• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
2  * All rights reserved.
3  *
4  * This package is an SSL implementation written
5  * by Eric Young (eay@cryptsoft.com).
6  * The implementation was written so as to conform with Netscapes SSL.
7  *
8  * This library is free for commercial and non-commercial use as long as
9  * the following conditions are aheared to.  The following conditions
10  * apply to all code found in this distribution, be it the RC4, RSA,
11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
12  * included with this distribution is covered by the same copyright terms
13  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
14  *
15  * Copyright remains Eric Young's, and as such any Copyright notices in
16  * the code are not to be removed.
17  * If this package is used in a product, Eric Young should be given attribution
18  * as the author of the parts of the library used.
19  * This can be in the form of a textual message at program startup or
20  * in documentation (online or textual) provided with the package.
21  *
22  * Redistribution and use in source and binary forms, with or without
23  * modification, are permitted provided that the following conditions
24  * are met:
25  * 1. Redistributions of source code must retain the copyright
26  *    notice, this list of conditions and the following disclaimer.
27  * 2. Redistributions in binary form must reproduce the above copyright
28  *    notice, this list of conditions and the following disclaimer in the
29  *    documentation and/or other materials provided with the distribution.
30  * 3. All advertising materials mentioning features or use of this software
31  *    must display the following acknowledgement:
32  *    "This product includes cryptographic software written by
33  *     Eric Young (eay@cryptsoft.com)"
34  *    The word 'cryptographic' can be left out if the rouines from the library
35  *    being used are not cryptographic related :-).
36  * 4. If you include any Windows specific code (or a derivative thereof) from
37  *    the apps directory (application code) you must include an acknowledgement:
38  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
39  *
40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
50  * SUCH DAMAGE.
51  *
52  * The licence and distribution terms for any publically available version or
53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
54  * copied and put under another distribution licence
55  * [including the GNU Public Licence.]
56  */
57 /* ====================================================================
58  * Copyright (c) 1998-2001 The OpenSSL Project.  All rights reserved.
59  *
60  * Redistribution and use in source and binary forms, with or without
61  * modification, are permitted provided that the following conditions
62  * are met:
63  *
64  * 1. Redistributions of source code must retain the above copyright
65  *    notice, this list of conditions and the following disclaimer.
66  *
67  * 2. Redistributions in binary form must reproduce the above copyright
68  *    notice, this list of conditions and the following disclaimer in
69  *    the documentation and/or other materials provided with the
70  *    distribution.
71  *
72  * 3. All advertising materials mentioning features or use of this
73  *    software must display the following acknowledgment:
74  *    "This product includes software developed by the OpenSSL Project
75  *    for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
76  *
77  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
78  *    endorse or promote products derived from this software without
79  *    prior written permission. For written permission, please contact
80  *    openssl-core@openssl.org.
81  *
82  * 5. Products derived from this software may not be called "OpenSSL"
83  *    nor may "OpenSSL" appear in their names without prior written
84  *    permission of the OpenSSL Project.
85  *
86  * 6. Redistributions of any form whatsoever must retain the following
87  *    acknowledgment:
88  *    "This product includes software developed by the OpenSSL Project
89  *    for use in the OpenSSL Toolkit (http://www.openssl.org/)"
90  *
91  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
92  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
93  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
94  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
95  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
96  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
97  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
98  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
99  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
100  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
101  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
102  * OF THE POSSIBILITY OF SUCH DAMAGE.
103  * ====================================================================
104  *
105  * This product includes cryptographic software written by Eric Young
106  * (eay@cryptsoft.com).  This product includes software written by Tim
107  * Hudson (tjh@cryptsoft.com). */
108 
109 #ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
110 #define OPENSSL_HEADER_CRYPTO_INTERNAL_H
111 
112 #include <openssl/ex_data.h>
113 #include <openssl/stack.h>
114 #include <openssl/thread.h>
115 
116 #include <string.h>
117 
118 #if defined(_MSC_VER)
119 #if !defined(__cplusplus) || _MSC_VER < 1900
120 #define alignas(x) __declspec(align(x))
121 #define alignof __alignof
122 #endif
123 #else
124 #include <stdalign.h>
125 #endif
126 
127 #if !defined(OPENSSL_NO_THREADS) && \
128     (!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
129 #include <pthread.h>
130 #define OPENSSL_PTHREADS
131 #endif
132 
133 #if !defined(OPENSSL_NO_THREADS) && !defined(OPENSSL_PTHREADS) && \
134     defined(OPENSSL_WINDOWS)
135 #define OPENSSL_WINDOWS_THREADS
136 OPENSSL_MSVC_PRAGMA(warning(push, 3))
137 #include <windows.h>
OPENSSL_MSVC_PRAGMA(warning (pop))138 OPENSSL_MSVC_PRAGMA(warning(pop))
139 #endif
140 
141 #if defined(__cplusplus)
142 extern "C" {
143 #endif
144 
145 
146 #if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
147     defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
148 /* OPENSSL_cpuid_setup initializes the platform-specific feature cache. */
149 void OPENSSL_cpuid_setup(void);
150 #endif
151 
152 
153 #if !defined(_MSC_VER) && defined(OPENSSL_64_BIT)
154 typedef __int128_t int128_t;
155 typedef __uint128_t uint128_t;
156 #endif
157 
158 #define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
159 
160 /* buffers_alias returns one if |a| and |b| alias and zero otherwise. */
161 static inline int buffers_alias(const uint8_t *a, size_t a_len,
162                                 const uint8_t *b, size_t b_len) {
163   /* Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
164    * objects are undefined whereas pointer to integer conversions are merely
165    * implementation-defined. We assume the implementation defined it in a sane
166    * way. */
167   uintptr_t a_u = (uintptr_t)a;
168   uintptr_t b_u = (uintptr_t)b;
169   return a_u + a_len > b_u && b_u + b_len > a_u;
170 }
171 
172 
173 /* Constant-time utility functions.
174  *
175  * The following methods return a bitmask of all ones (0xff...f) for true and 0
176  * for false. This is useful for choosing a value based on the result of a
177  * conditional in constant time. For example,
178  *
179  * if (a < b) {
180  *   c = a;
181  * } else {
182  *   c = b;
183  * }
184  *
185  * can be written as
186  *
187  * crypto_word_t lt = constant_time_lt_w(a, b);
188  * c = constant_time_select_w(lt, a, b); */
189 
190 /* crypto_word_t is the type that most constant-time functions use. Ideally we
191  * would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
192  * pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
193  * bits. Since we want to be able to do constant-time operations on a
194  * |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
195  * word length. */
196 #if defined(OPENSSL_64_BIT)
197 typedef uint64_t crypto_word_t;
198 #elif defined(OPENSSL_32_BIT)
199 typedef uint32_t crypto_word_t;
200 #else
201 #error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
202 #endif
203 
204 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
205 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
206 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
207 
208 #define CONSTTIME_TRUE_W ~((crypto_word_t)0)
209 #define CONSTTIME_FALSE_W ((crypto_word_t)0)
210 #define CONSTTIME_TRUE_8 ((uint8_t)0xff)
211 #define CONSTTIME_FALSE_8 ((uint8_t)0)
212 
213 /* constant_time_msb_w returns the given value with the MSB copied to all the
214  * other bits. */
215 static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
216   return 0u - (a >> (sizeof(a) * 8 - 1));
217 }
218 
219 /* constant_time_lt_w returns 0xff..f if a < b and 0 otherwise. */
220 static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
221                                                crypto_word_t b) {
222   /* Consider the two cases of the problem:
223    *   msb(a) == msb(b): a < b iff the MSB of a - b is set.
224    *   msb(a) != msb(b): a < b iff the MSB of b is set.
225    *
226    * If msb(a) == msb(b) then the following evaluates as:
227    *   msb(a^((a^b)|((a-b)^a))) ==
228    *   msb(a^((a-b) ^ a))       ==   (because msb(a^b) == 0)
229    *   msb(a^a^(a-b))           ==   (rearranging)
230    *   msb(a-b)                      (because ∀x. x^x == 0)
231    *
232    * Else, if msb(a) != msb(b) then the following evaluates as:
233    *   msb(a^((a^b)|((a-b)^a))) ==
234    *   msb(a^(�� | ((a-b)^a)))   ==   (because msb(a^b) == 1 and ��
235    *                                  represents a value s.t. msb(��) = 1)
236    *   msb(a^��)                 ==   (because ORing with 1 results in 1)
237    *   msb(b)
238    *
239    *
240    * Here is an SMT-LIB verification of this formula:
241    *
242    * (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
243    *   (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
244    * )
245    *
246    * (declare-fun a () (_ BitVec 32))
247    * (declare-fun b () (_ BitVec 32))
248    *
249    * (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
250    * (check-sat)
251    * (get-model)
252    */
253   return constant_time_msb_w(a^((a^b)|((a-b)^a)));
254 }
255 
256 /* constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
257  * mask. */
258 static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
259   return (uint8_t)(constant_time_lt_w(a, b));
260 }
261 
262 /* constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise. */
263 static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
264                                                crypto_word_t b) {
265   return ~constant_time_lt_w(a, b);
266 }
267 
268 /* constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
269  * mask. */
270 static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
271   return (uint8_t)(constant_time_ge_w(a, b));
272 }
273 
274 /* constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise. */
275 static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
276   /* Here is an SMT-LIB verification of this formula:
277    *
278    * (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
279    *   (bvand (bvnot a) (bvsub a #x00000001))
280    * )
281    *
282    * (declare-fun a () (_ BitVec 32))
283    *
284    * (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
285    * (check-sat)
286    * (get-model)
287    */
288   return constant_time_msb_w(~a & (a - 1));
289 }
290 
291 /* constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
292  * 8-bit mask. */
293 static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
294   return (uint8_t)(constant_time_is_zero_w(a));
295 }
296 
297 /* constant_time_eq_w returns 0xff..f if a == b and 0 otherwise. */
298 static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
299                                                crypto_word_t b) {
300   return constant_time_is_zero_w(a ^ b);
301 }
302 
303 /* constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
304  * mask. */
305 static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
306   return (uint8_t)(constant_time_eq_w(a, b));
307 }
308 
309 /* constant_time_eq_int acts like |constant_time_eq_w| but works on int
310  * values. */
311 static inline crypto_word_t constant_time_eq_int(int a, int b) {
312   return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
313 }
314 
315 /* constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
316  * mask. */
317 static inline uint8_t constant_time_eq_int_8(int a, int b) {
318   return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
319 }
320 
321 /* constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
322  * 1s or all 0s (as returned by the methods above), the select methods return
323  * either |a| (if |mask| is nonzero) or |b| (if |mask| is zero). */
324 static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
325                                                    crypto_word_t a,
326                                                    crypto_word_t b) {
327   return (mask & a) | (~mask & b);
328 }
329 
330 /* constant_time_select_8 acts like |constant_time_select| but operates on
331  * 8-bit values. */
332 static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
333                                              uint8_t b) {
334   return (uint8_t)(constant_time_select_w(mask, a, b));
335 }
336 
337 /* constant_time_select_int acts like |constant_time_select| but operates on
338  * ints. */
339 static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
340   return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
341                                       (crypto_word_t)(b)));
342 }
343 
344 
345 /* Thread-safe initialisation. */
346 
347 #if defined(OPENSSL_NO_THREADS)
348 typedef uint32_t CRYPTO_once_t;
349 #define CRYPTO_ONCE_INIT 0
350 #elif defined(OPENSSL_WINDOWS_THREADS)
351 typedef INIT_ONCE CRYPTO_once_t;
352 #define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
353 #elif defined(OPENSSL_PTHREADS)
354 typedef pthread_once_t CRYPTO_once_t;
355 #define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
356 #else
357 #error "Unknown threading library"
358 #endif
359 
360 /* CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
361  * concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
362  * then they will block until |init| completes, but |init| will have only been
363  * called once.
364  *
365  * The |once| argument must be a |CRYPTO_once_t| that has been initialised with
366  * the value |CRYPTO_ONCE_INIT|. */
367 OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
368 
369 
370 /* Reference counting. */
371 
372 /* CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates. */
373 #define CRYPTO_REFCOUNT_MAX 0xffffffff
374 
375 /* CRYPTO_refcount_inc atomically increments the value at |*count| unless the
376  * value would overflow. It's safe for multiple threads to concurrently call
377  * this or |CRYPTO_refcount_dec_and_test_zero| on the same
378  * |CRYPTO_refcount_t|. */
379 OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
380 
381 /* CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
382  *   if it's zero, it crashes the address space.
383  *   if it's the maximum value, it returns zero.
384  *   otherwise, it atomically decrements it and returns one iff the resulting
385  *       value is zero.
386  *
387  * It's safe for multiple threads to concurrently call this or
388  * |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|. */
389 OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
390 
391 
392 /* Locks.
393  *
394  * Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
395  * structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
396  * a global lock. A global lock must be initialised to the value
397  * |CRYPTO_STATIC_MUTEX_INIT|.
398  *
399  * |CRYPTO_MUTEX| can appear in public structures and so is defined in
400  * thread.h as a structure large enough to fit the real type. The global lock is
401  * a different type so it may be initialized with platform initializer macros.*/
402 
403 #if defined(OPENSSL_NO_THREADS)
404 struct CRYPTO_STATIC_MUTEX {
405   char padding;  /* Empty structs have different sizes in C and C++. */
406 };
407 #define CRYPTO_STATIC_MUTEX_INIT { 0 }
408 #elif defined(OPENSSL_WINDOWS_THREADS)
409 struct CRYPTO_STATIC_MUTEX {
410   SRWLOCK lock;
411 };
412 #define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
413 #elif defined(OPENSSL_PTHREADS)
414 struct CRYPTO_STATIC_MUTEX {
415   pthread_rwlock_t lock;
416 };
417 #define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
418 #else
419 #error "Unknown threading library"
420 #endif
421 
422 /* CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
423  * |CRYPTO_STATIC_MUTEX|. */
424 OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
425 
426 /* CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
427  * read lock, but none may have a write lock. */
428 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
429 
430 /* CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
431  * of lock on it. */
432 OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
433 
434 /* CRYPTO_MUTEX_unlock_read unlocks |lock| for reading. */
435 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
436 
437 /* CRYPTO_MUTEX_unlock_write unlocks |lock| for writing. */
438 OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
439 
440 /* CRYPTO_MUTEX_cleanup releases all resources held by |lock|. */
441 OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
442 
443 /* CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
444  * have a read lock, but none may have a write lock. The |lock| variable does
445  * not need to be initialised by any function, but must have been statically
446  * initialised with |CRYPTO_STATIC_MUTEX_INIT|. */
447 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
448     struct CRYPTO_STATIC_MUTEX *lock);
449 
450 /* CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
451  * any type of lock on it.  The |lock| variable does not need to be initialised
452  * by any function, but must have been statically initialised with
453  * |CRYPTO_STATIC_MUTEX_INIT|. */
454 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
455     struct CRYPTO_STATIC_MUTEX *lock);
456 
457 /* CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading. */
458 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
459     struct CRYPTO_STATIC_MUTEX *lock);
460 
461 /* CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing. */
462 OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
463     struct CRYPTO_STATIC_MUTEX *lock);
464 
465 
466 /* Thread local storage. */
467 
468 /* thread_local_data_t enumerates the types of thread-local data that can be
469  * stored. */
470 typedef enum {
471   OPENSSL_THREAD_LOCAL_ERR = 0,
472   OPENSSL_THREAD_LOCAL_RAND,
473   OPENSSL_THREAD_LOCAL_TEST,
474   NUM_OPENSSL_THREAD_LOCALS,
475 } thread_local_data_t;
476 
477 /* thread_local_destructor_t is the type of a destructor function that will be
478  * called when a thread exits and its thread-local storage needs to be freed. */
479 typedef void (*thread_local_destructor_t)(void *);
480 
481 /* CRYPTO_get_thread_local gets the pointer value that is stored for the
482  * current thread for the given index, or NULL if none has been set. */
483 OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
484 
485 /* CRYPTO_set_thread_local sets a pointer value for the current thread at the
486  * given index. This function should only be called once per thread for a given
487  * |index|: rather than update the pointer value itself, update the data that
488  * is pointed to.
489  *
490  * The destructor function will be called when a thread exits to free this
491  * thread-local data. All calls to |CRYPTO_set_thread_local| with the same
492  * |index| should have the same |destructor| argument. The destructor may be
493  * called with a NULL argument if a thread that never set a thread-local
494  * pointer for |index|, exits. The destructor may be called concurrently with
495  * different arguments.
496  *
497  * This function returns one on success or zero on error. If it returns zero
498  * then |destructor| has been called with |value| already. */
499 OPENSSL_EXPORT int CRYPTO_set_thread_local(
500     thread_local_data_t index, void *value,
501     thread_local_destructor_t destructor);
502 
503 
504 /* ex_data */
505 
506 typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
507 
508 DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
509 
510 /* CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
511  * supports ex_data. It should defined as a static global within the module
512  * which defines that type. */
513 typedef struct {
514   struct CRYPTO_STATIC_MUTEX lock;
515   STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
516   /* num_reserved is one if the ex_data index zero is reserved for legacy
517    * |TYPE_get_app_data| functions. */
518   uint8_t num_reserved;
519 } CRYPTO_EX_DATA_CLASS;
520 
521 #define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
522 #define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
523     {CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
524 
525 /* CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
526  * it to |*out_index|. Each class of object should provide a wrapper function
527  * that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
528  * zero otherwise. */
529 OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
530                                            int *out_index, long argl,
531                                            void *argp,
532                                            CRYPTO_EX_free *free_func);
533 
534 /* CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
535  * of object should provide a wrapper function. */
536 OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
537 
538 /* CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
539  * if no such index exists. Each class of object should provide a wrapper
540  * function. */
541 OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
542 
543 /* CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|. */
544 OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
545 
546 /* CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
547  * object of the given class. */
548 OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
549                                         void *obj, CRYPTO_EX_DATA *ad);
550 
551 
552 /* Language bug workarounds.
553  *
554  * Most C standard library functions are undefined if passed NULL, even when the
555  * corresponding length is zero. This gives them (and, in turn, all functions
556  * which call them) surprising behavior on empty arrays. Some compilers will
557  * miscompile code due to this rule. See also
558  * https://www.imperialviolet.org/2016/06/26/nonnull.html
559  *
560  * These wrapper functions behave the same as the corresponding C standard
561  * functions, but behave as expected when passed NULL if the length is zero.
562  *
563  * Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|. */
564 
565 /* C++ defines |memchr| as a const-correct overload. */
566 #if defined(__cplusplus)
567 extern "C++" {
568 
569 static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
570   if (n == 0) {
571     return NULL;
572   }
573 
574   return memchr(s, c, n);
575 }
576 
577 static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
578   if (n == 0) {
579     return NULL;
580   }
581 
582   return memchr(s, c, n);
583 }
584 
585 }  /* extern "C++" */
586 #else  /* __cplusplus */
587 
588 static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
589   if (n == 0) {
590     return NULL;
591   }
592 
593   return memchr(s, c, n);
594 }
595 
596 #endif  /* __cplusplus */
597 
598 static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
599   if (n == 0) {
600     return 0;
601   }
602 
603   return memcmp(s1, s2, n);
604 }
605 
606 static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
607   if (n == 0) {
608     return dst;
609   }
610 
611   return memcpy(dst, src, n);
612 }
613 
614 static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
615   if (n == 0) {
616     return dst;
617   }
618 
619   return memmove(dst, src, n);
620 }
621 
622 static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
623   if (n == 0) {
624     return dst;
625   }
626 
627   return memset(dst, c, n);
628 }
629 
630 #if defined(BORINGSSL_FIPS)
631 /* BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
632  * fails. It prevents any further cryptographic operations by the current
633  * process. */
634 void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
635 #endif
636 
637 #if defined(__cplusplus)
638 }  /* extern C */
639 #endif
640 
641 #endif  /* OPENSSL_HEADER_CRYPTO_INTERNAL_H */
642