1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with complex types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/StmtVisitor.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/MDBuilder.h"
24 #include "llvm/IR/Metadata.h"
25 #include <algorithm>
26 using namespace clang;
27 using namespace CodeGen;
28
29 //===----------------------------------------------------------------------===//
30 // Complex Expression Emitter
31 //===----------------------------------------------------------------------===//
32
33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy;
34
35 /// Return the complex type that we are meant to emit.
getComplexType(QualType type)36 static const ComplexType *getComplexType(QualType type) {
37 type = type.getCanonicalType();
38 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) {
39 return comp;
40 } else {
41 return cast<ComplexType>(cast<AtomicType>(type)->getValueType());
42 }
43 }
44
45 namespace {
46 class ComplexExprEmitter
47 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> {
48 CodeGenFunction &CGF;
49 CGBuilderTy &Builder;
50 bool IgnoreReal;
51 bool IgnoreImag;
52 public:
ComplexExprEmitter(CodeGenFunction & cgf,bool ir=false,bool ii=false)53 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false)
54 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) {
55 }
56
57
58 //===--------------------------------------------------------------------===//
59 // Utilities
60 //===--------------------------------------------------------------------===//
61
TestAndClearIgnoreReal()62 bool TestAndClearIgnoreReal() {
63 bool I = IgnoreReal;
64 IgnoreReal = false;
65 return I;
66 }
TestAndClearIgnoreImag()67 bool TestAndClearIgnoreImag() {
68 bool I = IgnoreImag;
69 IgnoreImag = false;
70 return I;
71 }
72
73 /// EmitLoadOfLValue - Given an expression with complex type that represents a
74 /// value l-value, this method emits the address of the l-value, then loads
75 /// and returns the result.
EmitLoadOfLValue(const Expr * E)76 ComplexPairTy EmitLoadOfLValue(const Expr *E) {
77 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc());
78 }
79
80 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc);
81
82 /// EmitStoreOfComplex - Store the specified real/imag parts into the
83 /// specified value pointer.
84 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit);
85
86 /// Emit a cast from complex value Val to DestType.
87 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType,
88 QualType DestType, SourceLocation Loc);
89 /// Emit a cast from scalar value Val to DestType.
90 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType,
91 QualType DestType, SourceLocation Loc);
92
93 //===--------------------------------------------------------------------===//
94 // Visitor Methods
95 //===--------------------------------------------------------------------===//
96
Visit(Expr * E)97 ComplexPairTy Visit(Expr *E) {
98 ApplyDebugLocation DL(CGF, E);
99 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E);
100 }
101
VisitStmt(Stmt * S)102 ComplexPairTy VisitStmt(Stmt *S) {
103 S->dump(CGF.getContext().getSourceManager());
104 llvm_unreachable("Stmt can't have complex result type!");
105 }
106 ComplexPairTy VisitExpr(Expr *S);
VisitParenExpr(ParenExpr * PE)107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());}
VisitGenericSelectionExpr(GenericSelectionExpr * GE)108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
109 return Visit(GE->getResultExpr());
110 }
111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL);
112 ComplexPairTy
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * PE)113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) {
114 return Visit(PE->getReplacement());
115 }
116
117 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)118 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) {
119 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
120 if (result.isReference())
121 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
122 E->getExprLoc());
123
124 llvm::Constant *pair = result.getValue();
125 return ComplexPairTy(pair->getAggregateElement(0U),
126 pair->getAggregateElement(1U));
127 }
128 return EmitLoadOfLValue(E);
129 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)130 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
131 return EmitLoadOfLValue(E);
132 }
VisitObjCMessageExpr(ObjCMessageExpr * E)133 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) {
134 return CGF.EmitObjCMessageExpr(E).getComplexVal();
135 }
VisitArraySubscriptExpr(Expr * E)136 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitMemberExpr(const Expr * E)137 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); }
VisitOpaqueValueExpr(OpaqueValueExpr * E)138 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) {
139 if (E->isGLValue())
140 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
141 return CGF.getOpaqueRValueMapping(E).getComplexVal();
142 }
143
VisitPseudoObjectExpr(PseudoObjectExpr * E)144 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) {
145 return CGF.EmitPseudoObjectRValue(E).getComplexVal();
146 }
147
148 // FIXME: CompoundLiteralExpr
149
150 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy);
VisitImplicitCastExpr(ImplicitCastExpr * E)151 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) {
152 // Unlike for scalars, we don't have to worry about function->ptr demotion
153 // here.
154 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
155 }
VisitCastExpr(CastExpr * E)156 ComplexPairTy VisitCastExpr(CastExpr *E) {
157 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
158 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
159 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType());
160 }
161 ComplexPairTy VisitCallExpr(const CallExpr *E);
162 ComplexPairTy VisitStmtExpr(const StmtExpr *E);
163
164 // Operators.
VisitPrePostIncDec(const UnaryOperator * E,bool isInc,bool isPre)165 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E,
166 bool isInc, bool isPre) {
167 LValue LV = CGF.EmitLValue(E->getSubExpr());
168 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre);
169 }
VisitUnaryPostDec(const UnaryOperator * E)170 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) {
171 return VisitPrePostIncDec(E, false, false);
172 }
VisitUnaryPostInc(const UnaryOperator * E)173 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) {
174 return VisitPrePostIncDec(E, true, false);
175 }
VisitUnaryPreDec(const UnaryOperator * E)176 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) {
177 return VisitPrePostIncDec(E, false, true);
178 }
VisitUnaryPreInc(const UnaryOperator * E)179 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) {
180 return VisitPrePostIncDec(E, true, true);
181 }
VisitUnaryDeref(const Expr * E)182 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
VisitUnaryPlus(const UnaryOperator * E)183 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) {
184 TestAndClearIgnoreReal();
185 TestAndClearIgnoreImag();
186 return Visit(E->getSubExpr());
187 }
188 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E);
189 ComplexPairTy VisitUnaryNot (const UnaryOperator *E);
190 // LNot,Real,Imag never return complex.
VisitUnaryExtension(const UnaryOperator * E)191 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) {
192 return Visit(E->getSubExpr());
193 }
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)194 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
195 return Visit(DAE->getExpr());
196 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)197 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
198 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
199 return Visit(DIE->getExpr());
200 }
VisitExprWithCleanups(ExprWithCleanups * E)201 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) {
202 CGF.enterFullExpression(E);
203 CodeGenFunction::RunCleanupsScope Scope(CGF);
204 return Visit(E->getSubExpr());
205 }
VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr * E)206 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) {
207 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
208 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
209 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem));
210 return ComplexPairTy(Null, Null);
211 }
VisitImplicitValueInitExpr(ImplicitValueInitExpr * E)212 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) {
213 assert(E->getType()->isAnyComplexType() && "Expected complex type!");
214 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType();
215 llvm::Constant *Null =
216 llvm::Constant::getNullValue(CGF.ConvertType(Elem));
217 return ComplexPairTy(Null, Null);
218 }
219
220 struct BinOpInfo {
221 ComplexPairTy LHS;
222 ComplexPairTy RHS;
223 QualType Ty; // Computation Type.
224 };
225
226 BinOpInfo EmitBinOps(const BinaryOperator *E);
227 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
228 ComplexPairTy (ComplexExprEmitter::*Func)
229 (const BinOpInfo &),
230 RValue &Val);
231 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E,
232 ComplexPairTy (ComplexExprEmitter::*Func)
233 (const BinOpInfo &));
234
235 ComplexPairTy EmitBinAdd(const BinOpInfo &Op);
236 ComplexPairTy EmitBinSub(const BinOpInfo &Op);
237 ComplexPairTy EmitBinMul(const BinOpInfo &Op);
238 ComplexPairTy EmitBinDiv(const BinOpInfo &Op);
239
240 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName,
241 const BinOpInfo &Op);
242
VisitBinAdd(const BinaryOperator * E)243 ComplexPairTy VisitBinAdd(const BinaryOperator *E) {
244 return EmitBinAdd(EmitBinOps(E));
245 }
VisitBinSub(const BinaryOperator * E)246 ComplexPairTy VisitBinSub(const BinaryOperator *E) {
247 return EmitBinSub(EmitBinOps(E));
248 }
VisitBinMul(const BinaryOperator * E)249 ComplexPairTy VisitBinMul(const BinaryOperator *E) {
250 return EmitBinMul(EmitBinOps(E));
251 }
VisitBinDiv(const BinaryOperator * E)252 ComplexPairTy VisitBinDiv(const BinaryOperator *E) {
253 return EmitBinDiv(EmitBinOps(E));
254 }
255
256 // Compound assignments.
VisitBinAddAssign(const CompoundAssignOperator * E)257 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) {
258 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd);
259 }
VisitBinSubAssign(const CompoundAssignOperator * E)260 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) {
261 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub);
262 }
VisitBinMulAssign(const CompoundAssignOperator * E)263 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) {
264 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul);
265 }
VisitBinDivAssign(const CompoundAssignOperator * E)266 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) {
267 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv);
268 }
269
270 // GCC rejects rem/and/or/xor for integer complex.
271 // Logical and/or always return int, never complex.
272
273 // No comparisons produce a complex result.
274
275 LValue EmitBinAssignLValue(const BinaryOperator *E,
276 ComplexPairTy &Val);
277 ComplexPairTy VisitBinAssign (const BinaryOperator *E);
278 ComplexPairTy VisitBinComma (const BinaryOperator *E);
279
280
281 ComplexPairTy
282 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO);
283 ComplexPairTy VisitChooseExpr(ChooseExpr *CE);
284
285 ComplexPairTy VisitInitListExpr(InitListExpr *E);
286
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)287 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
288 return EmitLoadOfLValue(E);
289 }
290
291 ComplexPairTy VisitVAArgExpr(VAArgExpr *E);
292
VisitAtomicExpr(AtomicExpr * E)293 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) {
294 return CGF.EmitAtomicExpr(E).getComplexVal();
295 }
296 };
297 } // end anonymous namespace.
298
299 //===----------------------------------------------------------------------===//
300 // Utilities
301 //===----------------------------------------------------------------------===//
302
emitAddrOfRealComponent(Address addr,QualType complexType)303 Address CodeGenFunction::emitAddrOfRealComponent(Address addr,
304 QualType complexType) {
305 CharUnits offset = CharUnits::Zero();
306 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp");
307 }
308
emitAddrOfImagComponent(Address addr,QualType complexType)309 Address CodeGenFunction::emitAddrOfImagComponent(Address addr,
310 QualType complexType) {
311 QualType eltType = complexType->castAs<ComplexType>()->getElementType();
312 CharUnits offset = getContext().getTypeSizeInChars(eltType);
313 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp");
314 }
315
316 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to
317 /// load the real and imaginary pieces, returning them as Real/Imag.
EmitLoadOfLValue(LValue lvalue,SourceLocation loc)318 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue,
319 SourceLocation loc) {
320 assert(lvalue.isSimple() && "non-simple complex l-value?");
321 if (lvalue.getType()->isAtomicType())
322 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal();
323
324 Address SrcPtr = lvalue.getAddress();
325 bool isVolatile = lvalue.isVolatileQualified();
326
327 llvm::Value *Real = nullptr, *Imag = nullptr;
328
329 if (!IgnoreReal || isVolatile) {
330 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType());
331 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real");
332 }
333
334 if (!IgnoreImag || isVolatile) {
335 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType());
336 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag");
337 }
338
339 return ComplexPairTy(Real, Imag);
340 }
341
342 /// EmitStoreOfComplex - Store the specified real/imag parts into the
343 /// specified value pointer.
EmitStoreOfComplex(ComplexPairTy Val,LValue lvalue,bool isInit)344 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue,
345 bool isInit) {
346 if (lvalue.getType()->isAtomicType() ||
347 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue)))
348 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit);
349
350 Address Ptr = lvalue.getAddress();
351 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType());
352 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType());
353
354 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified());
355 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified());
356 }
357
358
359
360 //===----------------------------------------------------------------------===//
361 // Visitor Methods
362 //===----------------------------------------------------------------------===//
363
VisitExpr(Expr * E)364 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) {
365 CGF.ErrorUnsupported(E, "complex expression");
366 llvm::Type *EltTy =
367 CGF.ConvertType(getComplexType(E->getType())->getElementType());
368 llvm::Value *U = llvm::UndefValue::get(EltTy);
369 return ComplexPairTy(U, U);
370 }
371
372 ComplexPairTy ComplexExprEmitter::
VisitImaginaryLiteral(const ImaginaryLiteral * IL)373 VisitImaginaryLiteral(const ImaginaryLiteral *IL) {
374 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr());
375 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag);
376 }
377
378
VisitCallExpr(const CallExpr * E)379 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) {
380 if (E->getCallReturnType(CGF.getContext())->isReferenceType())
381 return EmitLoadOfLValue(E);
382
383 return CGF.EmitCallExpr(E).getComplexVal();
384 }
385
VisitStmtExpr(const StmtExpr * E)386 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) {
387 CodeGenFunction::StmtExprEvaluation eval(CGF);
388 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true);
389 assert(RetAlloca.isValid() && "Expected complex return value");
390 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()),
391 E->getExprLoc());
392 }
393
394 /// Emit a cast from complex value Val to DestType.
EmitComplexToComplexCast(ComplexPairTy Val,QualType SrcType,QualType DestType,SourceLocation Loc)395 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val,
396 QualType SrcType,
397 QualType DestType,
398 SourceLocation Loc) {
399 // Get the src/dest element type.
400 SrcType = SrcType->castAs<ComplexType>()->getElementType();
401 DestType = DestType->castAs<ComplexType>()->getElementType();
402
403 // C99 6.3.1.6: When a value of complex type is converted to another
404 // complex type, both the real and imaginary parts follow the conversion
405 // rules for the corresponding real types.
406 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc);
407 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc);
408 return Val;
409 }
410
EmitScalarToComplexCast(llvm::Value * Val,QualType SrcType,QualType DestType,SourceLocation Loc)411 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val,
412 QualType SrcType,
413 QualType DestType,
414 SourceLocation Loc) {
415 // Convert the input element to the element type of the complex.
416 DestType = DestType->castAs<ComplexType>()->getElementType();
417 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc);
418
419 // Return (realval, 0).
420 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType()));
421 }
422
EmitCast(CastKind CK,Expr * Op,QualType DestTy)423 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op,
424 QualType DestTy) {
425 switch (CK) {
426 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
427
428 // Atomic to non-atomic casts may be more than a no-op for some platforms and
429 // for some types.
430 case CK_AtomicToNonAtomic:
431 case CK_NonAtomicToAtomic:
432 case CK_NoOp:
433 case CK_LValueToRValue:
434 case CK_UserDefinedConversion:
435 return Visit(Op);
436
437 case CK_LValueBitCast: {
438 LValue origLV = CGF.EmitLValue(Op);
439 Address V = origLV.getAddress();
440 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy));
441 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc());
442 }
443
444 case CK_BitCast:
445 case CK_BaseToDerived:
446 case CK_DerivedToBase:
447 case CK_UncheckedDerivedToBase:
448 case CK_Dynamic:
449 case CK_ToUnion:
450 case CK_ArrayToPointerDecay:
451 case CK_FunctionToPointerDecay:
452 case CK_NullToPointer:
453 case CK_NullToMemberPointer:
454 case CK_BaseToDerivedMemberPointer:
455 case CK_DerivedToBaseMemberPointer:
456 case CK_MemberPointerToBoolean:
457 case CK_ReinterpretMemberPointer:
458 case CK_ConstructorConversion:
459 case CK_IntegralToPointer:
460 case CK_PointerToIntegral:
461 case CK_PointerToBoolean:
462 case CK_ToVoid:
463 case CK_VectorSplat:
464 case CK_IntegralCast:
465 case CK_BooleanToSignedIntegral:
466 case CK_IntegralToBoolean:
467 case CK_IntegralToFloating:
468 case CK_FloatingToIntegral:
469 case CK_FloatingToBoolean:
470 case CK_FloatingCast:
471 case CK_CPointerToObjCPointerCast:
472 case CK_BlockPointerToObjCPointerCast:
473 case CK_AnyPointerToBlockPointerCast:
474 case CK_ObjCObjectLValueCast:
475 case CK_FloatingComplexToReal:
476 case CK_FloatingComplexToBoolean:
477 case CK_IntegralComplexToReal:
478 case CK_IntegralComplexToBoolean:
479 case CK_ARCProduceObject:
480 case CK_ARCConsumeObject:
481 case CK_ARCReclaimReturnedObject:
482 case CK_ARCExtendBlockObject:
483 case CK_CopyAndAutoreleaseBlockObject:
484 case CK_BuiltinFnToFnPtr:
485 case CK_ZeroToOCLEvent:
486 case CK_AddressSpaceConversion:
487 llvm_unreachable("invalid cast kind for complex value");
488
489 case CK_FloatingRealToComplex:
490 case CK_IntegralRealToComplex:
491 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(),
492 DestTy, Op->getExprLoc());
493
494 case CK_FloatingComplexCast:
495 case CK_FloatingComplexToIntegralComplex:
496 case CK_IntegralComplexCast:
497 case CK_IntegralComplexToFloatingComplex:
498 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy,
499 Op->getExprLoc());
500 }
501
502 llvm_unreachable("unknown cast resulting in complex value");
503 }
504
VisitUnaryMinus(const UnaryOperator * E)505 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
506 TestAndClearIgnoreReal();
507 TestAndClearIgnoreImag();
508 ComplexPairTy Op = Visit(E->getSubExpr());
509
510 llvm::Value *ResR, *ResI;
511 if (Op.first->getType()->isFloatingPointTy()) {
512 ResR = Builder.CreateFNeg(Op.first, "neg.r");
513 ResI = Builder.CreateFNeg(Op.second, "neg.i");
514 } else {
515 ResR = Builder.CreateNeg(Op.first, "neg.r");
516 ResI = Builder.CreateNeg(Op.second, "neg.i");
517 }
518 return ComplexPairTy(ResR, ResI);
519 }
520
VisitUnaryNot(const UnaryOperator * E)521 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
522 TestAndClearIgnoreReal();
523 TestAndClearIgnoreImag();
524 // ~(a+ib) = a + i*-b
525 ComplexPairTy Op = Visit(E->getSubExpr());
526 llvm::Value *ResI;
527 if (Op.second->getType()->isFloatingPointTy())
528 ResI = Builder.CreateFNeg(Op.second, "conj.i");
529 else
530 ResI = Builder.CreateNeg(Op.second, "conj.i");
531
532 return ComplexPairTy(Op.first, ResI);
533 }
534
EmitBinAdd(const BinOpInfo & Op)535 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) {
536 llvm::Value *ResR, *ResI;
537
538 if (Op.LHS.first->getType()->isFloatingPointTy()) {
539 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r");
540 if (Op.LHS.second && Op.RHS.second)
541 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i");
542 else
543 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second;
544 assert(ResI && "Only one operand may be real!");
545 } else {
546 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r");
547 assert(Op.LHS.second && Op.RHS.second &&
548 "Both operands of integer complex operators must be complex!");
549 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i");
550 }
551 return ComplexPairTy(ResR, ResI);
552 }
553
EmitBinSub(const BinOpInfo & Op)554 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) {
555 llvm::Value *ResR, *ResI;
556 if (Op.LHS.first->getType()->isFloatingPointTy()) {
557 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r");
558 if (Op.LHS.second && Op.RHS.second)
559 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i");
560 else
561 ResI = Op.LHS.second ? Op.LHS.second
562 : Builder.CreateFNeg(Op.RHS.second, "sub.i");
563 assert(ResI && "Only one operand may be real!");
564 } else {
565 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r");
566 assert(Op.LHS.second && Op.RHS.second &&
567 "Both operands of integer complex operators must be complex!");
568 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i");
569 }
570 return ComplexPairTy(ResR, ResI);
571 }
572
573 /// \brief Emit a libcall for a binary operation on complex types.
EmitComplexBinOpLibCall(StringRef LibCallName,const BinOpInfo & Op)574 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName,
575 const BinOpInfo &Op) {
576 CallArgList Args;
577 Args.add(RValue::get(Op.LHS.first),
578 Op.Ty->castAs<ComplexType>()->getElementType());
579 Args.add(RValue::get(Op.LHS.second),
580 Op.Ty->castAs<ComplexType>()->getElementType());
581 Args.add(RValue::get(Op.RHS.first),
582 Op.Ty->castAs<ComplexType>()->getElementType());
583 Args.add(RValue::get(Op.RHS.second),
584 Op.Ty->castAs<ComplexType>()->getElementType());
585
586 // We *must* use the full CG function call building logic here because the
587 // complex type has special ABI handling. We also should not forget about
588 // special calling convention which may be used for compiler builtins.
589
590 // We create a function qualified type to state that this call does not have
591 // any exceptions.
592 FunctionProtoType::ExtProtoInfo EPI;
593 EPI = EPI.withExceptionSpec(
594 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept));
595 SmallVector<QualType, 4> ArgsQTys(
596 4, Op.Ty->castAs<ComplexType>()->getElementType());
597 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI);
598 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall(
599 Args, cast<FunctionType>(FQTy.getTypePtr()), false);
600
601 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo);
602 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName);
603 llvm::Instruction *Call;
604
605 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args,
606 FQTy->getAs<FunctionProtoType>(), &Call);
607 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC());
608 return Res.getComplexVal();
609 }
610
611 /// \brief Lookup the libcall name for a given floating point type complex
612 /// multiply.
getComplexMultiplyLibCallName(llvm::Type * Ty)613 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) {
614 switch (Ty->getTypeID()) {
615 default:
616 llvm_unreachable("Unsupported floating point type!");
617 case llvm::Type::HalfTyID:
618 return "__mulhc3";
619 case llvm::Type::FloatTyID:
620 return "__mulsc3";
621 case llvm::Type::DoubleTyID:
622 return "__muldc3";
623 case llvm::Type::PPC_FP128TyID:
624 return "__multc3";
625 case llvm::Type::X86_FP80TyID:
626 return "__mulxc3";
627 case llvm::Type::FP128TyID:
628 return "__multc3";
629 }
630 }
631
632 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
633 // typed values.
EmitBinMul(const BinOpInfo & Op)634 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) {
635 using llvm::Value;
636 Value *ResR, *ResI;
637 llvm::MDBuilder MDHelper(CGF.getLLVMContext());
638
639 if (Op.LHS.first->getType()->isFloatingPointTy()) {
640 // The general formulation is:
641 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c)
642 //
643 // But we can fold away components which would be zero due to a real
644 // operand according to C11 Annex G.5.1p2.
645 // FIXME: C11 also provides for imaginary types which would allow folding
646 // still more of this within the type system.
647
648 if (Op.LHS.second && Op.RHS.second) {
649 // If both operands are complex, emit the core math directly, and then
650 // test for NaNs. If we find NaNs in the result, we delegate to a libcall
651 // to carefully re-compute the correct infinity representation if
652 // possible. The expectation is that the presence of NaNs here is
653 // *extremely* rare, and so the cost of the libcall is almost irrelevant.
654 // This is good, because the libcall re-computes the core multiplication
655 // exactly the same as we do here and re-tests for NaNs in order to be
656 // a generic complex*complex libcall.
657
658 // First compute the four products.
659 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac");
660 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd");
661 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad");
662 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc");
663
664 // The real part is the difference of the first two, the imaginary part is
665 // the sum of the second.
666 ResR = Builder.CreateFSub(AC, BD, "mul_r");
667 ResI = Builder.CreateFAdd(AD, BC, "mul_i");
668
669 // Emit the test for the real part becoming NaN and create a branch to
670 // handle it. We test for NaN by comparing the number to itself.
671 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp");
672 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont");
673 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan");
674 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB);
675 llvm::BasicBlock *OrigBB = Branch->getParent();
676
677 // Give hint that we very much don't expect to see NaNs.
678 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
679 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1);
680 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
681
682 // Now test the imaginary part and create its branch.
683 CGF.EmitBlock(INaNBB);
684 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp");
685 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall");
686 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB);
687 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight);
688
689 // Now emit the libcall on this slowest of the slow paths.
690 CGF.EmitBlock(LibCallBB);
691 Value *LibCallR, *LibCallI;
692 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall(
693 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op);
694 Builder.CreateBr(ContBB);
695
696 // Finally continue execution by phi-ing together the different
697 // computation paths.
698 CGF.EmitBlock(ContBB);
699 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi");
700 RealPHI->addIncoming(ResR, OrigBB);
701 RealPHI->addIncoming(ResR, INaNBB);
702 RealPHI->addIncoming(LibCallR, LibCallBB);
703 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi");
704 ImagPHI->addIncoming(ResI, OrigBB);
705 ImagPHI->addIncoming(ResI, INaNBB);
706 ImagPHI->addIncoming(LibCallI, LibCallBB);
707 return ComplexPairTy(RealPHI, ImagPHI);
708 }
709 assert((Op.LHS.second || Op.RHS.second) &&
710 "At least one operand must be complex!");
711
712 // If either of the operands is a real rather than a complex, the
713 // imaginary component is ignored when computing the real component of the
714 // result.
715 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl");
716
717 ResI = Op.LHS.second
718 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il")
719 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir");
720 } else {
721 assert(Op.LHS.second && Op.RHS.second &&
722 "Both operands of integer complex operators must be complex!");
723 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl");
724 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr");
725 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r");
726
727 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il");
728 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir");
729 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i");
730 }
731 return ComplexPairTy(ResR, ResI);
732 }
733
734 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex
735 // typed values.
EmitBinDiv(const BinOpInfo & Op)736 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) {
737 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second;
738 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second;
739
740
741 llvm::Value *DSTr, *DSTi;
742 if (LHSr->getType()->isFloatingPointTy()) {
743 // If we have a complex operand on the RHS, we delegate to a libcall to
744 // handle all of the complexities and minimize underflow/overflow cases.
745 //
746 // FIXME: We would be able to avoid the libcall in many places if we
747 // supported imaginary types in addition to complex types.
748 if (RHSi) {
749 BinOpInfo LibCallOp = Op;
750 // If LHS was a real, supply a null imaginary part.
751 if (!LHSi)
752 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType());
753
754 StringRef LibCallName;
755 switch (LHSr->getType()->getTypeID()) {
756 default:
757 llvm_unreachable("Unsupported floating point type!");
758 case llvm::Type::HalfTyID:
759 return EmitComplexBinOpLibCall("__divhc3", LibCallOp);
760 case llvm::Type::FloatTyID:
761 return EmitComplexBinOpLibCall("__divsc3", LibCallOp);
762 case llvm::Type::DoubleTyID:
763 return EmitComplexBinOpLibCall("__divdc3", LibCallOp);
764 case llvm::Type::PPC_FP128TyID:
765 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
766 case llvm::Type::X86_FP80TyID:
767 return EmitComplexBinOpLibCall("__divxc3", LibCallOp);
768 case llvm::Type::FP128TyID:
769 return EmitComplexBinOpLibCall("__divtc3", LibCallOp);
770 }
771 }
772 assert(LHSi && "Can have at most one non-complex operand!");
773
774 DSTr = Builder.CreateFDiv(LHSr, RHSr);
775 DSTi = Builder.CreateFDiv(LHSi, RHSr);
776 } else {
777 assert(Op.LHS.second && Op.RHS.second &&
778 "Both operands of integer complex operators must be complex!");
779 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd))
780 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c
781 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d
782 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd
783
784 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c
785 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d
786 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd
787
788 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c
789 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d
790 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad
791
792 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) {
793 DSTr = Builder.CreateUDiv(Tmp3, Tmp6);
794 DSTi = Builder.CreateUDiv(Tmp9, Tmp6);
795 } else {
796 DSTr = Builder.CreateSDiv(Tmp3, Tmp6);
797 DSTi = Builder.CreateSDiv(Tmp9, Tmp6);
798 }
799 }
800
801 return ComplexPairTy(DSTr, DSTi);
802 }
803
804 ComplexExprEmitter::BinOpInfo
EmitBinOps(const BinaryOperator * E)805 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) {
806 TestAndClearIgnoreReal();
807 TestAndClearIgnoreImag();
808 BinOpInfo Ops;
809 if (E->getLHS()->getType()->isRealFloatingType())
810 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr);
811 else
812 Ops.LHS = Visit(E->getLHS());
813 if (E->getRHS()->getType()->isRealFloatingType())
814 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
815 else
816 Ops.RHS = Visit(E->getRHS());
817
818 Ops.Ty = E->getType();
819 return Ops;
820 }
821
822
823 LValue ComplexExprEmitter::
EmitCompoundAssignLValue(const CompoundAssignOperator * E,ComplexPairTy (ComplexExprEmitter::* Func)(const BinOpInfo &),RValue & Val)824 EmitCompoundAssignLValue(const CompoundAssignOperator *E,
825 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&),
826 RValue &Val) {
827 TestAndClearIgnoreReal();
828 TestAndClearIgnoreImag();
829 QualType LHSTy = E->getLHS()->getType();
830 if (const AtomicType *AT = LHSTy->getAs<AtomicType>())
831 LHSTy = AT->getValueType();
832
833 BinOpInfo OpInfo;
834
835 // Load the RHS and LHS operands.
836 // __block variables need to have the rhs evaluated first, plus this should
837 // improve codegen a little.
838 OpInfo.Ty = E->getComputationResultType();
839 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType();
840
841 // The RHS should have been converted to the computation type.
842 if (E->getRHS()->getType()->isRealFloatingType()) {
843 assert(
844 CGF.getContext()
845 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType()));
846 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr);
847 } else {
848 assert(CGF.getContext()
849 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType()));
850 OpInfo.RHS = Visit(E->getRHS());
851 }
852
853 LValue LHS = CGF.EmitLValue(E->getLHS());
854
855 // Load from the l-value and convert it.
856 SourceLocation Loc = E->getExprLoc();
857 if (LHSTy->isAnyComplexType()) {
858 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc);
859 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
860 } else {
861 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc);
862 // For floating point real operands we can directly pass the scalar form
863 // to the binary operator emission and potentially get more efficient code.
864 if (LHSTy->isRealFloatingType()) {
865 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy))
866 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc);
867 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr);
868 } else {
869 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc);
870 }
871 }
872
873 // Expand the binary operator.
874 ComplexPairTy Result = (this->*Func)(OpInfo);
875
876 // Truncate the result and store it into the LHS lvalue.
877 if (LHSTy->isAnyComplexType()) {
878 ComplexPairTy ResVal =
879 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc);
880 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false);
881 Val = RValue::getComplex(ResVal);
882 } else {
883 llvm::Value *ResVal =
884 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc);
885 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false);
886 Val = RValue::get(ResVal);
887 }
888
889 return LHS;
890 }
891
892 // Compound assignments.
893 ComplexPairTy ComplexExprEmitter::
EmitCompoundAssign(const CompoundAssignOperator * E,ComplexPairTy (ComplexExprEmitter::* Func)(const BinOpInfo &))894 EmitCompoundAssign(const CompoundAssignOperator *E,
895 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){
896 RValue Val;
897 LValue LV = EmitCompoundAssignLValue(E, Func, Val);
898
899 // The result of an assignment in C is the assigned r-value.
900 if (!CGF.getLangOpts().CPlusPlus)
901 return Val.getComplexVal();
902
903 // If the lvalue is non-volatile, return the computed value of the assignment.
904 if (!LV.isVolatileQualified())
905 return Val.getComplexVal();
906
907 return EmitLoadOfLValue(LV, E->getExprLoc());
908 }
909
EmitBinAssignLValue(const BinaryOperator * E,ComplexPairTy & Val)910 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E,
911 ComplexPairTy &Val) {
912 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(),
913 E->getRHS()->getType()) &&
914 "Invalid assignment");
915 TestAndClearIgnoreReal();
916 TestAndClearIgnoreImag();
917
918 // Emit the RHS. __block variables need the RHS evaluated first.
919 Val = Visit(E->getRHS());
920
921 // Compute the address to store into.
922 LValue LHS = CGF.EmitLValue(E->getLHS());
923
924 // Store the result value into the LHS lvalue.
925 EmitStoreOfComplex(Val, LHS, /*isInit*/ false);
926
927 return LHS;
928 }
929
VisitBinAssign(const BinaryOperator * E)930 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) {
931 ComplexPairTy Val;
932 LValue LV = EmitBinAssignLValue(E, Val);
933
934 // The result of an assignment in C is the assigned r-value.
935 if (!CGF.getLangOpts().CPlusPlus)
936 return Val;
937
938 // If the lvalue is non-volatile, return the computed value of the assignment.
939 if (!LV.isVolatileQualified())
940 return Val;
941
942 return EmitLoadOfLValue(LV, E->getExprLoc());
943 }
944
VisitBinComma(const BinaryOperator * E)945 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) {
946 CGF.EmitIgnoredExpr(E->getLHS());
947 return Visit(E->getRHS());
948 }
949
950 ComplexPairTy ComplexExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)951 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
952 TestAndClearIgnoreReal();
953 TestAndClearIgnoreImag();
954 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
955 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
956 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
957
958 // Bind the common expression if necessary.
959 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
960
961
962 CodeGenFunction::ConditionalEvaluation eval(CGF);
963 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock,
964 CGF.getProfileCount(E));
965
966 eval.begin(CGF);
967 CGF.EmitBlock(LHSBlock);
968 CGF.incrementProfileCounter(E);
969 ComplexPairTy LHS = Visit(E->getTrueExpr());
970 LHSBlock = Builder.GetInsertBlock();
971 CGF.EmitBranch(ContBlock);
972 eval.end(CGF);
973
974 eval.begin(CGF);
975 CGF.EmitBlock(RHSBlock);
976 ComplexPairTy RHS = Visit(E->getFalseExpr());
977 RHSBlock = Builder.GetInsertBlock();
978 CGF.EmitBlock(ContBlock);
979 eval.end(CGF);
980
981 // Create a PHI node for the real part.
982 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r");
983 RealPN->addIncoming(LHS.first, LHSBlock);
984 RealPN->addIncoming(RHS.first, RHSBlock);
985
986 // Create a PHI node for the imaginary part.
987 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i");
988 ImagPN->addIncoming(LHS.second, LHSBlock);
989 ImagPN->addIncoming(RHS.second, RHSBlock);
990
991 return ComplexPairTy(RealPN, ImagPN);
992 }
993
VisitChooseExpr(ChooseExpr * E)994 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) {
995 return Visit(E->getChosenSubExpr());
996 }
997
VisitInitListExpr(InitListExpr * E)998 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) {
999 bool Ignore = TestAndClearIgnoreReal();
1000 (void)Ignore;
1001 assert (Ignore == false && "init list ignored");
1002 Ignore = TestAndClearIgnoreImag();
1003 (void)Ignore;
1004 assert (Ignore == false && "init list ignored");
1005
1006 if (E->getNumInits() == 2) {
1007 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0));
1008 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1));
1009 return ComplexPairTy(Real, Imag);
1010 } else if (E->getNumInits() == 1) {
1011 return Visit(E->getInit(0));
1012 }
1013
1014 // Empty init list intializes to null
1015 assert(E->getNumInits() == 0 && "Unexpected number of inits");
1016 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType();
1017 llvm::Type* LTy = CGF.ConvertType(Ty);
1018 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy);
1019 return ComplexPairTy(zeroConstant, zeroConstant);
1020 }
1021
VisitVAArgExpr(VAArgExpr * E)1022 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) {
1023 Address ArgValue = Address::invalid();
1024 Address ArgPtr = CGF.EmitVAArg(E, ArgValue);
1025
1026 if (!ArgPtr.isValid()) {
1027 CGF.ErrorUnsupported(E, "complex va_arg expression");
1028 llvm::Type *EltTy =
1029 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType());
1030 llvm::Value *U = llvm::UndefValue::get(EltTy);
1031 return ComplexPairTy(U, U);
1032 }
1033
1034 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()),
1035 E->getExprLoc());
1036 }
1037
1038 //===----------------------------------------------------------------------===//
1039 // Entry Point into this File
1040 //===----------------------------------------------------------------------===//
1041
1042 /// EmitComplexExpr - Emit the computation of the specified expression of
1043 /// complex type, ignoring the result.
EmitComplexExpr(const Expr * E,bool IgnoreReal,bool IgnoreImag)1044 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal,
1045 bool IgnoreImag) {
1046 assert(E && getComplexType(E->getType()) &&
1047 "Invalid complex expression to emit");
1048
1049 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag)
1050 .Visit(const_cast<Expr *>(E));
1051 }
1052
EmitComplexExprIntoLValue(const Expr * E,LValue dest,bool isInit)1053 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest,
1054 bool isInit) {
1055 assert(E && getComplexType(E->getType()) &&
1056 "Invalid complex expression to emit");
1057 ComplexExprEmitter Emitter(*this);
1058 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E));
1059 Emitter.EmitStoreOfComplex(Val, dest, isInit);
1060 }
1061
1062 /// EmitStoreOfComplex - Store a complex number into the specified l-value.
EmitStoreOfComplex(ComplexPairTy V,LValue dest,bool isInit)1063 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest,
1064 bool isInit) {
1065 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit);
1066 }
1067
1068 /// EmitLoadOfComplex - Load a complex number from the specified address.
EmitLoadOfComplex(LValue src,SourceLocation loc)1069 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src,
1070 SourceLocation loc) {
1071 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc);
1072 }
1073
EmitComplexAssignmentLValue(const BinaryOperator * E)1074 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) {
1075 assert(E->getOpcode() == BO_Assign);
1076 ComplexPairTy Val; // ignored
1077 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val);
1078 }
1079
1080 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)(
1081 const ComplexExprEmitter::BinOpInfo &);
1082
getComplexOp(BinaryOperatorKind Op)1083 static CompoundFunc getComplexOp(BinaryOperatorKind Op) {
1084 switch (Op) {
1085 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul;
1086 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv;
1087 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub;
1088 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd;
1089 default:
1090 llvm_unreachable("unexpected complex compound assignment");
1091 }
1092 }
1093
1094 LValue CodeGenFunction::
EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator * E)1095 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) {
1096 CompoundFunc Op = getComplexOp(E->getOpcode());
1097 RValue Val;
1098 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1099 }
1100
1101 LValue CodeGenFunction::
EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator * E,llvm::Value * & Result)1102 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
1103 llvm::Value *&Result) {
1104 CompoundFunc Op = getComplexOp(E->getOpcode());
1105 RValue Val;
1106 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val);
1107 Result = Val.getScalarVal();
1108 return Ret;
1109 }
1110