1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009-2010 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2014 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // Copyright (C) 2013 Gauthier Brun <brun.gauthier@gmail.com>
8 // Copyright (C) 2013 Nicolas Carre <nicolas.carre@ensimag.fr>
9 // Copyright (C) 2013 Jean Ceccato <jean.ceccato@ensimag.fr>
10 // Copyright (C) 2013 Pierre Zoppitelli <pierre.zoppitelli@ensimag.fr>
11 //
12 // This Source Code Form is subject to the terms of the Mozilla
13 // Public License v. 2.0. If a copy of the MPL was not distributed
14 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
15
16 #ifndef EIGEN_SVDBASE_H
17 #define EIGEN_SVDBASE_H
18
19 namespace Eigen {
20 /** \ingroup SVD_Module
21 *
22 *
23 * \class SVDBase
24 *
25 * \brief Base class of SVD algorithms
26 *
27 * \tparam Derived the type of the actual SVD decomposition
28 *
29 * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product
30 * \f[ A = U S V^* \f]
31 * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal;
32 * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left
33 * and right \em singular \em vectors of \a A respectively.
34 *
35 * Singular values are always sorted in decreasing order.
36 *
37 *
38 * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the
39 * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual
40 * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix,
41 * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving.
42 *
43 * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to
44 * terminate in finite (and reasonable) time.
45 * \sa class BDCSVD, class JacobiSVD
46 */
47 template<typename Derived>
48 class SVDBase
49 {
50
51 public:
52 typedef typename internal::traits<Derived>::MatrixType MatrixType;
53 typedef typename MatrixType::Scalar Scalar;
54 typedef typename NumTraits<typename MatrixType::Scalar>::Real RealScalar;
55 typedef typename MatrixType::StorageIndex StorageIndex;
56 typedef Eigen::Index Index; ///< \deprecated since Eigen 3.3
57 enum {
58 RowsAtCompileTime = MatrixType::RowsAtCompileTime,
59 ColsAtCompileTime = MatrixType::ColsAtCompileTime,
60 DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime),
61 MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime,
62 MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime,
63 MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime),
64 MatrixOptions = MatrixType::Options
65 };
66
67 typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, MatrixOptions, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixUType;
68 typedef Matrix<Scalar, ColsAtCompileTime, ColsAtCompileTime, MatrixOptions, MaxColsAtCompileTime, MaxColsAtCompileTime> MatrixVType;
69 typedef typename internal::plain_diag_type<MatrixType, RealScalar>::type SingularValuesType;
70
derived()71 Derived& derived() { return *static_cast<Derived*>(this); }
derived()72 const Derived& derived() const { return *static_cast<const Derived*>(this); }
73
74 /** \returns the \a U matrix.
75 *
76 * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
77 * the U matrix is n-by-n if you asked for \link Eigen::ComputeFullU ComputeFullU \endlink, and is n-by-m if you asked for \link Eigen::ComputeThinU ComputeThinU \endlink.
78 *
79 * The \a m first columns of \a U are the left singular vectors of the matrix being decomposed.
80 *
81 * This method asserts that you asked for \a U to be computed.
82 */
matrixU()83 const MatrixUType& matrixU() const
84 {
85 eigen_assert(m_isInitialized && "SVD is not initialized.");
86 eigen_assert(computeU() && "This SVD decomposition didn't compute U. Did you ask for it?");
87 return m_matrixU;
88 }
89
90 /** \returns the \a V matrix.
91 *
92 * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p,
93 * the V matrix is p-by-p if you asked for \link Eigen::ComputeFullV ComputeFullV \endlink, and is p-by-m if you asked for \link Eigen::ComputeThinV ComputeThinV \endlink.
94 *
95 * The \a m first columns of \a V are the right singular vectors of the matrix being decomposed.
96 *
97 * This method asserts that you asked for \a V to be computed.
98 */
matrixV()99 const MatrixVType& matrixV() const
100 {
101 eigen_assert(m_isInitialized && "SVD is not initialized.");
102 eigen_assert(computeV() && "This SVD decomposition didn't compute V. Did you ask for it?");
103 return m_matrixV;
104 }
105
106 /** \returns the vector of singular values.
107 *
108 * For the SVD decomposition of a n-by-p matrix, letting \a m be the minimum of \a n and \a p, the
109 * returned vector has size \a m. Singular values are always sorted in decreasing order.
110 */
singularValues()111 const SingularValuesType& singularValues() const
112 {
113 eigen_assert(m_isInitialized && "SVD is not initialized.");
114 return m_singularValues;
115 }
116
117 /** \returns the number of singular values that are not exactly 0 */
nonzeroSingularValues()118 Index nonzeroSingularValues() const
119 {
120 eigen_assert(m_isInitialized && "SVD is not initialized.");
121 return m_nonzeroSingularValues;
122 }
123
124 /** \returns the rank of the matrix of which \c *this is the SVD.
125 *
126 * \note This method has to determine which singular values should be considered nonzero.
127 * For that, it uses the threshold value that you can control by calling
128 * setThreshold(const RealScalar&).
129 */
rank()130 inline Index rank() const
131 {
132 using std::abs;
133 eigen_assert(m_isInitialized && "JacobiSVD is not initialized.");
134 if(m_singularValues.size()==0) return 0;
135 RealScalar premultiplied_threshold = numext::maxi<RealScalar>(m_singularValues.coeff(0) * threshold(), (std::numeric_limits<RealScalar>::min)());
136 Index i = m_nonzeroSingularValues-1;
137 while(i>=0 && m_singularValues.coeff(i) < premultiplied_threshold) --i;
138 return i+1;
139 }
140
141 /** Allows to prescribe a threshold to be used by certain methods, such as rank() and solve(),
142 * which need to determine when singular values are to be considered nonzero.
143 * This is not used for the SVD decomposition itself.
144 *
145 * When it needs to get the threshold value, Eigen calls threshold().
146 * The default is \c NumTraits<Scalar>::epsilon()
147 *
148 * \param threshold The new value to use as the threshold.
149 *
150 * A singular value will be considered nonzero if its value is strictly greater than
151 * \f$ \vert singular value \vert \leqslant threshold \times \vert max singular value \vert \f$.
152 *
153 * If you want to come back to the default behavior, call setThreshold(Default_t)
154 */
setThreshold(const RealScalar & threshold)155 Derived& setThreshold(const RealScalar& threshold)
156 {
157 m_usePrescribedThreshold = true;
158 m_prescribedThreshold = threshold;
159 return derived();
160 }
161
162 /** Allows to come back to the default behavior, letting Eigen use its default formula for
163 * determining the threshold.
164 *
165 * You should pass the special object Eigen::Default as parameter here.
166 * \code svd.setThreshold(Eigen::Default); \endcode
167 *
168 * See the documentation of setThreshold(const RealScalar&).
169 */
setThreshold(Default_t)170 Derived& setThreshold(Default_t)
171 {
172 m_usePrescribedThreshold = false;
173 return derived();
174 }
175
176 /** Returns the threshold that will be used by certain methods such as rank().
177 *
178 * See the documentation of setThreshold(const RealScalar&).
179 */
threshold()180 RealScalar threshold() const
181 {
182 eigen_assert(m_isInitialized || m_usePrescribedThreshold);
183 return m_usePrescribedThreshold ? m_prescribedThreshold
184 : (std::max<Index>)(1,m_diagSize)*NumTraits<Scalar>::epsilon();
185 }
186
187 /** \returns true if \a U (full or thin) is asked for in this SVD decomposition */
computeU()188 inline bool computeU() const { return m_computeFullU || m_computeThinU; }
189 /** \returns true if \a V (full or thin) is asked for in this SVD decomposition */
computeV()190 inline bool computeV() const { return m_computeFullV || m_computeThinV; }
191
rows()192 inline Index rows() const { return m_rows; }
cols()193 inline Index cols() const { return m_cols; }
194
195 /** \returns a (least squares) solution of \f$ A x = b \f$ using the current SVD decomposition of A.
196 *
197 * \param b the right-hand-side of the equation to solve.
198 *
199 * \note Solving requires both U and V to be computed. Thin U and V are enough, there is no need for full U or V.
200 *
201 * \note SVD solving is implicitly least-squares. Thus, this method serves both purposes of exact solving and least-squares solving.
202 * In other words, the returned solution is guaranteed to minimize the Euclidean norm \f$ \Vert A x - b \Vert \f$.
203 */
204 template<typename Rhs>
205 inline const Solve<Derived, Rhs>
solve(const MatrixBase<Rhs> & b)206 solve(const MatrixBase<Rhs>& b) const
207 {
208 eigen_assert(m_isInitialized && "SVD is not initialized.");
209 eigen_assert(computeU() && computeV() && "SVD::solve() requires both unitaries U and V to be computed (thin unitaries suffice).");
210 return Solve<Derived, Rhs>(derived(), b.derived());
211 }
212
213 #ifndef EIGEN_PARSED_BY_DOXYGEN
214 template<typename RhsType, typename DstType>
215 EIGEN_DEVICE_FUNC
216 void _solve_impl(const RhsType &rhs, DstType &dst) const;
217 #endif
218
219 protected:
220
check_template_parameters()221 static void check_template_parameters()
222 {
223 EIGEN_STATIC_ASSERT_NON_INTEGER(Scalar);
224 }
225
226 // return true if already allocated
227 bool allocate(Index rows, Index cols, unsigned int computationOptions) ;
228
229 MatrixUType m_matrixU;
230 MatrixVType m_matrixV;
231 SingularValuesType m_singularValues;
232 bool m_isInitialized, m_isAllocated, m_usePrescribedThreshold;
233 bool m_computeFullU, m_computeThinU;
234 bool m_computeFullV, m_computeThinV;
235 unsigned int m_computationOptions;
236 Index m_nonzeroSingularValues, m_rows, m_cols, m_diagSize;
237 RealScalar m_prescribedThreshold;
238
239 /** \brief Default Constructor.
240 *
241 * Default constructor of SVDBase
242 */
SVDBase()243 SVDBase()
244 : m_isInitialized(false),
245 m_isAllocated(false),
246 m_usePrescribedThreshold(false),
247 m_computationOptions(0),
248 m_rows(-1), m_cols(-1), m_diagSize(0)
249 {
250 check_template_parameters();
251 }
252
253
254 };
255
256 #ifndef EIGEN_PARSED_BY_DOXYGEN
257 template<typename Derived>
258 template<typename RhsType, typename DstType>
_solve_impl(const RhsType & rhs,DstType & dst)259 void SVDBase<Derived>::_solve_impl(const RhsType &rhs, DstType &dst) const
260 {
261 eigen_assert(rhs.rows() == rows());
262
263 // A = U S V^*
264 // So A^{-1} = V S^{-1} U^*
265
266 Matrix<Scalar, Dynamic, RhsType::ColsAtCompileTime, 0, MatrixType::MaxRowsAtCompileTime, RhsType::MaxColsAtCompileTime> tmp;
267 Index l_rank = rank();
268 tmp.noalias() = m_matrixU.leftCols(l_rank).adjoint() * rhs;
269 tmp = m_singularValues.head(l_rank).asDiagonal().inverse() * tmp;
270 dst = m_matrixV.leftCols(l_rank) * tmp;
271 }
272 #endif
273
274 template<typename MatrixType>
allocate(Index rows,Index cols,unsigned int computationOptions)275 bool SVDBase<MatrixType>::allocate(Index rows, Index cols, unsigned int computationOptions)
276 {
277 eigen_assert(rows >= 0 && cols >= 0);
278
279 if (m_isAllocated &&
280 rows == m_rows &&
281 cols == m_cols &&
282 computationOptions == m_computationOptions)
283 {
284 return true;
285 }
286
287 m_rows = rows;
288 m_cols = cols;
289 m_isInitialized = false;
290 m_isAllocated = true;
291 m_computationOptions = computationOptions;
292 m_computeFullU = (computationOptions & ComputeFullU) != 0;
293 m_computeThinU = (computationOptions & ComputeThinU) != 0;
294 m_computeFullV = (computationOptions & ComputeFullV) != 0;
295 m_computeThinV = (computationOptions & ComputeThinV) != 0;
296 eigen_assert(!(m_computeFullU && m_computeThinU) && "SVDBase: you can't ask for both full and thin U");
297 eigen_assert(!(m_computeFullV && m_computeThinV) && "SVDBase: you can't ask for both full and thin V");
298 eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) &&
299 "SVDBase: thin U and V are only available when your matrix has a dynamic number of columns.");
300
301 m_diagSize = (std::min)(m_rows, m_cols);
302 m_singularValues.resize(m_diagSize);
303 if(RowsAtCompileTime==Dynamic)
304 m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0);
305 if(ColsAtCompileTime==Dynamic)
306 m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0);
307
308 return false;
309 }
310
311 }// end namespace
312
313 #endif // EIGEN_SVDBASE_H
314