1 /** @file 2 Network library. 3 4 Copyright (c) 2005 - 2015, Intel Corporation. All rights reserved.<BR> 5 (C) Copyright 2015 Hewlett Packard Enterprise Development LP<BR> 6 This program and the accompanying materials 7 are licensed and made available under the terms and conditions of the BSD License 8 which accompanies this distribution. The full text of the license may be found at 9 http://opensource.org/licenses/bsd-license.php 10 11 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, 12 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. 13 **/ 14 15 #include <Uefi.h> 16 17 #include <IndustryStandard/SmBios.h> 18 19 #include <Protocol/DriverBinding.h> 20 #include <Protocol/ServiceBinding.h> 21 #include <Protocol/SimpleNetwork.h> 22 #include <Protocol/ManagedNetwork.h> 23 #include <Protocol/Ip4Config2.h> 24 #include <Protocol/ComponentName.h> 25 #include <Protocol/ComponentName2.h> 26 27 #include <Guid/SmBios.h> 28 29 #include <Library/NetLib.h> 30 #include <Library/BaseLib.h> 31 #include <Library/DebugLib.h> 32 #include <Library/BaseMemoryLib.h> 33 #include <Library/UefiBootServicesTableLib.h> 34 #include <Library/UefiRuntimeServicesTableLib.h> 35 #include <Library/MemoryAllocationLib.h> 36 #include <Library/DevicePathLib.h> 37 #include <Library/PrintLib.h> 38 #include <Library/UefiLib.h> 39 40 #define NIC_ITEM_CONFIG_SIZE sizeof (NIC_IP4_CONFIG_INFO) + sizeof (EFI_IP4_ROUTE_TABLE) * MAX_IP4_CONFIG_IN_VARIABLE 41 #define DEFAULT_ZERO_START ((UINTN) ~0) 42 43 // 44 // All the supported IP4 maskes in host byte order. 45 // 46 GLOBAL_REMOVE_IF_UNREFERENCED IP4_ADDR gIp4AllMasks[IP4_MASK_NUM] = { 47 0x00000000, 48 0x80000000, 49 0xC0000000, 50 0xE0000000, 51 0xF0000000, 52 0xF8000000, 53 0xFC000000, 54 0xFE000000, 55 56 0xFF000000, 57 0xFF800000, 58 0xFFC00000, 59 0xFFE00000, 60 0xFFF00000, 61 0xFFF80000, 62 0xFFFC0000, 63 0xFFFE0000, 64 65 0xFFFF0000, 66 0xFFFF8000, 67 0xFFFFC000, 68 0xFFFFE000, 69 0xFFFFF000, 70 0xFFFFF800, 71 0xFFFFFC00, 72 0xFFFFFE00, 73 74 0xFFFFFF00, 75 0xFFFFFF80, 76 0xFFFFFFC0, 77 0xFFFFFFE0, 78 0xFFFFFFF0, 79 0xFFFFFFF8, 80 0xFFFFFFFC, 81 0xFFFFFFFE, 82 0xFFFFFFFF, 83 }; 84 85 GLOBAL_REMOVE_IF_UNREFERENCED EFI_IPv4_ADDRESS mZeroIp4Addr = {{0, 0, 0, 0}}; 86 87 // 88 // Any error level digitally larger than mNetDebugLevelMax 89 // will be silently discarded. 90 // 91 GLOBAL_REMOVE_IF_UNREFERENCED UINTN mNetDebugLevelMax = NETDEBUG_LEVEL_ERROR; 92 GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogPacketSeq = 0xDEADBEEF; 93 94 // 95 // You can change mSyslogDstMac mSyslogDstIp and mSyslogSrcIp 96 // here to direct the syslog packets to the syslog deamon. The 97 // default is broadcast to both the ethernet and IP. 98 // 99 GLOBAL_REMOVE_IF_UNREFERENCED UINT8 mSyslogDstMac[NET_ETHER_ADDR_LEN] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; 100 GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogDstIp = 0xffffffff; 101 GLOBAL_REMOVE_IF_UNREFERENCED UINT32 mSyslogSrcIp = 0; 102 103 GLOBAL_REMOVE_IF_UNREFERENCED CHAR8 *mMonthName[] = { 104 "Jan", 105 "Feb", 106 "Mar", 107 "Apr", 108 "May", 109 "Jun", 110 "Jul", 111 "Aug", 112 "Sep", 113 "Oct", 114 "Nov", 115 "Dec" 116 }; 117 118 // 119 // VLAN device path node template 120 // 121 GLOBAL_REMOVE_IF_UNREFERENCED VLAN_DEVICE_PATH mNetVlanDevicePathTemplate = { 122 { 123 MESSAGING_DEVICE_PATH, 124 MSG_VLAN_DP, 125 { 126 (UINT8) (sizeof (VLAN_DEVICE_PATH)), 127 (UINT8) ((sizeof (VLAN_DEVICE_PATH)) >> 8) 128 } 129 }, 130 0 131 }; 132 133 /** 134 Locate the handles that support SNP, then open one of them 135 to send the syslog packets. The caller isn't required to close 136 the SNP after use because the SNP is opened by HandleProtocol. 137 138 @return The point to SNP if one is properly openned. Otherwise NULL 139 140 **/ 141 EFI_SIMPLE_NETWORK_PROTOCOL * SyslogLocateSnp(VOID)142 SyslogLocateSnp ( 143 VOID 144 ) 145 { 146 EFI_SIMPLE_NETWORK_PROTOCOL *Snp; 147 EFI_STATUS Status; 148 EFI_HANDLE *Handles; 149 UINTN HandleCount; 150 UINTN Index; 151 152 // 153 // Locate the handles which has SNP installed. 154 // 155 Handles = NULL; 156 Status = gBS->LocateHandleBuffer ( 157 ByProtocol, 158 &gEfiSimpleNetworkProtocolGuid, 159 NULL, 160 &HandleCount, 161 &Handles 162 ); 163 164 if (EFI_ERROR (Status) || (HandleCount == 0)) { 165 return NULL; 166 } 167 168 // 169 // Try to open one of the ethernet SNP protocol to send packet 170 // 171 Snp = NULL; 172 173 for (Index = 0; Index < HandleCount; Index++) { 174 Status = gBS->HandleProtocol ( 175 Handles[Index], 176 &gEfiSimpleNetworkProtocolGuid, 177 (VOID **) &Snp 178 ); 179 180 if ((Status == EFI_SUCCESS) && (Snp != NULL) && 181 (Snp->Mode->IfType == NET_IFTYPE_ETHERNET) && 182 (Snp->Mode->MaxPacketSize >= NET_SYSLOG_PACKET_LEN)) { 183 184 break; 185 } 186 187 Snp = NULL; 188 } 189 190 FreePool (Handles); 191 return Snp; 192 } 193 194 /** 195 Transmit a syslog packet synchronously through SNP. The Packet 196 already has the ethernet header prepended. This function should 197 fill in the source MAC because it will try to locate a SNP each 198 time it is called to avoid the problem if SNP is unloaded. 199 This code snip is copied from MNP. 200 201 @param[in] Packet The Syslog packet 202 @param[in] Length The length of the packet 203 204 @retval EFI_DEVICE_ERROR Failed to locate a usable SNP protocol 205 @retval EFI_TIMEOUT Timeout happened to send the packet. 206 @retval EFI_SUCCESS Packet is sent. 207 208 **/ 209 EFI_STATUS SyslogSendPacket(IN CHAR8 * Packet,IN UINT32 Length)210 SyslogSendPacket ( 211 IN CHAR8 *Packet, 212 IN UINT32 Length 213 ) 214 { 215 EFI_SIMPLE_NETWORK_PROTOCOL *Snp; 216 ETHER_HEAD *Ether; 217 EFI_STATUS Status; 218 EFI_EVENT TimeoutEvent; 219 UINT8 *TxBuf; 220 221 Snp = SyslogLocateSnp (); 222 223 if (Snp == NULL) { 224 return EFI_DEVICE_ERROR; 225 } 226 227 Ether = (ETHER_HEAD *) Packet; 228 CopyMem (Ether->SrcMac, Snp->Mode->CurrentAddress.Addr, NET_ETHER_ADDR_LEN); 229 230 // 231 // Start the timeout event. 232 // 233 Status = gBS->CreateEvent ( 234 EVT_TIMER, 235 TPL_NOTIFY, 236 NULL, 237 NULL, 238 &TimeoutEvent 239 ); 240 241 if (EFI_ERROR (Status)) { 242 return Status; 243 } 244 245 Status = gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT); 246 247 if (EFI_ERROR (Status)) { 248 goto ON_EXIT; 249 } 250 251 for (;;) { 252 // 253 // Transmit the packet through SNP. 254 // 255 Status = Snp->Transmit (Snp, 0, Length, Packet, NULL, NULL, NULL); 256 257 if ((Status != EFI_SUCCESS) && (Status != EFI_NOT_READY)) { 258 Status = EFI_DEVICE_ERROR; 259 break; 260 } 261 262 // 263 // If Status is EFI_SUCCESS, the packet is put in the transmit queue. 264 // if Status is EFI_NOT_READY, the transmit engine of the network 265 // interface is busy. Both need to sync SNP. 266 // 267 TxBuf = NULL; 268 269 do { 270 // 271 // Get the recycled transmit buffer status. 272 // 273 Snp->GetStatus (Snp, NULL, (VOID **) &TxBuf); 274 275 if (!EFI_ERROR (gBS->CheckEvent (TimeoutEvent))) { 276 Status = EFI_TIMEOUT; 277 break; 278 } 279 280 } while (TxBuf == NULL); 281 282 if ((Status == EFI_SUCCESS) || (Status == EFI_TIMEOUT)) { 283 break; 284 } 285 286 // 287 // Status is EFI_NOT_READY. Restart the timer event and 288 // call Snp->Transmit again. 289 // 290 gBS->SetTimer (TimeoutEvent, TimerRelative, NET_SYSLOG_TX_TIMEOUT); 291 } 292 293 gBS->SetTimer (TimeoutEvent, TimerCancel, 0); 294 295 ON_EXIT: 296 gBS->CloseEvent (TimeoutEvent); 297 return Status; 298 } 299 300 /** 301 Build a syslog packet, including the Ethernet/Ip/Udp headers 302 and user's message. 303 304 @param[in] Level Syslog servity level 305 @param[in] Module The module that generates the log 306 @param[in] File The file that contains the current log 307 @param[in] Line The line of code in the File that contains the current log 308 @param[in] Message The log message 309 @param[in] BufLen The lenght of the Buf 310 @param[out] Buf The buffer to put the packet data 311 312 @return The length of the syslog packet built. 313 314 **/ 315 UINT32 SyslogBuildPacket(IN UINT32 Level,IN UINT8 * Module,IN UINT8 * File,IN UINT32 Line,IN UINT8 * Message,IN UINT32 BufLen,OUT CHAR8 * Buf)316 SyslogBuildPacket ( 317 IN UINT32 Level, 318 IN UINT8 *Module, 319 IN UINT8 *File, 320 IN UINT32 Line, 321 IN UINT8 *Message, 322 IN UINT32 BufLen, 323 OUT CHAR8 *Buf 324 ) 325 { 326 ETHER_HEAD *Ether; 327 IP4_HEAD *Ip4; 328 EFI_UDP_HEADER *Udp4; 329 EFI_TIME Time; 330 UINT32 Pri; 331 UINT32 Len; 332 333 // 334 // Fill in the Ethernet header. Leave alone the source MAC. 335 // SyslogSendPacket will fill in the address for us. 336 // 337 Ether = (ETHER_HEAD *) Buf; 338 CopyMem (Ether->DstMac, mSyslogDstMac, NET_ETHER_ADDR_LEN); 339 ZeroMem (Ether->SrcMac, NET_ETHER_ADDR_LEN); 340 341 Ether->EtherType = HTONS (0x0800); // IPv4 protocol 342 343 Buf += sizeof (ETHER_HEAD); 344 BufLen -= sizeof (ETHER_HEAD); 345 346 // 347 // Fill in the IP header 348 // 349 Ip4 = (IP4_HEAD *) Buf; 350 Ip4->HeadLen = 5; 351 Ip4->Ver = 4; 352 Ip4->Tos = 0; 353 Ip4->TotalLen = 0; 354 Ip4->Id = (UINT16) mSyslogPacketSeq; 355 Ip4->Fragment = 0; 356 Ip4->Ttl = 16; 357 Ip4->Protocol = 0x11; 358 Ip4->Checksum = 0; 359 Ip4->Src = mSyslogSrcIp; 360 Ip4->Dst = mSyslogDstIp; 361 362 Buf += sizeof (IP4_HEAD); 363 BufLen -= sizeof (IP4_HEAD); 364 365 // 366 // Fill in the UDP header, Udp checksum is optional. Leave it zero. 367 // 368 Udp4 = (EFI_UDP_HEADER *) Buf; 369 Udp4->SrcPort = HTONS (514); 370 Udp4->DstPort = HTONS (514); 371 Udp4->Length = 0; 372 Udp4->Checksum = 0; 373 374 Buf += sizeof (EFI_UDP_HEADER); 375 BufLen -= sizeof (EFI_UDP_HEADER); 376 377 // 378 // Build the syslog message body with <PRI> Timestamp machine module Message 379 // 380 Pri = ((NET_SYSLOG_FACILITY & 31) << 3) | (Level & 7); 381 gRT->GetTime (&Time, NULL); 382 ASSERT ((Time.Month <= 12) && (Time.Month >= 1)); 383 384 // 385 // Use %a to format the ASCII strings, %s to format UNICODE strings 386 // 387 Len = 0; 388 Len += (UINT32) AsciiSPrint ( 389 Buf, 390 BufLen, 391 "<%d> %a %d %d:%d:%d ", 392 Pri, 393 mMonthName [Time.Month-1], 394 Time.Day, 395 Time.Hour, 396 Time.Minute, 397 Time.Second 398 ); 399 Len--; 400 401 Len += (UINT32) AsciiSPrint ( 402 Buf + Len, 403 BufLen - Len, 404 "Tiano %a: %a (Line: %d File: %a)", 405 Module, 406 Message, 407 Line, 408 File 409 ); 410 Len--; 411 412 // 413 // OK, patch the IP length/checksum and UDP length fields. 414 // 415 Len += sizeof (EFI_UDP_HEADER); 416 Udp4->Length = HTONS ((UINT16) Len); 417 418 Len += sizeof (IP4_HEAD); 419 Ip4->TotalLen = HTONS ((UINT16) Len); 420 Ip4->Checksum = (UINT16) (~NetblockChecksum ((UINT8 *) Ip4, sizeof (IP4_HEAD))); 421 422 return Len + sizeof (ETHER_HEAD); 423 } 424 425 /** 426 Allocate a buffer, then format the message to it. This is a 427 help function for the NET_DEBUG_XXX macros. The PrintArg of 428 these macros treats the variable length print parameters as a 429 single parameter, and pass it to the NetDebugASPrint. For 430 example, NET_DEBUG_TRACE ("Tcp", ("State transit to %a\n", Name)) 431 if extracted to: 432 433 NetDebugOutput ( 434 NETDEBUG_LEVEL_TRACE, 435 "Tcp", 436 __FILE__, 437 __LINE__, 438 NetDebugASPrint ("State transit to %a\n", Name) 439 ) 440 441 @param Format The ASCII format string. 442 @param ... The variable length parameter whose format is determined 443 by the Format string. 444 445 @return The buffer containing the formatted message, 446 or NULL if failed to allocate memory. 447 448 **/ 449 CHAR8 * 450 EFIAPI NetDebugASPrint(IN CHAR8 * Format,...)451 NetDebugASPrint ( 452 IN CHAR8 *Format, 453 ... 454 ) 455 { 456 VA_LIST Marker; 457 CHAR8 *Buf; 458 459 Buf = (CHAR8 *) AllocatePool (NET_DEBUG_MSG_LEN); 460 461 if (Buf == NULL) { 462 return NULL; 463 } 464 465 VA_START (Marker, Format); 466 AsciiVSPrint (Buf, NET_DEBUG_MSG_LEN, Format, Marker); 467 VA_END (Marker); 468 469 return Buf; 470 } 471 472 /** 473 Builds an UDP4 syslog packet and send it using SNP. 474 475 This function will locate a instance of SNP then send the message through it. 476 Because it isn't open the SNP BY_DRIVER, apply caution when using it. 477 478 @param Level The servity level of the message. 479 @param Module The Moudle that generates the log. 480 @param File The file that contains the log. 481 @param Line The exact line that contains the log. 482 @param Message The user message to log. 483 484 @retval EFI_INVALID_PARAMETER Any input parameter is invalid. 485 @retval EFI_OUT_OF_RESOURCES Failed to allocate memory for the packet 486 @retval EFI_SUCCESS The log is discard because that it is more verbose 487 than the mNetDebugLevelMax. Or, it has been sent out. 488 **/ 489 EFI_STATUS 490 EFIAPI NetDebugOutput(IN UINT32 Level,IN UINT8 * Module,IN UINT8 * File,IN UINT32 Line,IN UINT8 * Message)491 NetDebugOutput ( 492 IN UINT32 Level, 493 IN UINT8 *Module, 494 IN UINT8 *File, 495 IN UINT32 Line, 496 IN UINT8 *Message 497 ) 498 { 499 CHAR8 *Packet; 500 UINT32 Len; 501 EFI_STATUS Status; 502 503 // 504 // Check whether the message should be sent out 505 // 506 if (Message == NULL) { 507 return EFI_INVALID_PARAMETER; 508 } 509 510 if (Level > mNetDebugLevelMax) { 511 Status = EFI_SUCCESS; 512 goto ON_EXIT; 513 } 514 515 // 516 // Allocate a maxium of 1024 bytes, the caller should ensure 517 // that the message plus the ethernet/ip/udp header is shorter 518 // than this 519 // 520 Packet = (CHAR8 *) AllocatePool (NET_SYSLOG_PACKET_LEN); 521 522 if (Packet == NULL) { 523 Status = EFI_OUT_OF_RESOURCES; 524 goto ON_EXIT; 525 } 526 527 // 528 // Build the message: Ethernet header + IP header + Udp Header + user data 529 // 530 Len = SyslogBuildPacket ( 531 Level, 532 Module, 533 File, 534 Line, 535 Message, 536 NET_SYSLOG_PACKET_LEN, 537 Packet 538 ); 539 540 mSyslogPacketSeq++; 541 Status = SyslogSendPacket (Packet, Len); 542 FreePool (Packet); 543 544 ON_EXIT: 545 FreePool (Message); 546 return Status; 547 } 548 /** 549 Return the length of the mask. 550 551 Return the length of the mask, the correct value is from 0 to 32. 552 If the mask is invalid, return the invalid length 33, which is IP4_MASK_NUM. 553 NetMask is in the host byte order. 554 555 @param[in] NetMask The netmask to get the length from. 556 557 @return The length of the netmask, IP4_MASK_NUM if the mask is invalid. 558 559 **/ 560 INTN 561 EFIAPI NetGetMaskLength(IN IP4_ADDR NetMask)562 NetGetMaskLength ( 563 IN IP4_ADDR NetMask 564 ) 565 { 566 INTN Index; 567 568 for (Index = 0; Index < IP4_MASK_NUM; Index++) { 569 if (NetMask == gIp4AllMasks[Index]) { 570 break; 571 } 572 } 573 574 return Index; 575 } 576 577 578 579 /** 580 Return the class of the IP address, such as class A, B, C. 581 Addr is in host byte order. 582 583 The address of class A starts with 0. 584 If the address belong to class A, return IP4_ADDR_CLASSA. 585 The address of class B starts with 10. 586 If the address belong to class B, return IP4_ADDR_CLASSB. 587 The address of class C starts with 110. 588 If the address belong to class C, return IP4_ADDR_CLASSC. 589 The address of class D starts with 1110. 590 If the address belong to class D, return IP4_ADDR_CLASSD. 591 The address of class E starts with 1111. 592 If the address belong to class E, return IP4_ADDR_CLASSE. 593 594 595 @param[in] Addr The address to get the class from. 596 597 @return IP address class, such as IP4_ADDR_CLASSA. 598 599 **/ 600 INTN 601 EFIAPI NetGetIpClass(IN IP4_ADDR Addr)602 NetGetIpClass ( 603 IN IP4_ADDR Addr 604 ) 605 { 606 UINT8 ByteOne; 607 608 ByteOne = (UINT8) (Addr >> 24); 609 610 if ((ByteOne & 0x80) == 0) { 611 return IP4_ADDR_CLASSA; 612 613 } else if ((ByteOne & 0xC0) == 0x80) { 614 return IP4_ADDR_CLASSB; 615 616 } else if ((ByteOne & 0xE0) == 0xC0) { 617 return IP4_ADDR_CLASSC; 618 619 } else if ((ByteOne & 0xF0) == 0xE0) { 620 return IP4_ADDR_CLASSD; 621 622 } else { 623 return IP4_ADDR_CLASSE; 624 625 } 626 } 627 628 629 /** 630 Check whether the IP is a valid unicast address according to 631 the netmask. If NetMask is zero, use the IP address's class to get the default mask. 632 633 If Ip is 0, IP is not a valid unicast address. 634 Class D address is used for multicasting and class E address is reserved for future. If Ip 635 belongs to class D or class E, IP is not a valid unicast address. 636 If all bits of the host address of IP are 0 or 1, IP is also not a valid unicast address. 637 638 @param[in] Ip The IP to check against. 639 @param[in] NetMask The mask of the IP. 640 641 @return TRUE if IP is a valid unicast address on the network, otherwise FALSE. 642 643 **/ 644 BOOLEAN 645 EFIAPI NetIp4IsUnicast(IN IP4_ADDR Ip,IN IP4_ADDR NetMask)646 NetIp4IsUnicast ( 647 IN IP4_ADDR Ip, 648 IN IP4_ADDR NetMask 649 ) 650 { 651 INTN Class; 652 653 Class = NetGetIpClass (Ip); 654 655 if ((Ip == 0) || (Class >= IP4_ADDR_CLASSD)) { 656 return FALSE; 657 } 658 659 if (NetMask == 0) { 660 NetMask = gIp4AllMasks[Class << 3]; 661 } 662 663 if (((Ip &~NetMask) == ~NetMask) || ((Ip &~NetMask) == 0)) { 664 return FALSE; 665 } 666 667 return TRUE; 668 } 669 670 /** 671 Check whether the incoming IPv6 address is a valid unicast address. 672 673 If the address is a multicast address has binary 0xFF at the start, it is not 674 a valid unicast address. If the address is unspecified ::, it is not a valid 675 unicast address to be assigned to any node. If the address is loopback address 676 ::1, it is also not a valid unicast address to be assigned to any physical 677 interface. 678 679 @param[in] Ip6 The IPv6 address to check against. 680 681 @return TRUE if Ip6 is a valid unicast address on the network, otherwise FALSE. 682 683 **/ 684 BOOLEAN 685 EFIAPI NetIp6IsValidUnicast(IN EFI_IPv6_ADDRESS * Ip6)686 NetIp6IsValidUnicast ( 687 IN EFI_IPv6_ADDRESS *Ip6 688 ) 689 { 690 UINT8 Byte; 691 UINT8 Index; 692 693 if (Ip6->Addr[0] == 0xFF) { 694 return FALSE; 695 } 696 697 for (Index = 0; Index < 15; Index++) { 698 if (Ip6->Addr[Index] != 0) { 699 return TRUE; 700 } 701 } 702 703 Byte = Ip6->Addr[Index]; 704 705 if (Byte == 0x0 || Byte == 0x1) { 706 return FALSE; 707 } 708 709 return TRUE; 710 } 711 712 /** 713 Check whether the incoming Ipv6 address is the unspecified address or not. 714 715 @param[in] Ip6 - Ip6 address, in network order. 716 717 @retval TRUE - Yes, unspecified 718 @retval FALSE - No 719 720 **/ 721 BOOLEAN 722 EFIAPI NetIp6IsUnspecifiedAddr(IN EFI_IPv6_ADDRESS * Ip6)723 NetIp6IsUnspecifiedAddr ( 724 IN EFI_IPv6_ADDRESS *Ip6 725 ) 726 { 727 UINT8 Index; 728 729 for (Index = 0; Index < 16; Index++) { 730 if (Ip6->Addr[Index] != 0) { 731 return FALSE; 732 } 733 } 734 735 return TRUE; 736 } 737 738 /** 739 Check whether the incoming Ipv6 address is a link-local address. 740 741 @param[in] Ip6 - Ip6 address, in network order. 742 743 @retval TRUE - Yes, link-local address 744 @retval FALSE - No 745 746 **/ 747 BOOLEAN 748 EFIAPI NetIp6IsLinkLocalAddr(IN EFI_IPv6_ADDRESS * Ip6)749 NetIp6IsLinkLocalAddr ( 750 IN EFI_IPv6_ADDRESS *Ip6 751 ) 752 { 753 UINT8 Index; 754 755 ASSERT (Ip6 != NULL); 756 757 if (Ip6->Addr[0] != 0xFE) { 758 return FALSE; 759 } 760 761 if (Ip6->Addr[1] != 0x80) { 762 return FALSE; 763 } 764 765 for (Index = 2; Index < 8; Index++) { 766 if (Ip6->Addr[Index] != 0) { 767 return FALSE; 768 } 769 } 770 771 return TRUE; 772 } 773 774 /** 775 Check whether the Ipv6 address1 and address2 are on the connected network. 776 777 @param[in] Ip1 - Ip6 address1, in network order. 778 @param[in] Ip2 - Ip6 address2, in network order. 779 @param[in] PrefixLength - The prefix length of the checking net. 780 781 @retval TRUE - Yes, connected. 782 @retval FALSE - No. 783 784 **/ 785 BOOLEAN 786 EFIAPI NetIp6IsNetEqual(EFI_IPv6_ADDRESS * Ip1,EFI_IPv6_ADDRESS * Ip2,UINT8 PrefixLength)787 NetIp6IsNetEqual ( 788 EFI_IPv6_ADDRESS *Ip1, 789 EFI_IPv6_ADDRESS *Ip2, 790 UINT8 PrefixLength 791 ) 792 { 793 UINT8 Byte; 794 UINT8 Bit; 795 UINT8 Mask; 796 797 ASSERT ((Ip1 != NULL) && (Ip2 != NULL) && (PrefixLength < IP6_PREFIX_NUM)); 798 799 if (PrefixLength == 0) { 800 return TRUE; 801 } 802 803 Byte = (UINT8) (PrefixLength / 8); 804 Bit = (UINT8) (PrefixLength % 8); 805 806 if (CompareMem (Ip1, Ip2, Byte) != 0) { 807 return FALSE; 808 } 809 810 if (Bit > 0) { 811 Mask = (UINT8) (0xFF << (8 - Bit)); 812 813 ASSERT (Byte < 16); 814 if ((Ip1->Addr[Byte] & Mask) != (Ip2->Addr[Byte] & Mask)) { 815 return FALSE; 816 } 817 } 818 819 return TRUE; 820 } 821 822 823 /** 824 Switches the endianess of an IPv6 address 825 826 This function swaps the bytes in a 128-bit IPv6 address to switch the value 827 from little endian to big endian or vice versa. The byte swapped value is 828 returned. 829 830 @param Ip6 Points to an IPv6 address 831 832 @return The byte swapped IPv6 address. 833 834 **/ 835 EFI_IPv6_ADDRESS * 836 EFIAPI Ip6Swap128(EFI_IPv6_ADDRESS * Ip6)837 Ip6Swap128 ( 838 EFI_IPv6_ADDRESS *Ip6 839 ) 840 { 841 UINT64 High; 842 UINT64 Low; 843 844 CopyMem (&High, Ip6, sizeof (UINT64)); 845 CopyMem (&Low, &Ip6->Addr[8], sizeof (UINT64)); 846 847 High = SwapBytes64 (High); 848 Low = SwapBytes64 (Low); 849 850 CopyMem (Ip6, &Low, sizeof (UINT64)); 851 CopyMem (&Ip6->Addr[8], &High, sizeof (UINT64)); 852 853 return Ip6; 854 } 855 856 /** 857 Initialize a random seed using current time and monotonic count. 858 859 Get current time and monotonic count first. Then initialize a random seed 860 based on some basic mathematics operation on the hour, day, minute, second, 861 nanosecond and year of the current time and the monotonic count value. 862 863 @return The random seed initialized with current time. 864 865 **/ 866 UINT32 867 EFIAPI NetRandomInitSeed(VOID)868 NetRandomInitSeed ( 869 VOID 870 ) 871 { 872 EFI_TIME Time; 873 UINT32 Seed; 874 UINT64 MonotonicCount; 875 876 gRT->GetTime (&Time, NULL); 877 Seed = (~Time.Hour << 24 | Time.Day << 16 | Time.Minute << 8 | Time.Second); 878 Seed ^= Time.Nanosecond; 879 Seed ^= Time.Year << 7; 880 881 gBS->GetNextMonotonicCount (&MonotonicCount); 882 Seed += (UINT32) MonotonicCount; 883 884 return Seed; 885 } 886 887 888 /** 889 Extract a UINT32 from a byte stream. 890 891 Copy a UINT32 from a byte stream, then converts it from Network 892 byte order to host byte order. Use this function to avoid alignment error. 893 894 @param[in] Buf The buffer to extract the UINT32. 895 896 @return The UINT32 extracted. 897 898 **/ 899 UINT32 900 EFIAPI NetGetUint32(IN UINT8 * Buf)901 NetGetUint32 ( 902 IN UINT8 *Buf 903 ) 904 { 905 UINT32 Value; 906 907 CopyMem (&Value, Buf, sizeof (UINT32)); 908 return NTOHL (Value); 909 } 910 911 912 /** 913 Put a UINT32 to the byte stream in network byte order. 914 915 Converts a UINT32 from host byte order to network byte order. Then copy it to the 916 byte stream. 917 918 @param[in, out] Buf The buffer to put the UINT32. 919 @param[in] Data The data to be converted and put into the byte stream. 920 921 **/ 922 VOID 923 EFIAPI NetPutUint32(IN OUT UINT8 * Buf,IN UINT32 Data)924 NetPutUint32 ( 925 IN OUT UINT8 *Buf, 926 IN UINT32 Data 927 ) 928 { 929 Data = HTONL (Data); 930 CopyMem (Buf, &Data, sizeof (UINT32)); 931 } 932 933 934 /** 935 Remove the first node entry on the list, and return the removed node entry. 936 937 Removes the first node Entry from a doubly linked list. It is up to the caller of 938 this function to release the memory used by the first node if that is required. On 939 exit, the removed node is returned. 940 941 If Head is NULL, then ASSERT(). 942 If Head was not initialized, then ASSERT(). 943 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the 944 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, 945 then ASSERT(). 946 947 @param[in, out] Head The list header. 948 949 @return The first node entry that is removed from the list, NULL if the list is empty. 950 951 **/ 952 LIST_ENTRY * 953 EFIAPI NetListRemoveHead(IN OUT LIST_ENTRY * Head)954 NetListRemoveHead ( 955 IN OUT LIST_ENTRY *Head 956 ) 957 { 958 LIST_ENTRY *First; 959 960 ASSERT (Head != NULL); 961 962 if (IsListEmpty (Head)) { 963 return NULL; 964 } 965 966 First = Head->ForwardLink; 967 Head->ForwardLink = First->ForwardLink; 968 First->ForwardLink->BackLink = Head; 969 970 DEBUG_CODE ( 971 First->ForwardLink = (LIST_ENTRY *) NULL; 972 First->BackLink = (LIST_ENTRY *) NULL; 973 ); 974 975 return First; 976 } 977 978 979 /** 980 Remove the last node entry on the list and and return the removed node entry. 981 982 Removes the last node entry from a doubly linked list. It is up to the caller of 983 this function to release the memory used by the first node if that is required. On 984 exit, the removed node is returned. 985 986 If Head is NULL, then ASSERT(). 987 If Head was not initialized, then ASSERT(). 988 If PcdMaximumLinkedListLength is not zero, and the number of nodes in the 989 linked list including the head node is greater than or equal to PcdMaximumLinkedListLength, 990 then ASSERT(). 991 992 @param[in, out] Head The list head. 993 994 @return The last node entry that is removed from the list, NULL if the list is empty. 995 996 **/ 997 LIST_ENTRY * 998 EFIAPI NetListRemoveTail(IN OUT LIST_ENTRY * Head)999 NetListRemoveTail ( 1000 IN OUT LIST_ENTRY *Head 1001 ) 1002 { 1003 LIST_ENTRY *Last; 1004 1005 ASSERT (Head != NULL); 1006 1007 if (IsListEmpty (Head)) { 1008 return NULL; 1009 } 1010 1011 Last = Head->BackLink; 1012 Head->BackLink = Last->BackLink; 1013 Last->BackLink->ForwardLink = Head; 1014 1015 DEBUG_CODE ( 1016 Last->ForwardLink = (LIST_ENTRY *) NULL; 1017 Last->BackLink = (LIST_ENTRY *) NULL; 1018 ); 1019 1020 return Last; 1021 } 1022 1023 1024 /** 1025 Insert a new node entry after a designated node entry of a doubly linked list. 1026 1027 Inserts a new node entry donated by NewEntry after the node entry donated by PrevEntry 1028 of the doubly linked list. 1029 1030 @param[in, out] PrevEntry The previous entry to insert after. 1031 @param[in, out] NewEntry The new entry to insert. 1032 1033 **/ 1034 VOID 1035 EFIAPI NetListInsertAfter(IN OUT LIST_ENTRY * PrevEntry,IN OUT LIST_ENTRY * NewEntry)1036 NetListInsertAfter ( 1037 IN OUT LIST_ENTRY *PrevEntry, 1038 IN OUT LIST_ENTRY *NewEntry 1039 ) 1040 { 1041 NewEntry->BackLink = PrevEntry; 1042 NewEntry->ForwardLink = PrevEntry->ForwardLink; 1043 PrevEntry->ForwardLink->BackLink = NewEntry; 1044 PrevEntry->ForwardLink = NewEntry; 1045 } 1046 1047 1048 /** 1049 Insert a new node entry before a designated node entry of a doubly linked list. 1050 1051 Inserts a new node entry donated by NewEntry after the node entry donated by PostEntry 1052 of the doubly linked list. 1053 1054 @param[in, out] PostEntry The entry to insert before. 1055 @param[in, out] NewEntry The new entry to insert. 1056 1057 **/ 1058 VOID 1059 EFIAPI NetListInsertBefore(IN OUT LIST_ENTRY * PostEntry,IN OUT LIST_ENTRY * NewEntry)1060 NetListInsertBefore ( 1061 IN OUT LIST_ENTRY *PostEntry, 1062 IN OUT LIST_ENTRY *NewEntry 1063 ) 1064 { 1065 NewEntry->ForwardLink = PostEntry; 1066 NewEntry->BackLink = PostEntry->BackLink; 1067 PostEntry->BackLink->ForwardLink = NewEntry; 1068 PostEntry->BackLink = NewEntry; 1069 } 1070 1071 /** 1072 Safe destroy nodes in a linked list, and return the length of the list after all possible operations finished. 1073 1074 Destroy network child instance list by list traversals is not safe due to graph dependencies between nodes. 1075 This function performs a safe traversal to destroy these nodes by checking to see if the node being destroyed 1076 has been removed from the list or not. 1077 If it has been removed, then restart the traversal from the head. 1078 If it hasn't been removed, then continue with the next node directly. 1079 This function will end the iterate and return the CallBack's last return value if error happens, 1080 or retrun EFI_SUCCESS if 2 complete passes are made with no changes in the number of children in the list. 1081 1082 @param[in] List The head of the list. 1083 @param[in] CallBack Pointer to the callback function to destroy one node in the list. 1084 @param[in] Context Pointer to the callback function's context: corresponds to the 1085 parameter Context in NET_DESTROY_LINK_LIST_CALLBACK. 1086 @param[out] ListLength The length of the link list if the function returns successfully. 1087 1088 @retval EFI_SUCCESS Two complete passes are made with no changes in the number of children. 1089 @retval EFI_INVALID_PARAMETER The input parameter is invalid. 1090 @retval Others Return the CallBack's last return value. 1091 1092 **/ 1093 EFI_STATUS 1094 EFIAPI NetDestroyLinkList(IN LIST_ENTRY * List,IN NET_DESTROY_LINK_LIST_CALLBACK CallBack,IN VOID * Context,OPTIONAL OUT UINTN * ListLength OPTIONAL)1095 NetDestroyLinkList ( 1096 IN LIST_ENTRY *List, 1097 IN NET_DESTROY_LINK_LIST_CALLBACK CallBack, 1098 IN VOID *Context, OPTIONAL 1099 OUT UINTN *ListLength OPTIONAL 1100 ) 1101 { 1102 UINTN PreviousLength; 1103 LIST_ENTRY *Entry; 1104 LIST_ENTRY *Ptr; 1105 UINTN Length; 1106 EFI_STATUS Status; 1107 1108 if (List == NULL || CallBack == NULL) { 1109 return EFI_INVALID_PARAMETER; 1110 } 1111 1112 Length = 0; 1113 do { 1114 PreviousLength = Length; 1115 Entry = GetFirstNode (List); 1116 while (!IsNull (List, Entry)) { 1117 Status = CallBack (Entry, Context); 1118 if (EFI_ERROR (Status)) { 1119 return Status; 1120 } 1121 // 1122 // Walk through the list to see whether the Entry has been removed or not. 1123 // If the Entry still exists, just try to destroy the next one. 1124 // If not, go back to the start point to iterate the list again. 1125 // 1126 for (Ptr = List->ForwardLink; Ptr != List; Ptr = Ptr->ForwardLink) { 1127 if (Ptr == Entry) { 1128 break; 1129 } 1130 } 1131 if (Ptr == Entry) { 1132 Entry = GetNextNode (List, Entry); 1133 } else { 1134 Entry = GetFirstNode (List); 1135 } 1136 } 1137 for (Length = 0, Ptr = List->ForwardLink; Ptr != List; Length++, Ptr = Ptr->ForwardLink); 1138 } while (Length != PreviousLength); 1139 1140 if (ListLength != NULL) { 1141 *ListLength = Length; 1142 } 1143 return EFI_SUCCESS; 1144 } 1145 1146 /** 1147 This function checks the input Handle to see if it's one of these handles in ChildHandleBuffer. 1148 1149 @param[in] Handle Handle to be checked. 1150 @param[in] NumberOfChildren Number of Handles in ChildHandleBuffer. 1151 @param[in] ChildHandleBuffer An array of child handles to be freed. May be NULL 1152 if NumberOfChildren is 0. 1153 1154 @retval TURE Found the input Handle in ChildHandleBuffer. 1155 @retval FALSE Can't find the input Handle in ChildHandleBuffer. 1156 1157 **/ 1158 BOOLEAN 1159 EFIAPI NetIsInHandleBuffer(IN EFI_HANDLE Handle,IN UINTN NumberOfChildren,IN EFI_HANDLE * ChildHandleBuffer OPTIONAL)1160 NetIsInHandleBuffer ( 1161 IN EFI_HANDLE Handle, 1162 IN UINTN NumberOfChildren, 1163 IN EFI_HANDLE *ChildHandleBuffer OPTIONAL 1164 ) 1165 { 1166 UINTN Index; 1167 1168 if (NumberOfChildren == 0 || ChildHandleBuffer == NULL) { 1169 return FALSE; 1170 } 1171 1172 for (Index = 0; Index < NumberOfChildren; Index++) { 1173 if (Handle == ChildHandleBuffer[Index]) { 1174 return TRUE; 1175 } 1176 } 1177 1178 return FALSE; 1179 } 1180 1181 1182 /** 1183 Initialize the netmap. Netmap is a reposity to keep the <Key, Value> pairs. 1184 1185 Initialize the forward and backward links of two head nodes donated by Map->Used 1186 and Map->Recycled of two doubly linked lists. 1187 Initializes the count of the <Key, Value> pairs in the netmap to zero. 1188 1189 If Map is NULL, then ASSERT(). 1190 If the address of Map->Used is NULL, then ASSERT(). 1191 If the address of Map->Recycled is NULl, then ASSERT(). 1192 1193 @param[in, out] Map The netmap to initialize. 1194 1195 **/ 1196 VOID 1197 EFIAPI NetMapInit(IN OUT NET_MAP * Map)1198 NetMapInit ( 1199 IN OUT NET_MAP *Map 1200 ) 1201 { 1202 ASSERT (Map != NULL); 1203 1204 InitializeListHead (&Map->Used); 1205 InitializeListHead (&Map->Recycled); 1206 Map->Count = 0; 1207 } 1208 1209 1210 /** 1211 To clean up the netmap, that is, release allocated memories. 1212 1213 Removes all nodes of the Used doubly linked list and free memory of all related netmap items. 1214 Removes all nodes of the Recycled doubly linked list and free memory of all related netmap items. 1215 The number of the <Key, Value> pairs in the netmap is set to be zero. 1216 1217 If Map is NULL, then ASSERT(). 1218 1219 @param[in, out] Map The netmap to clean up. 1220 1221 **/ 1222 VOID 1223 EFIAPI NetMapClean(IN OUT NET_MAP * Map)1224 NetMapClean ( 1225 IN OUT NET_MAP *Map 1226 ) 1227 { 1228 NET_MAP_ITEM *Item; 1229 LIST_ENTRY *Entry; 1230 LIST_ENTRY *Next; 1231 1232 ASSERT (Map != NULL); 1233 1234 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Used) { 1235 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); 1236 1237 RemoveEntryList (&Item->Link); 1238 Map->Count--; 1239 1240 gBS->FreePool (Item); 1241 } 1242 1243 ASSERT ((Map->Count == 0) && IsListEmpty (&Map->Used)); 1244 1245 NET_LIST_FOR_EACH_SAFE (Entry, Next, &Map->Recycled) { 1246 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); 1247 1248 RemoveEntryList (&Item->Link); 1249 gBS->FreePool (Item); 1250 } 1251 1252 ASSERT (IsListEmpty (&Map->Recycled)); 1253 } 1254 1255 1256 /** 1257 Test whether the netmap is empty and return true if it is. 1258 1259 If the number of the <Key, Value> pairs in the netmap is zero, return TRUE. 1260 1261 If Map is NULL, then ASSERT(). 1262 1263 1264 @param[in] Map The net map to test. 1265 1266 @return TRUE if the netmap is empty, otherwise FALSE. 1267 1268 **/ 1269 BOOLEAN 1270 EFIAPI NetMapIsEmpty(IN NET_MAP * Map)1271 NetMapIsEmpty ( 1272 IN NET_MAP *Map 1273 ) 1274 { 1275 ASSERT (Map != NULL); 1276 return (BOOLEAN) (Map->Count == 0); 1277 } 1278 1279 1280 /** 1281 Return the number of the <Key, Value> pairs in the netmap. 1282 1283 @param[in] Map The netmap to get the entry number. 1284 1285 @return The entry number in the netmap. 1286 1287 **/ 1288 UINTN 1289 EFIAPI NetMapGetCount(IN NET_MAP * Map)1290 NetMapGetCount ( 1291 IN NET_MAP *Map 1292 ) 1293 { 1294 return Map->Count; 1295 } 1296 1297 1298 /** 1299 Return one allocated item. 1300 1301 If the Recycled doubly linked list of the netmap is empty, it will try to allocate 1302 a batch of items if there are enough resources and add corresponding nodes to the begining 1303 of the Recycled doubly linked list of the netmap. Otherwise, it will directly remove 1304 the fist node entry of the Recycled doubly linked list and return the corresponding item. 1305 1306 If Map is NULL, then ASSERT(). 1307 1308 @param[in, out] Map The netmap to allocate item for. 1309 1310 @return The allocated item. If NULL, the 1311 allocation failed due to resource limit. 1312 1313 **/ 1314 NET_MAP_ITEM * NetMapAllocItem(IN OUT NET_MAP * Map)1315 NetMapAllocItem ( 1316 IN OUT NET_MAP *Map 1317 ) 1318 { 1319 NET_MAP_ITEM *Item; 1320 LIST_ENTRY *Head; 1321 UINTN Index; 1322 1323 ASSERT (Map != NULL); 1324 1325 Head = &Map->Recycled; 1326 1327 if (IsListEmpty (Head)) { 1328 for (Index = 0; Index < NET_MAP_INCREAMENT; Index++) { 1329 Item = AllocatePool (sizeof (NET_MAP_ITEM)); 1330 1331 if (Item == NULL) { 1332 if (Index == 0) { 1333 return NULL; 1334 } 1335 1336 break; 1337 } 1338 1339 InsertHeadList (Head, &Item->Link); 1340 } 1341 } 1342 1343 Item = NET_LIST_HEAD (Head, NET_MAP_ITEM, Link); 1344 NetListRemoveHead (Head); 1345 1346 return Item; 1347 } 1348 1349 1350 /** 1351 Allocate an item to save the <Key, Value> pair to the head of the netmap. 1352 1353 Allocate an item to save the <Key, Value> pair and add corresponding node entry 1354 to the beginning of the Used doubly linked list. The number of the <Key, Value> 1355 pairs in the netmap increase by 1. 1356 1357 If Map is NULL, then ASSERT(). 1358 1359 @param[in, out] Map The netmap to insert into. 1360 @param[in] Key The user's key. 1361 @param[in] Value The user's value for the key. 1362 1363 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. 1364 @retval EFI_SUCCESS The item is inserted to the head. 1365 1366 **/ 1367 EFI_STATUS 1368 EFIAPI NetMapInsertHead(IN OUT NET_MAP * Map,IN VOID * Key,IN VOID * Value OPTIONAL)1369 NetMapInsertHead ( 1370 IN OUT NET_MAP *Map, 1371 IN VOID *Key, 1372 IN VOID *Value OPTIONAL 1373 ) 1374 { 1375 NET_MAP_ITEM *Item; 1376 1377 ASSERT (Map != NULL); 1378 1379 Item = NetMapAllocItem (Map); 1380 1381 if (Item == NULL) { 1382 return EFI_OUT_OF_RESOURCES; 1383 } 1384 1385 Item->Key = Key; 1386 Item->Value = Value; 1387 InsertHeadList (&Map->Used, &Item->Link); 1388 1389 Map->Count++; 1390 return EFI_SUCCESS; 1391 } 1392 1393 1394 /** 1395 Allocate an item to save the <Key, Value> pair to the tail of the netmap. 1396 1397 Allocate an item to save the <Key, Value> pair and add corresponding node entry 1398 to the tail of the Used doubly linked list. The number of the <Key, Value> 1399 pairs in the netmap increase by 1. 1400 1401 If Map is NULL, then ASSERT(). 1402 1403 @param[in, out] Map The netmap to insert into. 1404 @param[in] Key The user's key. 1405 @param[in] Value The user's value for the key. 1406 1407 @retval EFI_OUT_OF_RESOURCES Failed to allocate the memory for the item. 1408 @retval EFI_SUCCESS The item is inserted to the tail. 1409 1410 **/ 1411 EFI_STATUS 1412 EFIAPI NetMapInsertTail(IN OUT NET_MAP * Map,IN VOID * Key,IN VOID * Value OPTIONAL)1413 NetMapInsertTail ( 1414 IN OUT NET_MAP *Map, 1415 IN VOID *Key, 1416 IN VOID *Value OPTIONAL 1417 ) 1418 { 1419 NET_MAP_ITEM *Item; 1420 1421 ASSERT (Map != NULL); 1422 1423 Item = NetMapAllocItem (Map); 1424 1425 if (Item == NULL) { 1426 return EFI_OUT_OF_RESOURCES; 1427 } 1428 1429 Item->Key = Key; 1430 Item->Value = Value; 1431 InsertTailList (&Map->Used, &Item->Link); 1432 1433 Map->Count++; 1434 1435 return EFI_SUCCESS; 1436 } 1437 1438 1439 /** 1440 Check whether the item is in the Map and return TRUE if it is. 1441 1442 @param[in] Map The netmap to search within. 1443 @param[in] Item The item to search. 1444 1445 @return TRUE if the item is in the netmap, otherwise FALSE. 1446 1447 **/ 1448 BOOLEAN NetItemInMap(IN NET_MAP * Map,IN NET_MAP_ITEM * Item)1449 NetItemInMap ( 1450 IN NET_MAP *Map, 1451 IN NET_MAP_ITEM *Item 1452 ) 1453 { 1454 LIST_ENTRY *ListEntry; 1455 1456 NET_LIST_FOR_EACH (ListEntry, &Map->Used) { 1457 if (ListEntry == &Item->Link) { 1458 return TRUE; 1459 } 1460 } 1461 1462 return FALSE; 1463 } 1464 1465 1466 /** 1467 Find the key in the netmap and returns the point to the item contains the Key. 1468 1469 Iterate the Used doubly linked list of the netmap to get every item. Compare the key of every 1470 item with the key to search. It returns the point to the item contains the Key if found. 1471 1472 If Map is NULL, then ASSERT(). 1473 1474 @param[in] Map The netmap to search within. 1475 @param[in] Key The key to search. 1476 1477 @return The point to the item contains the Key, or NULL if Key isn't in the map. 1478 1479 **/ 1480 NET_MAP_ITEM * 1481 EFIAPI NetMapFindKey(IN NET_MAP * Map,IN VOID * Key)1482 NetMapFindKey ( 1483 IN NET_MAP *Map, 1484 IN VOID *Key 1485 ) 1486 { 1487 LIST_ENTRY *Entry; 1488 NET_MAP_ITEM *Item; 1489 1490 ASSERT (Map != NULL); 1491 1492 NET_LIST_FOR_EACH (Entry, &Map->Used) { 1493 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); 1494 1495 if (Item->Key == Key) { 1496 return Item; 1497 } 1498 } 1499 1500 return NULL; 1501 } 1502 1503 1504 /** 1505 Remove the node entry of the item from the netmap and return the key of the removed item. 1506 1507 Remove the node entry of the item from the Used doubly linked list of the netmap. 1508 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node 1509 entry of the item to the Recycled doubly linked list of the netmap. If Value is not NULL, 1510 Value will point to the value of the item. It returns the key of the removed item. 1511 1512 If Map is NULL, then ASSERT(). 1513 If Item is NULL, then ASSERT(). 1514 if item in not in the netmap, then ASSERT(). 1515 1516 @param[in, out] Map The netmap to remove the item from. 1517 @param[in, out] Item The item to remove. 1518 @param[out] Value The variable to receive the value if not NULL. 1519 1520 @return The key of the removed item. 1521 1522 **/ 1523 VOID * 1524 EFIAPI NetMapRemoveItem(IN OUT NET_MAP * Map,IN OUT NET_MAP_ITEM * Item,OUT VOID ** Value OPTIONAL)1525 NetMapRemoveItem ( 1526 IN OUT NET_MAP *Map, 1527 IN OUT NET_MAP_ITEM *Item, 1528 OUT VOID **Value OPTIONAL 1529 ) 1530 { 1531 ASSERT ((Map != NULL) && (Item != NULL)); 1532 ASSERT (NetItemInMap (Map, Item)); 1533 1534 RemoveEntryList (&Item->Link); 1535 Map->Count--; 1536 InsertHeadList (&Map->Recycled, &Item->Link); 1537 1538 if (Value != NULL) { 1539 *Value = Item->Value; 1540 } 1541 1542 return Item->Key; 1543 } 1544 1545 1546 /** 1547 Remove the first node entry on the netmap and return the key of the removed item. 1548 1549 Remove the first node entry from the Used doubly linked list of the netmap. 1550 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node 1551 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, 1552 parameter Value will point to the value of the item. It returns the key of the removed item. 1553 1554 If Map is NULL, then ASSERT(). 1555 If the Used doubly linked list is empty, then ASSERT(). 1556 1557 @param[in, out] Map The netmap to remove the head from. 1558 @param[out] Value The variable to receive the value if not NULL. 1559 1560 @return The key of the item removed. 1561 1562 **/ 1563 VOID * 1564 EFIAPI NetMapRemoveHead(IN OUT NET_MAP * Map,OUT VOID ** Value OPTIONAL)1565 NetMapRemoveHead ( 1566 IN OUT NET_MAP *Map, 1567 OUT VOID **Value OPTIONAL 1568 ) 1569 { 1570 NET_MAP_ITEM *Item; 1571 1572 // 1573 // Often, it indicates a programming error to remove 1574 // the first entry in an empty list 1575 // 1576 ASSERT (Map && !IsListEmpty (&Map->Used)); 1577 1578 Item = NET_LIST_HEAD (&Map->Used, NET_MAP_ITEM, Link); 1579 RemoveEntryList (&Item->Link); 1580 Map->Count--; 1581 InsertHeadList (&Map->Recycled, &Item->Link); 1582 1583 if (Value != NULL) { 1584 *Value = Item->Value; 1585 } 1586 1587 return Item->Key; 1588 } 1589 1590 1591 /** 1592 Remove the last node entry on the netmap and return the key of the removed item. 1593 1594 Remove the last node entry from the Used doubly linked list of the netmap. 1595 The number of the <Key, Value> pairs in the netmap decrease by 1. Then add the node 1596 entry to the Recycled doubly linked list of the netmap. If parameter Value is not NULL, 1597 parameter Value will point to the value of the item. It returns the key of the removed item. 1598 1599 If Map is NULL, then ASSERT(). 1600 If the Used doubly linked list is empty, then ASSERT(). 1601 1602 @param[in, out] Map The netmap to remove the tail from. 1603 @param[out] Value The variable to receive the value if not NULL. 1604 1605 @return The key of the item removed. 1606 1607 **/ 1608 VOID * 1609 EFIAPI NetMapRemoveTail(IN OUT NET_MAP * Map,OUT VOID ** Value OPTIONAL)1610 NetMapRemoveTail ( 1611 IN OUT NET_MAP *Map, 1612 OUT VOID **Value OPTIONAL 1613 ) 1614 { 1615 NET_MAP_ITEM *Item; 1616 1617 // 1618 // Often, it indicates a programming error to remove 1619 // the last entry in an empty list 1620 // 1621 ASSERT (Map && !IsListEmpty (&Map->Used)); 1622 1623 Item = NET_LIST_TAIL (&Map->Used, NET_MAP_ITEM, Link); 1624 RemoveEntryList (&Item->Link); 1625 Map->Count--; 1626 InsertHeadList (&Map->Recycled, &Item->Link); 1627 1628 if (Value != NULL) { 1629 *Value = Item->Value; 1630 } 1631 1632 return Item->Key; 1633 } 1634 1635 1636 /** 1637 Iterate through the netmap and call CallBack for each item. 1638 1639 It will contiue the traverse if CallBack returns EFI_SUCCESS, otherwise, break 1640 from the loop. It returns the CallBack's last return value. This function is 1641 delete safe for the current item. 1642 1643 If Map is NULL, then ASSERT(). 1644 If CallBack is NULL, then ASSERT(). 1645 1646 @param[in] Map The Map to iterate through. 1647 @param[in] CallBack The callback function to call for each item. 1648 @param[in] Arg The opaque parameter to the callback. 1649 1650 @retval EFI_SUCCESS There is no item in the netmap or CallBack for each item 1651 return EFI_SUCCESS. 1652 @retval Others It returns the CallBack's last return value. 1653 1654 **/ 1655 EFI_STATUS 1656 EFIAPI NetMapIterate(IN NET_MAP * Map,IN NET_MAP_CALLBACK CallBack,IN VOID * Arg OPTIONAL)1657 NetMapIterate ( 1658 IN NET_MAP *Map, 1659 IN NET_MAP_CALLBACK CallBack, 1660 IN VOID *Arg OPTIONAL 1661 ) 1662 { 1663 1664 LIST_ENTRY *Entry; 1665 LIST_ENTRY *Next; 1666 LIST_ENTRY *Head; 1667 NET_MAP_ITEM *Item; 1668 EFI_STATUS Result; 1669 1670 ASSERT ((Map != NULL) && (CallBack != NULL)); 1671 1672 Head = &Map->Used; 1673 1674 if (IsListEmpty (Head)) { 1675 return EFI_SUCCESS; 1676 } 1677 1678 NET_LIST_FOR_EACH_SAFE (Entry, Next, Head) { 1679 Item = NET_LIST_USER_STRUCT (Entry, NET_MAP_ITEM, Link); 1680 Result = CallBack (Map, Item, Arg); 1681 1682 if (EFI_ERROR (Result)) { 1683 return Result; 1684 } 1685 } 1686 1687 return EFI_SUCCESS; 1688 } 1689 1690 1691 /** 1692 This is the default unload handle for all the network drivers. 1693 1694 Disconnect the driver specified by ImageHandle from all the devices in the handle database. 1695 Uninstall all the protocols installed in the driver entry point. 1696 1697 @param[in] ImageHandle The drivers' driver image. 1698 1699 @retval EFI_SUCCESS The image is unloaded. 1700 @retval Others Failed to unload the image. 1701 1702 **/ 1703 EFI_STATUS 1704 EFIAPI NetLibDefaultUnload(IN EFI_HANDLE ImageHandle)1705 NetLibDefaultUnload ( 1706 IN EFI_HANDLE ImageHandle 1707 ) 1708 { 1709 EFI_STATUS Status; 1710 EFI_HANDLE *DeviceHandleBuffer; 1711 UINTN DeviceHandleCount; 1712 UINTN Index; 1713 UINTN Index2; 1714 EFI_DRIVER_BINDING_PROTOCOL *DriverBinding; 1715 EFI_COMPONENT_NAME_PROTOCOL *ComponentName; 1716 EFI_COMPONENT_NAME2_PROTOCOL *ComponentName2; 1717 1718 // 1719 // Get the list of all the handles in the handle database. 1720 // If there is an error getting the list, then the unload 1721 // operation fails. 1722 // 1723 Status = gBS->LocateHandleBuffer ( 1724 AllHandles, 1725 NULL, 1726 NULL, 1727 &DeviceHandleCount, 1728 &DeviceHandleBuffer 1729 ); 1730 1731 if (EFI_ERROR (Status)) { 1732 return Status; 1733 } 1734 1735 for (Index = 0; Index < DeviceHandleCount; Index++) { 1736 Status = gBS->HandleProtocol ( 1737 DeviceHandleBuffer[Index], 1738 &gEfiDriverBindingProtocolGuid, 1739 (VOID **) &DriverBinding 1740 ); 1741 if (EFI_ERROR (Status)) { 1742 continue; 1743 } 1744 1745 if (DriverBinding->ImageHandle != ImageHandle) { 1746 continue; 1747 } 1748 1749 // 1750 // Disconnect the driver specified by ImageHandle from all 1751 // the devices in the handle database. 1752 // 1753 for (Index2 = 0; Index2 < DeviceHandleCount; Index2++) { 1754 Status = gBS->DisconnectController ( 1755 DeviceHandleBuffer[Index2], 1756 DriverBinding->DriverBindingHandle, 1757 NULL 1758 ); 1759 } 1760 1761 // 1762 // Uninstall all the protocols installed in the driver entry point 1763 // 1764 gBS->UninstallProtocolInterface ( 1765 DriverBinding->DriverBindingHandle, 1766 &gEfiDriverBindingProtocolGuid, 1767 DriverBinding 1768 ); 1769 1770 Status = gBS->HandleProtocol ( 1771 DeviceHandleBuffer[Index], 1772 &gEfiComponentNameProtocolGuid, 1773 (VOID **) &ComponentName 1774 ); 1775 if (!EFI_ERROR (Status)) { 1776 gBS->UninstallProtocolInterface ( 1777 DriverBinding->DriverBindingHandle, 1778 &gEfiComponentNameProtocolGuid, 1779 ComponentName 1780 ); 1781 } 1782 1783 Status = gBS->HandleProtocol ( 1784 DeviceHandleBuffer[Index], 1785 &gEfiComponentName2ProtocolGuid, 1786 (VOID **) &ComponentName2 1787 ); 1788 if (!EFI_ERROR (Status)) { 1789 gBS->UninstallProtocolInterface ( 1790 DriverBinding->DriverBindingHandle, 1791 &gEfiComponentName2ProtocolGuid, 1792 ComponentName2 1793 ); 1794 } 1795 } 1796 1797 // 1798 // Free the buffer containing the list of handles from the handle database 1799 // 1800 if (DeviceHandleBuffer != NULL) { 1801 gBS->FreePool (DeviceHandleBuffer); 1802 } 1803 1804 return EFI_SUCCESS; 1805 } 1806 1807 1808 1809 /** 1810 Create a child of the service that is identified by ServiceBindingGuid. 1811 1812 Get the ServiceBinding Protocol first, then use it to create a child. 1813 1814 If ServiceBindingGuid is NULL, then ASSERT(). 1815 If ChildHandle is NULL, then ASSERT(). 1816 1817 @param[in] Controller The controller which has the service installed. 1818 @param[in] Image The image handle used to open service. 1819 @param[in] ServiceBindingGuid The service's Guid. 1820 @param[in, out] ChildHandle The handle to receive the create child. 1821 1822 @retval EFI_SUCCESS The child is successfully created. 1823 @retval Others Failed to create the child. 1824 1825 **/ 1826 EFI_STATUS 1827 EFIAPI NetLibCreateServiceChild(IN EFI_HANDLE Controller,IN EFI_HANDLE Image,IN EFI_GUID * ServiceBindingGuid,IN OUT EFI_HANDLE * ChildHandle)1828 NetLibCreateServiceChild ( 1829 IN EFI_HANDLE Controller, 1830 IN EFI_HANDLE Image, 1831 IN EFI_GUID *ServiceBindingGuid, 1832 IN OUT EFI_HANDLE *ChildHandle 1833 ) 1834 { 1835 EFI_STATUS Status; 1836 EFI_SERVICE_BINDING_PROTOCOL *Service; 1837 1838 1839 ASSERT ((ServiceBindingGuid != NULL) && (ChildHandle != NULL)); 1840 1841 // 1842 // Get the ServiceBinding Protocol 1843 // 1844 Status = gBS->OpenProtocol ( 1845 Controller, 1846 ServiceBindingGuid, 1847 (VOID **) &Service, 1848 Image, 1849 Controller, 1850 EFI_OPEN_PROTOCOL_GET_PROTOCOL 1851 ); 1852 1853 if (EFI_ERROR (Status)) { 1854 return Status; 1855 } 1856 1857 // 1858 // Create a child 1859 // 1860 Status = Service->CreateChild (Service, ChildHandle); 1861 return Status; 1862 } 1863 1864 1865 /** 1866 Destroy a child of the service that is identified by ServiceBindingGuid. 1867 1868 Get the ServiceBinding Protocol first, then use it to destroy a child. 1869 1870 If ServiceBindingGuid is NULL, then ASSERT(). 1871 1872 @param[in] Controller The controller which has the service installed. 1873 @param[in] Image The image handle used to open service. 1874 @param[in] ServiceBindingGuid The service's Guid. 1875 @param[in] ChildHandle The child to destroy. 1876 1877 @retval EFI_SUCCESS The child is successfully destroyed. 1878 @retval Others Failed to destroy the child. 1879 1880 **/ 1881 EFI_STATUS 1882 EFIAPI NetLibDestroyServiceChild(IN EFI_HANDLE Controller,IN EFI_HANDLE Image,IN EFI_GUID * ServiceBindingGuid,IN EFI_HANDLE ChildHandle)1883 NetLibDestroyServiceChild ( 1884 IN EFI_HANDLE Controller, 1885 IN EFI_HANDLE Image, 1886 IN EFI_GUID *ServiceBindingGuid, 1887 IN EFI_HANDLE ChildHandle 1888 ) 1889 { 1890 EFI_STATUS Status; 1891 EFI_SERVICE_BINDING_PROTOCOL *Service; 1892 1893 ASSERT (ServiceBindingGuid != NULL); 1894 1895 // 1896 // Get the ServiceBinding Protocol 1897 // 1898 Status = gBS->OpenProtocol ( 1899 Controller, 1900 ServiceBindingGuid, 1901 (VOID **) &Service, 1902 Image, 1903 Controller, 1904 EFI_OPEN_PROTOCOL_GET_PROTOCOL 1905 ); 1906 1907 if (EFI_ERROR (Status)) { 1908 return Status; 1909 } 1910 1911 // 1912 // destroy the child 1913 // 1914 Status = Service->DestroyChild (Service, ChildHandle); 1915 return Status; 1916 } 1917 1918 /** 1919 Get handle with Simple Network Protocol installed on it. 1920 1921 There should be MNP Service Binding Protocol installed on the input ServiceHandle. 1922 If Simple Network Protocol is already installed on the ServiceHandle, the 1923 ServiceHandle will be returned. If SNP is not installed on the ServiceHandle, 1924 try to find its parent handle with SNP installed. 1925 1926 @param[in] ServiceHandle The handle where network service binding protocols are 1927 installed on. 1928 @param[out] Snp The pointer to store the address of the SNP instance. 1929 This is an optional parameter that may be NULL. 1930 1931 @return The SNP handle, or NULL if not found. 1932 1933 **/ 1934 EFI_HANDLE 1935 EFIAPI NetLibGetSnpHandle(IN EFI_HANDLE ServiceHandle,OUT EFI_SIMPLE_NETWORK_PROTOCOL ** Snp OPTIONAL)1936 NetLibGetSnpHandle ( 1937 IN EFI_HANDLE ServiceHandle, 1938 OUT EFI_SIMPLE_NETWORK_PROTOCOL **Snp OPTIONAL 1939 ) 1940 { 1941 EFI_STATUS Status; 1942 EFI_SIMPLE_NETWORK_PROTOCOL *SnpInstance; 1943 EFI_DEVICE_PATH_PROTOCOL *DevicePath; 1944 EFI_HANDLE SnpHandle; 1945 1946 // 1947 // Try to open SNP from ServiceHandle 1948 // 1949 SnpInstance = NULL; 1950 Status = gBS->HandleProtocol (ServiceHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance); 1951 if (!EFI_ERROR (Status)) { 1952 if (Snp != NULL) { 1953 *Snp = SnpInstance; 1954 } 1955 return ServiceHandle; 1956 } 1957 1958 // 1959 // Failed to open SNP, try to get SNP handle by LocateDevicePath() 1960 // 1961 DevicePath = DevicePathFromHandle (ServiceHandle); 1962 if (DevicePath == NULL) { 1963 return NULL; 1964 } 1965 1966 SnpHandle = NULL; 1967 Status = gBS->LocateDevicePath (&gEfiSimpleNetworkProtocolGuid, &DevicePath, &SnpHandle); 1968 if (EFI_ERROR (Status)) { 1969 // 1970 // Failed to find SNP handle 1971 // 1972 return NULL; 1973 } 1974 1975 Status = gBS->HandleProtocol (SnpHandle, &gEfiSimpleNetworkProtocolGuid, (VOID **) &SnpInstance); 1976 if (!EFI_ERROR (Status)) { 1977 if (Snp != NULL) { 1978 *Snp = SnpInstance; 1979 } 1980 return SnpHandle; 1981 } 1982 1983 return NULL; 1984 } 1985 1986 /** 1987 Retrieve VLAN ID of a VLAN device handle. 1988 1989 Search VLAN device path node in Device Path of specified ServiceHandle and 1990 return its VLAN ID. If no VLAN device path node found, then this ServiceHandle 1991 is not a VLAN device handle, and 0 will be returned. 1992 1993 @param[in] ServiceHandle The handle where network service binding protocols are 1994 installed on. 1995 1996 @return VLAN ID of the device handle, or 0 if not a VLAN device. 1997 1998 **/ 1999 UINT16 2000 EFIAPI NetLibGetVlanId(IN EFI_HANDLE ServiceHandle)2001 NetLibGetVlanId ( 2002 IN EFI_HANDLE ServiceHandle 2003 ) 2004 { 2005 EFI_DEVICE_PATH_PROTOCOL *DevicePath; 2006 EFI_DEVICE_PATH_PROTOCOL *Node; 2007 2008 DevicePath = DevicePathFromHandle (ServiceHandle); 2009 if (DevicePath == NULL) { 2010 return 0; 2011 } 2012 2013 Node = DevicePath; 2014 while (!IsDevicePathEnd (Node)) { 2015 if (Node->Type == MESSAGING_DEVICE_PATH && Node->SubType == MSG_VLAN_DP) { 2016 return ((VLAN_DEVICE_PATH *) Node)->VlanId; 2017 } 2018 Node = NextDevicePathNode (Node); 2019 } 2020 2021 return 0; 2022 } 2023 2024 /** 2025 Find VLAN device handle with specified VLAN ID. 2026 2027 The VLAN child device handle is created by VLAN Config Protocol on ControllerHandle. 2028 This function will append VLAN device path node to the parent device path, 2029 and then use LocateDevicePath() to find the correct VLAN device handle. 2030 2031 @param[in] ControllerHandle The handle where network service binding protocols are 2032 installed on. 2033 @param[in] VlanId The configured VLAN ID for the VLAN device. 2034 2035 @return The VLAN device handle, or NULL if not found. 2036 2037 **/ 2038 EFI_HANDLE 2039 EFIAPI NetLibGetVlanHandle(IN EFI_HANDLE ControllerHandle,IN UINT16 VlanId)2040 NetLibGetVlanHandle ( 2041 IN EFI_HANDLE ControllerHandle, 2042 IN UINT16 VlanId 2043 ) 2044 { 2045 EFI_DEVICE_PATH_PROTOCOL *ParentDevicePath; 2046 EFI_DEVICE_PATH_PROTOCOL *VlanDevicePath; 2047 EFI_DEVICE_PATH_PROTOCOL *DevicePath; 2048 VLAN_DEVICE_PATH VlanNode; 2049 EFI_HANDLE Handle; 2050 2051 ParentDevicePath = DevicePathFromHandle (ControllerHandle); 2052 if (ParentDevicePath == NULL) { 2053 return NULL; 2054 } 2055 2056 // 2057 // Construct VLAN device path 2058 // 2059 CopyMem (&VlanNode, &mNetVlanDevicePathTemplate, sizeof (VLAN_DEVICE_PATH)); 2060 VlanNode.VlanId = VlanId; 2061 VlanDevicePath = AppendDevicePathNode ( 2062 ParentDevicePath, 2063 (EFI_DEVICE_PATH_PROTOCOL *) &VlanNode 2064 ); 2065 if (VlanDevicePath == NULL) { 2066 return NULL; 2067 } 2068 2069 // 2070 // Find VLAN device handle 2071 // 2072 Handle = NULL; 2073 DevicePath = VlanDevicePath; 2074 gBS->LocateDevicePath ( 2075 &gEfiDevicePathProtocolGuid, 2076 &DevicePath, 2077 &Handle 2078 ); 2079 if (!IsDevicePathEnd (DevicePath)) { 2080 // 2081 // Device path is not exactly match 2082 // 2083 Handle = NULL; 2084 } 2085 2086 FreePool (VlanDevicePath); 2087 return Handle; 2088 } 2089 2090 /** 2091 Get MAC address associated with the network service handle. 2092 2093 There should be MNP Service Binding Protocol installed on the input ServiceHandle. 2094 If SNP is installed on the ServiceHandle or its parent handle, MAC address will 2095 be retrieved from SNP. If no SNP found, try to get SNP mode data use MNP. 2096 2097 @param[in] ServiceHandle The handle where network service binding protocols are 2098 installed on. 2099 @param[out] MacAddress The pointer to store the returned MAC address. 2100 @param[out] AddressSize The length of returned MAC address. 2101 2102 @retval EFI_SUCCESS MAC address is returned successfully. 2103 @retval Others Failed to get SNP mode data. 2104 2105 **/ 2106 EFI_STATUS 2107 EFIAPI NetLibGetMacAddress(IN EFI_HANDLE ServiceHandle,OUT EFI_MAC_ADDRESS * MacAddress,OUT UINTN * AddressSize)2108 NetLibGetMacAddress ( 2109 IN EFI_HANDLE ServiceHandle, 2110 OUT EFI_MAC_ADDRESS *MacAddress, 2111 OUT UINTN *AddressSize 2112 ) 2113 { 2114 EFI_STATUS Status; 2115 EFI_SIMPLE_NETWORK_PROTOCOL *Snp; 2116 EFI_SIMPLE_NETWORK_MODE *SnpMode; 2117 EFI_SIMPLE_NETWORK_MODE SnpModeData; 2118 EFI_MANAGED_NETWORK_PROTOCOL *Mnp; 2119 EFI_SERVICE_BINDING_PROTOCOL *MnpSb; 2120 EFI_HANDLE *SnpHandle; 2121 EFI_HANDLE MnpChildHandle; 2122 2123 ASSERT (MacAddress != NULL); 2124 ASSERT (AddressSize != NULL); 2125 2126 // 2127 // Try to get SNP handle 2128 // 2129 Snp = NULL; 2130 SnpHandle = NetLibGetSnpHandle (ServiceHandle, &Snp); 2131 if (SnpHandle != NULL) { 2132 // 2133 // SNP found, use it directly 2134 // 2135 SnpMode = Snp->Mode; 2136 } else { 2137 // 2138 // Failed to get SNP handle, try to get MAC address from MNP 2139 // 2140 MnpChildHandle = NULL; 2141 Status = gBS->HandleProtocol ( 2142 ServiceHandle, 2143 &gEfiManagedNetworkServiceBindingProtocolGuid, 2144 (VOID **) &MnpSb 2145 ); 2146 if (EFI_ERROR (Status)) { 2147 return Status; 2148 } 2149 2150 // 2151 // Create a MNP child 2152 // 2153 Status = MnpSb->CreateChild (MnpSb, &MnpChildHandle); 2154 if (EFI_ERROR (Status)) { 2155 return Status; 2156 } 2157 2158 // 2159 // Open MNP protocol 2160 // 2161 Status = gBS->HandleProtocol ( 2162 MnpChildHandle, 2163 &gEfiManagedNetworkProtocolGuid, 2164 (VOID **) &Mnp 2165 ); 2166 if (EFI_ERROR (Status)) { 2167 MnpSb->DestroyChild (MnpSb, MnpChildHandle); 2168 return Status; 2169 } 2170 2171 // 2172 // Try to get SNP mode from MNP 2173 // 2174 Status = Mnp->GetModeData (Mnp, NULL, &SnpModeData); 2175 if (EFI_ERROR (Status) && (Status != EFI_NOT_STARTED)) { 2176 MnpSb->DestroyChild (MnpSb, MnpChildHandle); 2177 return Status; 2178 } 2179 SnpMode = &SnpModeData; 2180 2181 // 2182 // Destroy the MNP child 2183 // 2184 MnpSb->DestroyChild (MnpSb, MnpChildHandle); 2185 } 2186 2187 *AddressSize = SnpMode->HwAddressSize; 2188 CopyMem (MacAddress->Addr, SnpMode->CurrentAddress.Addr, SnpMode->HwAddressSize); 2189 2190 return EFI_SUCCESS; 2191 } 2192 2193 /** 2194 Convert MAC address of the NIC associated with specified Service Binding Handle 2195 to a unicode string. Callers are responsible for freeing the string storage. 2196 2197 Locate simple network protocol associated with the Service Binding Handle and 2198 get the mac address from SNP. Then convert the mac address into a unicode 2199 string. It takes 2 unicode characters to represent a 1 byte binary buffer. 2200 Plus one unicode character for the null-terminator. 2201 2202 @param[in] ServiceHandle The handle where network service binding protocol is 2203 installed on. 2204 @param[in] ImageHandle The image handle used to act as the agent handle to 2205 get the simple network protocol. This parameter is 2206 optional and may be NULL. 2207 @param[out] MacString The pointer to store the address of the string 2208 representation of the mac address. 2209 2210 @retval EFI_SUCCESS Convert the mac address a unicode string successfully. 2211 @retval EFI_OUT_OF_RESOURCES There are not enough memory resource. 2212 @retval Others Failed to open the simple network protocol. 2213 2214 **/ 2215 EFI_STATUS 2216 EFIAPI NetLibGetMacString(IN EFI_HANDLE ServiceHandle,IN EFI_HANDLE ImageHandle,OPTIONAL OUT CHAR16 ** MacString)2217 NetLibGetMacString ( 2218 IN EFI_HANDLE ServiceHandle, 2219 IN EFI_HANDLE ImageHandle, OPTIONAL 2220 OUT CHAR16 **MacString 2221 ) 2222 { 2223 EFI_STATUS Status; 2224 EFI_MAC_ADDRESS MacAddress; 2225 UINT8 *HwAddress; 2226 UINTN HwAddressSize; 2227 UINT16 VlanId; 2228 CHAR16 *String; 2229 UINTN Index; 2230 2231 ASSERT (MacString != NULL); 2232 2233 // 2234 // Get MAC address of the network device 2235 // 2236 Status = NetLibGetMacAddress (ServiceHandle, &MacAddress, &HwAddressSize); 2237 if (EFI_ERROR (Status)) { 2238 return Status; 2239 } 2240 2241 // 2242 // It takes 2 unicode characters to represent a 1 byte binary buffer. 2243 // If VLAN is configured, it will need extra 5 characters like "\0005". 2244 // Plus one unicode character for the null-terminator. 2245 // 2246 String = AllocateZeroPool ((2 * HwAddressSize + 5 + 1) * sizeof (CHAR16)); 2247 if (String == NULL) { 2248 return EFI_OUT_OF_RESOURCES; 2249 } 2250 *MacString = String; 2251 2252 // 2253 // Convert the MAC address into a unicode string. 2254 // 2255 HwAddress = &MacAddress.Addr[0]; 2256 for (Index = 0; Index < HwAddressSize; Index++) { 2257 String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, *(HwAddress++), 2); 2258 } 2259 2260 // 2261 // Append VLAN ID if any 2262 // 2263 VlanId = NetLibGetVlanId (ServiceHandle); 2264 if (VlanId != 0) { 2265 *String++ = L'\\'; 2266 String += UnicodeValueToString (String, PREFIX_ZERO | RADIX_HEX, VlanId, 4); 2267 } 2268 2269 // 2270 // Null terminate the Unicode string 2271 // 2272 *String = L'\0'; 2273 2274 return EFI_SUCCESS; 2275 } 2276 2277 /** 2278 Detect media status for specified network device. 2279 2280 The underlying UNDI driver may or may not support reporting media status from 2281 GET_STATUS command (PXE_STATFLAGS_GET_STATUS_NO_MEDIA_SUPPORTED). This routine 2282 will try to invoke Snp->GetStatus() to get the media status: if media already 2283 present, it return directly; if media not present, it will stop SNP and then 2284 restart SNP to get the latest media status, this give chance to get the correct 2285 media status for old UNDI driver which doesn't support reporting media status 2286 from GET_STATUS command. 2287 Note: there will be two limitations for current algorithm: 2288 1) for UNDI with this capability, in case of cable is not attached, there will 2289 be an redundant Stop/Start() process; 2290 2) for UNDI without this capability, in case that network cable is attached when 2291 Snp->Initialize() is invoked while network cable is unattached later, 2292 NetLibDetectMedia() will report MediaPresent as TRUE, causing upper layer 2293 apps to wait for timeout time. 2294 2295 @param[in] ServiceHandle The handle where network service binding protocols are 2296 installed on. 2297 @param[out] MediaPresent The pointer to store the media status. 2298 2299 @retval EFI_SUCCESS Media detection success. 2300 @retval EFI_INVALID_PARAMETER ServiceHandle is not valid network device handle. 2301 @retval EFI_UNSUPPORTED Network device does not support media detection. 2302 @retval EFI_DEVICE_ERROR SNP is in unknown state. 2303 2304 **/ 2305 EFI_STATUS 2306 EFIAPI NetLibDetectMedia(IN EFI_HANDLE ServiceHandle,OUT BOOLEAN * MediaPresent)2307 NetLibDetectMedia ( 2308 IN EFI_HANDLE ServiceHandle, 2309 OUT BOOLEAN *MediaPresent 2310 ) 2311 { 2312 EFI_STATUS Status; 2313 EFI_HANDLE SnpHandle; 2314 EFI_SIMPLE_NETWORK_PROTOCOL *Snp; 2315 UINT32 InterruptStatus; 2316 UINT32 OldState; 2317 EFI_MAC_ADDRESS *MCastFilter; 2318 UINT32 MCastFilterCount; 2319 UINT32 EnableFilterBits; 2320 UINT32 DisableFilterBits; 2321 BOOLEAN ResetMCastFilters; 2322 2323 ASSERT (MediaPresent != NULL); 2324 2325 // 2326 // Get SNP handle 2327 // 2328 Snp = NULL; 2329 SnpHandle = NetLibGetSnpHandle (ServiceHandle, &Snp); 2330 if (SnpHandle == NULL) { 2331 return EFI_INVALID_PARAMETER; 2332 } 2333 2334 // 2335 // Check whether SNP support media detection 2336 // 2337 if (!Snp->Mode->MediaPresentSupported) { 2338 return EFI_UNSUPPORTED; 2339 } 2340 2341 // 2342 // Invoke Snp->GetStatus() to refresh MediaPresent field in SNP mode data 2343 // 2344 Status = Snp->GetStatus (Snp, &InterruptStatus, NULL); 2345 if (EFI_ERROR (Status)) { 2346 return Status; 2347 } 2348 2349 if (Snp->Mode->MediaPresent) { 2350 // 2351 // Media is present, return directly 2352 // 2353 *MediaPresent = TRUE; 2354 return EFI_SUCCESS; 2355 } 2356 2357 // 2358 // Till now, GetStatus() report no media; while, in case UNDI not support 2359 // reporting media status from GetStatus(), this media status may be incorrect. 2360 // So, we will stop SNP and then restart it to get the correct media status. 2361 // 2362 OldState = Snp->Mode->State; 2363 if (OldState >= EfiSimpleNetworkMaxState) { 2364 return EFI_DEVICE_ERROR; 2365 } 2366 2367 MCastFilter = NULL; 2368 2369 if (OldState == EfiSimpleNetworkInitialized) { 2370 // 2371 // SNP is already in use, need Shutdown/Stop and then Start/Initialize 2372 // 2373 2374 // 2375 // Backup current SNP receive filter settings 2376 // 2377 EnableFilterBits = Snp->Mode->ReceiveFilterSetting; 2378 DisableFilterBits = Snp->Mode->ReceiveFilterMask ^ EnableFilterBits; 2379 2380 ResetMCastFilters = TRUE; 2381 MCastFilterCount = Snp->Mode->MCastFilterCount; 2382 if (MCastFilterCount != 0) { 2383 MCastFilter = AllocateCopyPool ( 2384 MCastFilterCount * sizeof (EFI_MAC_ADDRESS), 2385 Snp->Mode->MCastFilter 2386 ); 2387 ASSERT (MCastFilter != NULL); 2388 2389 ResetMCastFilters = FALSE; 2390 } 2391 2392 // 2393 // Shutdown/Stop the simple network 2394 // 2395 Status = Snp->Shutdown (Snp); 2396 if (!EFI_ERROR (Status)) { 2397 Status = Snp->Stop (Snp); 2398 } 2399 if (EFI_ERROR (Status)) { 2400 goto Exit; 2401 } 2402 2403 // 2404 // Start/Initialize the simple network 2405 // 2406 Status = Snp->Start (Snp); 2407 if (!EFI_ERROR (Status)) { 2408 Status = Snp->Initialize (Snp, 0, 0); 2409 } 2410 if (EFI_ERROR (Status)) { 2411 goto Exit; 2412 } 2413 2414 // 2415 // Here we get the correct media status 2416 // 2417 *MediaPresent = Snp->Mode->MediaPresent; 2418 2419 // 2420 // Restore SNP receive filter settings 2421 // 2422 Status = Snp->ReceiveFilters ( 2423 Snp, 2424 EnableFilterBits, 2425 DisableFilterBits, 2426 ResetMCastFilters, 2427 MCastFilterCount, 2428 MCastFilter 2429 ); 2430 2431 if (MCastFilter != NULL) { 2432 FreePool (MCastFilter); 2433 } 2434 2435 return Status; 2436 } 2437 2438 // 2439 // SNP is not in use, it's in state of EfiSimpleNetworkStopped or EfiSimpleNetworkStarted 2440 // 2441 if (OldState == EfiSimpleNetworkStopped) { 2442 // 2443 // SNP not start yet, start it 2444 // 2445 Status = Snp->Start (Snp); 2446 if (EFI_ERROR (Status)) { 2447 goto Exit; 2448 } 2449 } 2450 2451 // 2452 // Initialize the simple network 2453 // 2454 Status = Snp->Initialize (Snp, 0, 0); 2455 if (EFI_ERROR (Status)) { 2456 Status = EFI_DEVICE_ERROR; 2457 goto Exit; 2458 } 2459 2460 // 2461 // Here we get the correct media status 2462 // 2463 *MediaPresent = Snp->Mode->MediaPresent; 2464 2465 // 2466 // Shut down the simple network 2467 // 2468 Snp->Shutdown (Snp); 2469 2470 Exit: 2471 if (OldState == EfiSimpleNetworkStopped) { 2472 // 2473 // Original SNP sate is Stopped, restore to original state 2474 // 2475 Snp->Stop (Snp); 2476 } 2477 2478 if (MCastFilter != NULL) { 2479 FreePool (MCastFilter); 2480 } 2481 2482 return Status; 2483 } 2484 2485 /** 2486 Check the default address used by the IPv4 driver is static or dynamic (acquired 2487 from DHCP). 2488 2489 If the controller handle does not have the EFI_IP4_CONFIG2_PROTOCOL installed, the 2490 default address is static. If failed to get the policy from Ip4 Config2 Protocol, 2491 the default address is static. Otherwise, get the result from Ip4 Config2 Protocol. 2492 2493 @param[in] Controller The controller handle which has the EFI_IP4_CONFIG2_PROTOCOL 2494 relative with the default address to judge. 2495 2496 @retval TRUE If the default address is static. 2497 @retval FALSE If the default address is acquired from DHCP. 2498 2499 **/ 2500 BOOLEAN NetLibDefaultAddressIsStatic(IN EFI_HANDLE Controller)2501 NetLibDefaultAddressIsStatic ( 2502 IN EFI_HANDLE Controller 2503 ) 2504 { 2505 EFI_STATUS Status; 2506 EFI_IP4_CONFIG2_PROTOCOL *Ip4Config2; 2507 UINTN DataSize; 2508 EFI_IP4_CONFIG2_POLICY Policy; 2509 BOOLEAN IsStatic; 2510 2511 Ip4Config2 = NULL; 2512 2513 DataSize = sizeof (EFI_IP4_CONFIG2_POLICY); 2514 2515 IsStatic = TRUE; 2516 2517 // 2518 // Get Ip4Config2 policy. 2519 // 2520 Status = gBS->HandleProtocol (Controller, &gEfiIp4Config2ProtocolGuid, (VOID **) &Ip4Config2); 2521 if (EFI_ERROR (Status)) { 2522 goto ON_EXIT; 2523 } 2524 2525 Status = Ip4Config2->GetData (Ip4Config2, Ip4Config2DataTypePolicy, &DataSize, &Policy); 2526 if (EFI_ERROR (Status)) { 2527 goto ON_EXIT; 2528 } 2529 2530 IsStatic = (BOOLEAN) (Policy == Ip4Config2PolicyStatic); 2531 2532 ON_EXIT: 2533 2534 return IsStatic; 2535 } 2536 2537 /** 2538 Create an IPv4 device path node. 2539 2540 The header type of IPv4 device path node is MESSAGING_DEVICE_PATH. 2541 The header subtype of IPv4 device path node is MSG_IPv4_DP. 2542 Get other info from parameters to make up the whole IPv4 device path node. 2543 2544 @param[in, out] Node Pointer to the IPv4 device path node. 2545 @param[in] Controller The controller handle. 2546 @param[in] LocalIp The local IPv4 address. 2547 @param[in] LocalPort The local port. 2548 @param[in] RemoteIp The remote IPv4 address. 2549 @param[in] RemotePort The remote port. 2550 @param[in] Protocol The protocol type in the IP header. 2551 @param[in] UseDefaultAddress Whether this instance is using default address or not. 2552 2553 **/ 2554 VOID 2555 EFIAPI NetLibCreateIPv4DPathNode(IN OUT IPv4_DEVICE_PATH * Node,IN EFI_HANDLE Controller,IN IP4_ADDR LocalIp,IN UINT16 LocalPort,IN IP4_ADDR RemoteIp,IN UINT16 RemotePort,IN UINT16 Protocol,IN BOOLEAN UseDefaultAddress)2556 NetLibCreateIPv4DPathNode ( 2557 IN OUT IPv4_DEVICE_PATH *Node, 2558 IN EFI_HANDLE Controller, 2559 IN IP4_ADDR LocalIp, 2560 IN UINT16 LocalPort, 2561 IN IP4_ADDR RemoteIp, 2562 IN UINT16 RemotePort, 2563 IN UINT16 Protocol, 2564 IN BOOLEAN UseDefaultAddress 2565 ) 2566 { 2567 Node->Header.Type = MESSAGING_DEVICE_PATH; 2568 Node->Header.SubType = MSG_IPv4_DP; 2569 SetDevicePathNodeLength (&Node->Header, sizeof (IPv4_DEVICE_PATH)); 2570 2571 CopyMem (&Node->LocalIpAddress, &LocalIp, sizeof (EFI_IPv4_ADDRESS)); 2572 CopyMem (&Node->RemoteIpAddress, &RemoteIp, sizeof (EFI_IPv4_ADDRESS)); 2573 2574 Node->LocalPort = LocalPort; 2575 Node->RemotePort = RemotePort; 2576 2577 Node->Protocol = Protocol; 2578 2579 if (!UseDefaultAddress) { 2580 Node->StaticIpAddress = TRUE; 2581 } else { 2582 Node->StaticIpAddress = NetLibDefaultAddressIsStatic (Controller); 2583 } 2584 2585 // 2586 // Set the Gateway IP address to default value 0:0:0:0. 2587 // Set the Subnet mask to default value 255:255:255:0. 2588 // 2589 ZeroMem (&Node->GatewayIpAddress, sizeof (EFI_IPv4_ADDRESS)); 2590 SetMem (&Node->SubnetMask, sizeof (EFI_IPv4_ADDRESS), 0xff); 2591 Node->SubnetMask.Addr[3] = 0; 2592 } 2593 2594 /** 2595 Create an IPv6 device path node. 2596 2597 The header type of IPv6 device path node is MESSAGING_DEVICE_PATH. 2598 The header subtype of IPv6 device path node is MSG_IPv6_DP. 2599 Get other info from parameters to make up the whole IPv6 device path node. 2600 2601 @param[in, out] Node Pointer to the IPv6 device path node. 2602 @param[in] Controller The controller handle. 2603 @param[in] LocalIp The local IPv6 address. 2604 @param[in] LocalPort The local port. 2605 @param[in] RemoteIp The remote IPv6 address. 2606 @param[in] RemotePort The remote port. 2607 @param[in] Protocol The protocol type in the IP header. 2608 2609 **/ 2610 VOID 2611 EFIAPI NetLibCreateIPv6DPathNode(IN OUT IPv6_DEVICE_PATH * Node,IN EFI_HANDLE Controller,IN EFI_IPv6_ADDRESS * LocalIp,IN UINT16 LocalPort,IN EFI_IPv6_ADDRESS * RemoteIp,IN UINT16 RemotePort,IN UINT16 Protocol)2612 NetLibCreateIPv6DPathNode ( 2613 IN OUT IPv6_DEVICE_PATH *Node, 2614 IN EFI_HANDLE Controller, 2615 IN EFI_IPv6_ADDRESS *LocalIp, 2616 IN UINT16 LocalPort, 2617 IN EFI_IPv6_ADDRESS *RemoteIp, 2618 IN UINT16 RemotePort, 2619 IN UINT16 Protocol 2620 ) 2621 { 2622 Node->Header.Type = MESSAGING_DEVICE_PATH; 2623 Node->Header.SubType = MSG_IPv6_DP; 2624 SetDevicePathNodeLength (&Node->Header, sizeof (IPv6_DEVICE_PATH)); 2625 2626 CopyMem (&Node->LocalIpAddress, LocalIp, sizeof (EFI_IPv6_ADDRESS)); 2627 CopyMem (&Node->RemoteIpAddress, RemoteIp, sizeof (EFI_IPv6_ADDRESS)); 2628 2629 Node->LocalPort = LocalPort; 2630 Node->RemotePort = RemotePort; 2631 2632 Node->Protocol = Protocol; 2633 2634 // 2635 // Set default value to IPAddressOrigin, PrefixLength. 2636 // Set the Gateway IP address to unspecified address. 2637 // 2638 Node->IpAddressOrigin = 0; 2639 Node->PrefixLength = IP6_PREFIX_LENGTH; 2640 ZeroMem (&Node->GatewayIpAddress, sizeof (EFI_IPv6_ADDRESS)); 2641 } 2642 2643 /** 2644 Find the UNDI/SNP handle from controller and protocol GUID. 2645 2646 For example, IP will open a MNP child to transmit/receive 2647 packets, when MNP is stopped, IP should also be stopped. IP 2648 needs to find its own private data which is related the IP's 2649 service binding instance that is install on UNDI/SNP handle. 2650 Now, the controller is either a MNP or ARP child handle. But 2651 IP opens these handle BY_DRIVER, use that info, we can get the 2652 UNDI/SNP handle. 2653 2654 @param[in] Controller Then protocol handle to check. 2655 @param[in] ProtocolGuid The protocol that is related with the handle. 2656 2657 @return The UNDI/SNP handle or NULL for errors. 2658 2659 **/ 2660 EFI_HANDLE 2661 EFIAPI NetLibGetNicHandle(IN EFI_HANDLE Controller,IN EFI_GUID * ProtocolGuid)2662 NetLibGetNicHandle ( 2663 IN EFI_HANDLE Controller, 2664 IN EFI_GUID *ProtocolGuid 2665 ) 2666 { 2667 EFI_OPEN_PROTOCOL_INFORMATION_ENTRY *OpenBuffer; 2668 EFI_HANDLE Handle; 2669 EFI_STATUS Status; 2670 UINTN OpenCount; 2671 UINTN Index; 2672 2673 Status = gBS->OpenProtocolInformation ( 2674 Controller, 2675 ProtocolGuid, 2676 &OpenBuffer, 2677 &OpenCount 2678 ); 2679 2680 if (EFI_ERROR (Status)) { 2681 return NULL; 2682 } 2683 2684 Handle = NULL; 2685 2686 for (Index = 0; Index < OpenCount; Index++) { 2687 if ((OpenBuffer[Index].Attributes & EFI_OPEN_PROTOCOL_BY_DRIVER) != 0) { 2688 Handle = OpenBuffer[Index].ControllerHandle; 2689 break; 2690 } 2691 } 2692 2693 gBS->FreePool (OpenBuffer); 2694 return Handle; 2695 } 2696 2697 /** 2698 Convert one Null-terminated ASCII string (decimal dotted) to EFI_IPv4_ADDRESS. 2699 2700 @param[in] String The pointer to the Ascii string. 2701 @param[out] Ip4Address The pointer to the converted IPv4 address. 2702 2703 @retval EFI_SUCCESS Convert to IPv4 address successfully. 2704 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL. 2705 2706 **/ 2707 EFI_STATUS 2708 EFIAPI NetLibAsciiStrToIp4(IN CONST CHAR8 * String,OUT EFI_IPv4_ADDRESS * Ip4Address)2709 NetLibAsciiStrToIp4 ( 2710 IN CONST CHAR8 *String, 2711 OUT EFI_IPv4_ADDRESS *Ip4Address 2712 ) 2713 { 2714 UINT8 Index; 2715 CHAR8 *Ip4Str; 2716 CHAR8 *TempStr; 2717 UINTN NodeVal; 2718 2719 if ((String == NULL) || (Ip4Address == NULL)) { 2720 return EFI_INVALID_PARAMETER; 2721 } 2722 2723 Ip4Str = (CHAR8 *) String; 2724 2725 for (Index = 0; Index < 4; Index++) { 2726 TempStr = Ip4Str; 2727 2728 while ((*Ip4Str != '\0') && (*Ip4Str != '.')) { 2729 Ip4Str++; 2730 } 2731 2732 // 2733 // The IPv4 address is X.X.X.X 2734 // 2735 if (*Ip4Str == '.') { 2736 if (Index == 3) { 2737 return EFI_INVALID_PARAMETER; 2738 } 2739 } else { 2740 if (Index != 3) { 2741 return EFI_INVALID_PARAMETER; 2742 } 2743 } 2744 2745 // 2746 // Convert the string to IPv4 address. AsciiStrDecimalToUintn stops at the 2747 // first character that is not a valid decimal character, '.' or '\0' here. 2748 // 2749 NodeVal = AsciiStrDecimalToUintn (TempStr); 2750 if (NodeVal > 0xFF) { 2751 return EFI_INVALID_PARAMETER; 2752 } 2753 2754 Ip4Address->Addr[Index] = (UINT8) NodeVal; 2755 2756 Ip4Str++; 2757 } 2758 2759 return EFI_SUCCESS; 2760 } 2761 2762 2763 /** 2764 Convert one Null-terminated ASCII string to EFI_IPv6_ADDRESS. The format of the 2765 string is defined in RFC 4291 - Text Pepresentation of Addresses. 2766 2767 @param[in] String The pointer to the Ascii string. 2768 @param[out] Ip6Address The pointer to the converted IPv6 address. 2769 2770 @retval EFI_SUCCESS Convert to IPv6 address successfully. 2771 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL. 2772 2773 **/ 2774 EFI_STATUS 2775 EFIAPI NetLibAsciiStrToIp6(IN CONST CHAR8 * String,OUT EFI_IPv6_ADDRESS * Ip6Address)2776 NetLibAsciiStrToIp6 ( 2777 IN CONST CHAR8 *String, 2778 OUT EFI_IPv6_ADDRESS *Ip6Address 2779 ) 2780 { 2781 UINT8 Index; 2782 CHAR8 *Ip6Str; 2783 CHAR8 *TempStr; 2784 CHAR8 *TempStr2; 2785 UINT8 NodeCnt; 2786 UINT8 TailNodeCnt; 2787 UINT8 AllowedCnt; 2788 UINTN NodeVal; 2789 BOOLEAN Short; 2790 BOOLEAN Update; 2791 BOOLEAN LeadZero; 2792 UINT8 LeadZeroCnt; 2793 UINT8 Cnt; 2794 2795 if ((String == NULL) || (Ip6Address == NULL)) { 2796 return EFI_INVALID_PARAMETER; 2797 } 2798 2799 Ip6Str = (CHAR8 *) String; 2800 AllowedCnt = 6; 2801 LeadZeroCnt = 0; 2802 2803 // 2804 // An IPv6 address leading with : looks strange. 2805 // 2806 if (*Ip6Str == ':') { 2807 if (*(Ip6Str + 1) != ':') { 2808 return EFI_INVALID_PARAMETER; 2809 } else { 2810 AllowedCnt = 7; 2811 } 2812 } 2813 2814 ZeroMem (Ip6Address, sizeof (EFI_IPv6_ADDRESS)); 2815 2816 NodeCnt = 0; 2817 TailNodeCnt = 0; 2818 Short = FALSE; 2819 Update = FALSE; 2820 LeadZero = FALSE; 2821 2822 for (Index = 0; Index < 15; Index = (UINT8) (Index + 2)) { 2823 TempStr = Ip6Str; 2824 2825 while ((*Ip6Str != '\0') && (*Ip6Str != ':')) { 2826 Ip6Str++; 2827 } 2828 2829 if ((*Ip6Str == '\0') && (Index != 14)) { 2830 return EFI_INVALID_PARAMETER; 2831 } 2832 2833 if (*Ip6Str == ':') { 2834 if (*(Ip6Str + 1) == ':') { 2835 if ((NodeCnt > 6) || 2836 ((*(Ip6Str + 2) != '\0') && (AsciiStrHexToUintn (Ip6Str + 2) == 0))) { 2837 // 2838 // ::0 looks strange. report error to user. 2839 // 2840 return EFI_INVALID_PARAMETER; 2841 } 2842 if ((NodeCnt == 6) && (*(Ip6Str + 2) != '\0') && 2843 (AsciiStrHexToUintn (Ip6Str + 2) != 0)) { 2844 return EFI_INVALID_PARAMETER; 2845 } 2846 2847 // 2848 // Skip the abbreviation part of IPv6 address. 2849 // 2850 TempStr2 = Ip6Str + 2; 2851 while ((*TempStr2 != '\0')) { 2852 if (*TempStr2 == ':') { 2853 if (*(TempStr2 + 1) == ':') { 2854 // 2855 // :: can only appear once in IPv6 address. 2856 // 2857 return EFI_INVALID_PARAMETER; 2858 } 2859 2860 TailNodeCnt++; 2861 if (TailNodeCnt >= (AllowedCnt - NodeCnt)) { 2862 // 2863 // :: indicates one or more groups of 16 bits of zeros. 2864 // 2865 return EFI_INVALID_PARAMETER; 2866 } 2867 } 2868 2869 TempStr2++; 2870 } 2871 2872 Short = TRUE; 2873 Update = TRUE; 2874 2875 Ip6Str = Ip6Str + 2; 2876 } else { 2877 if (*(Ip6Str + 1) == '\0') { 2878 return EFI_INVALID_PARAMETER; 2879 } 2880 Ip6Str++; 2881 NodeCnt++; 2882 if ((Short && (NodeCnt > 6)) || (!Short && (NodeCnt > 7))) { 2883 // 2884 // There are more than 8 groups of 16 bits of zeros. 2885 // 2886 return EFI_INVALID_PARAMETER; 2887 } 2888 } 2889 } 2890 2891 // 2892 // Convert the string to IPv6 address. AsciiStrHexToUintn stops at the first 2893 // character that is not a valid hexadecimal character, ':' or '\0' here. 2894 // 2895 NodeVal = AsciiStrHexToUintn (TempStr); 2896 if ((NodeVal > 0xFFFF) || (Index > 14)) { 2897 return EFI_INVALID_PARAMETER; 2898 } 2899 if (NodeVal != 0) { 2900 if ((*TempStr == '0') && 2901 ((*(TempStr + 2) == ':') || (*(TempStr + 3) == ':') || 2902 (*(TempStr + 2) == '\0') || (*(TempStr + 3) == '\0'))) { 2903 return EFI_INVALID_PARAMETER; 2904 } 2905 if ((*TempStr == '0') && (*(TempStr + 4) != '\0') && 2906 (*(TempStr + 4) != ':')) { 2907 return EFI_INVALID_PARAMETER; 2908 } 2909 } else { 2910 if (((*TempStr == '0') && (*(TempStr + 1) == '0') && 2911 ((*(TempStr + 2) == ':') || (*(TempStr + 2) == '\0'))) || 2912 ((*TempStr == '0') && (*(TempStr + 1) == '0') && (*(TempStr + 2) == '0') && 2913 ((*(TempStr + 3) == ':') || (*(TempStr + 3) == '\0')))) { 2914 return EFI_INVALID_PARAMETER; 2915 } 2916 } 2917 2918 Cnt = 0; 2919 while ((TempStr[Cnt] != ':') && (TempStr[Cnt] != '\0')) { 2920 Cnt++; 2921 } 2922 if (LeadZeroCnt == 0) { 2923 if ((Cnt == 4) && (*TempStr == '0')) { 2924 LeadZero = TRUE; 2925 LeadZeroCnt++; 2926 } 2927 if ((Cnt != 0) && (Cnt < 4)) { 2928 LeadZero = FALSE; 2929 LeadZeroCnt++; 2930 } 2931 } else { 2932 if ((Cnt == 4) && (*TempStr == '0') && !LeadZero) { 2933 return EFI_INVALID_PARAMETER; 2934 } 2935 if ((Cnt != 0) && (Cnt < 4) && LeadZero) { 2936 return EFI_INVALID_PARAMETER; 2937 } 2938 } 2939 2940 Ip6Address->Addr[Index] = (UINT8) (NodeVal >> 8); 2941 Ip6Address->Addr[Index + 1] = (UINT8) (NodeVal & 0xFF); 2942 2943 // 2944 // Skip the groups of zeros by :: 2945 // 2946 if (Short && Update) { 2947 Index = (UINT8) (16 - (TailNodeCnt + 2) * 2); 2948 Update = FALSE; 2949 } 2950 } 2951 2952 if ((!Short && Index != 16) || (*Ip6Str != '\0')) { 2953 return EFI_INVALID_PARAMETER; 2954 } 2955 2956 return EFI_SUCCESS; 2957 } 2958 2959 2960 /** 2961 Convert one Null-terminated Unicode string (decimal dotted) to EFI_IPv4_ADDRESS. 2962 2963 @param[in] String The pointer to the Ascii string. 2964 @param[out] Ip4Address The pointer to the converted IPv4 address. 2965 2966 @retval EFI_SUCCESS Convert to IPv4 address successfully. 2967 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip4Address is NULL. 2968 @retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource. 2969 2970 **/ 2971 EFI_STATUS 2972 EFIAPI NetLibStrToIp4(IN CONST CHAR16 * String,OUT EFI_IPv4_ADDRESS * Ip4Address)2973 NetLibStrToIp4 ( 2974 IN CONST CHAR16 *String, 2975 OUT EFI_IPv4_ADDRESS *Ip4Address 2976 ) 2977 { 2978 CHAR8 *Ip4Str; 2979 EFI_STATUS Status; 2980 2981 if ((String == NULL) || (Ip4Address == NULL)) { 2982 return EFI_INVALID_PARAMETER; 2983 } 2984 2985 Ip4Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8)); 2986 if (Ip4Str == NULL) { 2987 return EFI_OUT_OF_RESOURCES; 2988 } 2989 2990 UnicodeStrToAsciiStr (String, Ip4Str); 2991 2992 Status = NetLibAsciiStrToIp4 (Ip4Str, Ip4Address); 2993 2994 FreePool (Ip4Str); 2995 2996 return Status; 2997 } 2998 2999 3000 /** 3001 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS. The format of 3002 the string is defined in RFC 4291 - Text Pepresentation of Addresses. 3003 3004 @param[in] String The pointer to the Ascii string. 3005 @param[out] Ip6Address The pointer to the converted IPv6 address. 3006 3007 @retval EFI_SUCCESS Convert to IPv6 address successfully. 3008 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL. 3009 @retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource. 3010 3011 **/ 3012 EFI_STATUS 3013 EFIAPI NetLibStrToIp6(IN CONST CHAR16 * String,OUT EFI_IPv6_ADDRESS * Ip6Address)3014 NetLibStrToIp6 ( 3015 IN CONST CHAR16 *String, 3016 OUT EFI_IPv6_ADDRESS *Ip6Address 3017 ) 3018 { 3019 CHAR8 *Ip6Str; 3020 EFI_STATUS Status; 3021 3022 if ((String == NULL) || (Ip6Address == NULL)) { 3023 return EFI_INVALID_PARAMETER; 3024 } 3025 3026 Ip6Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8)); 3027 if (Ip6Str == NULL) { 3028 return EFI_OUT_OF_RESOURCES; 3029 } 3030 3031 UnicodeStrToAsciiStr (String, Ip6Str); 3032 3033 Status = NetLibAsciiStrToIp6 (Ip6Str, Ip6Address); 3034 3035 FreePool (Ip6Str); 3036 3037 return Status; 3038 } 3039 3040 /** 3041 Convert one Null-terminated Unicode string to EFI_IPv6_ADDRESS and prefix length. 3042 The format of the string is defined in RFC 4291 - Text Pepresentation of Addresses 3043 Prefixes: ipv6-address/prefix-length. 3044 3045 @param[in] String The pointer to the Ascii string. 3046 @param[out] Ip6Address The pointer to the converted IPv6 address. 3047 @param[out] PrefixLength The pointer to the converted prefix length. 3048 3049 @retval EFI_SUCCESS Convert to IPv6 address successfully. 3050 @retval EFI_INVALID_PARAMETER The string is mal-formated or Ip6Address is NULL. 3051 @retval EFI_OUT_OF_RESOURCES Fail to perform the operation due to lack of resource. 3052 3053 **/ 3054 EFI_STATUS 3055 EFIAPI NetLibStrToIp6andPrefix(IN CONST CHAR16 * String,OUT EFI_IPv6_ADDRESS * Ip6Address,OUT UINT8 * PrefixLength)3056 NetLibStrToIp6andPrefix ( 3057 IN CONST CHAR16 *String, 3058 OUT EFI_IPv6_ADDRESS *Ip6Address, 3059 OUT UINT8 *PrefixLength 3060 ) 3061 { 3062 CHAR8 *Ip6Str; 3063 CHAR8 *PrefixStr; 3064 CHAR8 *TempStr; 3065 EFI_STATUS Status; 3066 UINT8 Length; 3067 3068 if ((String == NULL) || (Ip6Address == NULL) || (PrefixLength == NULL)) { 3069 return EFI_INVALID_PARAMETER; 3070 } 3071 3072 Ip6Str = (CHAR8 *) AllocatePool ((StrLen (String) + 1) * sizeof (CHAR8)); 3073 if (Ip6Str == NULL) { 3074 return EFI_OUT_OF_RESOURCES; 3075 } 3076 3077 UnicodeStrToAsciiStr (String, Ip6Str); 3078 3079 // 3080 // Get the sub string describing prefix length. 3081 // 3082 TempStr = Ip6Str; 3083 while (*TempStr != '\0' && (*TempStr != '/')) { 3084 TempStr++; 3085 } 3086 3087 if (*TempStr == '/') { 3088 PrefixStr = TempStr + 1; 3089 } else { 3090 PrefixStr = NULL; 3091 } 3092 3093 // 3094 // Get the sub string describing IPv6 address and convert it. 3095 // 3096 *TempStr = '\0'; 3097 3098 Status = NetLibAsciiStrToIp6 (Ip6Str, Ip6Address); 3099 if (EFI_ERROR (Status)) { 3100 goto Exit; 3101 } 3102 3103 // 3104 // If input string doesn't indicate the prefix length, return 0xff. 3105 // 3106 Length = 0xFF; 3107 3108 // 3109 // Convert the string to prefix length 3110 // 3111 if (PrefixStr != NULL) { 3112 3113 Status = EFI_INVALID_PARAMETER; 3114 Length = 0; 3115 while (*PrefixStr != '\0') { 3116 if (NET_IS_DIGIT (*PrefixStr)) { 3117 Length = (UINT8) (Length * 10 + (*PrefixStr - '0')); 3118 if (Length >= IP6_PREFIX_NUM) { 3119 goto Exit; 3120 } 3121 } else { 3122 goto Exit; 3123 } 3124 3125 PrefixStr++; 3126 } 3127 } 3128 3129 *PrefixLength = Length; 3130 Status = EFI_SUCCESS; 3131 3132 Exit: 3133 3134 FreePool (Ip6Str); 3135 return Status; 3136 } 3137 3138 /** 3139 3140 Convert one EFI_IPv6_ADDRESS to Null-terminated Unicode string. 3141 The text representation of address is defined in RFC 4291. 3142 3143 @param[in] Ip6Address The pointer to the IPv6 address. 3144 @param[out] String The buffer to return the converted string. 3145 @param[in] StringSize The length in bytes of the input String. 3146 3147 @retval EFI_SUCCESS Convert to string successfully. 3148 @retval EFI_INVALID_PARAMETER The input parameter is invalid. 3149 @retval EFI_BUFFER_TOO_SMALL The BufferSize is too small for the result. BufferSize has been 3150 updated with the size needed to complete the request. 3151 **/ 3152 EFI_STATUS 3153 EFIAPI NetLibIp6ToStr(IN EFI_IPv6_ADDRESS * Ip6Address,OUT CHAR16 * String,IN UINTN StringSize)3154 NetLibIp6ToStr ( 3155 IN EFI_IPv6_ADDRESS *Ip6Address, 3156 OUT CHAR16 *String, 3157 IN UINTN StringSize 3158 ) 3159 { 3160 UINT16 Ip6Addr[8]; 3161 UINTN Index; 3162 UINTN LongestZerosStart; 3163 UINTN LongestZerosLength; 3164 UINTN CurrentZerosStart; 3165 UINTN CurrentZerosLength; 3166 CHAR16 Buffer[sizeof"ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"]; 3167 CHAR16 *Ptr; 3168 3169 if (Ip6Address == NULL || String == NULL || StringSize == 0) { 3170 return EFI_INVALID_PARAMETER; 3171 } 3172 3173 // 3174 // Convert the UINT8 array to an UINT16 array for easy handling. 3175 // 3176 ZeroMem (Ip6Addr, sizeof (Ip6Addr)); 3177 for (Index = 0; Index < 16; Index++) { 3178 Ip6Addr[Index / 2] |= (Ip6Address->Addr[Index] << ((1 - (Index % 2)) << 3)); 3179 } 3180 3181 // 3182 // Find the longest zeros and mark it. 3183 // 3184 CurrentZerosStart = DEFAULT_ZERO_START; 3185 CurrentZerosLength = 0; 3186 LongestZerosStart = DEFAULT_ZERO_START; 3187 LongestZerosLength = 0; 3188 for (Index = 0; Index < 8; Index++) { 3189 if (Ip6Addr[Index] == 0) { 3190 if (CurrentZerosStart == DEFAULT_ZERO_START) { 3191 CurrentZerosStart = Index; 3192 CurrentZerosLength = 1; 3193 } else { 3194 CurrentZerosLength++; 3195 } 3196 } else { 3197 if (CurrentZerosStart != DEFAULT_ZERO_START) { 3198 if (CurrentZerosLength > 2 && (LongestZerosStart == (DEFAULT_ZERO_START) || CurrentZerosLength > LongestZerosLength)) { 3199 LongestZerosStart = CurrentZerosStart; 3200 LongestZerosLength = CurrentZerosLength; 3201 } 3202 CurrentZerosStart = DEFAULT_ZERO_START; 3203 CurrentZerosLength = 0; 3204 } 3205 } 3206 } 3207 3208 if (CurrentZerosStart != DEFAULT_ZERO_START && CurrentZerosLength > 2) { 3209 if (LongestZerosStart == DEFAULT_ZERO_START || LongestZerosLength < CurrentZerosLength) { 3210 LongestZerosStart = CurrentZerosStart; 3211 LongestZerosLength = CurrentZerosLength; 3212 } 3213 } 3214 3215 Ptr = Buffer; 3216 for (Index = 0; Index < 8; Index++) { 3217 if (LongestZerosStart != DEFAULT_ZERO_START && Index >= LongestZerosStart && Index < LongestZerosStart + LongestZerosLength) { 3218 if (Index == LongestZerosStart) { 3219 *Ptr++ = L':'; 3220 } 3221 continue; 3222 } 3223 if (Index != 0) { 3224 *Ptr++ = L':'; 3225 } 3226 Ptr += UnicodeSPrint(Ptr, 10, L"%x", Ip6Addr[Index]); 3227 } 3228 3229 if (LongestZerosStart != DEFAULT_ZERO_START && LongestZerosStart + LongestZerosLength == 8) { 3230 *Ptr++ = L':'; 3231 } 3232 *Ptr = L'\0'; 3233 3234 if ((UINTN)Ptr - (UINTN)Buffer > StringSize) { 3235 return EFI_BUFFER_TOO_SMALL; 3236 } 3237 3238 StrCpyS (String, StringSize / sizeof (CHAR16), Buffer); 3239 3240 return EFI_SUCCESS; 3241 } 3242 3243 /** 3244 This function obtains the system guid from the smbios table. 3245 3246 @param[out] SystemGuid The pointer of the returned system guid. 3247 3248 @retval EFI_SUCCESS Successfully obtained the system guid. 3249 @retval EFI_NOT_FOUND Did not find the SMBIOS table. 3250 3251 **/ 3252 EFI_STATUS 3253 EFIAPI NetLibGetSystemGuid(OUT EFI_GUID * SystemGuid)3254 NetLibGetSystemGuid ( 3255 OUT EFI_GUID *SystemGuid 3256 ) 3257 { 3258 EFI_STATUS Status; 3259 SMBIOS_TABLE_ENTRY_POINT *SmbiosTable; 3260 SMBIOS_TABLE_3_0_ENTRY_POINT *Smbios30Table; 3261 SMBIOS_STRUCTURE_POINTER Smbios; 3262 SMBIOS_STRUCTURE_POINTER SmbiosEnd; 3263 CHAR8 *String; 3264 3265 SmbiosTable = NULL; 3266 Status = EfiGetSystemConfigurationTable (&gEfiSmbios3TableGuid, (VOID **) &Smbios30Table); 3267 if (!(EFI_ERROR (Status) || Smbios30Table == NULL)) { 3268 Smbios.Hdr = (SMBIOS_STRUCTURE *) (UINTN) Smbios30Table->TableAddress; 3269 SmbiosEnd.Raw = (UINT8 *) (UINTN) (Smbios30Table->TableAddress + Smbios30Table->TableMaximumSize); 3270 } else { 3271 Status = EfiGetSystemConfigurationTable (&gEfiSmbiosTableGuid, (VOID **) &SmbiosTable); 3272 if (EFI_ERROR (Status) || SmbiosTable == NULL) { 3273 return EFI_NOT_FOUND; 3274 } 3275 Smbios.Hdr = (SMBIOS_STRUCTURE *) (UINTN) SmbiosTable->TableAddress; 3276 SmbiosEnd.Raw = (UINT8 *) (UINTN) (SmbiosTable->TableAddress + SmbiosTable->TableLength); 3277 } 3278 3279 do { 3280 if (Smbios.Hdr->Type == 1) { 3281 if (Smbios.Hdr->Length < 0x19) { 3282 // 3283 // Older version did not support UUID. 3284 // 3285 return EFI_NOT_FOUND; 3286 } 3287 3288 // 3289 // SMBIOS tables are byte packed so we need to do a byte copy to 3290 // prevend alignment faults on Itanium-based platform. 3291 // 3292 CopyMem (SystemGuid, &Smbios.Type1->Uuid, sizeof (EFI_GUID)); 3293 return EFI_SUCCESS; 3294 } 3295 3296 // 3297 // Go to the next SMBIOS structure. Each SMBIOS structure may include 2 parts: 3298 // 1. Formatted section; 2. Unformatted string section. So, 2 steps are needed 3299 // to skip one SMBIOS structure. 3300 // 3301 3302 // 3303 // Step 1: Skip over formatted section. 3304 // 3305 String = (CHAR8 *) (Smbios.Raw + Smbios.Hdr->Length); 3306 3307 // 3308 // Step 2: Skip over unformated string section. 3309 // 3310 do { 3311 // 3312 // Each string is terminated with a NULL(00h) BYTE and the sets of strings 3313 // is terminated with an additional NULL(00h) BYTE. 3314 // 3315 for ( ; *String != 0; String++) { 3316 } 3317 3318 if (*(UINT8*)++String == 0) { 3319 // 3320 // Pointer to the next SMBIOS structure. 3321 // 3322 Smbios.Raw = (UINT8 *)++String; 3323 break; 3324 } 3325 } while (TRUE); 3326 } while (Smbios.Raw < SmbiosEnd.Raw); 3327 return EFI_NOT_FOUND; 3328 } 3329