1 /* ====================================================================
2 * Copyright (c) 2010 The OpenSSL Project. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 *
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in
13 * the documentation and/or other materials provided with the
14 * distribution.
15 *
16 * 3. All advertising materials mentioning features or use of this
17 * software must display the following acknowledgment:
18 * "This product includes software developed by the OpenSSL Project
19 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
20 *
21 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
22 * endorse or promote products derived from this software without
23 * prior written permission. For written permission, please contact
24 * licensing@OpenSSL.org.
25 *
26 * 5. Products derived from this software may not be called "OpenSSL"
27 * nor may "OpenSSL" appear in their names without prior written
28 * permission of the OpenSSL Project.
29 *
30 * 6. Redistributions of any form whatsoever must retain the following
31 * acknowledgment:
32 * "This product includes software developed by the OpenSSL Project
33 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
34 *
35 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
36 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
37 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
38 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
39 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
40 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
41 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
44 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
45 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
46 * OF THE POSSIBILITY OF SUCH DAMAGE.
47 * ==================================================================== */
48
49 #include <openssl/cmac.h>
50
51 #include <assert.h>
52 #include <string.h>
53
54 #include <openssl/aes.h>
55 #include <openssl/cipher.h>
56 #include <openssl/mem.h>
57
58 #include "../internal.h"
59
60
61 struct cmac_ctx_st {
62 EVP_CIPHER_CTX cipher_ctx;
63 /* k1 and k2 are the CMAC subkeys. See
64 * https://tools.ietf.org/html/rfc4493#section-2.3 */
65 uint8_t k1[AES_BLOCK_SIZE];
66 uint8_t k2[AES_BLOCK_SIZE];
67 /* Last (possibly partial) scratch */
68 uint8_t block[AES_BLOCK_SIZE];
69 /* block_used contains the number of valid bytes in |block|. */
70 unsigned block_used;
71 };
72
CMAC_CTX_init(CMAC_CTX * ctx)73 static void CMAC_CTX_init(CMAC_CTX *ctx) {
74 EVP_CIPHER_CTX_init(&ctx->cipher_ctx);
75 }
76
CMAC_CTX_cleanup(CMAC_CTX * ctx)77 static void CMAC_CTX_cleanup(CMAC_CTX *ctx) {
78 EVP_CIPHER_CTX_cleanup(&ctx->cipher_ctx);
79 OPENSSL_cleanse(ctx->k1, sizeof(ctx->k1));
80 OPENSSL_cleanse(ctx->k2, sizeof(ctx->k2));
81 OPENSSL_cleanse(ctx->block, sizeof(ctx->block));
82 }
83
AES_CMAC(uint8_t out[16],const uint8_t * key,size_t key_len,const uint8_t * in,size_t in_len)84 int AES_CMAC(uint8_t out[16], const uint8_t *key, size_t key_len,
85 const uint8_t *in, size_t in_len) {
86 const EVP_CIPHER *cipher;
87 switch (key_len) {
88 case 16:
89 cipher = EVP_aes_128_cbc();
90 break;
91 case 32:
92 cipher = EVP_aes_256_cbc();
93 break;
94 default:
95 return 0;
96 }
97
98 size_t scratch_out_len;
99 CMAC_CTX ctx;
100 CMAC_CTX_init(&ctx);
101
102 const int ok = CMAC_Init(&ctx, key, key_len, cipher, NULL /* engine */) &&
103 CMAC_Update(&ctx, in, in_len) &&
104 CMAC_Final(&ctx, out, &scratch_out_len);
105
106 CMAC_CTX_cleanup(&ctx);
107 return ok;
108 }
109
CMAC_CTX_new(void)110 CMAC_CTX *CMAC_CTX_new(void) {
111 CMAC_CTX *ctx = OPENSSL_malloc(sizeof(*ctx));
112 if (ctx != NULL) {
113 CMAC_CTX_init(ctx);
114 }
115 return ctx;
116 }
117
CMAC_CTX_free(CMAC_CTX * ctx)118 void CMAC_CTX_free(CMAC_CTX *ctx) {
119 if (ctx == NULL) {
120 return;
121 }
122
123 CMAC_CTX_cleanup(ctx);
124 OPENSSL_free(ctx);
125 }
126
127 /* binary_field_mul_x treats the 128 bits at |in| as an element of GF(2¹²⁸)
128 * with a hard-coded reduction polynomial and sets |out| as x times the
129 * input.
130 *
131 * See https://tools.ietf.org/html/rfc4493#section-2.3 */
binary_field_mul_x(uint8_t out[16],const uint8_t in[16])132 static void binary_field_mul_x(uint8_t out[16], const uint8_t in[16]) {
133 unsigned i;
134
135 /* Shift |in| to left, including carry. */
136 for (i = 0; i < 15; i++) {
137 out[i] = (in[i] << 1) | (in[i+1] >> 7);
138 }
139
140 /* If MSB set fixup with R. */
141 const uint8_t carry = in[0] >> 7;
142 out[i] = (in[i] << 1) ^ ((0 - carry) & 0x87);
143 }
144
145 static const uint8_t kZeroIV[AES_BLOCK_SIZE] = {0};
146
CMAC_Init(CMAC_CTX * ctx,const void * key,size_t key_len,const EVP_CIPHER * cipher,ENGINE * engine)147 int CMAC_Init(CMAC_CTX *ctx, const void *key, size_t key_len,
148 const EVP_CIPHER *cipher, ENGINE *engine) {
149 uint8_t scratch[AES_BLOCK_SIZE];
150
151 if (EVP_CIPHER_block_size(cipher) != AES_BLOCK_SIZE ||
152 EVP_CIPHER_key_length(cipher) != key_len ||
153 !EVP_EncryptInit_ex(&ctx->cipher_ctx, cipher, NULL, key, kZeroIV) ||
154 !EVP_Cipher(&ctx->cipher_ctx, scratch, kZeroIV, AES_BLOCK_SIZE) ||
155 /* Reset context again ready for first data. */
156 !EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV)) {
157 return 0;
158 }
159
160 binary_field_mul_x(ctx->k1, scratch);
161 binary_field_mul_x(ctx->k2, ctx->k1);
162 ctx->block_used = 0;
163
164 return 1;
165 }
166
CMAC_Reset(CMAC_CTX * ctx)167 int CMAC_Reset(CMAC_CTX *ctx) {
168 ctx->block_used = 0;
169 return EVP_EncryptInit_ex(&ctx->cipher_ctx, NULL, NULL, NULL, kZeroIV);
170 }
171
CMAC_Update(CMAC_CTX * ctx,const uint8_t * in,size_t in_len)172 int CMAC_Update(CMAC_CTX *ctx, const uint8_t *in, size_t in_len) {
173 uint8_t scratch[AES_BLOCK_SIZE];
174
175 if (ctx->block_used > 0) {
176 size_t todo = AES_BLOCK_SIZE - ctx->block_used;
177 if (in_len < todo) {
178 todo = in_len;
179 }
180
181 OPENSSL_memcpy(ctx->block + ctx->block_used, in, todo);
182 in += todo;
183 in_len -= todo;
184 ctx->block_used += todo;
185
186 /* If |in_len| is zero then either |ctx->block_used| is less than
187 * |AES_BLOCK_SIZE|, in which case we can stop here, or |ctx->block_used|
188 * is exactly |AES_BLOCK_SIZE| but there's no more data to process. In the
189 * latter case we don't want to process this block now because it might be
190 * the last block and that block is treated specially. */
191 if (in_len == 0) {
192 return 1;
193 }
194
195 assert(ctx->block_used == AES_BLOCK_SIZE);
196
197 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, ctx->block, AES_BLOCK_SIZE)) {
198 return 0;
199 }
200 }
201
202 /* Encrypt all but one of the remaining blocks. */
203 while (in_len > AES_BLOCK_SIZE) {
204 if (!EVP_Cipher(&ctx->cipher_ctx, scratch, in, AES_BLOCK_SIZE)) {
205 return 0;
206 }
207 in += AES_BLOCK_SIZE;
208 in_len -= AES_BLOCK_SIZE;
209 }
210
211 OPENSSL_memcpy(ctx->block, in, in_len);
212 ctx->block_used = in_len;
213
214 return 1;
215 }
216
CMAC_Final(CMAC_CTX * ctx,uint8_t * out,size_t * out_len)217 int CMAC_Final(CMAC_CTX *ctx, uint8_t *out, size_t *out_len) {
218 *out_len = AES_BLOCK_SIZE;
219 if (out == NULL) {
220 return 1;
221 }
222
223 const uint8_t *mask = ctx->k1;
224
225 if (ctx->block_used != AES_BLOCK_SIZE) {
226 /* If the last block is incomplete, terminate it with a single 'one' bit
227 * followed by zeros. */
228 ctx->block[ctx->block_used] = 0x80;
229 OPENSSL_memset(ctx->block + ctx->block_used + 1, 0,
230 AES_BLOCK_SIZE - (ctx->block_used + 1));
231
232 mask = ctx->k2;
233 }
234
235 unsigned i;
236 for (i = 0; i < AES_BLOCK_SIZE; i++) {
237 out[i] = ctx->block[i] ^ mask[i];
238 }
239
240 return EVP_Cipher(&ctx->cipher_ctx, out, out, AES_BLOCK_SIZE);
241 }
242