPointerSize(compiler_driver_.GetInstructionSet());
136 gc::Heap* const heap = Runtime::Current()->GetHeap();
137 {
138 ScopedObjectAccess soa(Thread::Current());
139 PruneNonImageClasses(); // Remove junk
140 if (compile_app_image_) {
141 // Clear dex file cookies for app images to enable app image determinism. This is required
142 // since the cookie field contains long pointers to DexFiles which are not deterministic.
143 // b/34090128
144 ClearDexFileCookies();
145 } else {
146 // Avoid for app image since this may increase RAM and image size.
147 ComputeLazyFieldsForImageClasses(); // Add useful information
148 }
149 }
150 heap->CollectGarbage(false); // Remove garbage.
151
152 if (kIsDebugBuild) {
153 ScopedObjectAccess soa(Thread::Current());
154 CheckNonImageClassesRemoved();
155 }
156
157 {
158 ScopedObjectAccess soa(Thread::Current());
159 CalculateNewObjectOffsets();
160 }
161
162 // This needs to happen after CalculateNewObjectOffsets since it relies on intern_table_bytes_ and
163 // bin size sums being calculated.
164 if (!AllocMemory()) {
165 return false;
166 }
167
168 return true;
169 }
170
Write(int image_fd,const std::vector<const char * > & image_filenames,const std::vector<const char * > & oat_filenames)171 bool ImageWriter::Write(int image_fd,
172 const std::vector<const char*>& image_filenames,
173 const std::vector<const char*>& oat_filenames) {
174 // If image_fd or oat_fd are not kInvalidFd then we may have empty strings in image_filenames or
175 // oat_filenames.
176 CHECK(!image_filenames.empty());
177 if (image_fd != kInvalidFd) {
178 CHECK_EQ(image_filenames.size(), 1u);
179 }
180 CHECK(!oat_filenames.empty());
181 CHECK_EQ(image_filenames.size(), oat_filenames.size());
182
183 {
184 ScopedObjectAccess soa(Thread::Current());
185 for (size_t i = 0; i < oat_filenames.size(); ++i) {
186 CreateHeader(i);
187 CopyAndFixupNativeData(i);
188 }
189 }
190
191 {
192 // TODO: heap validation can't handle these fix up passes.
193 ScopedObjectAccess soa(Thread::Current());
194 Runtime::Current()->GetHeap()->DisableObjectValidation();
195 CopyAndFixupObjects();
196 }
197
198 for (size_t i = 0; i < image_filenames.size(); ++i) {
199 const char* image_filename = image_filenames[i];
200 ImageInfo& image_info = GetImageInfo(i);
201 std::unique_ptr<File> image_file;
202 if (image_fd != kInvalidFd) {
203 if (strlen(image_filename) == 0u) {
204 image_file.reset(new File(image_fd, unix_file::kCheckSafeUsage));
205 // Empty the file in case it already exists.
206 if (image_file != nullptr) {
207 TEMP_FAILURE_RETRY(image_file->SetLength(0));
208 TEMP_FAILURE_RETRY(image_file->Flush());
209 }
210 } else {
211 LOG(ERROR) << "image fd " << image_fd << " name " << image_filename;
212 }
213 } else {
214 image_file.reset(OS::CreateEmptyFile(image_filename));
215 }
216
217 if (image_file == nullptr) {
218 LOG(ERROR) << "Failed to open image file " << image_filename;
219 return false;
220 }
221
222 if (!compile_app_image_ && fchmod(image_file->Fd(), 0644) != 0) {
223 PLOG(ERROR) << "Failed to make image file world readable: " << image_filename;
224 image_file->Erase();
225 return EXIT_FAILURE;
226 }
227
228 std::unique_ptr<char[]> compressed_data;
229 // Image data size excludes the bitmap and the header.
230 ImageHeader* const image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
231 const size_t image_data_size = image_header->GetImageSize() - sizeof(ImageHeader);
232 char* image_data = reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader);
233 size_t data_size;
234 const char* image_data_to_write;
235 const uint64_t compress_start_time = NanoTime();
236
237 CHECK_EQ(image_header->storage_mode_, image_storage_mode_);
238 switch (image_storage_mode_) {
239 case ImageHeader::kStorageModeLZ4HC: // Fall-through.
240 case ImageHeader::kStorageModeLZ4: {
241 const size_t compressed_max_size = LZ4_compressBound(image_data_size);
242 compressed_data.reset(new char[compressed_max_size]);
243 data_size = LZ4_compress_default(
244 reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
245 &compressed_data[0],
246 image_data_size,
247 compressed_max_size);
248
249 break;
250 }
251 /*
252 * Disabled due to image_test64 flakyness. Both use same decompression. b/27560444
253 case ImageHeader::kStorageModeLZ4HC: {
254 // Bound is same as non HC.
255 const size_t compressed_max_size = LZ4_compressBound(image_data_size);
256 compressed_data.reset(new char[compressed_max_size]);
257 data_size = LZ4_compressHC(
258 reinterpret_cast<char*>(image_info.image_->Begin()) + sizeof(ImageHeader),
259 &compressed_data[0],
260 image_data_size);
261 break;
262 }
263 */
264 case ImageHeader::kStorageModeUncompressed: {
265 data_size = image_data_size;
266 image_data_to_write = image_data;
267 break;
268 }
269 default: {
270 LOG(FATAL) << "Unsupported";
271 UNREACHABLE();
272 }
273 }
274
275 if (compressed_data != nullptr) {
276 image_data_to_write = &compressed_data[0];
277 VLOG(compiler) << "Compressed from " << image_data_size << " to " << data_size << " in "
278 << PrettyDuration(NanoTime() - compress_start_time);
279 if (kIsDebugBuild) {
280 std::unique_ptr<uint8_t[]> temp(new uint8_t[image_data_size]);
281 const size_t decompressed_size = LZ4_decompress_safe(
282 reinterpret_cast<char*>(&compressed_data[0]),
283 reinterpret_cast<char*>(&temp[0]),
284 data_size,
285 image_data_size);
286 CHECK_EQ(decompressed_size, image_data_size);
287 CHECK_EQ(memcmp(image_data, &temp[0], image_data_size), 0) << image_storage_mode_;
288 }
289 }
290
291 // Write out the image + fields + methods.
292 const bool is_compressed = compressed_data != nullptr;
293 if (!image_file->PwriteFully(image_data_to_write, data_size, sizeof(ImageHeader))) {
294 PLOG(ERROR) << "Failed to write image file data " << image_filename;
295 image_file->Erase();
296 return false;
297 }
298
299 // Write out the image bitmap at the page aligned start of the image end, also uncompressed for
300 // convenience.
301 const ImageSection& bitmap_section = image_header->GetImageSection(
302 ImageHeader::kSectionImageBitmap);
303 // Align up since data size may be unaligned if the image is compressed.
304 size_t bitmap_position_in_file = RoundUp(sizeof(ImageHeader) + data_size, kPageSize);
305 if (!is_compressed) {
306 CHECK_EQ(bitmap_position_in_file, bitmap_section.Offset());
307 }
308 if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_bitmap_->Begin()),
309 bitmap_section.Size(),
310 bitmap_position_in_file)) {
311 PLOG(ERROR) << "Failed to write image file " << image_filename;
312 image_file->Erase();
313 return false;
314 }
315
316 int err = image_file->Flush();
317 if (err < 0) {
318 PLOG(ERROR) << "Failed to flush image file " << image_filename << " with result " << err;
319 image_file->Erase();
320 return false;
321 }
322
323 // Write header last in case the compiler gets killed in the middle of image writing.
324 // We do not want to have a corrupted image with a valid header.
325 // The header is uncompressed since it contains whether the image is compressed or not.
326 image_header->data_size_ = data_size;
327 if (!image_file->PwriteFully(reinterpret_cast<char*>(image_info.image_->Begin()),
328 sizeof(ImageHeader),
329 0)) {
330 PLOG(ERROR) << "Failed to write image file header " << image_filename;
331 image_file->Erase();
332 return false;
333 }
334
335 CHECK_EQ(bitmap_position_in_file + bitmap_section.Size(),
336 static_cast<size_t>(image_file->GetLength()));
337 if (image_file->FlushCloseOrErase() != 0) {
338 PLOG(ERROR) << "Failed to flush and close image file " << image_filename;
339 return false;
340 }
341 }
342 return true;
343 }
344
SetImageOffset(mirror::Object * object,size_t offset)345 void ImageWriter::SetImageOffset(mirror::Object* object, size_t offset) {
346 DCHECK(object != nullptr);
347 DCHECK_NE(offset, 0U);
348
349 // The object is already deflated from when we set the bin slot. Just overwrite the lock word.
350 object->SetLockWord(LockWord::FromForwardingAddress(offset), false);
351 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
352 DCHECK(IsImageOffsetAssigned(object));
353 }
354
UpdateImageOffset(mirror::Object * obj,uintptr_t offset)355 void ImageWriter::UpdateImageOffset(mirror::Object* obj, uintptr_t offset) {
356 DCHECK(IsImageOffsetAssigned(obj)) << obj << " " << offset;
357 obj->SetLockWord(LockWord::FromForwardingAddress(offset), false);
358 DCHECK_EQ(obj->GetLockWord(false).ReadBarrierState(), 0u);
359 }
360
AssignImageOffset(mirror::Object * object,ImageWriter::BinSlot bin_slot)361 void ImageWriter::AssignImageOffset(mirror::Object* object, ImageWriter::BinSlot bin_slot) {
362 DCHECK(object != nullptr);
363 DCHECK_NE(image_objects_offset_begin_, 0u);
364
365 size_t oat_index = GetOatIndex(object);
366 ImageInfo& image_info = GetImageInfo(oat_index);
367 size_t bin_slot_offset = image_info.bin_slot_offsets_[bin_slot.GetBin()];
368 size_t new_offset = bin_slot_offset + bin_slot.GetIndex();
369 DCHECK_ALIGNED(new_offset, kObjectAlignment);
370
371 SetImageOffset(object, new_offset);
372 DCHECK_LT(new_offset, image_info.image_end_);
373 }
374
IsImageOffsetAssigned(mirror::Object * object) const375 bool ImageWriter::IsImageOffsetAssigned(mirror::Object* object) const {
376 // Will also return true if the bin slot was assigned since we are reusing the lock word.
377 DCHECK(object != nullptr);
378 return object->GetLockWord(false).GetState() == LockWord::kForwardingAddress;
379 }
380
GetImageOffset(mirror::Object * object) const381 size_t ImageWriter::GetImageOffset(mirror::Object* object) const {
382 DCHECK(object != nullptr);
383 DCHECK(IsImageOffsetAssigned(object));
384 LockWord lock_word = object->GetLockWord(false);
385 size_t offset = lock_word.ForwardingAddress();
386 size_t oat_index = GetOatIndex(object);
387 const ImageInfo& image_info = GetImageInfo(oat_index);
388 DCHECK_LT(offset, image_info.image_end_);
389 return offset;
390 }
391
SetImageBinSlot(mirror::Object * object,BinSlot bin_slot)392 void ImageWriter::SetImageBinSlot(mirror::Object* object, BinSlot bin_slot) {
393 DCHECK(object != nullptr);
394 DCHECK(!IsImageOffsetAssigned(object));
395 DCHECK(!IsImageBinSlotAssigned(object));
396
397 // Before we stomp over the lock word, save the hash code for later.
398 LockWord lw(object->GetLockWord(false));
399 switch (lw.GetState()) {
400 case LockWord::kFatLocked:
401 FALLTHROUGH_INTENDED;
402 case LockWord::kThinLocked: {
403 std::ostringstream oss;
404 bool thin = (lw.GetState() == LockWord::kThinLocked);
405 oss << (thin ? "Thin" : "Fat")
406 << " locked object " << object << "(" << object->PrettyTypeOf()
407 << ") found during object copy";
408 if (thin) {
409 oss << ". Lock owner:" << lw.ThinLockOwner();
410 }
411 LOG(FATAL) << oss.str();
412 break;
413 }
414 case LockWord::kUnlocked:
415 // No hash, don't need to save it.
416 break;
417 case LockWord::kHashCode:
418 DCHECK(saved_hashcode_map_.find(object) == saved_hashcode_map_.end());
419 saved_hashcode_map_.emplace(object, lw.GetHashCode());
420 break;
421 default:
422 LOG(FATAL) << "Unreachable.";
423 UNREACHABLE();
424 }
425 object->SetLockWord(LockWord::FromForwardingAddress(bin_slot.Uint32Value()), false);
426 DCHECK_EQ(object->GetLockWord(false).ReadBarrierState(), 0u);
427 DCHECK(IsImageBinSlotAssigned(object));
428 }
429
PrepareDexCacheArraySlots()430 void ImageWriter::PrepareDexCacheArraySlots() {
431 // Prepare dex cache array starts based on the ordering specified in the CompilerDriver.
432 // Set the slot size early to avoid DCHECK() failures in IsImageBinSlotAssigned()
433 // when AssignImageBinSlot() assigns their indexes out or order.
434 for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
435 auto it = dex_file_oat_index_map_.find(dex_file);
436 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
437 ImageInfo& image_info = GetImageInfo(it->second);
438 image_info.dex_cache_array_starts_.Put(dex_file, image_info.bin_slot_sizes_[kBinDexCacheArray]);
439 DexCacheArraysLayout layout(target_ptr_size_, dex_file);
440 image_info.bin_slot_sizes_[kBinDexCacheArray] += layout.Size();
441 }
442
443 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
444 Thread* const self = Thread::Current();
445 ReaderMutexLock mu(self, *Locks::dex_lock_);
446 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
447 ObjPtr<mirror::DexCache> dex_cache =
448 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
449 if (dex_cache == nullptr || IsInBootImage(dex_cache.Ptr())) {
450 continue;
451 }
452 const DexFile* dex_file = dex_cache->GetDexFile();
453 CHECK(dex_file_oat_index_map_.find(dex_file) != dex_file_oat_index_map_.end())
454 << "Dex cache should have been pruned " << dex_file->GetLocation()
455 << "; possibly in class path";
456 DexCacheArraysLayout layout(target_ptr_size_, dex_file);
457 DCHECK(layout.Valid());
458 size_t oat_index = GetOatIndexForDexCache(dex_cache);
459 ImageInfo& image_info = GetImageInfo(oat_index);
460 uint32_t start = image_info.dex_cache_array_starts_.Get(dex_file);
461 DCHECK_EQ(dex_file->NumTypeIds() != 0u, dex_cache->GetResolvedTypes() != nullptr);
462 AddDexCacheArrayRelocation(dex_cache->GetResolvedTypes(),
463 start + layout.TypesOffset(),
464 dex_cache);
465 DCHECK_EQ(dex_file->NumMethodIds() != 0u, dex_cache->GetResolvedMethods() != nullptr);
466 AddDexCacheArrayRelocation(dex_cache->GetResolvedMethods(),
467 start + layout.MethodsOffset(),
468 dex_cache);
469 DCHECK_EQ(dex_file->NumFieldIds() != 0u, dex_cache->GetResolvedFields() != nullptr);
470 AddDexCacheArrayRelocation(dex_cache->GetResolvedFields(),
471 start + layout.FieldsOffset(),
472 dex_cache);
473 DCHECK_EQ(dex_file->NumStringIds() != 0u, dex_cache->GetStrings() != nullptr);
474 AddDexCacheArrayRelocation(dex_cache->GetStrings(), start + layout.StringsOffset(), dex_cache);
475
476 if (dex_cache->GetResolvedMethodTypes() != nullptr) {
477 AddDexCacheArrayRelocation(dex_cache->GetResolvedMethodTypes(),
478 start + layout.MethodTypesOffset(),
479 dex_cache);
480 }
481 if (dex_cache->GetResolvedCallSites() != nullptr) {
482 AddDexCacheArrayRelocation(dex_cache->GetResolvedCallSites(),
483 start + layout.CallSitesOffset(),
484 dex_cache);
485 }
486 }
487 }
488
AddDexCacheArrayRelocation(void * array,size_t offset,ObjPtr<mirror::DexCache> dex_cache)489 void ImageWriter::AddDexCacheArrayRelocation(void* array,
490 size_t offset,
491 ObjPtr<mirror::DexCache> dex_cache) {
492 if (array != nullptr) {
493 DCHECK(!IsInBootImage(array));
494 size_t oat_index = GetOatIndexForDexCache(dex_cache);
495 native_object_relocations_.emplace(array,
496 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeDexCacheArray });
497 }
498 }
499
AddMethodPointerArray(mirror::PointerArray * arr)500 void ImageWriter::AddMethodPointerArray(mirror::PointerArray* arr) {
501 DCHECK(arr != nullptr);
502 if (kIsDebugBuild) {
503 for (size_t i = 0, len = arr->GetLength(); i < len; i++) {
504 ArtMethod* method = arr->GetElementPtrSize<ArtMethod*>(i, target_ptr_size_);
505 if (method != nullptr && !method->IsRuntimeMethod()) {
506 mirror::Class* klass = method->GetDeclaringClass();
507 CHECK(klass == nullptr || KeepClass(klass))
508 << Class::PrettyClass(klass) << " should be a kept class";
509 }
510 }
511 }
512 // kBinArtMethodClean picked arbitrarily, just required to differentiate between ArtFields and
513 // ArtMethods.
514 pointer_arrays_.emplace(arr, kBinArtMethodClean);
515 }
516
AssignImageBinSlot(mirror::Object * object,size_t oat_index)517 void ImageWriter::AssignImageBinSlot(mirror::Object* object, size_t oat_index) {
518 DCHECK(object != nullptr);
519 size_t object_size = object->SizeOf();
520
521 // The magic happens here. We segregate objects into different bins based
522 // on how likely they are to get dirty at runtime.
523 //
524 // Likely-to-dirty objects get packed together into the same bin so that
525 // at runtime their page dirtiness ratio (how many dirty objects a page has) is
526 // maximized.
527 //
528 // This means more pages will stay either clean or shared dirty (with zygote) and
529 // the app will use less of its own (private) memory.
530 Bin bin = kBinRegular;
531 size_t current_offset = 0u;
532
533 if (kBinObjects) {
534 //
535 // Changing the bin of an object is purely a memory-use tuning.
536 // It has no change on runtime correctness.
537 //
538 // Memory analysis has determined that the following types of objects get dirtied
539 // the most:
540 //
541 // * Dex cache arrays are stored in a special bin. The arrays for each dex cache have
542 // a fixed layout which helps improve generated code (using PC-relative addressing),
543 // so we pre-calculate their offsets separately in PrepareDexCacheArraySlots().
544 // Since these arrays are huge, most pages do not overlap other objects and it's not
545 // really important where they are for the clean/dirty separation. Due to their
546 // special PC-relative addressing, we arbitrarily keep them at the end.
547 // * Class'es which are verified [their clinit runs only at runtime]
548 // - classes in general [because their static fields get overwritten]
549 // - initialized classes with all-final statics are unlikely to be ever dirty,
550 // so bin them separately
551 // * Art Methods that are:
552 // - native [their native entry point is not looked up until runtime]
553 // - have declaring classes that aren't initialized
554 // [their interpreter/quick entry points are trampolines until the class
555 // becomes initialized]
556 //
557 // We also assume the following objects get dirtied either never or extremely rarely:
558 // * Strings (they are immutable)
559 // * Art methods that aren't native and have initialized declared classes
560 //
561 // We assume that "regular" bin objects are highly unlikely to become dirtied,
562 // so packing them together will not result in a noticeably tighter dirty-to-clean ratio.
563 //
564 if (object->IsClass()) {
565 bin = kBinClassVerified;
566 mirror::Class* klass = object->AsClass();
567
568 // Add non-embedded vtable to the pointer array table if there is one.
569 auto* vtable = klass->GetVTable();
570 if (vtable != nullptr) {
571 AddMethodPointerArray(vtable);
572 }
573 auto* iftable = klass->GetIfTable();
574 if (iftable != nullptr) {
575 for (int32_t i = 0; i < klass->GetIfTableCount(); ++i) {
576 if (iftable->GetMethodArrayCount(i) > 0) {
577 AddMethodPointerArray(iftable->GetMethodArray(i));
578 }
579 }
580 }
581
582 // Move known dirty objects into their own sections. This includes:
583 // - classes with dirty static fields.
584 if (dirty_image_objects_ != nullptr &&
585 dirty_image_objects_->find(klass->PrettyDescriptor()) != dirty_image_objects_->end()) {
586 bin = kBinKnownDirty;
587 } else if (klass->GetStatus() == Class::kStatusInitialized) {
588 bin = kBinClassInitialized;
589
590 // If the class's static fields are all final, put it into a separate bin
591 // since it's very likely it will stay clean.
592 uint32_t num_static_fields = klass->NumStaticFields();
593 if (num_static_fields == 0) {
594 bin = kBinClassInitializedFinalStatics;
595 } else {
596 // Maybe all the statics are final?
597 bool all_final = true;
598 for (uint32_t i = 0; i < num_static_fields; ++i) {
599 ArtField* field = klass->GetStaticField(i);
600 if (!field->IsFinal()) {
601 all_final = false;
602 break;
603 }
604 }
605
606 if (all_final) {
607 bin = kBinClassInitializedFinalStatics;
608 }
609 }
610 }
611 } else if (object->GetClass<kVerifyNone>()->IsStringClass()) {
612 bin = kBinString; // Strings are almost always immutable (except for object header).
613 } else if (object->GetClass<kVerifyNone>() ==
614 Runtime::Current()->GetClassLinker()->GetClassRoot(ClassLinker::kJavaLangObject)) {
615 // Instance of java lang object, probably a lock object. This means it will be dirty when we
616 // synchronize on it.
617 bin = kBinMiscDirty;
618 } else if (object->IsDexCache()) {
619 // Dex file field becomes dirty when the image is loaded.
620 bin = kBinMiscDirty;
621 }
622 // else bin = kBinRegular
623 }
624
625 // Assign the oat index too.
626 DCHECK(oat_index_map_.find(object) == oat_index_map_.end());
627 oat_index_map_.emplace(object, oat_index);
628
629 ImageInfo& image_info = GetImageInfo(oat_index);
630
631 size_t offset_delta = RoundUp(object_size, kObjectAlignment); // 64-bit alignment
632 current_offset = image_info.bin_slot_sizes_[bin]; // How many bytes the current bin is at (aligned).
633 // Move the current bin size up to accommodate the object we just assigned a bin slot.
634 image_info.bin_slot_sizes_[bin] += offset_delta;
635
636 BinSlot new_bin_slot(bin, current_offset);
637 SetImageBinSlot(object, new_bin_slot);
638
639 ++image_info.bin_slot_count_[bin];
640
641 // Grow the image closer to the end by the object we just assigned.
642 image_info.image_end_ += offset_delta;
643 }
644
WillMethodBeDirty(ArtMethod * m) const645 bool ImageWriter::WillMethodBeDirty(ArtMethod* m) const {
646 if (m->IsNative()) {
647 return true;
648 }
649 mirror::Class* declaring_class = m->GetDeclaringClass();
650 // Initialized is highly unlikely to dirty since there's no entry points to mutate.
651 return declaring_class == nullptr || declaring_class->GetStatus() != Class::kStatusInitialized;
652 }
653
IsImageBinSlotAssigned(mirror::Object * object) const654 bool ImageWriter::IsImageBinSlotAssigned(mirror::Object* object) const {
655 DCHECK(object != nullptr);
656
657 // We always stash the bin slot into a lockword, in the 'forwarding address' state.
658 // If it's in some other state, then we haven't yet assigned an image bin slot.
659 if (object->GetLockWord(false).GetState() != LockWord::kForwardingAddress) {
660 return false;
661 } else if (kIsDebugBuild) {
662 LockWord lock_word = object->GetLockWord(false);
663 size_t offset = lock_word.ForwardingAddress();
664 BinSlot bin_slot(offset);
665 size_t oat_index = GetOatIndex(object);
666 const ImageInfo& image_info = GetImageInfo(oat_index);
667 DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()])
668 << "bin slot offset should not exceed the size of that bin";
669 }
670 return true;
671 }
672
GetImageBinSlot(mirror::Object * object) const673 ImageWriter::BinSlot ImageWriter::GetImageBinSlot(mirror::Object* object) const {
674 DCHECK(object != nullptr);
675 DCHECK(IsImageBinSlotAssigned(object));
676
677 LockWord lock_word = object->GetLockWord(false);
678 size_t offset = lock_word.ForwardingAddress(); // TODO: ForwardingAddress should be uint32_t
679 DCHECK_LE(offset, std::numeric_limits<uint32_t>::max());
680
681 BinSlot bin_slot(static_cast<uint32_t>(offset));
682 size_t oat_index = GetOatIndex(object);
683 const ImageInfo& image_info = GetImageInfo(oat_index);
684 DCHECK_LT(bin_slot.GetIndex(), image_info.bin_slot_sizes_[bin_slot.GetBin()]);
685
686 return bin_slot;
687 }
688
AllocMemory()689 bool ImageWriter::AllocMemory() {
690 for (ImageInfo& image_info : image_infos_) {
691 ImageSection unused_sections[ImageHeader::kSectionCount];
692 const size_t length = RoundUp(
693 image_info.CreateImageSections(unused_sections), kPageSize);
694
695 std::string error_msg;
696 image_info.image_.reset(MemMap::MapAnonymous("image writer image",
697 nullptr,
698 length,
699 PROT_READ | PROT_WRITE,
700 false,
701 false,
702 &error_msg));
703 if (UNLIKELY(image_info.image_.get() == nullptr)) {
704 LOG(ERROR) << "Failed to allocate memory for image file generation: " << error_msg;
705 return false;
706 }
707
708 // Create the image bitmap, only needs to cover mirror object section which is up to image_end_.
709 CHECK_LE(image_info.image_end_, length);
710 image_info.image_bitmap_.reset(gc::accounting::ContinuousSpaceBitmap::Create(
711 "image bitmap", image_info.image_->Begin(), RoundUp(image_info.image_end_, kPageSize)));
712 if (image_info.image_bitmap_.get() == nullptr) {
713 LOG(ERROR) << "Failed to allocate memory for image bitmap";
714 return false;
715 }
716 }
717 return true;
718 }
719
720 class ImageWriter::ComputeLazyFieldsForClassesVisitor : public ClassVisitor {
721 public:
operator ()(ObjPtr<Class> c)722 bool operator()(ObjPtr<Class> c) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
723 StackHandleScope<1> hs(Thread::Current());
724 mirror::Class::ComputeName(hs.NewHandle(c));
725 return true;
726 }
727 };
728
ComputeLazyFieldsForImageClasses()729 void ImageWriter::ComputeLazyFieldsForImageClasses() {
730 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
731 ComputeLazyFieldsForClassesVisitor visitor;
732 class_linker->VisitClassesWithoutClassesLock(&visitor);
733 }
734
IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)735 static bool IsBootClassLoaderClass(ObjPtr<mirror::Class> klass)
736 REQUIRES_SHARED(Locks::mutator_lock_) {
737 return klass->GetClassLoader() == nullptr;
738 }
739
IsBootClassLoaderNonImageClass(mirror::Class * klass)740 bool ImageWriter::IsBootClassLoaderNonImageClass(mirror::Class* klass) {
741 return IsBootClassLoaderClass(klass) && !IsInBootImage(klass);
742 }
743
744 // This visitor follows the references of an instance, recursively then prune this class
745 // if a type of any field is pruned.
746 class ImageWriter::PruneObjectReferenceVisitor {
747 public:
PruneObjectReferenceVisitor(ImageWriter * image_writer,bool * early_exit,std::unordered_set<mirror::Object * > * visited,bool * result)748 PruneObjectReferenceVisitor(ImageWriter* image_writer,
749 bool* early_exit,
750 std::unordered_set<mirror::Object*>* visited,
751 bool* result)
752 : image_writer_(image_writer), early_exit_(early_exit), visited_(visited), result_(result) {}
753
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const754 ALWAYS_INLINE void VisitRootIfNonNull(
755 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
756 REQUIRES_SHARED(Locks::mutator_lock_) { }
757
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const758 ALWAYS_INLINE void VisitRoot(
759 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const
760 REQUIRES_SHARED(Locks::mutator_lock_) { }
761
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const762 ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
763 MemberOffset offset,
764 bool is_static ATTRIBUTE_UNUSED) const
765 REQUIRES_SHARED(Locks::mutator_lock_) {
766 mirror::Object* ref =
767 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
768 if (ref == nullptr || visited_->find(ref) != visited_->end()) {
769 return;
770 }
771
772 ObjPtr<mirror::Class> klass = ref->IsClass() ? ref->AsClass() : ref->GetClass();
773 if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
774 // Prune all classes using reflection because the content they held will not be fixup.
775 *result_ = true;
776 }
777
778 // Record the object visited in case of circular reference.
779 visited_->emplace(ref);
780 if (ref->IsClass()) {
781 *result_ = *result_ ||
782 image_writer_->PruneAppImageClassInternal(ref->AsClass(), early_exit_, visited_);
783 } else {
784 *result_ = *result_ ||
785 image_writer_->PruneAppImageClassInternal(klass, early_exit_, visited_);
786 ref->VisitReferences(*this, *this);
787 }
788 // Clean up before exit for next call of this function.
789 visited_->erase(ref);
790 }
791
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const792 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
793 ObjPtr<mirror::Reference> ref) const
794 REQUIRES_SHARED(Locks::mutator_lock_) {
795 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
796 }
797
GetResult() const798 ALWAYS_INLINE bool GetResult() const {
799 return result_;
800 }
801
802 private:
803 ImageWriter* image_writer_;
804 bool* early_exit_;
805 std::unordered_set<mirror::Object*>* visited_;
806 bool* const result_;
807 };
808
809
PruneAppImageClass(ObjPtr<mirror::Class> klass)810 bool ImageWriter::PruneAppImageClass(ObjPtr<mirror::Class> klass) {
811 bool early_exit = false;
812 std::unordered_set<mirror::Object*> visited;
813 return PruneAppImageClassInternal(klass, &early_exit, &visited);
814 }
815
PruneAppImageClassInternal(ObjPtr<mirror::Class> klass,bool * early_exit,std::unordered_set<mirror::Object * > * visited)816 bool ImageWriter::PruneAppImageClassInternal(
817 ObjPtr<mirror::Class> klass,
818 bool* early_exit,
819 std::unordered_set<mirror::Object*>* visited) {
820 DCHECK(early_exit != nullptr);
821 DCHECK(visited != nullptr);
822 DCHECK(compile_app_image_);
823 if (klass == nullptr || IsInBootImage(klass.Ptr())) {
824 return false;
825 }
826 auto found = prune_class_memo_.find(klass.Ptr());
827 if (found != prune_class_memo_.end()) {
828 // Already computed, return the found value.
829 return found->second;
830 }
831 // Circular dependencies, return false but do not store the result in the memoization table.
832 if (visited->find(klass.Ptr()) != visited->end()) {
833 *early_exit = true;
834 return false;
835 }
836 visited->emplace(klass.Ptr());
837 bool result = IsBootClassLoaderClass(klass);
838 std::string temp;
839 // Prune if not an image class, this handles any broken sets of image classes such as having a
840 // class in the set but not it's superclass.
841 result = result || !compiler_driver_.IsImageClass(klass->GetDescriptor(&temp));
842 bool my_early_exit = false; // Only for ourselves, ignore caller.
843 // Remove classes that failed to verify since we don't want to have java.lang.VerifyError in the
844 // app image.
845 if (klass->IsErroneous()) {
846 result = true;
847 } else {
848 ObjPtr<mirror::ClassExt> ext(klass->GetExtData());
849 CHECK(ext.IsNull() || ext->GetVerifyError() == nullptr) << klass->PrettyClass();
850 }
851 if (!result) {
852 // Check interfaces since these wont be visited through VisitReferences.)
853 mirror::IfTable* if_table = klass->GetIfTable();
854 for (size_t i = 0, num_interfaces = klass->GetIfTableCount(); i < num_interfaces; ++i) {
855 result = result || PruneAppImageClassInternal(if_table->GetInterface(i),
856 &my_early_exit,
857 visited);
858 }
859 }
860 if (klass->IsObjectArrayClass()) {
861 result = result || PruneAppImageClassInternal(klass->GetComponentType(),
862 &my_early_exit,
863 visited);
864 }
865 // Check static fields and their classes.
866 if (klass->IsResolved() && klass->NumReferenceStaticFields() != 0) {
867 size_t num_static_fields = klass->NumReferenceStaticFields();
868 // Presumably GC can happen when we are cross compiling, it should not cause performance
869 // problems to do pointer size logic.
870 MemberOffset field_offset = klass->GetFirstReferenceStaticFieldOffset(
871 Runtime::Current()->GetClassLinker()->GetImagePointerSize());
872 for (size_t i = 0u; i < num_static_fields; ++i) {
873 mirror::Object* ref = klass->GetFieldObject<mirror::Object>(field_offset);
874 if (ref != nullptr) {
875 if (ref->IsClass()) {
876 result = result || PruneAppImageClassInternal(ref->AsClass(),
877 &my_early_exit,
878 visited);
879 } else {
880 mirror::Class* type = ref->GetClass();
881 result = result || PruneAppImageClassInternal(type,
882 &my_early_exit,
883 visited);
884 if (!result) {
885 // For non-class case, also go through all the types mentioned by it's fields'
886 // references recursively to decide whether to keep this class.
887 bool tmp = false;
888 PruneObjectReferenceVisitor visitor(this, &my_early_exit, visited, &tmp);
889 ref->VisitReferences(visitor, visitor);
890 result = result || tmp;
891 }
892 }
893 }
894 field_offset = MemberOffset(field_offset.Uint32Value() +
895 sizeof(mirror::HeapReference<mirror::Object>));
896 }
897 }
898 result = result || PruneAppImageClassInternal(klass->GetSuperClass(),
899 &my_early_exit,
900 visited);
901 // Remove the class if the dex file is not in the set of dex files. This happens for classes that
902 // are from uses-library if there is no profile. b/30688277
903 mirror::DexCache* dex_cache = klass->GetDexCache();
904 if (dex_cache != nullptr) {
905 result = result ||
906 dex_file_oat_index_map_.find(dex_cache->GetDexFile()) == dex_file_oat_index_map_.end();
907 }
908 // Erase the element we stored earlier since we are exiting the function.
909 auto it = visited->find(klass.Ptr());
910 DCHECK(it != visited->end());
911 visited->erase(it);
912 // Only store result if it is true or none of the calls early exited due to circular
913 // dependencies. If visited is empty then we are the root caller, in this case the cycle was in
914 // a child call and we can remember the result.
915 if (result == true || !my_early_exit || visited->empty()) {
916 prune_class_memo_[klass.Ptr()] = result;
917 }
918 *early_exit |= my_early_exit;
919 return result;
920 }
921
KeepClass(ObjPtr<mirror::Class> klass)922 bool ImageWriter::KeepClass(ObjPtr<mirror::Class> klass) {
923 if (klass == nullptr) {
924 return false;
925 }
926 if (compile_app_image_ && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(klass)) {
927 // Already in boot image, return true.
928 return true;
929 }
930 std::string temp;
931 if (!compiler_driver_.IsImageClass(klass->GetDescriptor(&temp))) {
932 return false;
933 }
934 if (compile_app_image_) {
935 // For app images, we need to prune boot loader classes that are not in the boot image since
936 // these may have already been loaded when the app image is loaded.
937 // Keep classes in the boot image space since we don't want to re-resolve these.
938 return !PruneAppImageClass(klass);
939 }
940 return true;
941 }
942
943 class ImageWriter::PruneClassesVisitor : public ClassVisitor {
944 public:
PruneClassesVisitor(ImageWriter * image_writer,ObjPtr<mirror::ClassLoader> class_loader)945 PruneClassesVisitor(ImageWriter* image_writer, ObjPtr<mirror::ClassLoader> class_loader)
946 : image_writer_(image_writer),
947 class_loader_(class_loader),
948 classes_to_prune_(),
949 defined_class_count_(0u) { }
950
operator ()(ObjPtr<mirror::Class> klass)951 bool operator()(ObjPtr<mirror::Class> klass) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
952 if (!image_writer_->KeepClass(klass.Ptr())) {
953 classes_to_prune_.insert(klass.Ptr());
954 if (klass->GetClassLoader() == class_loader_) {
955 ++defined_class_count_;
956 }
957 }
958 return true;
959 }
960
Prune()961 size_t Prune() REQUIRES_SHARED(Locks::mutator_lock_) {
962 ClassTable* class_table =
963 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader_);
964 for (mirror::Class* klass : classes_to_prune_) {
965 std::string storage;
966 const char* descriptor = klass->GetDescriptor(&storage);
967 bool result = class_table->Remove(descriptor);
968 DCHECK(result);
969 DCHECK(!class_table->Remove(descriptor)) << descriptor;
970 }
971 return defined_class_count_;
972 }
973
974 private:
975 ImageWriter* const image_writer_;
976 const ObjPtr<mirror::ClassLoader> class_loader_;
977 std::unordered_set<mirror::Class*> classes_to_prune_;
978 size_t defined_class_count_;
979 };
980
981 class ImageWriter::PruneClassLoaderClassesVisitor : public ClassLoaderVisitor {
982 public:
PruneClassLoaderClassesVisitor(ImageWriter * image_writer)983 explicit PruneClassLoaderClassesVisitor(ImageWriter* image_writer)
984 : image_writer_(image_writer), removed_class_count_(0) {}
985
Visit(ObjPtr<mirror::ClassLoader> class_loader)986 virtual void Visit(ObjPtr<mirror::ClassLoader> class_loader) OVERRIDE
987 REQUIRES_SHARED(Locks::mutator_lock_) {
988 PruneClassesVisitor classes_visitor(image_writer_, class_loader);
989 ClassTable* class_table =
990 Runtime::Current()->GetClassLinker()->ClassTableForClassLoader(class_loader);
991 class_table->Visit(classes_visitor);
992 removed_class_count_ += classes_visitor.Prune();
993
994 // Record app image class loader. The fake boot class loader should not get registered
995 // and we should end up with only one class loader for an app and none for boot image.
996 if (class_loader != nullptr && class_table != nullptr) {
997 DCHECK(class_loader_ == nullptr);
998 class_loader_ = class_loader;
999 }
1000 }
1001
GetRemovedClassCount() const1002 size_t GetRemovedClassCount() const {
1003 return removed_class_count_;
1004 }
1005
GetClassLoader() const1006 ObjPtr<mirror::ClassLoader> GetClassLoader() const REQUIRES_SHARED(Locks::mutator_lock_) {
1007 return class_loader_;
1008 }
1009
1010 private:
1011 ImageWriter* const image_writer_;
1012 size_t removed_class_count_;
1013 ObjPtr<mirror::ClassLoader> class_loader_;
1014 };
1015
VisitClassLoaders(ClassLoaderVisitor * visitor)1016 void ImageWriter::VisitClassLoaders(ClassLoaderVisitor* visitor) {
1017 WriterMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
1018 visitor->Visit(nullptr); // Visit boot class loader.
1019 Runtime::Current()->GetClassLinker()->VisitClassLoaders(visitor);
1020 }
1021
PruneAndPreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,ObjPtr<mirror::ClassLoader> class_loader)1022 void ImageWriter::PruneAndPreloadDexCache(ObjPtr<mirror::DexCache> dex_cache,
1023 ObjPtr<mirror::ClassLoader> class_loader) {
1024 // To ensure deterministic contents of the hash-based arrays, each slot shall contain
1025 // the candidate with the lowest index. As we're processing entries in increasing index
1026 // order, this means trying to look up the entry for the current index if the slot is
1027 // empty or if it contains a higher index.
1028
1029 Runtime* runtime = Runtime::Current();
1030 ClassLinker* class_linker = runtime->GetClassLinker();
1031 const DexFile& dex_file = *dex_cache->GetDexFile();
1032 // Prune methods.
1033 mirror::MethodDexCacheType* resolved_methods = dex_cache->GetResolvedMethods();
1034 dex::TypeIndex last_class_idx; // Initialized to invalid index.
1035 ObjPtr<mirror::Class> last_class = nullptr;
1036 for (size_t i = 0, num = dex_cache->GetDexFile()->NumMethodIds(); i != num; ++i) {
1037 uint32_t slot_idx = dex_cache->MethodSlotIndex(i);
1038 auto pair =
1039 mirror::DexCache::GetNativePairPtrSize(resolved_methods, slot_idx, target_ptr_size_);
1040 uint32_t stored_index = pair.index;
1041 ArtMethod* method = pair.object;
1042 if (method != nullptr && i > stored_index) {
1043 continue; // Already checked.
1044 }
1045 // Check if the referenced class is in the image. Note that we want to check the referenced
1046 // class rather than the declaring class to preserve the semantics, i.e. using a MethodId
1047 // results in resolving the referenced class and that can for example throw OOME.
1048 const DexFile::MethodId& method_id = dex_file.GetMethodId(i);
1049 if (method_id.class_idx_ != last_class_idx) {
1050 last_class_idx = method_id.class_idx_;
1051 last_class = class_linker->LookupResolvedType(
1052 dex_file, last_class_idx, dex_cache, class_loader);
1053 if (last_class != nullptr && !KeepClass(last_class)) {
1054 last_class = nullptr;
1055 }
1056 }
1057 if (method == nullptr || i < stored_index) {
1058 if (last_class != nullptr) {
1059 const char* name = dex_file.StringDataByIdx(method_id.name_idx_);
1060 Signature signature = dex_file.GetMethodSignature(method_id);
1061 if (last_class->IsInterface()) {
1062 method = last_class->FindInterfaceMethod(name, signature, target_ptr_size_);
1063 } else {
1064 method = last_class->FindClassMethod(name, signature, target_ptr_size_);
1065 }
1066 if (method != nullptr) {
1067 // If the referenced class is in the image, the defining class must also be there.
1068 DCHECK(KeepClass(method->GetDeclaringClass()));
1069 dex_cache->SetResolvedMethod(i, method, target_ptr_size_);
1070 }
1071 }
1072 } else {
1073 DCHECK_EQ(i, stored_index);
1074 if (last_class == nullptr) {
1075 dex_cache->ClearResolvedMethod(stored_index, target_ptr_size_);
1076 }
1077 }
1078 }
1079 // Prune fields and make the contents of the field array deterministic.
1080 mirror::FieldDexCacheType* resolved_fields = dex_cache->GetResolvedFields();
1081 last_class_idx = dex::TypeIndex(); // Initialized to invalid index.
1082 last_class = nullptr;
1083 for (size_t i = 0, end = dex_file.NumFieldIds(); i < end; ++i) {
1084 uint32_t slot_idx = dex_cache->FieldSlotIndex(i);
1085 auto pair = mirror::DexCache::GetNativePairPtrSize(resolved_fields, slot_idx, target_ptr_size_);
1086 uint32_t stored_index = pair.index;
1087 ArtField* field = pair.object;
1088 if (field != nullptr && i > stored_index) {
1089 continue; // Already checked.
1090 }
1091 // Check if the referenced class is in the image. Note that we want to check the referenced
1092 // class rather than the declaring class to preserve the semantics, i.e. using a FieldId
1093 // results in resolving the referenced class and that can for example throw OOME.
1094 const DexFile::FieldId& field_id = dex_file.GetFieldId(i);
1095 if (field_id.class_idx_ != last_class_idx) {
1096 last_class_idx = field_id.class_idx_;
1097 last_class = class_linker->LookupResolvedType(
1098 dex_file, last_class_idx, dex_cache, class_loader);
1099 if (last_class != nullptr && !KeepClass(last_class)) {
1100 last_class = nullptr;
1101 }
1102 }
1103 if (field == nullptr || i < stored_index) {
1104 if (last_class != nullptr) {
1105 const char* name = dex_file.StringDataByIdx(field_id.name_idx_);
1106 const char* type = dex_file.StringByTypeIdx(field_id.type_idx_);
1107 field = mirror::Class::FindField(Thread::Current(), last_class, name, type);
1108 if (field != nullptr) {
1109 // If the referenced class is in the image, the defining class must also be there.
1110 DCHECK(KeepClass(field->GetDeclaringClass()));
1111 dex_cache->SetResolvedField(i, field, target_ptr_size_);
1112 }
1113 }
1114 } else {
1115 DCHECK_EQ(i, stored_index);
1116 if (last_class == nullptr) {
1117 dex_cache->ClearResolvedField(stored_index, target_ptr_size_);
1118 }
1119 }
1120 }
1121 // Prune types and make the contents of the type array deterministic.
1122 // This is done after fields and methods as their lookup can touch the types array.
1123 for (size_t i = 0, end = dex_cache->GetDexFile()->NumTypeIds(); i < end; ++i) {
1124 dex::TypeIndex type_idx(i);
1125 uint32_t slot_idx = dex_cache->TypeSlotIndex(type_idx);
1126 mirror::TypeDexCachePair pair =
1127 dex_cache->GetResolvedTypes()[slot_idx].load(std::memory_order_relaxed);
1128 uint32_t stored_index = pair.index;
1129 ObjPtr<mirror::Class> klass = pair.object.Read();
1130 if (klass == nullptr || i < stored_index) {
1131 klass = class_linker->LookupResolvedType(dex_file, type_idx, dex_cache, class_loader);
1132 if (klass != nullptr) {
1133 DCHECK_EQ(dex_cache->GetResolvedType(type_idx), klass);
1134 stored_index = i; // For correct clearing below if not keeping the `klass`.
1135 }
1136 } else if (i == stored_index && !KeepClass(klass)) {
1137 dex_cache->ClearResolvedType(dex::TypeIndex(stored_index));
1138 }
1139 }
1140 // Strings do not need pruning, but the contents of the string array must be deterministic.
1141 for (size_t i = 0, end = dex_cache->GetDexFile()->NumStringIds(); i < end; ++i) {
1142 dex::StringIndex string_idx(i);
1143 uint32_t slot_idx = dex_cache->StringSlotIndex(string_idx);
1144 mirror::StringDexCachePair pair =
1145 dex_cache->GetStrings()[slot_idx].load(std::memory_order_relaxed);
1146 uint32_t stored_index = pair.index;
1147 ObjPtr<mirror::String> string = pair.object.Read();
1148 if (string == nullptr || i < stored_index) {
1149 string = class_linker->LookupString(dex_file, string_idx, dex_cache);
1150 DCHECK(string == nullptr || dex_cache->GetResolvedString(string_idx) == string);
1151 }
1152 }
1153 }
1154
PruneNonImageClasses()1155 void ImageWriter::PruneNonImageClasses() {
1156 Runtime* runtime = Runtime::Current();
1157 ClassLinker* class_linker = runtime->GetClassLinker();
1158 Thread* self = Thread::Current();
1159 ScopedAssertNoThreadSuspension sa(__FUNCTION__);
1160
1161 // Prune uses-library dex caches. Only prune the uses-library dex caches since we want to make
1162 // sure the other ones don't get unloaded before the OatWriter runs.
1163 class_linker->VisitClassTables(
1164 [&](ClassTable* table) REQUIRES_SHARED(Locks::mutator_lock_) {
1165 table->RemoveStrongRoots(
1166 [&](GcRoot<mirror::Object> root) REQUIRES_SHARED(Locks::mutator_lock_) {
1167 ObjPtr<mirror::Object> obj = root.Read();
1168 if (obj->IsDexCache()) {
1169 // Return true if the dex file is not one of the ones in the map.
1170 return dex_file_oat_index_map_.find(obj->AsDexCache()->GetDexFile()) ==
1171 dex_file_oat_index_map_.end();
1172 }
1173 // Return false to avoid removing.
1174 return false;
1175 });
1176 });
1177
1178 // Remove the undesired classes from the class roots.
1179 ObjPtr<mirror::ClassLoader> class_loader;
1180 {
1181 PruneClassLoaderClassesVisitor class_loader_visitor(this);
1182 VisitClassLoaders(&class_loader_visitor);
1183 VLOG(compiler) << "Pruned " << class_loader_visitor.GetRemovedClassCount() << " classes";
1184 class_loader = class_loader_visitor.GetClassLoader();
1185 DCHECK_EQ(class_loader != nullptr, compile_app_image_);
1186 }
1187
1188 // Clear references to removed classes from the DexCaches.
1189 std::vector<ObjPtr<mirror::DexCache>> dex_caches;
1190 {
1191 ReaderMutexLock mu2(self, *Locks::dex_lock_);
1192 dex_caches.reserve(class_linker->GetDexCachesData().size());
1193 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1194 if (self->IsJWeakCleared(data.weak_root)) {
1195 continue;
1196 }
1197 dex_caches.push_back(self->DecodeJObject(data.weak_root)->AsDexCache());
1198 }
1199 }
1200 for (ObjPtr<mirror::DexCache> dex_cache : dex_caches) {
1201 PruneAndPreloadDexCache(dex_cache, class_loader);
1202 }
1203
1204 // Drop the array class cache in the ClassLinker, as these are roots holding those classes live.
1205 class_linker->DropFindArrayClassCache();
1206
1207 // Clear to save RAM.
1208 prune_class_memo_.clear();
1209 }
1210
CheckNonImageClassesRemoved()1211 void ImageWriter::CheckNonImageClassesRemoved() {
1212 if (compiler_driver_.GetImageClasses() != nullptr) {
1213 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1214 if (obj->IsClass() && !IsInBootImage(obj)) {
1215 Class* klass = obj->AsClass();
1216 if (!KeepClass(klass)) {
1217 DumpImageClasses();
1218 std::string temp;
1219 CHECK(KeepClass(klass))
1220 << Runtime::Current()->GetHeap()->GetVerification()->FirstPathFromRootSet(klass);
1221 }
1222 }
1223 };
1224 gc::Heap* heap = Runtime::Current()->GetHeap();
1225 heap->VisitObjects(visitor);
1226 }
1227 }
1228
DumpImageClasses()1229 void ImageWriter::DumpImageClasses() {
1230 auto image_classes = compiler_driver_.GetImageClasses();
1231 CHECK(image_classes != nullptr);
1232 for (const std::string& image_class : *image_classes) {
1233 LOG(INFO) << " " << image_class;
1234 }
1235 }
1236
FindInternedString(mirror::String * string)1237 mirror::String* ImageWriter::FindInternedString(mirror::String* string) {
1238 Thread* const self = Thread::Current();
1239 for (const ImageInfo& image_info : image_infos_) {
1240 ObjPtr<mirror::String> const found = image_info.intern_table_->LookupStrong(self, string);
1241 DCHECK(image_info.intern_table_->LookupWeak(self, string) == nullptr)
1242 << string->ToModifiedUtf8();
1243 if (found != nullptr) {
1244 return found.Ptr();
1245 }
1246 }
1247 if (compile_app_image_) {
1248 Runtime* const runtime = Runtime::Current();
1249 ObjPtr<mirror::String> found = runtime->GetInternTable()->LookupStrong(self, string);
1250 // If we found it in the runtime intern table it could either be in the boot image or interned
1251 // during app image compilation. If it was in the boot image return that, otherwise return null
1252 // since it belongs to another image space.
1253 if (found != nullptr && runtime->GetHeap()->ObjectIsInBootImageSpace(found.Ptr())) {
1254 return found.Ptr();
1255 }
1256 DCHECK(runtime->GetInternTable()->LookupWeak(self, string) == nullptr)
1257 << string->ToModifiedUtf8();
1258 }
1259 return nullptr;
1260 }
1261
1262
CreateImageRoots(size_t oat_index) const1263 ObjectArray<Object>* ImageWriter::CreateImageRoots(size_t oat_index) const {
1264 Runtime* runtime = Runtime::Current();
1265 ClassLinker* class_linker = runtime->GetClassLinker();
1266 Thread* self = Thread::Current();
1267 StackHandleScope<3> hs(self);
1268 Handle<Class> object_array_class(hs.NewHandle(
1269 class_linker->FindSystemClass(self, "[Ljava/lang/Object;")));
1270
1271 std::unordered_set<const DexFile*> image_dex_files;
1272 for (auto& pair : dex_file_oat_index_map_) {
1273 const DexFile* image_dex_file = pair.first;
1274 size_t image_oat_index = pair.second;
1275 if (oat_index == image_oat_index) {
1276 image_dex_files.insert(image_dex_file);
1277 }
1278 }
1279
1280 // build an Object[] of all the DexCaches used in the source_space_.
1281 // Since we can't hold the dex lock when allocating the dex_caches
1282 // ObjectArray, we lock the dex lock twice, first to get the number
1283 // of dex caches first and then lock it again to copy the dex
1284 // caches. We check that the number of dex caches does not change.
1285 size_t dex_cache_count = 0;
1286 {
1287 ReaderMutexLock mu(self, *Locks::dex_lock_);
1288 // Count number of dex caches not in the boot image.
1289 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1290 ObjPtr<mirror::DexCache> dex_cache =
1291 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1292 if (dex_cache == nullptr) {
1293 continue;
1294 }
1295 const DexFile* dex_file = dex_cache->GetDexFile();
1296 if (!IsInBootImage(dex_cache.Ptr())) {
1297 dex_cache_count += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1298 }
1299 }
1300 }
1301 Handle<ObjectArray<Object>> dex_caches(
1302 hs.NewHandle(ObjectArray<Object>::Alloc(self, object_array_class.Get(), dex_cache_count)));
1303 CHECK(dex_caches != nullptr) << "Failed to allocate a dex cache array.";
1304 {
1305 ReaderMutexLock mu(self, *Locks::dex_lock_);
1306 size_t non_image_dex_caches = 0;
1307 // Re-count number of non image dex caches.
1308 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1309 ObjPtr<mirror::DexCache> dex_cache =
1310 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1311 if (dex_cache == nullptr) {
1312 continue;
1313 }
1314 const DexFile* dex_file = dex_cache->GetDexFile();
1315 if (!IsInBootImage(dex_cache.Ptr())) {
1316 non_image_dex_caches += image_dex_files.find(dex_file) != image_dex_files.end() ? 1u : 0u;
1317 }
1318 }
1319 CHECK_EQ(dex_cache_count, non_image_dex_caches)
1320 << "The number of non-image dex caches changed.";
1321 size_t i = 0;
1322 for (const ClassLinker::DexCacheData& data : class_linker->GetDexCachesData()) {
1323 ObjPtr<mirror::DexCache> dex_cache =
1324 ObjPtr<mirror::DexCache>::DownCast(self->DecodeJObject(data.weak_root));
1325 if (dex_cache == nullptr) {
1326 continue;
1327 }
1328 const DexFile* dex_file = dex_cache->GetDexFile();
1329 if (!IsInBootImage(dex_cache.Ptr()) &&
1330 image_dex_files.find(dex_file) != image_dex_files.end()) {
1331 dex_caches->Set<false>(i, dex_cache.Ptr());
1332 ++i;
1333 }
1334 }
1335 }
1336
1337 // build an Object[] of the roots needed to restore the runtime
1338 int32_t image_roots_size = ImageHeader::NumberOfImageRoots(compile_app_image_);
1339 auto image_roots(hs.NewHandle(
1340 ObjectArray<Object>::Alloc(self, object_array_class.Get(), image_roots_size)));
1341 image_roots->Set<false>(ImageHeader::kDexCaches, dex_caches.Get());
1342 image_roots->Set<false>(ImageHeader::kClassRoots, class_linker->GetClassRoots());
1343 // image_roots[ImageHeader::kClassLoader] will be set later for app image.
1344 static_assert(ImageHeader::kClassLoader + 1u == ImageHeader::kImageRootsMax,
1345 "Class loader should be the last image root.");
1346 for (int32_t i = 0; i < ImageHeader::kImageRootsMax - 1; ++i) {
1347 CHECK(image_roots->Get(i) != nullptr);
1348 }
1349 return image_roots.Get();
1350 }
1351
TryAssignBinSlot(WorkStack & work_stack,mirror::Object * obj,size_t oat_index)1352 mirror::Object* ImageWriter::TryAssignBinSlot(WorkStack& work_stack,
1353 mirror::Object* obj,
1354 size_t oat_index) {
1355 if (obj == nullptr || IsInBootImage(obj)) {
1356 // Object is null or already in the image, there is no work to do.
1357 return obj;
1358 }
1359 if (!IsImageBinSlotAssigned(obj)) {
1360 // We want to intern all strings but also assign offsets for the source string. Since the
1361 // pruning phase has already happened, if we intern a string to one in the image we still
1362 // end up copying an unreachable string.
1363 if (obj->IsString()) {
1364 // Need to check if the string is already interned in another image info so that we don't have
1365 // the intern tables of two different images contain the same string.
1366 mirror::String* interned = FindInternedString(obj->AsString());
1367 if (interned == nullptr) {
1368 // Not in another image space, insert to our table.
1369 interned =
1370 GetImageInfo(oat_index).intern_table_->InternStrongImageString(obj->AsString()).Ptr();
1371 DCHECK_EQ(interned, obj);
1372 }
1373 } else if (obj->IsDexCache()) {
1374 oat_index = GetOatIndexForDexCache(obj->AsDexCache());
1375 } else if (obj->IsClass()) {
1376 // Visit and assign offsets for fields and field arrays.
1377 mirror::Class* as_klass = obj->AsClass();
1378 mirror::DexCache* dex_cache = as_klass->GetDexCache();
1379 DCHECK(!as_klass->IsErroneous()) << as_klass->GetStatus();
1380 if (compile_app_image_) {
1381 // Extra sanity, no boot loader classes should be left!
1382 CHECK(!IsBootClassLoaderClass(as_klass)) << as_klass->PrettyClass();
1383 }
1384 LengthPrefixedArray<ArtField>* fields[] = {
1385 as_klass->GetSFieldsPtr(), as_klass->GetIFieldsPtr(),
1386 };
1387 // Overwrite the oat index value since the class' dex cache is more accurate of where it
1388 // belongs.
1389 oat_index = GetOatIndexForDexCache(dex_cache);
1390 ImageInfo& image_info = GetImageInfo(oat_index);
1391 if (!compile_app_image_) {
1392 // Note: Avoid locking to prevent lock order violations from root visiting;
1393 // image_info.class_table_ is only accessed from the image writer.
1394 image_info.class_table_->InsertWithoutLocks(as_klass);
1395 }
1396 for (LengthPrefixedArray<ArtField>* cur_fields : fields) {
1397 // Total array length including header.
1398 if (cur_fields != nullptr) {
1399 const size_t header_size = LengthPrefixedArray<ArtField>::ComputeSize(0);
1400 // Forward the entire array at once.
1401 auto it = native_object_relocations_.find(cur_fields);
1402 CHECK(it == native_object_relocations_.end()) << "Field array " << cur_fields
1403 << " already forwarded";
1404 size_t& offset = image_info.bin_slot_sizes_[kBinArtField];
1405 DCHECK(!IsInBootImage(cur_fields));
1406 native_object_relocations_.emplace(
1407 cur_fields,
1408 NativeObjectRelocation {
1409 oat_index, offset, kNativeObjectRelocationTypeArtFieldArray
1410 });
1411 offset += header_size;
1412 // Forward individual fields so that we can quickly find where they belong.
1413 for (size_t i = 0, count = cur_fields->size(); i < count; ++i) {
1414 // Need to forward arrays separate of fields.
1415 ArtField* field = &cur_fields->At(i);
1416 auto it2 = native_object_relocations_.find(field);
1417 CHECK(it2 == native_object_relocations_.end()) << "Field at index=" << i
1418 << " already assigned " << field->PrettyField() << " static=" << field->IsStatic();
1419 DCHECK(!IsInBootImage(field));
1420 native_object_relocations_.emplace(
1421 field,
1422 NativeObjectRelocation { oat_index, offset, kNativeObjectRelocationTypeArtField });
1423 offset += sizeof(ArtField);
1424 }
1425 }
1426 }
1427 // Visit and assign offsets for methods.
1428 size_t num_methods = as_klass->NumMethods();
1429 if (num_methods != 0) {
1430 bool any_dirty = false;
1431 for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1432 if (WillMethodBeDirty(&m)) {
1433 any_dirty = true;
1434 break;
1435 }
1436 }
1437 NativeObjectRelocationType type = any_dirty
1438 ? kNativeObjectRelocationTypeArtMethodDirty
1439 : kNativeObjectRelocationTypeArtMethodClean;
1440 Bin bin_type = BinTypeForNativeRelocationType(type);
1441 // Forward the entire array at once, but header first.
1442 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1443 const size_t method_size = ArtMethod::Size(target_ptr_size_);
1444 const size_t header_size = LengthPrefixedArray<ArtMethod>::ComputeSize(0,
1445 method_size,
1446 method_alignment);
1447 LengthPrefixedArray<ArtMethod>* array = as_klass->GetMethodsPtr();
1448 auto it = native_object_relocations_.find(array);
1449 CHECK(it == native_object_relocations_.end())
1450 << "Method array " << array << " already forwarded";
1451 size_t& offset = image_info.bin_slot_sizes_[bin_type];
1452 DCHECK(!IsInBootImage(array));
1453 native_object_relocations_.emplace(array,
1454 NativeObjectRelocation {
1455 oat_index,
1456 offset,
1457 any_dirty ? kNativeObjectRelocationTypeArtMethodArrayDirty
1458 : kNativeObjectRelocationTypeArtMethodArrayClean });
1459 offset += header_size;
1460 for (auto& m : as_klass->GetMethods(target_ptr_size_)) {
1461 AssignMethodOffset(&m, type, oat_index);
1462 }
1463 (any_dirty ? dirty_methods_ : clean_methods_) += num_methods;
1464 }
1465 // Assign offsets for all runtime methods in the IMT since these may hold conflict tables
1466 // live.
1467 if (as_klass->ShouldHaveImt()) {
1468 ImTable* imt = as_klass->GetImt(target_ptr_size_);
1469 if (TryAssignImTableOffset(imt, oat_index)) {
1470 // Since imt's can be shared only do this the first time to not double count imt method
1471 // fixups.
1472 for (size_t i = 0; i < ImTable::kSize; ++i) {
1473 ArtMethod* imt_method = imt->Get(i, target_ptr_size_);
1474 DCHECK(imt_method != nullptr);
1475 if (imt_method->IsRuntimeMethod() &&
1476 !IsInBootImage(imt_method) &&
1477 !NativeRelocationAssigned(imt_method)) {
1478 AssignMethodOffset(imt_method, kNativeObjectRelocationTypeRuntimeMethod, oat_index);
1479 }
1480 }
1481 }
1482 }
1483 } else if (obj->IsClassLoader()) {
1484 // Register the class loader if it has a class table.
1485 // The fake boot class loader should not get registered and we should end up with only one
1486 // class loader.
1487 mirror::ClassLoader* class_loader = obj->AsClassLoader();
1488 if (class_loader->GetClassTable() != nullptr) {
1489 DCHECK(compile_app_image_);
1490 DCHECK(class_loaders_.empty());
1491 class_loaders_.insert(class_loader);
1492 ImageInfo& image_info = GetImageInfo(oat_index);
1493 // Note: Avoid locking to prevent lock order violations from root visiting;
1494 // image_info.class_table_ table is only accessed from the image writer
1495 // and class_loader->GetClassTable() is iterated but not modified.
1496 image_info.class_table_->CopyWithoutLocks(*class_loader->GetClassTable());
1497 }
1498 }
1499 AssignImageBinSlot(obj, oat_index);
1500 work_stack.emplace(obj, oat_index);
1501 }
1502 if (obj->IsString()) {
1503 // Always return the interned string if there exists one.
1504 mirror::String* interned = FindInternedString(obj->AsString());
1505 if (interned != nullptr) {
1506 return interned;
1507 }
1508 }
1509 return obj;
1510 }
1511
NativeRelocationAssigned(void * ptr) const1512 bool ImageWriter::NativeRelocationAssigned(void* ptr) const {
1513 return native_object_relocations_.find(ptr) != native_object_relocations_.end();
1514 }
1515
TryAssignImTableOffset(ImTable * imt,size_t oat_index)1516 bool ImageWriter::TryAssignImTableOffset(ImTable* imt, size_t oat_index) {
1517 // No offset, or already assigned.
1518 if (imt == nullptr || IsInBootImage(imt) || NativeRelocationAssigned(imt)) {
1519 return false;
1520 }
1521 // If the method is a conflict method we also want to assign the conflict table offset.
1522 ImageInfo& image_info = GetImageInfo(oat_index);
1523 const size_t size = ImTable::SizeInBytes(target_ptr_size_);
1524 native_object_relocations_.emplace(
1525 imt,
1526 NativeObjectRelocation {
1527 oat_index,
1528 image_info.bin_slot_sizes_[kBinImTable],
1529 kNativeObjectRelocationTypeIMTable});
1530 image_info.bin_slot_sizes_[kBinImTable] += size;
1531 return true;
1532 }
1533
TryAssignConflictTableOffset(ImtConflictTable * table,size_t oat_index)1534 void ImageWriter::TryAssignConflictTableOffset(ImtConflictTable* table, size_t oat_index) {
1535 // No offset, or already assigned.
1536 if (table == nullptr || NativeRelocationAssigned(table)) {
1537 return;
1538 }
1539 CHECK(!IsInBootImage(table));
1540 // If the method is a conflict method we also want to assign the conflict table offset.
1541 ImageInfo& image_info = GetImageInfo(oat_index);
1542 const size_t size = table->ComputeSize(target_ptr_size_);
1543 native_object_relocations_.emplace(
1544 table,
1545 NativeObjectRelocation {
1546 oat_index,
1547 image_info.bin_slot_sizes_[kBinIMTConflictTable],
1548 kNativeObjectRelocationTypeIMTConflictTable});
1549 image_info.bin_slot_sizes_[kBinIMTConflictTable] += size;
1550 }
1551
AssignMethodOffset(ArtMethod * method,NativeObjectRelocationType type,size_t oat_index)1552 void ImageWriter::AssignMethodOffset(ArtMethod* method,
1553 NativeObjectRelocationType type,
1554 size_t oat_index) {
1555 DCHECK(!IsInBootImage(method));
1556 CHECK(!NativeRelocationAssigned(method)) << "Method " << method << " already assigned "
1557 << ArtMethod::PrettyMethod(method);
1558 if (method->IsRuntimeMethod()) {
1559 TryAssignConflictTableOffset(method->GetImtConflictTable(target_ptr_size_), oat_index);
1560 }
1561 ImageInfo& image_info = GetImageInfo(oat_index);
1562 size_t& offset = image_info.bin_slot_sizes_[BinTypeForNativeRelocationType(type)];
1563 native_object_relocations_.emplace(method, NativeObjectRelocation { oat_index, offset, type });
1564 offset += ArtMethod::Size(target_ptr_size_);
1565 }
1566
UnbinObjectsIntoOffset(mirror::Object * obj)1567 void ImageWriter::UnbinObjectsIntoOffset(mirror::Object* obj) {
1568 DCHECK(!IsInBootImage(obj));
1569 CHECK(obj != nullptr);
1570
1571 // We know the bin slot, and the total bin sizes for all objects by now,
1572 // so calculate the object's final image offset.
1573
1574 DCHECK(IsImageBinSlotAssigned(obj));
1575 BinSlot bin_slot = GetImageBinSlot(obj);
1576 // Change the lockword from a bin slot into an offset
1577 AssignImageOffset(obj, bin_slot);
1578 }
1579
1580 class ImageWriter::VisitReferencesVisitor {
1581 public:
VisitReferencesVisitor(ImageWriter * image_writer,WorkStack * work_stack,size_t oat_index)1582 VisitReferencesVisitor(ImageWriter* image_writer, WorkStack* work_stack, size_t oat_index)
1583 : image_writer_(image_writer), work_stack_(work_stack), oat_index_(oat_index) {}
1584
1585 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1586 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1587 REQUIRES_SHARED(Locks::mutator_lock_) {
1588 if (!root->IsNull()) {
1589 VisitRoot(root);
1590 }
1591 }
1592
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1593 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1594 REQUIRES_SHARED(Locks::mutator_lock_) {
1595 root->Assign(VisitReference(root->AsMirrorPtr()));
1596 }
1597
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1598 ALWAYS_INLINE void operator() (ObjPtr<mirror::Object> obj,
1599 MemberOffset offset,
1600 bool is_static ATTRIBUTE_UNUSED) const
1601 REQUIRES_SHARED(Locks::mutator_lock_) {
1602 mirror::Object* ref =
1603 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1604 obj->SetFieldObject</*kTransactionActive*/false>(offset, VisitReference(ref));
1605 }
1606
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const1607 ALWAYS_INLINE void operator() (ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
1608 ObjPtr<mirror::Reference> ref) const
1609 REQUIRES_SHARED(Locks::mutator_lock_) {
1610 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
1611 }
1612
1613 private:
VisitReference(mirror::Object * ref) const1614 mirror::Object* VisitReference(mirror::Object* ref) const REQUIRES_SHARED(Locks::mutator_lock_) {
1615 return image_writer_->TryAssignBinSlot(*work_stack_, ref, oat_index_);
1616 }
1617
1618 ImageWriter* const image_writer_;
1619 WorkStack* const work_stack_;
1620 const size_t oat_index_;
1621 };
1622
1623 class ImageWriter::GetRootsVisitor : public RootVisitor {
1624 public:
GetRootsVisitor(std::vector<mirror::Object * > * roots)1625 explicit GetRootsVisitor(std::vector<mirror::Object*>* roots) : roots_(roots) {}
1626
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1627 void VisitRoots(mirror::Object*** roots,
1628 size_t count,
1629 const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE
1630 REQUIRES_SHARED(Locks::mutator_lock_) {
1631 for (size_t i = 0; i < count; ++i) {
1632 roots_->push_back(*roots[i]);
1633 }
1634 }
1635
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)1636 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
1637 size_t count,
1638 const RootInfo& info ATTRIBUTE_UNUSED) OVERRIDE
1639 REQUIRES_SHARED(Locks::mutator_lock_) {
1640 for (size_t i = 0; i < count; ++i) {
1641 roots_->push_back(roots[i]->AsMirrorPtr());
1642 }
1643 }
1644
1645 private:
1646 std::vector<mirror::Object*>* const roots_;
1647 };
1648
ProcessWorkStack(WorkStack * work_stack)1649 void ImageWriter::ProcessWorkStack(WorkStack* work_stack) {
1650 while (!work_stack->empty()) {
1651 std::pair<mirror::Object*, size_t> pair(work_stack->top());
1652 work_stack->pop();
1653 VisitReferencesVisitor visitor(this, work_stack, /*oat_index*/ pair.second);
1654 // Walk references and assign bin slots for them.
1655 pair.first->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
1656 visitor,
1657 visitor);
1658 }
1659 }
1660
CalculateNewObjectOffsets()1661 void ImageWriter::CalculateNewObjectOffsets() {
1662 Thread* const self = Thread::Current();
1663 VariableSizedHandleScope handles(self);
1664 std::vector<Handle<ObjectArray<Object>>> image_roots;
1665 for (size_t i = 0, size = oat_filenames_.size(); i != size; ++i) {
1666 image_roots.push_back(handles.NewHandle(CreateImageRoots(i)));
1667 }
1668
1669 Runtime* const runtime = Runtime::Current();
1670 gc::Heap* const heap = runtime->GetHeap();
1671
1672 // Leave space for the header, but do not write it yet, we need to
1673 // know where image_roots is going to end up
1674 image_objects_offset_begin_ = RoundUp(sizeof(ImageHeader), kObjectAlignment); // 64-bit-alignment
1675
1676 const size_t method_alignment = ArtMethod::Alignment(target_ptr_size_);
1677 // Write the image runtime methods.
1678 image_methods_[ImageHeader::kResolutionMethod] = runtime->GetResolutionMethod();
1679 image_methods_[ImageHeader::kImtConflictMethod] = runtime->GetImtConflictMethod();
1680 image_methods_[ImageHeader::kImtUnimplementedMethod] = runtime->GetImtUnimplementedMethod();
1681 image_methods_[ImageHeader::kSaveAllCalleeSavesMethod] =
1682 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveAllCalleeSaves);
1683 image_methods_[ImageHeader::kSaveRefsOnlyMethod] =
1684 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsOnly);
1685 image_methods_[ImageHeader::kSaveRefsAndArgsMethod] =
1686 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
1687 image_methods_[ImageHeader::kSaveEverythingMethod] =
1688 runtime->GetCalleeSaveMethod(CalleeSaveType::kSaveEverything);
1689 // Visit image methods first to have the main runtime methods in the first image.
1690 for (auto* m : image_methods_) {
1691 CHECK(m != nullptr);
1692 CHECK(m->IsRuntimeMethod());
1693 DCHECK_EQ(compile_app_image_, IsInBootImage(m)) << "Trampolines should be in boot image";
1694 if (!IsInBootImage(m)) {
1695 AssignMethodOffset(m, kNativeObjectRelocationTypeRuntimeMethod, GetDefaultOatIndex());
1696 }
1697 }
1698
1699 // Deflate monitors before we visit roots since deflating acquires the monitor lock. Acquiring
1700 // this lock while holding other locks may cause lock order violations.
1701 {
1702 auto deflate_monitor = [](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1703 Monitor::Deflate(Thread::Current(), obj);
1704 };
1705 heap->VisitObjects(deflate_monitor);
1706 }
1707
1708 // Work list of <object, oat_index> for objects. Everything on the stack must already be
1709 // assigned a bin slot.
1710 WorkStack work_stack;
1711
1712 // Special case interned strings to put them in the image they are likely to be resolved from.
1713 for (const DexFile* dex_file : compiler_driver_.GetDexFilesForOatFile()) {
1714 auto it = dex_file_oat_index_map_.find(dex_file);
1715 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
1716 const size_t oat_index = it->second;
1717 InternTable* const intern_table = runtime->GetInternTable();
1718 for (size_t i = 0, count = dex_file->NumStringIds(); i < count; ++i) {
1719 uint32_t utf16_length;
1720 const char* utf8_data = dex_file->StringDataAndUtf16LengthByIdx(dex::StringIndex(i),
1721 &utf16_length);
1722 mirror::String* string = intern_table->LookupStrong(self, utf16_length, utf8_data).Ptr();
1723 TryAssignBinSlot(work_stack, string, oat_index);
1724 }
1725 }
1726
1727 // Get the GC roots and then visit them separately to avoid lock violations since the root visitor
1728 // visits roots while holding various locks.
1729 {
1730 std::vector<mirror::Object*> roots;
1731 GetRootsVisitor root_visitor(&roots);
1732 runtime->VisitRoots(&root_visitor);
1733 for (mirror::Object* obj : roots) {
1734 TryAssignBinSlot(work_stack, obj, GetDefaultOatIndex());
1735 }
1736 }
1737 ProcessWorkStack(&work_stack);
1738
1739 // For app images, there may be objects that are only held live by the by the boot image. One
1740 // example is finalizer references. Forward these objects so that EnsureBinSlotAssignedCallback
1741 // does not fail any checks. TODO: We should probably avoid copying these objects.
1742 if (compile_app_image_) {
1743 for (gc::space::ImageSpace* space : heap->GetBootImageSpaces()) {
1744 DCHECK(space->IsImageSpace());
1745 gc::accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1746 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
1747 reinterpret_cast<uintptr_t>(space->Limit()),
1748 [this, &work_stack](mirror::Object* obj)
1749 REQUIRES_SHARED(Locks::mutator_lock_) {
1750 VisitReferencesVisitor visitor(this, &work_stack, GetDefaultOatIndex());
1751 // Visit all references and try to assign bin slots for them (calls TryAssignBinSlot).
1752 obj->VisitReferences</*kVisitNativeRoots*/true, kVerifyNone, kWithoutReadBarrier>(
1753 visitor,
1754 visitor);
1755 });
1756 }
1757 // Process the work stack in case anything was added by TryAssignBinSlot.
1758 ProcessWorkStack(&work_stack);
1759
1760 // Store the class loader in the class roots.
1761 CHECK_EQ(class_loaders_.size(), 1u);
1762 CHECK_EQ(image_roots.size(), 1u);
1763 CHECK(*class_loaders_.begin() != nullptr);
1764 image_roots[0]->Set<false>(ImageHeader::kClassLoader, *class_loaders_.begin());
1765 }
1766
1767 // Verify that all objects have assigned image bin slots.
1768 {
1769 auto ensure_bin_slots_assigned = [&](mirror::Object* obj)
1770 REQUIRES_SHARED(Locks::mutator_lock_) {
1771 if (!Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(obj)) {
1772 CHECK(IsImageBinSlotAssigned(obj)) << mirror::Object::PrettyTypeOf(obj) << " " << obj;
1773 }
1774 };
1775 heap->VisitObjects(ensure_bin_slots_assigned);
1776 }
1777
1778 // Calculate size of the dex cache arrays slot and prepare offsets.
1779 PrepareDexCacheArraySlots();
1780
1781 // Calculate the sizes of the intern tables, class tables, and fixup tables.
1782 for (ImageInfo& image_info : image_infos_) {
1783 // Calculate how big the intern table will be after being serialized.
1784 InternTable* const intern_table = image_info.intern_table_.get();
1785 CHECK_EQ(intern_table->WeakSize(), 0u) << " should have strong interned all the strings";
1786 if (intern_table->StrongSize() != 0u) {
1787 image_info.intern_table_bytes_ = intern_table->WriteToMemory(nullptr);
1788 }
1789
1790 // Calculate the size of the class table.
1791 ReaderMutexLock mu(self, *Locks::classlinker_classes_lock_);
1792 DCHECK_EQ(image_info.class_table_->NumReferencedZygoteClasses(), 0u);
1793 if (image_info.class_table_->NumReferencedNonZygoteClasses() != 0u) {
1794 image_info.class_table_bytes_ += image_info.class_table_->WriteToMemory(nullptr);
1795 }
1796 }
1797
1798 // Calculate bin slot offsets.
1799 for (ImageInfo& image_info : image_infos_) {
1800 size_t bin_offset = image_objects_offset_begin_;
1801 for (size_t i = 0; i != kBinSize; ++i) {
1802 switch (i) {
1803 case kBinArtMethodClean:
1804 case kBinArtMethodDirty: {
1805 bin_offset = RoundUp(bin_offset, method_alignment);
1806 break;
1807 }
1808 case kBinDexCacheArray:
1809 bin_offset = RoundUp(bin_offset, DexCacheArraysLayout::Alignment(target_ptr_size_));
1810 break;
1811 case kBinImTable:
1812 case kBinIMTConflictTable: {
1813 bin_offset = RoundUp(bin_offset, static_cast<size_t>(target_ptr_size_));
1814 break;
1815 }
1816 default: {
1817 // Normal alignment.
1818 }
1819 }
1820 image_info.bin_slot_offsets_[i] = bin_offset;
1821 bin_offset += image_info.bin_slot_sizes_[i];
1822 }
1823 // NOTE: There may be additional padding between the bin slots and the intern table.
1824 DCHECK_EQ(image_info.image_end_,
1825 GetBinSizeSum(image_info, kBinMirrorCount) + image_objects_offset_begin_);
1826 }
1827
1828 // Calculate image offsets.
1829 size_t image_offset = 0;
1830 for (ImageInfo& image_info : image_infos_) {
1831 image_info.image_begin_ = global_image_begin_ + image_offset;
1832 image_info.image_offset_ = image_offset;
1833 ImageSection unused_sections[ImageHeader::kSectionCount];
1834 image_info.image_size_ = RoundUp(image_info.CreateImageSections(unused_sections), kPageSize);
1835 // There should be no gaps until the next image.
1836 image_offset += image_info.image_size_;
1837 }
1838
1839 // Transform each object's bin slot into an offset which will be used to do the final copy.
1840 {
1841 auto unbin_objects_into_offset = [&](mirror::Object* obj)
1842 REQUIRES_SHARED(Locks::mutator_lock_) {
1843 if (!IsInBootImage(obj)) {
1844 UnbinObjectsIntoOffset(obj);
1845 }
1846 };
1847 heap->VisitObjects(unbin_objects_into_offset);
1848 }
1849
1850 size_t i = 0;
1851 for (ImageInfo& image_info : image_infos_) {
1852 image_info.image_roots_address_ = PointerToLowMemUInt32(GetImageAddress(image_roots[i].Get()));
1853 i++;
1854 }
1855
1856 // Update the native relocations by adding their bin sums.
1857 for (auto& pair : native_object_relocations_) {
1858 NativeObjectRelocation& relocation = pair.second;
1859 Bin bin_type = BinTypeForNativeRelocationType(relocation.type);
1860 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
1861 relocation.offset += image_info.bin_slot_offsets_[bin_type];
1862 }
1863 }
1864
CreateImageSections(ImageSection * out_sections) const1865 size_t ImageWriter::ImageInfo::CreateImageSections(ImageSection* out_sections) const {
1866 DCHECK(out_sections != nullptr);
1867
1868 // Do not round up any sections here that are represented by the bins since it will break
1869 // offsets.
1870
1871 // Objects section
1872 ImageSection* objects_section = &out_sections[ImageHeader::kSectionObjects];
1873 *objects_section = ImageSection(0u, image_end_);
1874
1875 // Add field section.
1876 ImageSection* field_section = &out_sections[ImageHeader::kSectionArtFields];
1877 *field_section = ImageSection(bin_slot_offsets_[kBinArtField], bin_slot_sizes_[kBinArtField]);
1878 CHECK_EQ(bin_slot_offsets_[kBinArtField], field_section->Offset());
1879
1880 // Add method section.
1881 ImageSection* methods_section = &out_sections[ImageHeader::kSectionArtMethods];
1882 *methods_section = ImageSection(
1883 bin_slot_offsets_[kBinArtMethodClean],
1884 bin_slot_sizes_[kBinArtMethodClean] + bin_slot_sizes_[kBinArtMethodDirty]);
1885
1886 // IMT section.
1887 ImageSection* imt_section = &out_sections[ImageHeader::kSectionImTables];
1888 *imt_section = ImageSection(bin_slot_offsets_[kBinImTable], bin_slot_sizes_[kBinImTable]);
1889
1890 // Conflict tables section.
1891 ImageSection* imt_conflict_tables_section = &out_sections[ImageHeader::kSectionIMTConflictTables];
1892 *imt_conflict_tables_section = ImageSection(bin_slot_offsets_[kBinIMTConflictTable],
1893 bin_slot_sizes_[kBinIMTConflictTable]);
1894
1895 // Runtime methods section.
1896 ImageSection* runtime_methods_section = &out_sections[ImageHeader::kSectionRuntimeMethods];
1897 *runtime_methods_section = ImageSection(bin_slot_offsets_[kBinRuntimeMethod],
1898 bin_slot_sizes_[kBinRuntimeMethod]);
1899
1900 // Add dex cache arrays section.
1901 ImageSection* dex_cache_arrays_section = &out_sections[ImageHeader::kSectionDexCacheArrays];
1902 *dex_cache_arrays_section = ImageSection(bin_slot_offsets_[kBinDexCacheArray],
1903 bin_slot_sizes_[kBinDexCacheArray]);
1904 // Round up to the alignment the string table expects. See HashSet::WriteToMemory.
1905 size_t cur_pos = RoundUp(dex_cache_arrays_section->End(), sizeof(uint64_t));
1906 // Calculate the size of the interned strings.
1907 ImageSection* interned_strings_section = &out_sections[ImageHeader::kSectionInternedStrings];
1908 *interned_strings_section = ImageSection(cur_pos, intern_table_bytes_);
1909 cur_pos = interned_strings_section->End();
1910 // Round up to the alignment the class table expects. See HashSet::WriteToMemory.
1911 cur_pos = RoundUp(cur_pos, sizeof(uint64_t));
1912 // Calculate the size of the class table section.
1913 ImageSection* class_table_section = &out_sections[ImageHeader::kSectionClassTable];
1914 *class_table_section = ImageSection(cur_pos, class_table_bytes_);
1915 cur_pos = class_table_section->End();
1916 // Image end goes right before the start of the image bitmap.
1917 return cur_pos;
1918 }
1919
CreateHeader(size_t oat_index)1920 void ImageWriter::CreateHeader(size_t oat_index) {
1921 ImageInfo& image_info = GetImageInfo(oat_index);
1922 const uint8_t* oat_file_begin = image_info.oat_file_begin_;
1923 const uint8_t* oat_file_end = oat_file_begin + image_info.oat_loaded_size_;
1924 const uint8_t* oat_data_end = image_info.oat_data_begin_ + image_info.oat_size_;
1925
1926 // Create the image sections.
1927 ImageSection sections[ImageHeader::kSectionCount];
1928 const size_t image_end = image_info.CreateImageSections(sections);
1929
1930 // Finally bitmap section.
1931 const size_t bitmap_bytes = image_info.image_bitmap_->Size();
1932 auto* bitmap_section = §ions[ImageHeader::kSectionImageBitmap];
1933 *bitmap_section = ImageSection(RoundUp(image_end, kPageSize), RoundUp(bitmap_bytes, kPageSize));
1934 if (VLOG_IS_ON(compiler)) {
1935 LOG(INFO) << "Creating header for " << oat_filenames_[oat_index];
1936 size_t idx = 0;
1937 for (const ImageSection& section : sections) {
1938 LOG(INFO) << static_cast<ImageHeader::ImageSections>(idx) << " " << section;
1939 ++idx;
1940 }
1941 LOG(INFO) << "Methods: clean=" << clean_methods_ << " dirty=" << dirty_methods_;
1942 LOG(INFO) << "Image roots address=" << std::hex << image_info.image_roots_address_ << std::dec;
1943 LOG(INFO) << "Image begin=" << std::hex << reinterpret_cast<uintptr_t>(global_image_begin_)
1944 << " Image offset=" << image_info.image_offset_ << std::dec;
1945 LOG(INFO) << "Oat file begin=" << std::hex << reinterpret_cast<uintptr_t>(oat_file_begin)
1946 << " Oat data begin=" << reinterpret_cast<uintptr_t>(image_info.oat_data_begin_)
1947 << " Oat data end=" << reinterpret_cast<uintptr_t>(oat_data_end)
1948 << " Oat file end=" << reinterpret_cast<uintptr_t>(oat_file_end);
1949 }
1950 // Store boot image info for app image so that we can relocate.
1951 uint32_t boot_image_begin = 0;
1952 uint32_t boot_image_end = 0;
1953 uint32_t boot_oat_begin = 0;
1954 uint32_t boot_oat_end = 0;
1955 gc::Heap* const heap = Runtime::Current()->GetHeap();
1956 heap->GetBootImagesSize(&boot_image_begin, &boot_image_end, &boot_oat_begin, &boot_oat_end);
1957
1958 // Create the header, leave 0 for data size since we will fill this in as we are writing the
1959 // image.
1960 new (image_info.image_->Begin()) ImageHeader(PointerToLowMemUInt32(image_info.image_begin_),
1961 image_end,
1962 sections,
1963 image_info.image_roots_address_,
1964 image_info.oat_checksum_,
1965 PointerToLowMemUInt32(oat_file_begin),
1966 PointerToLowMemUInt32(image_info.oat_data_begin_),
1967 PointerToLowMemUInt32(oat_data_end),
1968 PointerToLowMemUInt32(oat_file_end),
1969 boot_image_begin,
1970 boot_image_end - boot_image_begin,
1971 boot_oat_begin,
1972 boot_oat_end - boot_oat_begin,
1973 static_cast<uint32_t>(target_ptr_size_),
1974 compile_pic_,
1975 /*is_pic*/compile_app_image_,
1976 image_storage_mode_,
1977 /*data_size*/0u);
1978 }
1979
GetImageMethodAddress(ArtMethod * method)1980 ArtMethod* ImageWriter::GetImageMethodAddress(ArtMethod* method) {
1981 auto it = native_object_relocations_.find(method);
1982 CHECK(it != native_object_relocations_.end()) << ArtMethod::PrettyMethod(method) << " @ "
1983 << method;
1984 size_t oat_index = GetOatIndex(method->GetDexCache());
1985 ImageInfo& image_info = GetImageInfo(oat_index);
1986 CHECK_GE(it->second.offset, image_info.image_end_) << "ArtMethods should be after Objects";
1987 return reinterpret_cast<ArtMethod*>(image_info.image_begin_ + it->second.offset);
1988 }
1989
1990 class ImageWriter::FixupRootVisitor : public RootVisitor {
1991 public:
FixupRootVisitor(ImageWriter * image_writer)1992 explicit FixupRootVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {
1993 }
1994
VisitRoots(mirror::Object *** roots ATTRIBUTE_UNUSED,size_t count ATTRIBUTE_UNUSED,const RootInfo & info ATTRIBUTE_UNUSED)1995 void VisitRoots(mirror::Object*** roots ATTRIBUTE_UNUSED,
1996 size_t count ATTRIBUTE_UNUSED,
1997 const RootInfo& info ATTRIBUTE_UNUSED)
1998 OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
1999 LOG(FATAL) << "Unsupported";
2000 }
2001
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)2002 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots, size_t count,
2003 const RootInfo& info ATTRIBUTE_UNUSED)
2004 OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
2005 for (size_t i = 0; i < count; ++i) {
2006 image_writer_->CopyReference(roots[i], roots[i]->AsMirrorPtr());
2007 }
2008 }
2009
2010 private:
2011 ImageWriter* const image_writer_;
2012 };
2013
CopyAndFixupImTable(ImTable * orig,ImTable * copy)2014 void ImageWriter::CopyAndFixupImTable(ImTable* orig, ImTable* copy) {
2015 for (size_t i = 0; i < ImTable::kSize; ++i) {
2016 ArtMethod* method = orig->Get(i, target_ptr_size_);
2017 void** address = reinterpret_cast<void**>(copy->AddressOfElement(i, target_ptr_size_));
2018 CopyAndFixupPointer(address, method);
2019 DCHECK_EQ(copy->Get(i, target_ptr_size_), NativeLocationInImage(method));
2020 }
2021 }
2022
CopyAndFixupImtConflictTable(ImtConflictTable * orig,ImtConflictTable * copy)2023 void ImageWriter::CopyAndFixupImtConflictTable(ImtConflictTable* orig, ImtConflictTable* copy) {
2024 const size_t count = orig->NumEntries(target_ptr_size_);
2025 for (size_t i = 0; i < count; ++i) {
2026 ArtMethod* interface_method = orig->GetInterfaceMethod(i, target_ptr_size_);
2027 ArtMethod* implementation_method = orig->GetImplementationMethod(i, target_ptr_size_);
2028 CopyAndFixupPointer(copy->AddressOfInterfaceMethod(i, target_ptr_size_), interface_method);
2029 CopyAndFixupPointer(copy->AddressOfImplementationMethod(i, target_ptr_size_),
2030 implementation_method);
2031 DCHECK_EQ(copy->GetInterfaceMethod(i, target_ptr_size_),
2032 NativeLocationInImage(interface_method));
2033 DCHECK_EQ(copy->GetImplementationMethod(i, target_ptr_size_),
2034 NativeLocationInImage(implementation_method));
2035 }
2036 }
2037
CopyAndFixupNativeData(size_t oat_index)2038 void ImageWriter::CopyAndFixupNativeData(size_t oat_index) {
2039 const ImageInfo& image_info = GetImageInfo(oat_index);
2040 // Copy ArtFields and methods to their locations and update the array for convenience.
2041 for (auto& pair : native_object_relocations_) {
2042 NativeObjectRelocation& relocation = pair.second;
2043 // Only work with fields and methods that are in the current oat file.
2044 if (relocation.oat_index != oat_index) {
2045 continue;
2046 }
2047 auto* dest = image_info.image_->Begin() + relocation.offset;
2048 DCHECK_GE(dest, image_info.image_->Begin() + image_info.image_end_);
2049 DCHECK(!IsInBootImage(pair.first));
2050 switch (relocation.type) {
2051 case kNativeObjectRelocationTypeArtField: {
2052 memcpy(dest, pair.first, sizeof(ArtField));
2053 CopyReference(
2054 reinterpret_cast<ArtField*>(dest)->GetDeclaringClassAddressWithoutBarrier(),
2055 reinterpret_cast<ArtField*>(pair.first)->GetDeclaringClass().Ptr());
2056 break;
2057 }
2058 case kNativeObjectRelocationTypeRuntimeMethod:
2059 case kNativeObjectRelocationTypeArtMethodClean:
2060 case kNativeObjectRelocationTypeArtMethodDirty: {
2061 CopyAndFixupMethod(reinterpret_cast<ArtMethod*>(pair.first),
2062 reinterpret_cast<ArtMethod*>(dest),
2063 image_info);
2064 break;
2065 }
2066 // For arrays, copy just the header since the elements will get copied by their corresponding
2067 // relocations.
2068 case kNativeObjectRelocationTypeArtFieldArray: {
2069 memcpy(dest, pair.first, LengthPrefixedArray<ArtField>::ComputeSize(0));
2070 break;
2071 }
2072 case kNativeObjectRelocationTypeArtMethodArrayClean:
2073 case kNativeObjectRelocationTypeArtMethodArrayDirty: {
2074 size_t size = ArtMethod::Size(target_ptr_size_);
2075 size_t alignment = ArtMethod::Alignment(target_ptr_size_);
2076 memcpy(dest, pair.first, LengthPrefixedArray<ArtMethod>::ComputeSize(0, size, alignment));
2077 // Clear padding to avoid non-deterministic data in the image (and placate valgrind).
2078 reinterpret_cast<LengthPrefixedArray<ArtMethod>*>(dest)->ClearPadding(size, alignment);
2079 break;
2080 }
2081 case kNativeObjectRelocationTypeDexCacheArray:
2082 // Nothing to copy here, everything is done in FixupDexCache().
2083 break;
2084 case kNativeObjectRelocationTypeIMTable: {
2085 ImTable* orig_imt = reinterpret_cast<ImTable*>(pair.first);
2086 ImTable* dest_imt = reinterpret_cast<ImTable*>(dest);
2087 CopyAndFixupImTable(orig_imt, dest_imt);
2088 break;
2089 }
2090 case kNativeObjectRelocationTypeIMTConflictTable: {
2091 auto* orig_table = reinterpret_cast<ImtConflictTable*>(pair.first);
2092 CopyAndFixupImtConflictTable(
2093 orig_table,
2094 new(dest)ImtConflictTable(orig_table->NumEntries(target_ptr_size_), target_ptr_size_));
2095 break;
2096 }
2097 }
2098 }
2099 // Fixup the image method roots.
2100 auto* image_header = reinterpret_cast<ImageHeader*>(image_info.image_->Begin());
2101 for (size_t i = 0; i < ImageHeader::kImageMethodsCount; ++i) {
2102 ArtMethod* method = image_methods_[i];
2103 CHECK(method != nullptr);
2104 if (!IsInBootImage(method)) {
2105 method = NativeLocationInImage(method);
2106 }
2107 image_header->SetImageMethod(static_cast<ImageHeader::ImageMethod>(i), method);
2108 }
2109 FixupRootVisitor root_visitor(this);
2110
2111 // Write the intern table into the image.
2112 if (image_info.intern_table_bytes_ > 0) {
2113 const ImageSection& intern_table_section = image_header->GetImageSection(
2114 ImageHeader::kSectionInternedStrings);
2115 InternTable* const intern_table = image_info.intern_table_.get();
2116 uint8_t* const intern_table_memory_ptr =
2117 image_info.image_->Begin() + intern_table_section.Offset();
2118 const size_t intern_table_bytes = intern_table->WriteToMemory(intern_table_memory_ptr);
2119 CHECK_EQ(intern_table_bytes, image_info.intern_table_bytes_);
2120 // Fixup the pointers in the newly written intern table to contain image addresses.
2121 InternTable temp_intern_table;
2122 // Note that we require that ReadFromMemory does not make an internal copy of the elements so that
2123 // the VisitRoots() will update the memory directly rather than the copies.
2124 // This also relies on visit roots not doing any verification which could fail after we update
2125 // the roots to be the image addresses.
2126 temp_intern_table.AddTableFromMemory(intern_table_memory_ptr);
2127 CHECK_EQ(temp_intern_table.Size(), intern_table->Size());
2128 temp_intern_table.VisitRoots(&root_visitor, kVisitRootFlagAllRoots);
2129 }
2130 // Write the class table(s) into the image. class_table_bytes_ may be 0 if there are multiple
2131 // class loaders. Writing multiple class tables into the image is currently unsupported.
2132 if (image_info.class_table_bytes_ > 0u) {
2133 const ImageSection& class_table_section = image_header->GetImageSection(
2134 ImageHeader::kSectionClassTable);
2135 uint8_t* const class_table_memory_ptr =
2136 image_info.image_->Begin() + class_table_section.Offset();
2137 ReaderMutexLock mu(Thread::Current(), *Locks::classlinker_classes_lock_);
2138
2139 ClassTable* table = image_info.class_table_.get();
2140 CHECK(table != nullptr);
2141 const size_t class_table_bytes = table->WriteToMemory(class_table_memory_ptr);
2142 CHECK_EQ(class_table_bytes, image_info.class_table_bytes_);
2143 // Fixup the pointers in the newly written class table to contain image addresses. See
2144 // above comment for intern tables.
2145 ClassTable temp_class_table;
2146 temp_class_table.ReadFromMemory(class_table_memory_ptr);
2147 CHECK_EQ(temp_class_table.NumReferencedZygoteClasses(),
2148 table->NumReferencedNonZygoteClasses() + table->NumReferencedZygoteClasses());
2149 UnbufferedRootVisitor visitor(&root_visitor, RootInfo(kRootUnknown));
2150 temp_class_table.VisitRoots(visitor);
2151 }
2152 }
2153
CopyAndFixupObjects()2154 void ImageWriter::CopyAndFixupObjects() {
2155 auto visitor = [&](Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
2156 DCHECK(obj != nullptr);
2157 CopyAndFixupObject(obj);
2158 };
2159 Runtime::Current()->GetHeap()->VisitObjects(visitor);
2160 // Fix up the object previously had hash codes.
2161 for (const auto& hash_pair : saved_hashcode_map_) {
2162 Object* obj = hash_pair.first;
2163 DCHECK_EQ(obj->GetLockWord<kVerifyNone>(false).ReadBarrierState(), 0U);
2164 obj->SetLockWord<kVerifyNone>(LockWord::FromHashCode(hash_pair.second, 0U), false);
2165 }
2166 saved_hashcode_map_.clear();
2167 }
2168
FixupPointerArray(mirror::Object * dst,mirror::PointerArray * arr,mirror::Class * klass,Bin array_type)2169 void ImageWriter::FixupPointerArray(mirror::Object* dst,
2170 mirror::PointerArray* arr,
2171 mirror::Class* klass,
2172 Bin array_type) {
2173 CHECK(klass->IsArrayClass());
2174 CHECK(arr->IsIntArray() || arr->IsLongArray()) << klass->PrettyClass() << " " << arr;
2175 // Fixup int and long pointers for the ArtMethod or ArtField arrays.
2176 const size_t num_elements = arr->GetLength();
2177 dst->SetClass(GetImageAddress(arr->GetClass()));
2178 auto* dest_array = down_cast<mirror::PointerArray*>(dst);
2179 for (size_t i = 0, count = num_elements; i < count; ++i) {
2180 void* elem = arr->GetElementPtrSize<void*>(i, target_ptr_size_);
2181 if (kIsDebugBuild && elem != nullptr && !IsInBootImage(elem)) {
2182 auto it = native_object_relocations_.find(elem);
2183 if (UNLIKELY(it == native_object_relocations_.end())) {
2184 if (it->second.IsArtMethodRelocation()) {
2185 auto* method = reinterpret_cast<ArtMethod*>(elem);
2186 LOG(FATAL) << "No relocation entry for ArtMethod " << method->PrettyMethod() << " @ "
2187 << method << " idx=" << i << "/" << num_elements << " with declaring class "
2188 << Class::PrettyClass(method->GetDeclaringClass());
2189 } else {
2190 CHECK_EQ(array_type, kBinArtField);
2191 auto* field = reinterpret_cast<ArtField*>(elem);
2192 LOG(FATAL) << "No relocation entry for ArtField " << field->PrettyField() << " @ "
2193 << field << " idx=" << i << "/" << num_elements << " with declaring class "
2194 << Class::PrettyClass(field->GetDeclaringClass());
2195 }
2196 UNREACHABLE();
2197 }
2198 }
2199 CopyAndFixupPointer(dest_array->ElementAddress(i, target_ptr_size_), elem);
2200 }
2201 }
2202
CopyAndFixupObject(Object * obj)2203 void ImageWriter::CopyAndFixupObject(Object* obj) {
2204 if (IsInBootImage(obj)) {
2205 return;
2206 }
2207 size_t offset = GetImageOffset(obj);
2208 size_t oat_index = GetOatIndex(obj);
2209 ImageInfo& image_info = GetImageInfo(oat_index);
2210 auto* dst = reinterpret_cast<Object*>(image_info.image_->Begin() + offset);
2211 DCHECK_LT(offset, image_info.image_end_);
2212 const auto* src = reinterpret_cast<const uint8_t*>(obj);
2213
2214 image_info.image_bitmap_->Set(dst); // Mark the obj as live.
2215
2216 const size_t n = obj->SizeOf();
2217 DCHECK_LE(offset + n, image_info.image_->Size());
2218 memcpy(dst, src, n);
2219
2220 // Write in a hash code of objects which have inflated monitors or a hash code in their monitor
2221 // word.
2222 const auto it = saved_hashcode_map_.find(obj);
2223 dst->SetLockWord(it != saved_hashcode_map_.end() ?
2224 LockWord::FromHashCode(it->second, 0u) : LockWord::Default(), false);
2225 if (kUseBakerReadBarrier && gc::collector::ConcurrentCopying::kGrayDirtyImmuneObjects) {
2226 // Treat all of the objects in the image as marked to avoid unnecessary dirty pages. This is
2227 // safe since we mark all of the objects that may reference non immune objects as gray.
2228 CHECK(dst->AtomicSetMarkBit(0, 1));
2229 }
2230 FixupObject(obj, dst);
2231 }
2232
2233 // Rewrite all the references in the copied object to point to their image address equivalent
2234 class ImageWriter::FixupVisitor {
2235 public:
FixupVisitor(ImageWriter * image_writer,Object * copy)2236 FixupVisitor(ImageWriter* image_writer, Object* copy) : image_writer_(image_writer), copy_(copy) {
2237 }
2238
2239 // Ignore class roots since we don't have a way to map them to the destination. These are handled
2240 // with other logic.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const2241 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
2242 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const2243 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
2244
2245
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2246 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
2247 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
2248 ObjPtr<Object> ref = obj->GetFieldObject<Object, kVerifyNone>(offset);
2249 // Copy the reference and record the fixup if necessary.
2250 image_writer_->CopyReference(
2251 copy_->GetFieldObjectReferenceAddr<kVerifyNone>(offset),
2252 ref.Ptr());
2253 }
2254
2255 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref) const2256 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
2257 ObjPtr<mirror::Reference> ref) const
2258 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
2259 operator()(ref, mirror::Reference::ReferentOffset(), /* is_static */ false);
2260 }
2261
2262 protected:
2263 ImageWriter* const image_writer_;
2264 mirror::Object* const copy_;
2265 };
2266
2267 class ImageWriter::FixupClassVisitor FINAL : public FixupVisitor {
2268 public:
FixupClassVisitor(ImageWriter * image_writer,Object * copy)2269 FixupClassVisitor(ImageWriter* image_writer, Object* copy) : FixupVisitor(image_writer, copy) {
2270 }
2271
operator ()(ObjPtr<Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2272 void operator()(ObjPtr<Object> obj, MemberOffset offset, bool is_static ATTRIBUTE_UNUSED) const
2273 REQUIRES(Locks::mutator_lock_, Locks::heap_bitmap_lock_) {
2274 DCHECK(obj->IsClass());
2275 FixupVisitor::operator()(obj, offset, /*is_static*/false);
2276 }
2277
operator ()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const2278 void operator()(ObjPtr<mirror::Class> klass ATTRIBUTE_UNUSED,
2279 ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
2280 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
2281 LOG(FATAL) << "Reference not expected here.";
2282 }
2283 };
2284
NativeOffsetInImage(void * obj)2285 uintptr_t ImageWriter::NativeOffsetInImage(void* obj) {
2286 DCHECK(obj != nullptr);
2287 DCHECK(!IsInBootImage(obj));
2288 auto it = native_object_relocations_.find(obj);
2289 CHECK(it != native_object_relocations_.end()) << obj << " spaces "
2290 << Runtime::Current()->GetHeap()->DumpSpaces();
2291 const NativeObjectRelocation& relocation = it->second;
2292 return relocation.offset;
2293 }
2294
2295 template <typename T>
PrettyPrint(T * ptr)2296 std::string PrettyPrint(T* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
2297 std::ostringstream oss;
2298 oss << ptr;
2299 return oss.str();
2300 }
2301
2302 template <>
PrettyPrint(ArtMethod * method)2303 std::string PrettyPrint(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) {
2304 return ArtMethod::PrettyMethod(method);
2305 }
2306
2307 template <typename T>
NativeLocationInImage(T * obj)2308 T* ImageWriter::NativeLocationInImage(T* obj) {
2309 if (obj == nullptr || IsInBootImage(obj)) {
2310 return obj;
2311 } else {
2312 auto it = native_object_relocations_.find(obj);
2313 CHECK(it != native_object_relocations_.end()) << obj << " " << PrettyPrint(obj)
2314 << " spaces " << Runtime::Current()->GetHeap()->DumpSpaces();
2315 const NativeObjectRelocation& relocation = it->second;
2316 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2317 return reinterpret_cast<T*>(image_info.image_begin_ + relocation.offset);
2318 }
2319 }
2320
2321 template <typename T>
NativeCopyLocation(T * obj,mirror::DexCache * dex_cache)2322 T* ImageWriter::NativeCopyLocation(T* obj, mirror::DexCache* dex_cache) {
2323 if (obj == nullptr || IsInBootImage(obj)) {
2324 return obj;
2325 } else {
2326 size_t oat_index = GetOatIndexForDexCache(dex_cache);
2327 ImageInfo& image_info = GetImageInfo(oat_index);
2328 return reinterpret_cast<T*>(image_info.image_->Begin() + NativeOffsetInImage(obj));
2329 }
2330 }
2331
2332 class ImageWriter::NativeLocationVisitor {
2333 public:
NativeLocationVisitor(ImageWriter * image_writer)2334 explicit NativeLocationVisitor(ImageWriter* image_writer) : image_writer_(image_writer) {}
2335
2336 template <typename T>
operator ()(T * ptr,void ** dest_addr=nullptr) const2337 T* operator()(T* ptr, void** dest_addr = nullptr) const REQUIRES_SHARED(Locks::mutator_lock_) {
2338 if (dest_addr != nullptr) {
2339 image_writer_->CopyAndFixupPointer(dest_addr, ptr);
2340 }
2341 return image_writer_->NativeLocationInImage(ptr);
2342 }
2343
2344 private:
2345 ImageWriter* const image_writer_;
2346 };
2347
FixupClass(mirror::Class * orig,mirror::Class * copy)2348 void ImageWriter::FixupClass(mirror::Class* orig, mirror::Class* copy) {
2349 orig->FixupNativePointers(copy, target_ptr_size_, NativeLocationVisitor(this));
2350 FixupClassVisitor visitor(this, copy);
2351 ObjPtr<mirror::Object>(orig)->VisitReferences(visitor, visitor);
2352
2353 // Remove the clinitThreadId. This is required for image determinism.
2354 copy->SetClinitThreadId(static_cast<pid_t>(0));
2355 }
2356
FixupObject(Object * orig,Object * copy)2357 void ImageWriter::FixupObject(Object* orig, Object* copy) {
2358 DCHECK(orig != nullptr);
2359 DCHECK(copy != nullptr);
2360 if (kUseBakerReadBarrier) {
2361 orig->AssertReadBarrierState();
2362 }
2363 auto* klass = orig->GetClass();
2364 if (klass->IsIntArrayClass() || klass->IsLongArrayClass()) {
2365 // Is this a native pointer array?
2366 auto it = pointer_arrays_.find(down_cast<mirror::PointerArray*>(orig));
2367 if (it != pointer_arrays_.end()) {
2368 // Should only need to fixup every pointer array exactly once.
2369 FixupPointerArray(copy, down_cast<mirror::PointerArray*>(orig), klass, it->second);
2370 pointer_arrays_.erase(it);
2371 return;
2372 }
2373 }
2374 if (orig->IsClass()) {
2375 FixupClass(orig->AsClass<kVerifyNone>(), down_cast<mirror::Class*>(copy));
2376 } else {
2377 if (klass == mirror::Method::StaticClass() || klass == mirror::Constructor::StaticClass()) {
2378 // Need to go update the ArtMethod.
2379 auto* dest = down_cast<mirror::Executable*>(copy);
2380 auto* src = down_cast<mirror::Executable*>(orig);
2381 ArtMethod* src_method = src->GetArtMethod();
2382 dest->SetArtMethod(GetImageMethodAddress(src_method));
2383 } else if (!klass->IsArrayClass()) {
2384 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2385 if (klass == class_linker->GetClassRoot(ClassLinker::kJavaLangDexCache)) {
2386 FixupDexCache(down_cast<mirror::DexCache*>(orig), down_cast<mirror::DexCache*>(copy));
2387 } else if (klass->IsClassLoaderClass()) {
2388 mirror::ClassLoader* copy_loader = down_cast<mirror::ClassLoader*>(copy);
2389 // If src is a ClassLoader, set the class table to null so that it gets recreated by the
2390 // ClassLoader.
2391 copy_loader->SetClassTable(nullptr);
2392 // Also set allocator to null to be safe. The allocator is created when we create the class
2393 // table. We also never expect to unload things in the image since they are held live as
2394 // roots.
2395 copy_loader->SetAllocator(nullptr);
2396 }
2397 }
2398 FixupVisitor visitor(this, copy);
2399 orig->VisitReferences(visitor, visitor);
2400 }
2401 }
2402
2403 class ImageWriter::ImageAddressVisitorForDexCacheArray {
2404 public:
ImageAddressVisitorForDexCacheArray(ImageWriter * image_writer)2405 explicit ImageAddressVisitorForDexCacheArray(ImageWriter* image_writer)
2406 : image_writer_(image_writer) {}
2407
2408 template <typename T>
operator ()(T * ptr) const2409 T* operator()(T* ptr) const REQUIRES_SHARED(Locks::mutator_lock_) {
2410 return image_writer_->GetImageAddress(ptr);
2411 }
2412
2413 private:
2414 ImageWriter* const image_writer_;
2415 };
2416
FixupDexCache(mirror::DexCache * orig_dex_cache,mirror::DexCache * copy_dex_cache)2417 void ImageWriter::FixupDexCache(mirror::DexCache* orig_dex_cache,
2418 mirror::DexCache* copy_dex_cache) {
2419 ImageAddressVisitorForDexCacheArray fixup_visitor(this);
2420 // Though the DexCache array fields are usually treated as native pointers, we set the full
2421 // 64-bit values here, clearing the top 32 bits for 32-bit targets. The zero-extension is
2422 // done by casting to the unsigned type uintptr_t before casting to int64_t, i.e.
2423 // static_cast<int64_t>(reinterpret_cast<uintptr_t>(image_begin_ + offset))).
2424 mirror::StringDexCacheType* orig_strings = orig_dex_cache->GetStrings();
2425 if (orig_strings != nullptr) {
2426 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::StringsOffset(),
2427 NativeLocationInImage(orig_strings),
2428 PointerSize::k64);
2429 orig_dex_cache->FixupStrings(NativeCopyLocation(orig_strings, orig_dex_cache), fixup_visitor);
2430 }
2431 mirror::TypeDexCacheType* orig_types = orig_dex_cache->GetResolvedTypes();
2432 if (orig_types != nullptr) {
2433 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedTypesOffset(),
2434 NativeLocationInImage(orig_types),
2435 PointerSize::k64);
2436 orig_dex_cache->FixupResolvedTypes(NativeCopyLocation(orig_types, orig_dex_cache),
2437 fixup_visitor);
2438 }
2439 mirror::MethodDexCacheType* orig_methods = orig_dex_cache->GetResolvedMethods();
2440 if (orig_methods != nullptr) {
2441 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodsOffset(),
2442 NativeLocationInImage(orig_methods),
2443 PointerSize::k64);
2444 mirror::MethodDexCacheType* copy_methods = NativeCopyLocation(orig_methods, orig_dex_cache);
2445 for (size_t i = 0, num = orig_dex_cache->NumResolvedMethods(); i != num; ++i) {
2446 mirror::MethodDexCachePair orig_pair =
2447 mirror::DexCache::GetNativePairPtrSize(orig_methods, i, target_ptr_size_);
2448 // NativeLocationInImage also handles runtime methods since these have relocation info.
2449 mirror::MethodDexCachePair copy_pair(NativeLocationInImage(orig_pair.object),
2450 orig_pair.index);
2451 mirror::DexCache::SetNativePairPtrSize(copy_methods, i, copy_pair, target_ptr_size_);
2452 }
2453 }
2454 mirror::FieldDexCacheType* orig_fields = orig_dex_cache->GetResolvedFields();
2455 if (orig_fields != nullptr) {
2456 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedFieldsOffset(),
2457 NativeLocationInImage(orig_fields),
2458 PointerSize::k64);
2459 mirror::FieldDexCacheType* copy_fields = NativeCopyLocation(orig_fields, orig_dex_cache);
2460 for (size_t i = 0, num = orig_dex_cache->NumResolvedFields(); i != num; ++i) {
2461 mirror::FieldDexCachePair orig =
2462 mirror::DexCache::GetNativePairPtrSize(orig_fields, i, target_ptr_size_);
2463 mirror::FieldDexCachePair copy = orig;
2464 copy.object = NativeLocationInImage(orig.object);
2465 mirror::DexCache::SetNativePairPtrSize(copy_fields, i, copy, target_ptr_size_);
2466 }
2467 }
2468 mirror::MethodTypeDexCacheType* orig_method_types = orig_dex_cache->GetResolvedMethodTypes();
2469 if (orig_method_types != nullptr) {
2470 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedMethodTypesOffset(),
2471 NativeLocationInImage(orig_method_types),
2472 PointerSize::k64);
2473 orig_dex_cache->FixupResolvedMethodTypes(NativeCopyLocation(orig_method_types, orig_dex_cache),
2474 fixup_visitor);
2475 }
2476 GcRoot<mirror::CallSite>* orig_call_sites = orig_dex_cache->GetResolvedCallSites();
2477 if (orig_call_sites != nullptr) {
2478 copy_dex_cache->SetFieldPtrWithSize<false>(mirror::DexCache::ResolvedCallSitesOffset(),
2479 NativeLocationInImage(orig_call_sites),
2480 PointerSize::k64);
2481 orig_dex_cache->FixupResolvedCallSites(NativeCopyLocation(orig_call_sites, orig_dex_cache),
2482 fixup_visitor);
2483 }
2484
2485 // Remove the DexFile pointers. They will be fixed up when the runtime loads the oat file. Leaving
2486 // compiler pointers in here will make the output non-deterministic.
2487 copy_dex_cache->SetDexFile(nullptr);
2488 }
2489
GetOatAddress(OatAddress type) const2490 const uint8_t* ImageWriter::GetOatAddress(OatAddress type) const {
2491 DCHECK_LT(type, kOatAddressCount);
2492 // If we are compiling an app image, we need to use the stubs of the boot image.
2493 if (compile_app_image_) {
2494 // Use the current image pointers.
2495 const std::vector<gc::space::ImageSpace*>& image_spaces =
2496 Runtime::Current()->GetHeap()->GetBootImageSpaces();
2497 DCHECK(!image_spaces.empty());
2498 const OatFile* oat_file = image_spaces[0]->GetOatFile();
2499 CHECK(oat_file != nullptr);
2500 const OatHeader& header = oat_file->GetOatHeader();
2501 switch (type) {
2502 // TODO: We could maybe clean this up if we stored them in an array in the oat header.
2503 case kOatAddressQuickGenericJNITrampoline:
2504 return static_cast<const uint8_t*>(header.GetQuickGenericJniTrampoline());
2505 case kOatAddressInterpreterToInterpreterBridge:
2506 return static_cast<const uint8_t*>(header.GetInterpreterToInterpreterBridge());
2507 case kOatAddressInterpreterToCompiledCodeBridge:
2508 return static_cast<const uint8_t*>(header.GetInterpreterToCompiledCodeBridge());
2509 case kOatAddressJNIDlsymLookup:
2510 return static_cast<const uint8_t*>(header.GetJniDlsymLookup());
2511 case kOatAddressQuickIMTConflictTrampoline:
2512 return static_cast<const uint8_t*>(header.GetQuickImtConflictTrampoline());
2513 case kOatAddressQuickResolutionTrampoline:
2514 return static_cast<const uint8_t*>(header.GetQuickResolutionTrampoline());
2515 case kOatAddressQuickToInterpreterBridge:
2516 return static_cast<const uint8_t*>(header.GetQuickToInterpreterBridge());
2517 default:
2518 UNREACHABLE();
2519 }
2520 }
2521 const ImageInfo& primary_image_info = GetImageInfo(0);
2522 return GetOatAddressForOffset(primary_image_info.oat_address_offsets_[type], primary_image_info);
2523 }
2524
GetQuickCode(ArtMethod * method,const ImageInfo & image_info,bool * quick_is_interpreted)2525 const uint8_t* ImageWriter::GetQuickCode(ArtMethod* method,
2526 const ImageInfo& image_info,
2527 bool* quick_is_interpreted) {
2528 DCHECK(!method->IsResolutionMethod()) << method->PrettyMethod();
2529 DCHECK_NE(method, Runtime::Current()->GetImtConflictMethod()) << method->PrettyMethod();
2530 DCHECK(!method->IsImtUnimplementedMethod()) << method->PrettyMethod();
2531 DCHECK(method->IsInvokable()) << method->PrettyMethod();
2532 DCHECK(!IsInBootImage(method)) << method->PrettyMethod();
2533
2534 // Use original code if it exists. Otherwise, set the code pointer to the resolution
2535 // trampoline.
2536
2537 // Quick entrypoint:
2538 const void* quick_oat_entry_point =
2539 method->GetEntryPointFromQuickCompiledCodePtrSize(target_ptr_size_);
2540 const uint8_t* quick_code;
2541
2542 if (UNLIKELY(IsInBootImage(method->GetDeclaringClass()))) {
2543 DCHECK(method->IsCopied());
2544 // If the code is not in the oat file corresponding to this image (e.g. default methods)
2545 quick_code = reinterpret_cast<const uint8_t*>(quick_oat_entry_point);
2546 } else {
2547 uint32_t quick_oat_code_offset = PointerToLowMemUInt32(quick_oat_entry_point);
2548 quick_code = GetOatAddressForOffset(quick_oat_code_offset, image_info);
2549 }
2550
2551 *quick_is_interpreted = false;
2552 if (quick_code != nullptr && (!method->IsStatic() || method->IsConstructor() ||
2553 method->GetDeclaringClass()->IsInitialized())) {
2554 // We have code for a non-static or initialized method, just use the code.
2555 } else if (quick_code == nullptr && method->IsNative() &&
2556 (!method->IsStatic() || method->GetDeclaringClass()->IsInitialized())) {
2557 // Non-static or initialized native method missing compiled code, use generic JNI version.
2558 quick_code = GetOatAddress(kOatAddressQuickGenericJNITrampoline);
2559 } else if (quick_code == nullptr && !method->IsNative()) {
2560 // We don't have code at all for a non-native method, use the interpreter.
2561 quick_code = GetOatAddress(kOatAddressQuickToInterpreterBridge);
2562 *quick_is_interpreted = true;
2563 } else {
2564 CHECK(!method->GetDeclaringClass()->IsInitialized());
2565 // We have code for a static method, but need to go through the resolution stub for class
2566 // initialization.
2567 quick_code = GetOatAddress(kOatAddressQuickResolutionTrampoline);
2568 }
2569 if (!IsInBootOatFile(quick_code)) {
2570 // DCHECK_GE(quick_code, oat_data_begin_);
2571 }
2572 return quick_code;
2573 }
2574
CopyAndFixupMethod(ArtMethod * orig,ArtMethod * copy,const ImageInfo & image_info)2575 void ImageWriter::CopyAndFixupMethod(ArtMethod* orig,
2576 ArtMethod* copy,
2577 const ImageInfo& image_info) {
2578 if (orig->IsAbstract()) {
2579 // Ignore the single-implementation info for abstract method.
2580 // Do this on orig instead of copy, otherwise there is a crash due to methods
2581 // are copied before classes.
2582 // TODO: handle fixup of single-implementation method for abstract method.
2583 orig->SetHasSingleImplementation(false);
2584 orig->SetSingleImplementation(
2585 nullptr, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
2586 }
2587
2588 memcpy(copy, orig, ArtMethod::Size(target_ptr_size_));
2589
2590 CopyReference(copy->GetDeclaringClassAddressWithoutBarrier(), orig->GetDeclaringClassUnchecked());
2591
2592 mirror::MethodDexCacheType* orig_resolved_methods =
2593 orig->GetDexCacheResolvedMethods(target_ptr_size_);
2594 copy->SetDexCacheResolvedMethods(NativeLocationInImage(orig_resolved_methods), target_ptr_size_);
2595
2596 // OatWriter replaces the code_ with an offset value. Here we re-adjust to a pointer relative to
2597 // oat_begin_
2598
2599 // The resolution method has a special trampoline to call.
2600 Runtime* runtime = Runtime::Current();
2601 if (orig->IsRuntimeMethod()) {
2602 ImtConflictTable* orig_table = orig->GetImtConflictTable(target_ptr_size_);
2603 if (orig_table != nullptr) {
2604 // Special IMT conflict method, normal IMT conflict method or unimplemented IMT method.
2605 copy->SetEntryPointFromQuickCompiledCodePtrSize(
2606 GetOatAddress(kOatAddressQuickIMTConflictTrampoline), target_ptr_size_);
2607 copy->SetImtConflictTable(NativeLocationInImage(orig_table), target_ptr_size_);
2608 } else if (UNLIKELY(orig == runtime->GetResolutionMethod())) {
2609 copy->SetEntryPointFromQuickCompiledCodePtrSize(
2610 GetOatAddress(kOatAddressQuickResolutionTrampoline), target_ptr_size_);
2611 } else {
2612 bool found_one = false;
2613 for (size_t i = 0; i < static_cast<size_t>(CalleeSaveType::kLastCalleeSaveType); ++i) {
2614 auto idx = static_cast<CalleeSaveType>(i);
2615 if (runtime->HasCalleeSaveMethod(idx) && runtime->GetCalleeSaveMethod(idx) == orig) {
2616 found_one = true;
2617 break;
2618 }
2619 }
2620 CHECK(found_one) << "Expected to find callee save method but got " << orig->PrettyMethod();
2621 CHECK(copy->IsRuntimeMethod());
2622 }
2623 } else {
2624 // We assume all methods have code. If they don't currently then we set them to the use the
2625 // resolution trampoline. Abstract methods never have code and so we need to make sure their
2626 // use results in an AbstractMethodError. We use the interpreter to achieve this.
2627 if (UNLIKELY(!orig->IsInvokable())) {
2628 copy->SetEntryPointFromQuickCompiledCodePtrSize(
2629 GetOatAddress(kOatAddressQuickToInterpreterBridge), target_ptr_size_);
2630 } else {
2631 bool quick_is_interpreted;
2632 const uint8_t* quick_code = GetQuickCode(orig, image_info, &quick_is_interpreted);
2633 copy->SetEntryPointFromQuickCompiledCodePtrSize(quick_code, target_ptr_size_);
2634
2635 // JNI entrypoint:
2636 if (orig->IsNative()) {
2637 // The native method's pointer is set to a stub to lookup via dlsym.
2638 // Note this is not the code_ pointer, that is handled above.
2639 copy->SetEntryPointFromJniPtrSize(
2640 GetOatAddress(kOatAddressJNIDlsymLookup), target_ptr_size_);
2641 }
2642 }
2643 }
2644 }
2645
GetBinSizeSum(ImageWriter::ImageInfo & image_info,ImageWriter::Bin up_to) const2646 size_t ImageWriter::GetBinSizeSum(ImageWriter::ImageInfo& image_info, ImageWriter::Bin up_to) const {
2647 DCHECK_LE(up_to, kBinSize);
2648 return std::accumulate(&image_info.bin_slot_sizes_[0],
2649 &image_info.bin_slot_sizes_[up_to],
2650 /*init*/0);
2651 }
2652
BinSlot(uint32_t lockword)2653 ImageWriter::BinSlot::BinSlot(uint32_t lockword) : lockword_(lockword) {
2654 // These values may need to get updated if more bins are added to the enum Bin
2655 static_assert(kBinBits == 3, "wrong number of bin bits");
2656 static_assert(kBinShift == 27, "wrong number of shift");
2657 static_assert(sizeof(BinSlot) == sizeof(LockWord), "BinSlot/LockWord must have equal sizes");
2658
2659 DCHECK_LT(GetBin(), kBinSize);
2660 DCHECK_ALIGNED(GetIndex(), kObjectAlignment);
2661 }
2662
BinSlot(Bin bin,uint32_t index)2663 ImageWriter::BinSlot::BinSlot(Bin bin, uint32_t index)
2664 : BinSlot(index | (static_cast<uint32_t>(bin) << kBinShift)) {
2665 DCHECK_EQ(index, GetIndex());
2666 }
2667
GetBin() const2668 ImageWriter::Bin ImageWriter::BinSlot::GetBin() const {
2669 return static_cast<Bin>((lockword_ & kBinMask) >> kBinShift);
2670 }
2671
GetIndex() const2672 uint32_t ImageWriter::BinSlot::GetIndex() const {
2673 return lockword_ & ~kBinMask;
2674 }
2675
BinTypeForNativeRelocationType(NativeObjectRelocationType type)2676 ImageWriter::Bin ImageWriter::BinTypeForNativeRelocationType(NativeObjectRelocationType type) {
2677 switch (type) {
2678 case kNativeObjectRelocationTypeArtField:
2679 case kNativeObjectRelocationTypeArtFieldArray:
2680 return kBinArtField;
2681 case kNativeObjectRelocationTypeArtMethodClean:
2682 case kNativeObjectRelocationTypeArtMethodArrayClean:
2683 return kBinArtMethodClean;
2684 case kNativeObjectRelocationTypeArtMethodDirty:
2685 case kNativeObjectRelocationTypeArtMethodArrayDirty:
2686 return kBinArtMethodDirty;
2687 case kNativeObjectRelocationTypeDexCacheArray:
2688 return kBinDexCacheArray;
2689 case kNativeObjectRelocationTypeRuntimeMethod:
2690 return kBinRuntimeMethod;
2691 case kNativeObjectRelocationTypeIMTable:
2692 return kBinImTable;
2693 case kNativeObjectRelocationTypeIMTConflictTable:
2694 return kBinIMTConflictTable;
2695 }
2696 UNREACHABLE();
2697 }
2698
GetOatIndex(mirror::Object * obj) const2699 size_t ImageWriter::GetOatIndex(mirror::Object* obj) const {
2700 if (!IsMultiImage()) {
2701 return GetDefaultOatIndex();
2702 }
2703 auto it = oat_index_map_.find(obj);
2704 DCHECK(it != oat_index_map_.end()) << obj;
2705 return it->second;
2706 }
2707
GetOatIndexForDexFile(const DexFile * dex_file) const2708 size_t ImageWriter::GetOatIndexForDexFile(const DexFile* dex_file) const {
2709 if (!IsMultiImage()) {
2710 return GetDefaultOatIndex();
2711 }
2712 auto it = dex_file_oat_index_map_.find(dex_file);
2713 DCHECK(it != dex_file_oat_index_map_.end()) << dex_file->GetLocation();
2714 return it->second;
2715 }
2716
GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const2717 size_t ImageWriter::GetOatIndexForDexCache(ObjPtr<mirror::DexCache> dex_cache) const {
2718 return (dex_cache == nullptr)
2719 ? GetDefaultOatIndex()
2720 : GetOatIndexForDexFile(dex_cache->GetDexFile());
2721 }
2722
UpdateOatFileLayout(size_t oat_index,size_t oat_loaded_size,size_t oat_data_offset,size_t oat_data_size)2723 void ImageWriter::UpdateOatFileLayout(size_t oat_index,
2724 size_t oat_loaded_size,
2725 size_t oat_data_offset,
2726 size_t oat_data_size) {
2727 const uint8_t* images_end = image_infos_.back().image_begin_ + image_infos_.back().image_size_;
2728 for (const ImageInfo& info : image_infos_) {
2729 DCHECK_LE(info.image_begin_ + info.image_size_, images_end);
2730 }
2731 DCHECK(images_end != nullptr); // Image space must be ready.
2732
2733 ImageInfo& cur_image_info = GetImageInfo(oat_index);
2734 cur_image_info.oat_file_begin_ = images_end + cur_image_info.oat_offset_;
2735 cur_image_info.oat_loaded_size_ = oat_loaded_size;
2736 cur_image_info.oat_data_begin_ = cur_image_info.oat_file_begin_ + oat_data_offset;
2737 cur_image_info.oat_size_ = oat_data_size;
2738
2739 if (compile_app_image_) {
2740 CHECK_EQ(oat_filenames_.size(), 1u) << "App image should have no next image.";
2741 return;
2742 }
2743
2744 // Update the oat_offset of the next image info.
2745 if (oat_index + 1u != oat_filenames_.size()) {
2746 // There is a following one.
2747 ImageInfo& next_image_info = GetImageInfo(oat_index + 1u);
2748 next_image_info.oat_offset_ = cur_image_info.oat_offset_ + oat_loaded_size;
2749 }
2750 }
2751
UpdateOatFileHeader(size_t oat_index,const OatHeader & oat_header)2752 void ImageWriter::UpdateOatFileHeader(size_t oat_index, const OatHeader& oat_header) {
2753 ImageInfo& cur_image_info = GetImageInfo(oat_index);
2754 cur_image_info.oat_checksum_ = oat_header.GetChecksum();
2755
2756 if (oat_index == GetDefaultOatIndex()) {
2757 // Primary oat file, read the trampolines.
2758 cur_image_info.oat_address_offsets_[kOatAddressInterpreterToInterpreterBridge] =
2759 oat_header.GetInterpreterToInterpreterBridgeOffset();
2760 cur_image_info.oat_address_offsets_[kOatAddressInterpreterToCompiledCodeBridge] =
2761 oat_header.GetInterpreterToCompiledCodeBridgeOffset();
2762 cur_image_info.oat_address_offsets_[kOatAddressJNIDlsymLookup] =
2763 oat_header.GetJniDlsymLookupOffset();
2764 cur_image_info.oat_address_offsets_[kOatAddressQuickGenericJNITrampoline] =
2765 oat_header.GetQuickGenericJniTrampolineOffset();
2766 cur_image_info.oat_address_offsets_[kOatAddressQuickIMTConflictTrampoline] =
2767 oat_header.GetQuickImtConflictTrampolineOffset();
2768 cur_image_info.oat_address_offsets_[kOatAddressQuickResolutionTrampoline] =
2769 oat_header.GetQuickResolutionTrampolineOffset();
2770 cur_image_info.oat_address_offsets_[kOatAddressQuickToInterpreterBridge] =
2771 oat_header.GetQuickToInterpreterBridgeOffset();
2772 }
2773 }
2774
ImageWriter(const CompilerDriver & compiler_driver,uintptr_t image_begin,bool compile_pic,bool compile_app_image,ImageHeader::StorageMode image_storage_mode,const std::vector<const char * > & oat_filenames,const std::unordered_map<const DexFile *,size_t> & dex_file_oat_index_map,const std::unordered_set<std::string> * dirty_image_objects)2775 ImageWriter::ImageWriter(
2776 const CompilerDriver& compiler_driver,
2777 uintptr_t image_begin,
2778 bool compile_pic,
2779 bool compile_app_image,
2780 ImageHeader::StorageMode image_storage_mode,
2781 const std::vector<const char*>& oat_filenames,
2782 const std::unordered_map<const DexFile*, size_t>& dex_file_oat_index_map,
2783 const std::unordered_set<std::string>* dirty_image_objects)
2784 : compiler_driver_(compiler_driver),
2785 global_image_begin_(reinterpret_cast<uint8_t*>(image_begin)),
2786 image_objects_offset_begin_(0),
2787 compile_pic_(compile_pic),
2788 compile_app_image_(compile_app_image),
2789 target_ptr_size_(InstructionSetPointerSize(compiler_driver_.GetInstructionSet())),
2790 image_infos_(oat_filenames.size()),
2791 dirty_methods_(0u),
2792 clean_methods_(0u),
2793 image_storage_mode_(image_storage_mode),
2794 oat_filenames_(oat_filenames),
2795 dex_file_oat_index_map_(dex_file_oat_index_map),
2796 dirty_image_objects_(dirty_image_objects) {
2797 CHECK_NE(image_begin, 0U);
2798 std::fill_n(image_methods_, arraysize(image_methods_), nullptr);
2799 CHECK_EQ(compile_app_image, !Runtime::Current()->GetHeap()->GetBootImageSpaces().empty())
2800 << "Compiling a boot image should occur iff there are no boot image spaces loaded";
2801 }
2802
ImageInfo()2803 ImageWriter::ImageInfo::ImageInfo()
2804 : intern_table_(new InternTable),
2805 class_table_(new ClassTable) {}
2806
CopyReference(mirror::HeapReference<mirror::Object> * dest,ObjPtr<mirror::Object> src)2807 void ImageWriter::CopyReference(mirror::HeapReference<mirror::Object>* dest,
2808 ObjPtr<mirror::Object> src) {
2809 dest->Assign(GetImageAddress(src.Ptr()));
2810 }
2811
CopyReference(mirror::CompressedReference<mirror::Object> * dest,ObjPtr<mirror::Object> src)2812 void ImageWriter::CopyReference(mirror::CompressedReference<mirror::Object>* dest,
2813 ObjPtr<mirror::Object> src) {
2814 dest->Assign(GetImageAddress(src.Ptr()));
2815 }
2816
CopyAndFixupPointer(void ** target,void * value)2817 void ImageWriter::CopyAndFixupPointer(void** target, void* value) {
2818 void* new_value = value;
2819 if (value != nullptr && !IsInBootImage(value)) {
2820 auto it = native_object_relocations_.find(value);
2821 CHECK(it != native_object_relocations_.end()) << value;
2822 const NativeObjectRelocation& relocation = it->second;
2823 ImageInfo& image_info = GetImageInfo(relocation.oat_index);
2824 new_value = reinterpret_cast<void*>(image_info.image_begin_ + relocation.offset);
2825 }
2826 if (target_ptr_size_ == PointerSize::k32) {
2827 *reinterpret_cast<uint32_t*>(target) = PointerToLowMemUInt32(new_value);
2828 } else {
2829 *reinterpret_cast<uint64_t*>(target) = reinterpret_cast<uintptr_t>(new_value);
2830 }
2831 }
2832
2833
2834 } // namespace art
2835